vk: Set up depth and stencil buffers
[mesa.git] / src / vulkan / device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "private.h"
31
32 static int
33 anv_env_get_int(const char *name)
34 {
35 const char *val = getenv(name);
36
37 if (!val)
38 return 0;
39
40 return strtol(val, NULL, 0);
41 }
42
43 static VkResult
44 fill_physical_device(struct anv_physical_device *device,
45 struct anv_instance *instance,
46 const char *path)
47 {
48 int fd;
49
50 fd = open("/dev/dri/renderD128", O_RDWR | O_CLOEXEC);
51 if (fd < 0)
52 return vk_error(VK_ERROR_UNAVAILABLE);
53
54 device->instance = instance;
55 device->path = path;
56
57 device->chipset_id = anv_env_get_int("INTEL_DEVID_OVERRIDE");
58 device->no_hw = false;
59 if (device->chipset_id) {
60 /* INTEL_DEVID_OVERRIDE implies INTEL_NO_HW. */
61 device->no_hw = true;
62 } else {
63 device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID);
64 }
65 if (!device->chipset_id)
66 goto fail;
67
68 device->name = brw_get_device_name(device->chipset_id);
69 device->info = brw_get_device_info(device->chipset_id, -1);
70 if (!device->info)
71 goto fail;
72
73 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT))
74 goto fail;
75
76 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2))
77 goto fail;
78
79 if (!anv_gem_get_param(fd, I915_PARAM_HAS_LLC))
80 goto fail;
81
82 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CONSTANTS))
83 goto fail;
84
85 close(fd);
86
87 return VK_SUCCESS;
88
89 fail:
90 close(fd);
91
92 return vk_error(VK_ERROR_UNAVAILABLE);
93 }
94
95 static void *default_alloc(
96 void* pUserData,
97 size_t size,
98 size_t alignment,
99 VkSystemAllocType allocType)
100 {
101 return malloc(size);
102 }
103
104 static void default_free(
105 void* pUserData,
106 void* pMem)
107 {
108 free(pMem);
109 }
110
111 static const VkAllocCallbacks default_alloc_callbacks = {
112 .pUserData = NULL,
113 .pfnAlloc = default_alloc,
114 .pfnFree = default_free
115 };
116
117 VkResult anv_CreateInstance(
118 const VkInstanceCreateInfo* pCreateInfo,
119 VkInstance* pInstance)
120 {
121 struct anv_instance *instance;
122 const VkAllocCallbacks *alloc_callbacks = &default_alloc_callbacks;
123 void *user_data = NULL;
124 VkResult result;
125
126 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
127
128 if (pCreateInfo->pAllocCb) {
129 alloc_callbacks = pCreateInfo->pAllocCb;
130 user_data = pCreateInfo->pAllocCb->pUserData;
131 }
132 instance = alloc_callbacks->pfnAlloc(user_data, sizeof(*instance), 8,
133 VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
134 if (!instance)
135 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
136
137 instance->pAllocUserData = alloc_callbacks->pUserData;
138 instance->pfnAlloc = alloc_callbacks->pfnAlloc;
139 instance->pfnFree = alloc_callbacks->pfnFree;
140 instance->apiVersion = pCreateInfo->pAppInfo->apiVersion;
141
142 instance->physicalDeviceCount = 0;
143 result = fill_physical_device(&instance->physicalDevice,
144 instance, "/dev/dri/renderD128");
145
146 if (result != VK_SUCCESS)
147 return result;
148
149 instance->physicalDeviceCount++;
150 *pInstance = (VkInstance) instance;
151
152 return VK_SUCCESS;
153 }
154
155 VkResult anv_DestroyInstance(
156 VkInstance _instance)
157 {
158 struct anv_instance *instance = (struct anv_instance *) _instance;
159
160 instance->pfnFree(instance->pAllocUserData, instance);
161
162 return VK_SUCCESS;
163 }
164
165 VkResult anv_EnumeratePhysicalDevices(
166 VkInstance _instance,
167 uint32_t* pPhysicalDeviceCount,
168 VkPhysicalDevice* pPhysicalDevices)
169 {
170 struct anv_instance *instance = (struct anv_instance *) _instance;
171
172 if (*pPhysicalDeviceCount >= 1)
173 pPhysicalDevices[0] = (VkPhysicalDevice) &instance->physicalDevice;
174 *pPhysicalDeviceCount = instance->physicalDeviceCount;
175
176 return VK_SUCCESS;
177 }
178
179 VkResult anv_GetPhysicalDeviceInfo(
180 VkPhysicalDevice physicalDevice,
181 VkPhysicalDeviceInfoType infoType,
182 size_t* pDataSize,
183 void* pData)
184 {
185 struct anv_physical_device *device = (struct anv_physical_device *) physicalDevice;
186 VkPhysicalDeviceProperties *properties;
187 VkPhysicalDevicePerformance *performance;
188 VkPhysicalDeviceQueueProperties *queue_properties;
189 VkPhysicalDeviceMemoryProperties *memory_properties;
190 VkDisplayPropertiesWSI *display_properties;
191 uint64_t ns_per_tick = 80;
192
193 switch ((uint32_t) infoType) {
194 case VK_PHYSICAL_DEVICE_INFO_TYPE_PROPERTIES:
195 properties = pData;
196
197 *pDataSize = sizeof(*properties);
198 if (pData == NULL)
199 return VK_SUCCESS;
200
201 properties->apiVersion = 1;
202 properties->driverVersion = 1;
203 properties->vendorId = 0x8086;
204 properties->deviceId = device->chipset_id;
205 properties->deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU;
206 strcpy(properties->deviceName, device->name);
207 properties->maxInlineMemoryUpdateSize = 0;
208 properties->maxBoundDescriptorSets = MAX_SETS;
209 properties->maxThreadGroupSize = 512;
210 properties->timestampFrequency = 1000 * 1000 * 1000 / ns_per_tick;
211 properties->multiColorAttachmentClears = true;
212 properties->maxDescriptorSets = 8;
213 properties->maxViewports = 16;
214 properties->maxColorAttachments = 8;
215 return VK_SUCCESS;
216
217 case VK_PHYSICAL_DEVICE_INFO_TYPE_PERFORMANCE:
218 performance = pData;
219
220 *pDataSize = sizeof(*performance);
221 if (pData == NULL)
222 return VK_SUCCESS;
223
224 performance->maxDeviceClock = 1.0;
225 performance->aluPerClock = 1.0;
226 performance->texPerClock = 1.0;
227 performance->primsPerClock = 1.0;
228 performance->pixelsPerClock = 1.0;
229 return VK_SUCCESS;
230
231 case VK_PHYSICAL_DEVICE_INFO_TYPE_QUEUE_PROPERTIES:
232 queue_properties = pData;
233
234 *pDataSize = sizeof(*queue_properties);
235 if (pData == NULL)
236 return VK_SUCCESS;
237
238 queue_properties->queueFlags = 0;
239 queue_properties->queueCount = 1;
240 queue_properties->maxAtomicCounters = 0;
241 queue_properties->supportsTimestamps = true;
242 queue_properties->maxMemReferences = 256;
243 return VK_SUCCESS;
244
245 case VK_PHYSICAL_DEVICE_INFO_TYPE_MEMORY_PROPERTIES:
246 memory_properties = pData;
247
248 *pDataSize = sizeof(*memory_properties);
249 if (pData == NULL)
250 return VK_SUCCESS;
251
252 memory_properties->supportsMigration = false;
253 memory_properties->supportsPinning = false;
254 return VK_SUCCESS;
255
256 case VK_PHYSICAL_DEVICE_INFO_TYPE_DISPLAY_PROPERTIES_WSI:
257 anv_finishme("VK_PHYSICAL_DEVICE_INFO_TYPE_DISPLAY_PROPERTIES_WSI");
258
259 *pDataSize = sizeof(*display_properties);
260 if (pData == NULL)
261 return VK_SUCCESS;
262
263 display_properties = pData;
264 display_properties->display = 0;
265 display_properties->physicalResolution = (VkExtent2D) { 0, 0 };
266 return VK_SUCCESS;
267
268 case VK_PHYSICAL_DEVICE_INFO_TYPE_QUEUE_PRESENT_PROPERTIES_WSI:
269 anv_finishme("VK_PHYSICAL_DEVICE_INFO_TYPE_QUEUE_PRESENT_PROPERTIES_WSI");
270 return VK_SUCCESS;
271
272
273 default:
274 return VK_UNSUPPORTED;
275 }
276
277 }
278
279 void * vkGetProcAddr(
280 VkPhysicalDevice physicalDevice,
281 const char* pName)
282 {
283 return anv_lookup_entrypoint(pName);
284 }
285
286 static void
287 parse_debug_flags(struct anv_device *device)
288 {
289 const char *debug, *p, *end;
290
291 debug = getenv("INTEL_DEBUG");
292 device->dump_aub = false;
293 if (debug) {
294 for (p = debug; *p; p = end + 1) {
295 end = strchrnul(p, ',');
296 if (end - p == 3 && memcmp(p, "aub", 3) == 0)
297 device->dump_aub = true;
298 if (end - p == 5 && memcmp(p, "no_hw", 5) == 0)
299 device->no_hw = true;
300 if (*end == '\0')
301 break;
302 }
303 }
304 }
305
306 VkResult anv_CreateDevice(
307 VkPhysicalDevice _physicalDevice,
308 const VkDeviceCreateInfo* pCreateInfo,
309 VkDevice* pDevice)
310 {
311 struct anv_physical_device *physicalDevice =
312 (struct anv_physical_device *) _physicalDevice;
313 struct anv_instance *instance = physicalDevice->instance;
314 struct anv_device *device;
315
316 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
317
318 device = instance->pfnAlloc(instance->pAllocUserData,
319 sizeof(*device), 8,
320 VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
321 if (!device)
322 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
323
324 device->no_hw = physicalDevice->no_hw;
325 parse_debug_flags(device);
326
327 device->instance = physicalDevice->instance;
328 device->fd = open("/dev/dri/renderD128", O_RDWR | O_CLOEXEC);
329 if (device->fd == -1)
330 goto fail_device;
331
332 device->context_id = anv_gem_create_context(device);
333 if (device->context_id == -1)
334 goto fail_fd;
335
336 anv_block_pool_init(&device->dynamic_state_block_pool, device, 2048);
337
338 anv_state_pool_init(&device->dynamic_state_pool,
339 &device->dynamic_state_block_pool);
340
341 anv_block_pool_init(&device->instruction_block_pool, device, 2048);
342 anv_block_pool_init(&device->surface_state_block_pool, device, 2048);
343
344
345 /* Binding table pointers are only 16 bits so we have to make sure that
346 * they get allocated at the beginning of the surface state BO. To
347 * handle this, we create a separate block pool that works out of the
348 * first 64 KB of the surface state BO.
349 */
350 anv_block_pool_init_slave(&device->binding_table_block_pool,
351 &device->surface_state_block_pool, 32);
352
353 anv_state_pool_init(&device->surface_state_pool,
354 &device->surface_state_block_pool);
355
356 device->compiler = anv_compiler_create(device->fd);
357 device->aub_writer = NULL;
358
359 device->info = *physicalDevice->info;
360
361 pthread_mutex_init(&device->mutex, NULL);
362
363 anv_device_init_meta(device);
364
365 *pDevice = (VkDevice) device;
366
367 return VK_SUCCESS;
368
369 fail_fd:
370 close(device->fd);
371 fail_device:
372 anv_device_free(device, device);
373
374 return vk_error(VK_ERROR_UNAVAILABLE);
375 }
376
377 VkResult anv_DestroyDevice(
378 VkDevice _device)
379 {
380 struct anv_device *device = (struct anv_device *) _device;
381
382 anv_compiler_destroy(device->compiler);
383
384 anv_block_pool_finish(&device->dynamic_state_block_pool);
385 anv_block_pool_finish(&device->instruction_block_pool);
386 anv_block_pool_finish(&device->surface_state_block_pool);
387
388 close(device->fd);
389
390 if (device->aub_writer)
391 anv_aub_writer_destroy(device->aub_writer);
392
393 anv_device_free(device, device);
394
395 return VK_SUCCESS;
396 }
397
398 VkResult anv_GetGlobalExtensionInfo(
399 VkExtensionInfoType infoType,
400 uint32_t extensionIndex,
401 size_t* pDataSize,
402 void* pData)
403 {
404 static const VkExtensionProperties extensions[] = {
405 {
406 .extName = "VK_WSI_LunarG",
407 .version = 3
408 }
409 };
410 uint32_t count = ARRAY_SIZE(extensions);
411
412 switch (infoType) {
413 case VK_EXTENSION_INFO_TYPE_COUNT:
414 memcpy(pData, &count, sizeof(count));
415 *pDataSize = sizeof(count);
416 return VK_SUCCESS;
417
418 case VK_EXTENSION_INFO_TYPE_PROPERTIES:
419 if (extensionIndex >= count)
420 return vk_error(VK_ERROR_INVALID_EXTENSION);
421
422 memcpy(pData, &extensions[extensionIndex], sizeof(extensions[0]));
423 *pDataSize = sizeof(extensions[0]);
424 return VK_SUCCESS;
425
426 default:
427 return VK_UNSUPPORTED;
428 }
429 }
430
431 VkResult anv_GetPhysicalDeviceExtensionInfo(
432 VkPhysicalDevice physicalDevice,
433 VkExtensionInfoType infoType,
434 uint32_t extensionIndex,
435 size_t* pDataSize,
436 void* pData)
437 {
438 uint32_t *count;
439
440 switch (infoType) {
441 case VK_EXTENSION_INFO_TYPE_COUNT:
442 *pDataSize = 4;
443 if (pData == NULL)
444 return VK_SUCCESS;
445
446 count = pData;
447 *count = 0;
448 return VK_SUCCESS;
449
450 case VK_EXTENSION_INFO_TYPE_PROPERTIES:
451 return vk_error(VK_ERROR_INVALID_EXTENSION);
452
453 default:
454 return VK_UNSUPPORTED;
455 }
456 }
457
458 VkResult anv_EnumerateLayers(
459 VkPhysicalDevice physicalDevice,
460 size_t maxStringSize,
461 size_t* pLayerCount,
462 char* const* pOutLayers,
463 void* pReserved)
464 {
465 *pLayerCount = 0;
466
467 return VK_SUCCESS;
468 }
469
470 VkResult anv_GetDeviceQueue(
471 VkDevice _device,
472 uint32_t queueNodeIndex,
473 uint32_t queueIndex,
474 VkQueue* pQueue)
475 {
476 struct anv_device *device = (struct anv_device *) _device;
477 struct anv_queue *queue;
478
479 /* FIXME: Should allocate these at device create time. */
480
481 queue = anv_device_alloc(device, sizeof(*queue), 8,
482 VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
483 if (queue == NULL)
484 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
485
486 queue->device = device;
487 queue->pool = &device->surface_state_pool;
488
489 queue->completed_serial = anv_state_pool_alloc(queue->pool, 4, 4);
490 *(uint32_t *)queue->completed_serial.map = 0;
491 queue->next_serial = 1;
492
493 *pQueue = (VkQueue) queue;
494
495 return VK_SUCCESS;
496 }
497
498 static const uint32_t BATCH_SIZE = 8192;
499
500 VkResult
501 anv_batch_init(struct anv_batch *batch, struct anv_device *device)
502 {
503 VkResult result;
504
505 result = anv_bo_init_new(&batch->bo, device, BATCH_SIZE);
506 if (result != VK_SUCCESS)
507 return result;
508
509 batch->bo.map =
510 anv_gem_mmap(device, batch->bo.gem_handle, 0, BATCH_SIZE);
511 if (batch->bo.map == NULL) {
512 result = vk_error(VK_ERROR_MEMORY_MAP_FAILED);
513 goto fail_bo;
514 }
515
516 batch->cmd_relocs.num_relocs = 0;
517 batch->next = batch->bo.map;
518
519 return VK_SUCCESS;
520
521 fail_bo:
522 anv_gem_close(device, batch->bo.gem_handle);
523
524 return result;
525
526 }
527
528 void
529 anv_batch_finish(struct anv_batch *batch, struct anv_device *device)
530 {
531 anv_gem_munmap(batch->bo.map, BATCH_SIZE);
532 anv_gem_close(device, batch->bo.gem_handle);
533 }
534
535 void
536 anv_batch_reset(struct anv_batch *batch)
537 {
538 batch->next = batch->bo.map;
539 batch->cmd_relocs.num_relocs = 0;
540 }
541
542 void *
543 anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords)
544 {
545 void *p = batch->next;
546
547 batch->next += num_dwords * 4;
548
549 return p;
550 }
551
552 static void
553 anv_reloc_list_append(struct anv_reloc_list *list,
554 struct anv_reloc_list *other, uint32_t offset)
555 {
556 uint32_t i, count;
557
558 count = list->num_relocs;
559 memcpy(&list->relocs[count], &other->relocs[0],
560 other->num_relocs * sizeof(other->relocs[0]));
561 memcpy(&list->reloc_bos[count], &other->reloc_bos[0],
562 other->num_relocs * sizeof(other->reloc_bos[0]));
563 for (i = 0; i < other->num_relocs; i++)
564 list->relocs[i + count].offset += offset;
565
566 count += other->num_relocs;
567 }
568
569 static uint64_t
570 anv_reloc_list_add(struct anv_reloc_list *list,
571 uint32_t offset,
572 struct anv_bo *target_bo, uint32_t delta)
573 {
574 struct drm_i915_gem_relocation_entry *entry;
575 int index;
576
577 assert(list->num_relocs < ANV_BATCH_MAX_RELOCS);
578
579 /* XXX: Can we use I915_EXEC_HANDLE_LUT? */
580 index = list->num_relocs++;
581 list->reloc_bos[index] = target_bo;
582 entry = &list->relocs[index];
583 entry->target_handle = target_bo->gem_handle;
584 entry->delta = delta;
585 entry->offset = offset;
586 entry->presumed_offset = target_bo->offset;
587 entry->read_domains = 0;
588 entry->write_domain = 0;
589
590 return target_bo->offset + delta;
591 }
592
593 void
594 anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other)
595 {
596 uint32_t size, offset;
597
598 size = other->next - other->bo.map;
599 memcpy(batch->next, other->bo.map, size);
600
601 offset = batch->next - batch->bo.map;
602 anv_reloc_list_append(&batch->cmd_relocs, &other->cmd_relocs, offset);
603
604 batch->next += size;
605 }
606
607 uint64_t
608 anv_batch_emit_reloc(struct anv_batch *batch,
609 void *location, struct anv_bo *bo, uint32_t delta)
610 {
611 return anv_reloc_list_add(&batch->cmd_relocs,
612 location - batch->bo.map, bo, delta);
613 }
614
615 VkResult anv_QueueSubmit(
616 VkQueue _queue,
617 uint32_t cmdBufferCount,
618 const VkCmdBuffer* pCmdBuffers,
619 VkFence _fence)
620 {
621 struct anv_queue *queue = (struct anv_queue *) _queue;
622 struct anv_device *device = queue->device;
623 struct anv_fence *fence = (struct anv_fence *) _fence;
624 int ret;
625
626 for (uint32_t i = 0; i < cmdBufferCount; i++) {
627 struct anv_cmd_buffer *cmd_buffer =
628 (struct anv_cmd_buffer *) pCmdBuffers[i];
629
630 if (device->dump_aub)
631 anv_cmd_buffer_dump(cmd_buffer);
632
633 if (!device->no_hw) {
634 ret = anv_gem_execbuffer(device, &cmd_buffer->execbuf);
635 if (ret != 0)
636 return vk_error(VK_ERROR_UNKNOWN);
637
638 if (fence) {
639 ret = anv_gem_execbuffer(device, &fence->execbuf);
640 if (ret != 0)
641 return vk_error(VK_ERROR_UNKNOWN);
642 }
643
644 for (uint32_t i = 0; i < cmd_buffer->bo_count; i++)
645 cmd_buffer->exec2_bos[i]->offset = cmd_buffer->exec2_objects[i].offset;
646 } else {
647 *(uint32_t *)queue->completed_serial.map = cmd_buffer->serial;
648 }
649 }
650
651 return VK_SUCCESS;
652 }
653
654 VkResult anv_QueueAddMemReferences(
655 VkQueue queue,
656 uint32_t count,
657 const VkDeviceMemory* pMems)
658 {
659 return VK_SUCCESS;
660 }
661
662 VkResult anv_QueueRemoveMemReferences(
663 VkQueue queue,
664 uint32_t count,
665 const VkDeviceMemory* pMems)
666 {
667 return VK_SUCCESS;
668 }
669
670 VkResult anv_QueueWaitIdle(
671 VkQueue _queue)
672 {
673 struct anv_queue *queue = (struct anv_queue *) _queue;
674
675 return vkDeviceWaitIdle((VkDevice) queue->device);
676 }
677
678 VkResult anv_DeviceWaitIdle(
679 VkDevice _device)
680 {
681 struct anv_device *device = (struct anv_device *) _device;
682 struct anv_state state;
683 struct anv_batch batch;
684 struct drm_i915_gem_execbuffer2 execbuf;
685 struct drm_i915_gem_exec_object2 exec2_objects[1];
686 struct anv_bo *bo = NULL;
687 VkResult result;
688 int64_t timeout;
689 int ret;
690
691 state = anv_state_pool_alloc(&device->dynamic_state_pool, 32, 32);
692 bo = &device->dynamic_state_pool.block_pool->bo;
693 batch.next = state.map;
694 anv_batch_emit(&batch, GEN8_MI_BATCH_BUFFER_END);
695 anv_batch_emit(&batch, GEN8_MI_NOOP);
696
697 exec2_objects[0].handle = bo->gem_handle;
698 exec2_objects[0].relocation_count = 0;
699 exec2_objects[0].relocs_ptr = 0;
700 exec2_objects[0].alignment = 0;
701 exec2_objects[0].offset = bo->offset;
702 exec2_objects[0].flags = 0;
703 exec2_objects[0].rsvd1 = 0;
704 exec2_objects[0].rsvd2 = 0;
705
706 execbuf.buffers_ptr = (uintptr_t) exec2_objects;
707 execbuf.buffer_count = 1;
708 execbuf.batch_start_offset = state.offset;
709 execbuf.batch_len = batch.next - state.map;
710 execbuf.cliprects_ptr = 0;
711 execbuf.num_cliprects = 0;
712 execbuf.DR1 = 0;
713 execbuf.DR4 = 0;
714
715 execbuf.flags =
716 I915_EXEC_HANDLE_LUT | I915_EXEC_NO_RELOC | I915_EXEC_RENDER;
717 execbuf.rsvd1 = device->context_id;
718 execbuf.rsvd2 = 0;
719
720 if (!device->no_hw) {
721 ret = anv_gem_execbuffer(device, &execbuf);
722 if (ret != 0) {
723 result = vk_error(VK_ERROR_UNKNOWN);
724 goto fail;
725 }
726
727 timeout = INT64_MAX;
728 ret = anv_gem_wait(device, bo->gem_handle, &timeout);
729 if (ret != 0) {
730 result = vk_error(VK_ERROR_UNKNOWN);
731 goto fail;
732 }
733 }
734
735 anv_state_pool_free(&device->dynamic_state_pool, state);
736
737 return VK_SUCCESS;
738
739 fail:
740 anv_state_pool_free(&device->dynamic_state_pool, state);
741
742 return result;
743 }
744
745 void *
746 anv_device_alloc(struct anv_device * device,
747 size_t size,
748 size_t alignment,
749 VkSystemAllocType allocType)
750 {
751 return device->instance->pfnAlloc(device->instance->pAllocUserData,
752 size,
753 alignment,
754 allocType);
755 }
756
757 void
758 anv_device_free(struct anv_device * device,
759 void * mem)
760 {
761 return device->instance->pfnFree(device->instance->pAllocUserData,
762 mem);
763 }
764
765 VkResult
766 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
767 {
768 bo->gem_handle = anv_gem_create(device, size);
769 if (!bo->gem_handle)
770 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
771
772 bo->map = NULL;
773 bo->index = 0;
774 bo->offset = 0;
775 bo->size = size;
776
777 return VK_SUCCESS;
778 }
779
780 VkResult anv_AllocMemory(
781 VkDevice _device,
782 const VkMemoryAllocInfo* pAllocInfo,
783 VkDeviceMemory* pMem)
784 {
785 struct anv_device *device = (struct anv_device *) _device;
786 struct anv_device_memory *mem;
787 VkResult result;
788
789 assert(pAllocInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOC_INFO);
790
791 mem = anv_device_alloc(device, sizeof(*mem), 8,
792 VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
793 if (mem == NULL)
794 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
795
796 result = anv_bo_init_new(&mem->bo, device, pAllocInfo->allocationSize);
797 if (result != VK_SUCCESS)
798 goto fail;
799
800 *pMem = (VkDeviceMemory) mem;
801
802 return VK_SUCCESS;
803
804 fail:
805 anv_device_free(device, mem);
806
807 return result;
808 }
809
810 VkResult anv_FreeMemory(
811 VkDevice _device,
812 VkDeviceMemory _mem)
813 {
814 struct anv_device *device = (struct anv_device *) _device;
815 struct anv_device_memory *mem = (struct anv_device_memory *) _mem;
816
817 if (mem->bo.map)
818 anv_gem_munmap(mem->bo.map, mem->bo.size);
819
820 if (mem->bo.gem_handle != 0)
821 anv_gem_close(device, mem->bo.gem_handle);
822
823 anv_device_free(device, mem);
824
825 return VK_SUCCESS;
826 }
827
828 VkResult anv_SetMemoryPriority(
829 VkDevice device,
830 VkDeviceMemory mem,
831 VkMemoryPriority priority)
832 {
833 return VK_SUCCESS;
834 }
835
836 VkResult anv_MapMemory(
837 VkDevice _device,
838 VkDeviceMemory _mem,
839 VkDeviceSize offset,
840 VkDeviceSize size,
841 VkMemoryMapFlags flags,
842 void** ppData)
843 {
844 struct anv_device *device = (struct anv_device *) _device;
845 struct anv_device_memory *mem = (struct anv_device_memory *) _mem;
846
847 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
848 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
849 * at a time is valid. We could just mmap up front and return an offset
850 * pointer here, but that may exhaust virtual memory on 32 bit
851 * userspace. */
852
853 mem->map = anv_gem_mmap(device, mem->bo.gem_handle, offset, size);
854 mem->map_size = size;
855
856 *ppData = mem->map;
857
858 return VK_SUCCESS;
859 }
860
861 VkResult anv_UnmapMemory(
862 VkDevice _device,
863 VkDeviceMemory _mem)
864 {
865 struct anv_device_memory *mem = (struct anv_device_memory *) _mem;
866
867 anv_gem_munmap(mem->map, mem->map_size);
868
869 return VK_SUCCESS;
870 }
871
872 VkResult anv_FlushMappedMemory(
873 VkDevice device,
874 VkDeviceMemory mem,
875 VkDeviceSize offset,
876 VkDeviceSize size)
877 {
878 /* clflush here for !llc platforms */
879
880 return VK_SUCCESS;
881 }
882
883 VkResult anv_PinSystemMemory(
884 VkDevice device,
885 const void* pSysMem,
886 size_t memSize,
887 VkDeviceMemory* pMem)
888 {
889 return VK_SUCCESS;
890 }
891
892 VkResult anv_GetMultiDeviceCompatibility(
893 VkPhysicalDevice physicalDevice0,
894 VkPhysicalDevice physicalDevice1,
895 VkPhysicalDeviceCompatibilityInfo* pInfo)
896 {
897 return VK_UNSUPPORTED;
898 }
899
900 VkResult anv_OpenSharedMemory(
901 VkDevice device,
902 const VkMemoryOpenInfo* pOpenInfo,
903 VkDeviceMemory* pMem)
904 {
905 return VK_UNSUPPORTED;
906 }
907
908 VkResult anv_OpenSharedSemaphore(
909 VkDevice device,
910 const VkSemaphoreOpenInfo* pOpenInfo,
911 VkSemaphore* pSemaphore)
912 {
913 return VK_UNSUPPORTED;
914 }
915
916 VkResult anv_OpenPeerMemory(
917 VkDevice device,
918 const VkPeerMemoryOpenInfo* pOpenInfo,
919 VkDeviceMemory* pMem)
920 {
921 return VK_UNSUPPORTED;
922 }
923
924 VkResult anv_OpenPeerImage(
925 VkDevice device,
926 const VkPeerImageOpenInfo* pOpenInfo,
927 VkImage* pImage,
928 VkDeviceMemory* pMem)
929 {
930 return VK_UNSUPPORTED;
931 }
932
933 VkResult anv_DestroyObject(
934 VkDevice _device,
935 VkObjectType objType,
936 VkObject _object)
937 {
938 struct anv_device *device = (struct anv_device *) _device;
939 struct anv_object *object = (struct anv_object *) _object;
940
941 switch (objType) {
942 case VK_OBJECT_TYPE_INSTANCE:
943 return anv_DestroyInstance((VkInstance) _object);
944
945 case VK_OBJECT_TYPE_PHYSICAL_DEVICE:
946 /* We don't want to actually destroy physical devices */
947 return VK_SUCCESS;
948
949 case VK_OBJECT_TYPE_DEVICE:
950 assert(_device == (VkDevice) _object);
951 return anv_DestroyDevice((VkDevice) _object);
952
953 case VK_OBJECT_TYPE_QUEUE:
954 /* TODO */
955 return VK_SUCCESS;
956
957 case VK_OBJECT_TYPE_DEVICE_MEMORY:
958 return anv_FreeMemory(_device, (VkDeviceMemory) _object);
959
960 case VK_OBJECT_TYPE_DESCRIPTOR_POOL:
961 /* These are just dummys anyway, so we don't need to destroy them */
962 return VK_SUCCESS;
963
964 case VK_OBJECT_TYPE_BUFFER:
965 case VK_OBJECT_TYPE_BUFFER_VIEW:
966 case VK_OBJECT_TYPE_IMAGE:
967 case VK_OBJECT_TYPE_IMAGE_VIEW:
968 case VK_OBJECT_TYPE_COLOR_ATTACHMENT_VIEW:
969 case VK_OBJECT_TYPE_DEPTH_STENCIL_VIEW:
970 case VK_OBJECT_TYPE_SHADER:
971 case VK_OBJECT_TYPE_PIPELINE_LAYOUT:
972 case VK_OBJECT_TYPE_SAMPLER:
973 case VK_OBJECT_TYPE_DESCRIPTOR_SET:
974 case VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT:
975 case VK_OBJECT_TYPE_DYNAMIC_RS_STATE:
976 case VK_OBJECT_TYPE_DYNAMIC_CB_STATE:
977 case VK_OBJECT_TYPE_DYNAMIC_DS_STATE:
978 case VK_OBJECT_TYPE_RENDER_PASS:
979 /* These are trivially destroyable */
980 anv_device_free(device, (void *) _object);
981 return VK_SUCCESS;
982
983 case VK_OBJECT_TYPE_COMMAND_BUFFER:
984 case VK_OBJECT_TYPE_PIPELINE:
985 case VK_OBJECT_TYPE_DYNAMIC_VP_STATE:
986 case VK_OBJECT_TYPE_FENCE:
987 case VK_OBJECT_TYPE_QUERY_POOL:
988 case VK_OBJECT_TYPE_FRAMEBUFFER:
989 (object->destructor)(device, object, objType);
990 return VK_SUCCESS;
991
992 case VK_OBJECT_TYPE_SEMAPHORE:
993 case VK_OBJECT_TYPE_EVENT:
994 stub_return(VK_UNSUPPORTED);
995
996 default:
997 unreachable("Invalid object type");
998 }
999 }
1000
1001 static void
1002 fill_memory_requirements(
1003 VkObjectType objType,
1004 VkObject object,
1005 VkMemoryRequirements * memory_requirements)
1006 {
1007 struct anv_buffer *buffer;
1008 struct anv_image *image;
1009
1010 memory_requirements->memPropsAllowed =
1011 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
1012 VK_MEMORY_PROPERTY_HOST_DEVICE_COHERENT_BIT |
1013 /* VK_MEMORY_PROPERTY_HOST_UNCACHED_BIT | */
1014 VK_MEMORY_PROPERTY_HOST_WRITE_COMBINED_BIT |
1015 VK_MEMORY_PROPERTY_PREFER_HOST_LOCAL |
1016 VK_MEMORY_PROPERTY_SHAREABLE_BIT;
1017
1018 memory_requirements->memPropsRequired = 0;
1019
1020 switch (objType) {
1021 case VK_OBJECT_TYPE_BUFFER:
1022 buffer = (struct anv_buffer *) object;
1023 memory_requirements->size = buffer->size;
1024 memory_requirements->alignment = 16;
1025 break;
1026 case VK_OBJECT_TYPE_IMAGE:
1027 image = (struct anv_image *) object;
1028 memory_requirements->size = image->size;
1029 memory_requirements->alignment = image->alignment;
1030 break;
1031 default:
1032 memory_requirements->size = 0;
1033 break;
1034 }
1035 }
1036
1037 static uint32_t
1038 get_allocation_count(VkObjectType objType)
1039 {
1040 switch (objType) {
1041 case VK_OBJECT_TYPE_BUFFER:
1042 case VK_OBJECT_TYPE_IMAGE:
1043 return 1;
1044 default:
1045 return 0;
1046 }
1047 }
1048
1049 VkResult anv_GetObjectInfo(
1050 VkDevice _device,
1051 VkObjectType objType,
1052 VkObject object,
1053 VkObjectInfoType infoType,
1054 size_t* pDataSize,
1055 void* pData)
1056 {
1057 VkMemoryRequirements memory_requirements;
1058 uint32_t *count;
1059
1060 switch (infoType) {
1061 case VK_OBJECT_INFO_TYPE_MEMORY_REQUIREMENTS:
1062 *pDataSize = sizeof(memory_requirements);
1063 if (pData == NULL)
1064 return VK_SUCCESS;
1065
1066 fill_memory_requirements(objType, object, pData);
1067 return VK_SUCCESS;
1068
1069 case VK_OBJECT_INFO_TYPE_MEMORY_ALLOCATION_COUNT:
1070 *pDataSize = sizeof(count);
1071 if (pData == NULL)
1072 return VK_SUCCESS;
1073
1074 count = pData;
1075 *count = get_allocation_count(objType);
1076 return VK_SUCCESS;
1077
1078 default:
1079 return VK_UNSUPPORTED;
1080 }
1081
1082 }
1083
1084 VkResult anv_QueueBindObjectMemory(
1085 VkQueue queue,
1086 VkObjectType objType,
1087 VkObject object,
1088 uint32_t allocationIdx,
1089 VkDeviceMemory _mem,
1090 VkDeviceSize memOffset)
1091 {
1092 struct anv_buffer *buffer;
1093 struct anv_image *image;
1094 struct anv_device_memory *mem = (struct anv_device_memory *) _mem;
1095
1096 switch (objType) {
1097 case VK_OBJECT_TYPE_BUFFER:
1098 buffer = (struct anv_buffer *) object;
1099 buffer->bo = &mem->bo;
1100 buffer->offset = memOffset;
1101 break;
1102 case VK_OBJECT_TYPE_IMAGE:
1103 image = (struct anv_image *) object;
1104 image->bo = &mem->bo;
1105 image->offset = memOffset;
1106 break;
1107 default:
1108 break;
1109 }
1110
1111 return VK_SUCCESS;
1112 }
1113
1114 VkResult anv_QueueBindObjectMemoryRange(
1115 VkQueue queue,
1116 VkObjectType objType,
1117 VkObject object,
1118 uint32_t allocationIdx,
1119 VkDeviceSize rangeOffset,
1120 VkDeviceSize rangeSize,
1121 VkDeviceMemory mem,
1122 VkDeviceSize memOffset)
1123 {
1124 stub_return(VK_UNSUPPORTED);
1125 }
1126
1127 VkResult anv_QueueBindImageMemoryRange(
1128 VkQueue queue,
1129 VkImage image,
1130 uint32_t allocationIdx,
1131 const VkImageMemoryBindInfo* pBindInfo,
1132 VkDeviceMemory mem,
1133 VkDeviceSize memOffset)
1134 {
1135 stub_return(VK_UNSUPPORTED);
1136 }
1137
1138 static void
1139 anv_fence_destroy(struct anv_device *device,
1140 struct anv_object *object,
1141 VkObjectType obj_type)
1142 {
1143 struct anv_fence *fence = (struct anv_fence *) object;
1144
1145 assert(obj_type == VK_OBJECT_TYPE_FENCE);
1146
1147 anv_gem_munmap(fence->bo.map, fence->bo.size);
1148 anv_gem_close(device, fence->bo.gem_handle);
1149 anv_device_free(device, fence);
1150 }
1151
1152 VkResult anv_CreateFence(
1153 VkDevice _device,
1154 const VkFenceCreateInfo* pCreateInfo,
1155 VkFence* pFence)
1156 {
1157 struct anv_device *device = (struct anv_device *) _device;
1158 struct anv_fence *fence;
1159 struct anv_batch batch;
1160 VkResult result;
1161
1162 const uint32_t fence_size = 128;
1163
1164 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FENCE_CREATE_INFO);
1165
1166 fence = anv_device_alloc(device, sizeof(*fence), 8,
1167 VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
1168 if (fence == NULL)
1169 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1170
1171 result = anv_bo_init_new(&fence->bo, device, fence_size);
1172 if (result != VK_SUCCESS)
1173 goto fail;
1174
1175 fence->base.destructor = anv_fence_destroy;
1176
1177 fence->bo.map =
1178 anv_gem_mmap(device, fence->bo.gem_handle, 0, fence->bo.size);
1179 batch.next = fence->bo.map;
1180 anv_batch_emit(&batch, GEN8_MI_BATCH_BUFFER_END);
1181 anv_batch_emit(&batch, GEN8_MI_NOOP);
1182
1183 fence->exec2_objects[0].handle = fence->bo.gem_handle;
1184 fence->exec2_objects[0].relocation_count = 0;
1185 fence->exec2_objects[0].relocs_ptr = 0;
1186 fence->exec2_objects[0].alignment = 0;
1187 fence->exec2_objects[0].offset = fence->bo.offset;
1188 fence->exec2_objects[0].flags = 0;
1189 fence->exec2_objects[0].rsvd1 = 0;
1190 fence->exec2_objects[0].rsvd2 = 0;
1191
1192 fence->execbuf.buffers_ptr = (uintptr_t) fence->exec2_objects;
1193 fence->execbuf.buffer_count = 1;
1194 fence->execbuf.batch_start_offset = 0;
1195 fence->execbuf.batch_len = batch.next - fence->bo.map;
1196 fence->execbuf.cliprects_ptr = 0;
1197 fence->execbuf.num_cliprects = 0;
1198 fence->execbuf.DR1 = 0;
1199 fence->execbuf.DR4 = 0;
1200
1201 fence->execbuf.flags =
1202 I915_EXEC_HANDLE_LUT | I915_EXEC_NO_RELOC | I915_EXEC_RENDER;
1203 fence->execbuf.rsvd1 = device->context_id;
1204 fence->execbuf.rsvd2 = 0;
1205
1206 *pFence = (VkQueryPool) fence;
1207
1208 return VK_SUCCESS;
1209
1210 fail:
1211 anv_device_free(device, fence);
1212
1213 return result;
1214 }
1215
1216 VkResult anv_ResetFences(
1217 VkDevice _device,
1218 uint32_t fenceCount,
1219 VkFence* pFences)
1220 {
1221 struct anv_fence **fences = (struct anv_fence **) pFences;
1222
1223 for (uint32_t i; i < fenceCount; i++)
1224 fences[i]->ready = false;
1225
1226 return VK_SUCCESS;
1227 }
1228
1229 VkResult anv_GetFenceStatus(
1230 VkDevice _device,
1231 VkFence _fence)
1232 {
1233 struct anv_device *device = (struct anv_device *) _device;
1234 struct anv_fence *fence = (struct anv_fence *) _fence;
1235 int64_t t = 0;
1236 int ret;
1237
1238 if (fence->ready)
1239 return VK_SUCCESS;
1240
1241 ret = anv_gem_wait(device, fence->bo.gem_handle, &t);
1242 if (ret == 0) {
1243 fence->ready = true;
1244 return VK_SUCCESS;
1245 }
1246
1247 return VK_NOT_READY;
1248 }
1249
1250 VkResult anv_WaitForFences(
1251 VkDevice _device,
1252 uint32_t fenceCount,
1253 const VkFence* pFences,
1254 bool32_t waitAll,
1255 uint64_t timeout)
1256 {
1257 struct anv_device *device = (struct anv_device *) _device;
1258 struct anv_fence **fences = (struct anv_fence **) pFences;
1259 int64_t t = timeout;
1260 int ret;
1261
1262 /* FIXME: handle !waitAll */
1263
1264 for (uint32_t i = 0; i < fenceCount; i++) {
1265 ret = anv_gem_wait(device, fences[i]->bo.gem_handle, &t);
1266 if (ret == -1 && errno == ETIME)
1267 return VK_TIMEOUT;
1268 else if (ret == -1)
1269 return vk_error(VK_ERROR_UNKNOWN);
1270 }
1271
1272 return VK_SUCCESS;
1273 }
1274
1275 // Queue semaphore functions
1276
1277 VkResult anv_CreateSemaphore(
1278 VkDevice device,
1279 const VkSemaphoreCreateInfo* pCreateInfo,
1280 VkSemaphore* pSemaphore)
1281 {
1282 stub_return(VK_UNSUPPORTED);
1283 }
1284
1285 VkResult anv_QueueSignalSemaphore(
1286 VkQueue queue,
1287 VkSemaphore semaphore)
1288 {
1289 stub_return(VK_UNSUPPORTED);
1290 }
1291
1292 VkResult anv_QueueWaitSemaphore(
1293 VkQueue queue,
1294 VkSemaphore semaphore)
1295 {
1296 stub_return(VK_UNSUPPORTED);
1297 }
1298
1299 // Event functions
1300
1301 VkResult anv_CreateEvent(
1302 VkDevice device,
1303 const VkEventCreateInfo* pCreateInfo,
1304 VkEvent* pEvent)
1305 {
1306 stub_return(VK_UNSUPPORTED);
1307 }
1308
1309 VkResult anv_GetEventStatus(
1310 VkDevice device,
1311 VkEvent event)
1312 {
1313 stub_return(VK_UNSUPPORTED);
1314 }
1315
1316 VkResult anv_SetEvent(
1317 VkDevice device,
1318 VkEvent event)
1319 {
1320 stub_return(VK_UNSUPPORTED);
1321 }
1322
1323 VkResult anv_ResetEvent(
1324 VkDevice device,
1325 VkEvent event)
1326 {
1327 stub_return(VK_UNSUPPORTED);
1328 }
1329
1330 // Query functions
1331
1332 static void
1333 anv_query_pool_destroy(struct anv_device *device,
1334 struct anv_object *object,
1335 VkObjectType obj_type)
1336 {
1337 struct anv_query_pool *pool = (struct anv_query_pool *) object;
1338
1339 assert(obj_type == VK_OBJECT_TYPE_QUERY_POOL);
1340
1341 anv_gem_munmap(pool->bo.map, pool->bo.size);
1342 anv_gem_close(device, pool->bo.gem_handle);
1343 anv_device_free(device, pool);
1344 }
1345
1346 VkResult anv_CreateQueryPool(
1347 VkDevice _device,
1348 const VkQueryPoolCreateInfo* pCreateInfo,
1349 VkQueryPool* pQueryPool)
1350 {
1351 struct anv_device *device = (struct anv_device *) _device;
1352 struct anv_query_pool *pool;
1353 VkResult result;
1354 size_t size;
1355
1356 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO);
1357
1358 switch (pCreateInfo->queryType) {
1359 case VK_QUERY_TYPE_OCCLUSION:
1360 break;
1361 case VK_QUERY_TYPE_PIPELINE_STATISTICS:
1362 return VK_UNSUPPORTED;
1363 default:
1364 unreachable("");
1365 }
1366
1367 pool = anv_device_alloc(device, sizeof(*pool), 8,
1368 VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
1369 if (pool == NULL)
1370 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1371
1372 pool->base.destructor = anv_query_pool_destroy;
1373
1374 pool->type = pCreateInfo->queryType;
1375 size = pCreateInfo->slots * sizeof(struct anv_query_pool_slot);
1376 result = anv_bo_init_new(&pool->bo, device, size);
1377 if (result != VK_SUCCESS)
1378 goto fail;
1379
1380 pool->bo.map = anv_gem_mmap(device, pool->bo.gem_handle, 0, size);
1381
1382 *pQueryPool = (VkQueryPool) pool;
1383
1384 return VK_SUCCESS;
1385
1386 fail:
1387 anv_device_free(device, pool);
1388
1389 return result;
1390 }
1391
1392 VkResult anv_GetQueryPoolResults(
1393 VkDevice _device,
1394 VkQueryPool queryPool,
1395 uint32_t startQuery,
1396 uint32_t queryCount,
1397 size_t* pDataSize,
1398 void* pData,
1399 VkQueryResultFlags flags)
1400 {
1401 struct anv_device *device = (struct anv_device *) _device;
1402 struct anv_query_pool *pool = (struct anv_query_pool *) queryPool;
1403 struct anv_query_pool_slot *slot = pool->bo.map;
1404 int64_t timeout = INT64_MAX;
1405 uint32_t *dst32 = pData;
1406 uint64_t *dst64 = pData;
1407 uint64_t result;
1408 int ret;
1409
1410 if (flags & VK_QUERY_RESULT_WITH_AVAILABILITY_BIT) {
1411 /* Where is the availabilty info supposed to go? */
1412 anv_finishme("VK_QUERY_RESULT_WITH_AVAILABILITY_BIT");
1413 return VK_UNSUPPORTED;
1414 }
1415
1416 assert(pool->type == VK_QUERY_TYPE_OCCLUSION);
1417
1418 if (flags & VK_QUERY_RESULT_64_BIT)
1419 *pDataSize = queryCount * sizeof(uint64_t);
1420 else
1421 *pDataSize = queryCount * sizeof(uint32_t);
1422
1423 if (pData == NULL)
1424 return VK_SUCCESS;
1425
1426 if (flags & VK_QUERY_RESULT_WAIT_BIT) {
1427 ret = anv_gem_wait(device, pool->bo.gem_handle, &timeout);
1428 if (ret == -1)
1429 return vk_error(VK_ERROR_UNKNOWN);
1430 }
1431
1432 for (uint32_t i = 0; i < queryCount; i++) {
1433 result = slot[startQuery + i].end - slot[startQuery + i].begin;
1434 if (flags & VK_QUERY_RESULT_64_BIT) {
1435 *dst64++ = result;
1436 } else {
1437 if (result > UINT32_MAX)
1438 result = UINT32_MAX;
1439 *dst32++ = result;
1440 }
1441 }
1442
1443 return VK_SUCCESS;
1444 }
1445
1446 // Buffer functions
1447
1448 VkResult anv_CreateBuffer(
1449 VkDevice _device,
1450 const VkBufferCreateInfo* pCreateInfo,
1451 VkBuffer* pBuffer)
1452 {
1453 struct anv_device *device = (struct anv_device *) _device;
1454 struct anv_buffer *buffer;
1455
1456 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
1457
1458 buffer = anv_device_alloc(device, sizeof(*buffer), 8,
1459 VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
1460 if (buffer == NULL)
1461 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1462
1463 buffer->size = pCreateInfo->size;
1464 buffer->bo = NULL;
1465 buffer->offset = 0;
1466
1467 *pBuffer = (VkBuffer) buffer;
1468
1469 return VK_SUCCESS;
1470 }
1471
1472 // Buffer view functions
1473
1474 VkResult anv_CreateBufferView(
1475 VkDevice _device,
1476 const VkBufferViewCreateInfo* pCreateInfo,
1477 VkBufferView* pView)
1478 {
1479 struct anv_device *device = (struct anv_device *) _device;
1480 struct anv_buffer *buffer = (struct anv_buffer *) pCreateInfo->buffer;
1481 struct anv_surface_view *view;
1482 const struct anv_format *format;
1483
1484 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO);
1485
1486 view = anv_device_alloc(device, sizeof(*view), 8,
1487 VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
1488 if (view == NULL)
1489 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1490
1491 view->bo = buffer->bo;
1492 view->offset = buffer->offset + pCreateInfo->offset;
1493 view->surface_state =
1494 anv_state_pool_alloc(&device->surface_state_pool, 64, 64);
1495 view->format = pCreateInfo->format;
1496
1497 format = anv_format_for_vk_format(pCreateInfo->format);
1498 /* This assumes RGBA float format. */
1499 uint32_t stride = 4;
1500 uint32_t num_elements = pCreateInfo->range / stride;
1501 struct GEN8_RENDER_SURFACE_STATE surface_state = {
1502 .SurfaceType = SURFTYPE_BUFFER,
1503 .SurfaceArray = false,
1504 .SurfaceFormat = format->format,
1505 .SurfaceVerticalAlignment = VALIGN4,
1506 .SurfaceHorizontalAlignment = HALIGN4,
1507 .TileMode = LINEAR,
1508 .VerticalLineStride = 0,
1509 .VerticalLineStrideOffset = 0,
1510 .SamplerL2BypassModeDisable = true,
1511 .RenderCacheReadWriteMode = WriteOnlyCache,
1512 .MemoryObjectControlState = GEN8_MOCS,
1513 .BaseMipLevel = 0,
1514 .SurfaceQPitch = 0,
1515 .Height = (num_elements >> 7) & 0x3fff,
1516 .Width = num_elements & 0x7f,
1517 .Depth = (num_elements >> 21) & 0x3f,
1518 .SurfacePitch = stride - 1,
1519 .MinimumArrayElement = 0,
1520 .NumberofMultisamples = MULTISAMPLECOUNT_1,
1521 .XOffset = 0,
1522 .YOffset = 0,
1523 .SurfaceMinLOD = 0,
1524 .MIPCountLOD = 0,
1525 .AuxiliarySurfaceMode = AUX_NONE,
1526 .RedClearColor = 0,
1527 .GreenClearColor = 0,
1528 .BlueClearColor = 0,
1529 .AlphaClearColor = 0,
1530 .ShaderChannelSelectRed = SCS_RED,
1531 .ShaderChannelSelectGreen = SCS_GREEN,
1532 .ShaderChannelSelectBlue = SCS_BLUE,
1533 .ShaderChannelSelectAlpha = SCS_ALPHA,
1534 .ResourceMinLOD = 0,
1535 /* FIXME: We assume that the image must be bound at this time. */
1536 .SurfaceBaseAddress = { NULL, view->offset },
1537 };
1538
1539 GEN8_RENDER_SURFACE_STATE_pack(NULL, view->surface_state.map, &surface_state);
1540
1541 *pView = (VkImageView) view;
1542
1543 return VK_SUCCESS;
1544 }
1545
1546 // Sampler functions
1547
1548 VkResult anv_CreateSampler(
1549 VkDevice _device,
1550 const VkSamplerCreateInfo* pCreateInfo,
1551 VkSampler* pSampler)
1552 {
1553 struct anv_device *device = (struct anv_device *) _device;
1554 struct anv_sampler *sampler;
1555
1556 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO);
1557
1558 sampler = anv_device_alloc(device, sizeof(*sampler), 8,
1559 VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
1560 if (!sampler)
1561 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1562
1563 static const uint32_t vk_to_gen_tex_filter[] = {
1564 [VK_TEX_FILTER_NEAREST] = MAPFILTER_NEAREST,
1565 [VK_TEX_FILTER_LINEAR] = MAPFILTER_LINEAR
1566 };
1567
1568 static const uint32_t vk_to_gen_mipmap_mode[] = {
1569 [VK_TEX_MIPMAP_MODE_BASE] = MIPFILTER_NONE,
1570 [VK_TEX_MIPMAP_MODE_NEAREST] = MIPFILTER_NEAREST,
1571 [VK_TEX_MIPMAP_MODE_LINEAR] = MIPFILTER_LINEAR
1572 };
1573
1574 static const uint32_t vk_to_gen_tex_address[] = {
1575 [VK_TEX_ADDRESS_WRAP] = TCM_WRAP,
1576 [VK_TEX_ADDRESS_MIRROR] = TCM_MIRROR,
1577 [VK_TEX_ADDRESS_CLAMP] = TCM_CLAMP,
1578 [VK_TEX_ADDRESS_MIRROR_ONCE] = TCM_MIRROR_ONCE,
1579 [VK_TEX_ADDRESS_CLAMP_BORDER] = TCM_CLAMP_BORDER,
1580 };
1581
1582 static const uint32_t vk_to_gen_compare_op[] = {
1583 [VK_COMPARE_OP_NEVER] = PREFILTEROPNEVER,
1584 [VK_COMPARE_OP_LESS] = PREFILTEROPLESS,
1585 [VK_COMPARE_OP_EQUAL] = PREFILTEROPEQUAL,
1586 [VK_COMPARE_OP_LESS_EQUAL] = PREFILTEROPLEQUAL,
1587 [VK_COMPARE_OP_GREATER] = PREFILTEROPGREATER,
1588 [VK_COMPARE_OP_NOT_EQUAL] = PREFILTEROPNOTEQUAL,
1589 [VK_COMPARE_OP_GREATER_EQUAL] = PREFILTEROPGEQUAL,
1590 [VK_COMPARE_OP_ALWAYS] = PREFILTEROPALWAYS,
1591 };
1592
1593 if (pCreateInfo->maxAnisotropy > 0)
1594 anv_finishme("missing support for anisotropic filtering");
1595
1596 struct GEN8_SAMPLER_STATE sampler_state = {
1597 .SamplerDisable = false,
1598 .TextureBorderColorMode = DX10OGL,
1599 .LODPreClampMode = 0,
1600 .BaseMipLevel = 0,
1601 .MipModeFilter = vk_to_gen_mipmap_mode[pCreateInfo->mipMode],
1602 .MagModeFilter = vk_to_gen_tex_filter[pCreateInfo->magFilter],
1603 .MinModeFilter = vk_to_gen_tex_filter[pCreateInfo->minFilter],
1604 .TextureLODBias = pCreateInfo->mipLodBias * 256,
1605 .AnisotropicAlgorithm = EWAApproximation,
1606 .MinLOD = pCreateInfo->minLod * 256,
1607 .MaxLOD = pCreateInfo->maxLod * 256,
1608 .ChromaKeyEnable = 0,
1609 .ChromaKeyIndex = 0,
1610 .ChromaKeyMode = 0,
1611 .ShadowFunction = vk_to_gen_compare_op[pCreateInfo->compareOp],
1612 .CubeSurfaceControlMode = 0,
1613 .IndirectStatePointer = 0,
1614 .LODClampMagnificationMode = MIPNONE,
1615 .MaximumAnisotropy = 0,
1616 .RAddressMinFilterRoundingEnable = 0,
1617 .RAddressMagFilterRoundingEnable = 0,
1618 .VAddressMinFilterRoundingEnable = 0,
1619 .VAddressMagFilterRoundingEnable = 0,
1620 .UAddressMinFilterRoundingEnable = 0,
1621 .UAddressMagFilterRoundingEnable = 0,
1622 .TrilinearFilterQuality = 0,
1623 .NonnormalizedCoordinateEnable = 0,
1624 .TCXAddressControlMode = vk_to_gen_tex_address[pCreateInfo->addressU],
1625 .TCYAddressControlMode = vk_to_gen_tex_address[pCreateInfo->addressV],
1626 .TCZAddressControlMode = vk_to_gen_tex_address[pCreateInfo->addressW],
1627 };
1628
1629 GEN8_SAMPLER_STATE_pack(NULL, sampler->state, &sampler_state);
1630
1631 *pSampler = (VkSampler) sampler;
1632
1633 return VK_SUCCESS;
1634 }
1635
1636 // Descriptor set functions
1637
1638 VkResult anv_CreateDescriptorSetLayout(
1639 VkDevice _device,
1640 const VkDescriptorSetLayoutCreateInfo* pCreateInfo,
1641 VkDescriptorSetLayout* pSetLayout)
1642 {
1643 struct anv_device *device = (struct anv_device *) _device;
1644 struct anv_descriptor_set_layout *set_layout;
1645
1646 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO);
1647
1648 uint32_t sampler_count[VK_NUM_SHADER_STAGE] = { 0, };
1649 uint32_t surface_count[VK_NUM_SHADER_STAGE] = { 0, };
1650 uint32_t num_dynamic_buffers = 0;
1651 uint32_t count = 0;
1652 uint32_t s;
1653
1654 for (uint32_t i = 0; i < pCreateInfo->count; i++) {
1655 switch (pCreateInfo->pBinding[i].descriptorType) {
1656 case VK_DESCRIPTOR_TYPE_SAMPLER:
1657 for_each_bit(s, pCreateInfo->pBinding[i].stageFlags)
1658 sampler_count[s] += pCreateInfo->pBinding[i].count;
1659 break;
1660
1661 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1662 for_each_bit(s, pCreateInfo->pBinding[i].stageFlags)
1663 sampler_count[s] += pCreateInfo->pBinding[i].count;
1664
1665 /* fall through */
1666
1667 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
1668 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
1669 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
1670 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
1671 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
1672 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
1673 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
1674 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
1675 for_each_bit(s, pCreateInfo->pBinding[i].stageFlags)
1676 surface_count[s] += pCreateInfo->pBinding[i].count;
1677 break;
1678 default:
1679 break;
1680 }
1681
1682 count += pCreateInfo->pBinding[i].count;
1683 }
1684
1685 for (uint32_t i = 0; i < pCreateInfo->count; i++) {
1686 switch (pCreateInfo->pBinding[i].descriptorType) {
1687 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
1688 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
1689 num_dynamic_buffers++;
1690 break;
1691 default:
1692 break;
1693 }
1694 }
1695
1696 uint32_t sampler_total = 0;
1697 uint32_t surface_total = 0;
1698 for (uint32_t s = 0; s < VK_NUM_SHADER_STAGE; s++) {
1699 sampler_total += sampler_count[s];
1700 surface_total += surface_count[s];
1701 }
1702
1703 size_t size = sizeof(*set_layout) +
1704 (sampler_total + surface_total) * sizeof(uint32_t);
1705 set_layout = anv_device_alloc(device, size, 8,
1706 VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
1707 if (!set_layout)
1708 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1709
1710 set_layout->num_dynamic_buffers = num_dynamic_buffers;
1711 set_layout->count = count;
1712
1713 uint32_t *p = set_layout->entries;
1714 uint32_t *sampler[VK_NUM_SHADER_STAGE];
1715 uint32_t *surface[VK_NUM_SHADER_STAGE];
1716 for (uint32_t s = 0; s < VK_NUM_SHADER_STAGE; s++) {
1717 set_layout->stage[s].surface_count = surface_count[s];
1718 set_layout->stage[s].surface_start = surface[s] = p;
1719 p += surface_count[s];
1720 set_layout->stage[s].sampler_count = sampler_count[s];
1721 set_layout->stage[s].sampler_start = sampler[s] = p;
1722 p += sampler_count[s];
1723 }
1724
1725 uint32_t descriptor = 0;
1726 for (uint32_t i = 0; i < pCreateInfo->count; i++) {
1727 switch (pCreateInfo->pBinding[i].descriptorType) {
1728 case VK_DESCRIPTOR_TYPE_SAMPLER:
1729 for_each_bit(s, pCreateInfo->pBinding[i].stageFlags)
1730 for (uint32_t j = 0; j < pCreateInfo->pBinding[i].count; j++)
1731 *(sampler[s])++ = descriptor + j;
1732 break;
1733
1734 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1735 for_each_bit(s, pCreateInfo->pBinding[i].stageFlags)
1736 for (uint32_t j = 0; j < pCreateInfo->pBinding[i].count; j++)
1737 *(sampler[s])++ = descriptor + j;
1738
1739 /* fallthrough */
1740
1741 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
1742 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
1743 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
1744 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
1745 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
1746 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
1747 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
1748 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
1749 for_each_bit(s, pCreateInfo->pBinding[i].stageFlags)
1750 for (uint32_t j = 0; j < pCreateInfo->pBinding[i].count; j++) {
1751 *(surface[s])++ = descriptor + j;
1752 }
1753 break;
1754 default:
1755 unreachable("");
1756 }
1757 descriptor += pCreateInfo->pBinding[i].count;
1758 }
1759
1760 *pSetLayout = (VkDescriptorSetLayout) set_layout;
1761
1762 return VK_SUCCESS;
1763 }
1764
1765 VkResult anv_BeginDescriptorPoolUpdate(
1766 VkDevice device,
1767 VkDescriptorUpdateMode updateMode)
1768 {
1769 return VK_SUCCESS;
1770 }
1771
1772 VkResult anv_EndDescriptorPoolUpdate(
1773 VkDevice device,
1774 VkCmdBuffer cmd)
1775 {
1776 return VK_SUCCESS;
1777 }
1778
1779 VkResult anv_CreateDescriptorPool(
1780 VkDevice device,
1781 VkDescriptorPoolUsage poolUsage,
1782 uint32_t maxSets,
1783 const VkDescriptorPoolCreateInfo* pCreateInfo,
1784 VkDescriptorPool* pDescriptorPool)
1785 {
1786 *pDescriptorPool = 1;
1787
1788 return VK_SUCCESS;
1789 }
1790
1791 VkResult anv_ResetDescriptorPool(
1792 VkDevice device,
1793 VkDescriptorPool descriptorPool)
1794 {
1795 return VK_SUCCESS;
1796 }
1797
1798 VkResult anv_AllocDescriptorSets(
1799 VkDevice _device,
1800 VkDescriptorPool descriptorPool,
1801 VkDescriptorSetUsage setUsage,
1802 uint32_t count,
1803 const VkDescriptorSetLayout* pSetLayouts,
1804 VkDescriptorSet* pDescriptorSets,
1805 uint32_t* pCount)
1806 {
1807 struct anv_device *device = (struct anv_device *) _device;
1808 const struct anv_descriptor_set_layout *layout;
1809 struct anv_descriptor_set *set;
1810 size_t size;
1811
1812 for (uint32_t i = 0; i < count; i++) {
1813 layout = (struct anv_descriptor_set_layout *) pSetLayouts[i];
1814 size = sizeof(*set) + layout->count * sizeof(set->descriptors[0]);
1815 set = anv_device_alloc(device, size, 8,
1816 VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
1817 if (!set) {
1818 *pCount = i;
1819 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1820 }
1821
1822 /* Descriptor sets may not be 100% filled out so we need to memset to
1823 * ensure that we can properly detect and handle holes.
1824 */
1825 memset(set, 0, size);
1826
1827 pDescriptorSets[i] = (VkDescriptorSet) set;
1828 }
1829
1830 *pCount = count;
1831
1832 return VK_SUCCESS;
1833 }
1834
1835 void anv_ClearDescriptorSets(
1836 VkDevice device,
1837 VkDescriptorPool descriptorPool,
1838 uint32_t count,
1839 const VkDescriptorSet* pDescriptorSets)
1840 {
1841 }
1842
1843 void anv_UpdateDescriptors(
1844 VkDevice _device,
1845 VkDescriptorSet descriptorSet,
1846 uint32_t updateCount,
1847 const void** ppUpdateArray)
1848 {
1849 struct anv_descriptor_set *set = (struct anv_descriptor_set *) descriptorSet;
1850 VkUpdateSamplers *update_samplers;
1851 VkUpdateSamplerTextures *update_sampler_textures;
1852 VkUpdateImages *update_images;
1853 VkUpdateBuffers *update_buffers;
1854 VkUpdateAsCopy *update_as_copy;
1855
1856 for (uint32_t i = 0; i < updateCount; i++) {
1857 const struct anv_common *common = ppUpdateArray[i];
1858
1859 switch (common->sType) {
1860 case VK_STRUCTURE_TYPE_UPDATE_SAMPLERS:
1861 update_samplers = (VkUpdateSamplers *) common;
1862
1863 for (uint32_t j = 0; j < update_samplers->count; j++) {
1864 set->descriptors[update_samplers->binding + j].sampler =
1865 (struct anv_sampler *) update_samplers->pSamplers[j];
1866 }
1867 break;
1868
1869 case VK_STRUCTURE_TYPE_UPDATE_SAMPLER_TEXTURES:
1870 /* FIXME: Shouldn't this be *_UPDATE_SAMPLER_IMAGES? */
1871 update_sampler_textures = (VkUpdateSamplerTextures *) common;
1872
1873 for (uint32_t j = 0; j < update_sampler_textures->count; j++) {
1874 set->descriptors[update_sampler_textures->binding + j].view =
1875 (struct anv_surface_view *)
1876 update_sampler_textures->pSamplerImageViews[j].pImageView->view;
1877 set->descriptors[update_sampler_textures->binding + j].sampler =
1878 (struct anv_sampler *)
1879 update_sampler_textures->pSamplerImageViews[j].sampler;
1880 }
1881 break;
1882
1883 case VK_STRUCTURE_TYPE_UPDATE_IMAGES:
1884 update_images = (VkUpdateImages *) common;
1885
1886 for (uint32_t j = 0; j < update_images->count; j++) {
1887 set->descriptors[update_images->binding + j].view =
1888 (struct anv_surface_view *) update_images->pImageViews[j].view;
1889 }
1890 break;
1891
1892 case VK_STRUCTURE_TYPE_UPDATE_BUFFERS:
1893 update_buffers = (VkUpdateBuffers *) common;
1894
1895 for (uint32_t j = 0; j < update_buffers->count; j++) {
1896 set->descriptors[update_buffers->binding + j].view =
1897 (struct anv_surface_view *) update_buffers->pBufferViews[j].view;
1898 }
1899 /* FIXME: descriptor arrays? */
1900 break;
1901
1902 case VK_STRUCTURE_TYPE_UPDATE_AS_COPY:
1903 update_as_copy = (VkUpdateAsCopy *) common;
1904 (void) update_as_copy;
1905 break;
1906
1907 default:
1908 break;
1909 }
1910 }
1911 }
1912
1913 // State object functions
1914
1915 static inline int64_t
1916 clamp_int64(int64_t x, int64_t min, int64_t max)
1917 {
1918 if (x < min)
1919 return min;
1920 else if (x < max)
1921 return x;
1922 else
1923 return max;
1924 }
1925
1926 static void
1927 anv_dynamic_vp_state_destroy(struct anv_device *device,
1928 struct anv_object *object,
1929 VkObjectType obj_type)
1930 {
1931 struct anv_dynamic_vp_state *state = (void *)object;
1932
1933 assert(obj_type == VK_OBJECT_TYPE_DYNAMIC_VP_STATE);
1934
1935 anv_state_pool_free(&device->dynamic_state_pool, state->sf_clip_vp);
1936 anv_state_pool_free(&device->dynamic_state_pool, state->cc_vp);
1937 anv_state_pool_free(&device->dynamic_state_pool, state->scissor);
1938
1939 anv_device_free(device, state);
1940 }
1941
1942 VkResult anv_CreateDynamicViewportState(
1943 VkDevice _device,
1944 const VkDynamicVpStateCreateInfo* pCreateInfo,
1945 VkDynamicVpState* pState)
1946 {
1947 struct anv_device *device = (struct anv_device *) _device;
1948 struct anv_dynamic_vp_state *state;
1949
1950 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DYNAMIC_VP_STATE_CREATE_INFO);
1951
1952 state = anv_device_alloc(device, sizeof(*state), 8,
1953 VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
1954 if (state == NULL)
1955 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1956
1957 state->base.destructor = anv_dynamic_vp_state_destroy;
1958
1959 unsigned count = pCreateInfo->viewportAndScissorCount;
1960 state->sf_clip_vp = anv_state_pool_alloc(&device->dynamic_state_pool,
1961 count * 64, 64);
1962 state->cc_vp = anv_state_pool_alloc(&device->dynamic_state_pool,
1963 count * 8, 32);
1964 state->scissor = anv_state_pool_alloc(&device->dynamic_state_pool,
1965 count * 32, 32);
1966
1967 for (uint32_t i = 0; i < pCreateInfo->viewportAndScissorCount; i++) {
1968 const VkViewport *vp = &pCreateInfo->pViewports[i];
1969 const VkRect *s = &pCreateInfo->pScissors[i];
1970
1971 struct GEN8_SF_CLIP_VIEWPORT sf_clip_viewport = {
1972 .ViewportMatrixElementm00 = vp->width / 2,
1973 .ViewportMatrixElementm11 = vp->height / 2,
1974 .ViewportMatrixElementm22 = (vp->maxDepth - vp->minDepth) / 2,
1975 .ViewportMatrixElementm30 = vp->originX + vp->width / 2,
1976 .ViewportMatrixElementm31 = vp->originY + vp->height / 2,
1977 .ViewportMatrixElementm32 = (vp->maxDepth + vp->minDepth) / 2,
1978 .XMinClipGuardband = -1.0f,
1979 .XMaxClipGuardband = 1.0f,
1980 .YMinClipGuardband = -1.0f,
1981 .YMaxClipGuardband = 1.0f,
1982 .XMinViewPort = vp->originX,
1983 .XMaxViewPort = vp->originX + vp->width - 1,
1984 .YMinViewPort = vp->originY,
1985 .YMaxViewPort = vp->originY + vp->height - 1,
1986 };
1987
1988 struct GEN8_CC_VIEWPORT cc_viewport = {
1989 .MinimumDepth = vp->minDepth,
1990 .MaximumDepth = vp->maxDepth
1991 };
1992
1993 /* Since xmax and ymax are inclusive, we have to have xmax < xmin or
1994 * ymax < ymin for empty clips. In case clip x, y, width height are all
1995 * 0, the clamps below produce 0 for xmin, ymin, xmax, ymax, which isn't
1996 * what we want. Just special case empty clips and produce a canonical
1997 * empty clip. */
1998 static const struct GEN8_SCISSOR_RECT empty_scissor = {
1999 .ScissorRectangleYMin = 1,
2000 .ScissorRectangleXMin = 1,
2001 .ScissorRectangleYMax = 0,
2002 .ScissorRectangleXMax = 0
2003 };
2004
2005 const int max = 0xffff;
2006 struct GEN8_SCISSOR_RECT scissor = {
2007 /* Do this math using int64_t so overflow gets clamped correctly. */
2008 .ScissorRectangleYMin = clamp_int64(s->offset.y, 0, max),
2009 .ScissorRectangleXMin = clamp_int64(s->offset.x, 0, max),
2010 .ScissorRectangleYMax = clamp_int64((uint64_t) s->offset.y + s->extent.height - 1, 0, max),
2011 .ScissorRectangleXMax = clamp_int64((uint64_t) s->offset.x + s->extent.width - 1, 0, max)
2012 };
2013
2014 GEN8_SF_CLIP_VIEWPORT_pack(NULL, state->sf_clip_vp.map + i * 64, &sf_clip_viewport);
2015 GEN8_CC_VIEWPORT_pack(NULL, state->cc_vp.map + i * 32, &cc_viewport);
2016
2017 if (s->extent.width <= 0 || s->extent.height <= 0) {
2018 GEN8_SCISSOR_RECT_pack(NULL, state->scissor.map + i * 32, &empty_scissor);
2019 } else {
2020 GEN8_SCISSOR_RECT_pack(NULL, state->scissor.map + i * 32, &scissor);
2021 }
2022 }
2023
2024 *pState = (VkDynamicVpState) state;
2025
2026 return VK_SUCCESS;
2027 }
2028
2029 VkResult anv_CreateDynamicRasterState(
2030 VkDevice _device,
2031 const VkDynamicRsStateCreateInfo* pCreateInfo,
2032 VkDynamicRsState* pState)
2033 {
2034 struct anv_device *device = (struct anv_device *) _device;
2035 struct anv_dynamic_rs_state *state;
2036
2037 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DYNAMIC_RS_STATE_CREATE_INFO);
2038
2039 state = anv_device_alloc(device, sizeof(*state), 8,
2040 VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
2041 if (state == NULL)
2042 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2043
2044 /* Missing these:
2045 * float depthBias;
2046 * float depthBiasClamp;
2047 * float slopeScaledDepthBias;
2048 * float pointFadeThreshold;
2049 * // optional (GL45) - Size of point fade threshold
2050 */
2051
2052 struct GEN8_3DSTATE_SF sf = {
2053 GEN8_3DSTATE_SF_header,
2054 .LineWidth = pCreateInfo->lineWidth,
2055 .PointWidth = pCreateInfo->pointSize,
2056 };
2057
2058 GEN8_3DSTATE_SF_pack(NULL, state->state_sf, &sf);
2059
2060 *pState = (VkDynamicRsState) state;
2061
2062 return VK_SUCCESS;
2063 }
2064
2065 VkResult anv_CreateDynamicColorBlendState(
2066 VkDevice _device,
2067 const VkDynamicCbStateCreateInfo* pCreateInfo,
2068 VkDynamicCbState* pState)
2069 {
2070 struct anv_device *device = (struct anv_device *) _device;
2071 struct anv_dynamic_cb_state *state;
2072
2073 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DYNAMIC_CB_STATE_CREATE_INFO);
2074
2075 state = anv_device_alloc(device, sizeof(*state), 8,
2076 VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
2077 if (state == NULL)
2078 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2079
2080 *pState = (VkDynamicCbState) state;
2081
2082 return VK_SUCCESS;
2083 }
2084
2085 VkResult anv_CreateDynamicDepthStencilState(
2086 VkDevice device,
2087 const VkDynamicDsStateCreateInfo* pCreateInfo,
2088 VkDynamicDsState* pState)
2089 {
2090 stub_return(VK_UNSUPPORTED);
2091 }
2092
2093 // Command buffer functions
2094
2095 static void
2096 anv_cmd_buffer_destroy(struct anv_device *device,
2097 struct anv_object *object,
2098 VkObjectType obj_type)
2099 {
2100 struct anv_cmd_buffer *cmd_buffer = (struct anv_cmd_buffer *) object;
2101
2102 assert(obj_type == VK_OBJECT_TYPE_COMMAND_BUFFER);
2103
2104 anv_gem_munmap(cmd_buffer->surface_bo.map, BATCH_SIZE);
2105 anv_gem_close(device, cmd_buffer->surface_bo.gem_handle);
2106 anv_state_stream_finish(&cmd_buffer->surface_state_stream);
2107 anv_state_stream_finish(&cmd_buffer->dynamic_state_stream);
2108 anv_state_stream_finish(&cmd_buffer->binding_table_state_stream);
2109 anv_batch_finish(&cmd_buffer->batch, device);
2110 anv_device_free(device, cmd_buffer->exec2_objects);
2111 anv_device_free(device, cmd_buffer->exec2_bos);
2112 anv_device_free(device, cmd_buffer);
2113 }
2114
2115 VkResult anv_CreateCommandBuffer(
2116 VkDevice _device,
2117 const VkCmdBufferCreateInfo* pCreateInfo,
2118 VkCmdBuffer* pCmdBuffer)
2119 {
2120 struct anv_device *device = (struct anv_device *) _device;
2121 struct anv_cmd_buffer *cmd_buffer;
2122 VkResult result;
2123
2124 cmd_buffer = anv_device_alloc(device, sizeof(*cmd_buffer), 8,
2125 VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
2126 if (cmd_buffer == NULL)
2127 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2128
2129 cmd_buffer->base.destructor = anv_cmd_buffer_destroy;
2130
2131 cmd_buffer->device = device;
2132 cmd_buffer->rs_state = NULL;
2133 cmd_buffer->vp_state = NULL;
2134 memset(&cmd_buffer->default_bindings, 0, sizeof(cmd_buffer->default_bindings));
2135 cmd_buffer->bindings = &cmd_buffer->default_bindings;
2136
2137 result = anv_batch_init(&cmd_buffer->batch, device);
2138 if (result != VK_SUCCESS)
2139 goto fail;
2140
2141 result = anv_bo_init_new(&cmd_buffer->surface_bo, device, BATCH_SIZE);
2142 if (result != VK_SUCCESS)
2143 goto fail_batch;
2144
2145 cmd_buffer->surface_bo.map =
2146 anv_gem_mmap(device, cmd_buffer->surface_bo.gem_handle, 0, BATCH_SIZE);
2147 if (cmd_buffer->surface_bo.map == NULL) {
2148 result = vk_error(VK_ERROR_MEMORY_MAP_FAILED);
2149 goto fail_surface_bo;
2150 }
2151
2152 /* Start surface_next at 1 so surface offset 0 is invalid. */
2153 cmd_buffer->surface_next = 1;
2154 cmd_buffer->surface_relocs.num_relocs = 0;
2155
2156 cmd_buffer->exec2_objects =
2157 anv_device_alloc(device, 8192 * sizeof(cmd_buffer->exec2_objects[0]), 8,
2158 VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
2159 if (cmd_buffer->exec2_objects == NULL) {
2160 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2161 goto fail_surface_map;
2162 }
2163
2164 cmd_buffer->exec2_bos =
2165 anv_device_alloc(device, 8192 * sizeof(cmd_buffer->exec2_bos[0]), 8,
2166 VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
2167 if (cmd_buffer->exec2_bos == NULL) {
2168 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2169 goto fail_exec2_objects;
2170 }
2171
2172 anv_state_stream_init(&cmd_buffer->binding_table_state_stream,
2173 &device->binding_table_block_pool);
2174 anv_state_stream_init(&cmd_buffer->surface_state_stream,
2175 &device->surface_state_block_pool);
2176 anv_state_stream_init(&cmd_buffer->dynamic_state_stream,
2177 &device->dynamic_state_block_pool);
2178
2179 cmd_buffer->dirty = 0;
2180 cmd_buffer->vb_dirty = 0;
2181 cmd_buffer->pipeline = NULL;
2182
2183 *pCmdBuffer = (VkCmdBuffer) cmd_buffer;
2184
2185 return VK_SUCCESS;
2186
2187 fail_exec2_objects:
2188 anv_device_free(device, cmd_buffer->exec2_objects);
2189 fail_surface_map:
2190 anv_gem_munmap(cmd_buffer->surface_bo.map, BATCH_SIZE);
2191 fail_surface_bo:
2192 anv_gem_close(device, cmd_buffer->surface_bo.gem_handle);
2193 fail_batch:
2194 anv_batch_finish(&cmd_buffer->batch, device);
2195 fail:
2196 anv_device_free(device, cmd_buffer);
2197
2198 return result;
2199 }
2200
2201 VkResult anv_BeginCommandBuffer(
2202 VkCmdBuffer cmdBuffer,
2203 const VkCmdBufferBeginInfo* pBeginInfo)
2204 {
2205 struct anv_cmd_buffer *cmd_buffer = (struct anv_cmd_buffer *) cmdBuffer;
2206 struct anv_device *device = cmd_buffer->device;
2207
2208 anv_batch_emit(&cmd_buffer->batch, GEN8_PIPELINE_SELECT,
2209 .PipelineSelection = _3D);
2210 anv_batch_emit(&cmd_buffer->batch, GEN8_STATE_SIP);
2211
2212 anv_batch_emit(&cmd_buffer->batch, GEN8_STATE_BASE_ADDRESS,
2213 .GeneralStateBaseAddress = { NULL, 0 },
2214 .GeneralStateMemoryObjectControlState = GEN8_MOCS,
2215 .GeneralStateBaseAddressModifyEnable = true,
2216 .GeneralStateBufferSize = 0xfffff,
2217 .GeneralStateBufferSizeModifyEnable = true,
2218
2219 .SurfaceStateBaseAddress = { &cmd_buffer->surface_bo, 0 },
2220 .SurfaceStateMemoryObjectControlState = GEN8_MOCS,
2221 .SurfaceStateBaseAddressModifyEnable = true,
2222
2223 .DynamicStateBaseAddress = { &device->dynamic_state_block_pool.bo, 0 },
2224 .DynamicStateMemoryObjectControlState = GEN8_MOCS,
2225 .DynamicStateBaseAddressModifyEnable = true,
2226 .DynamicStateBufferSize = 0xfffff,
2227 .DynamicStateBufferSizeModifyEnable = true,
2228
2229 .IndirectObjectBaseAddress = { NULL, 0 },
2230 .IndirectObjectMemoryObjectControlState = GEN8_MOCS,
2231 .IndirectObjectBaseAddressModifyEnable = true,
2232 .IndirectObjectBufferSize = 0xfffff,
2233 .IndirectObjectBufferSizeModifyEnable = true,
2234
2235 .InstructionBaseAddress = { &device->instruction_block_pool.bo, 0 },
2236 .InstructionMemoryObjectControlState = GEN8_MOCS,
2237 .InstructionBaseAddressModifyEnable = true,
2238 .InstructionBufferSize = 0xfffff,
2239 .InstructionBuffersizeModifyEnable = true);
2240
2241 anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_VF_STATISTICS,
2242 .StatisticsEnable = true);
2243 anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_HS, .Enable = false);
2244 anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_TE, .TEEnable = false);
2245 anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_DS, .FunctionEnable = false);
2246 anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_STREAMOUT, .SOFunctionEnable = false);
2247
2248 anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
2249 .ConstantBufferOffset = 0,
2250 .ConstantBufferSize = 4);
2251 anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
2252 .ConstantBufferOffset = 4,
2253 .ConstantBufferSize = 4);
2254 anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
2255 .ConstantBufferOffset = 8,
2256 .ConstantBufferSize = 4);
2257
2258 anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_WM_CHROMAKEY,
2259 .ChromaKeyKillEnable = false);
2260 anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_SBE_SWIZ);
2261 anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_AA_LINE_PARAMETERS);
2262
2263 anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_WM_DEPTH_STENCIL,
2264 .DepthTestEnable = false,
2265 .DepthBufferWriteEnable = false);
2266
2267 return VK_SUCCESS;
2268 }
2269
2270 static void
2271 anv_cmd_buffer_add_bo(struct anv_cmd_buffer *cmd_buffer,
2272 struct anv_bo *bo, struct anv_reloc_list *list)
2273 {
2274 struct drm_i915_gem_exec_object2 *obj;
2275
2276 bo->index = cmd_buffer->bo_count;
2277 obj = &cmd_buffer->exec2_objects[bo->index];
2278 cmd_buffer->exec2_bos[bo->index] = bo;
2279 cmd_buffer->bo_count++;
2280
2281 obj->handle = bo->gem_handle;
2282 obj->relocation_count = 0;
2283 obj->relocs_ptr = 0;
2284 obj->alignment = 0;
2285 obj->offset = bo->offset;
2286 obj->flags = 0;
2287 obj->rsvd1 = 0;
2288 obj->rsvd2 = 0;
2289
2290 if (list) {
2291 obj->relocation_count = list->num_relocs;
2292 obj->relocs_ptr = (uintptr_t) list->relocs;
2293 }
2294 }
2295
2296 static void
2297 anv_cmd_buffer_add_validate_bos(struct anv_cmd_buffer *cmd_buffer,
2298 struct anv_reloc_list *list)
2299 {
2300 struct anv_bo *bo, *batch_bo;
2301
2302 batch_bo = &cmd_buffer->batch.bo;
2303 for (size_t i = 0; i < list->num_relocs; i++) {
2304 bo = list->reloc_bos[i];
2305 /* Skip any relocations targeting the batch bo. We need to make sure
2306 * it's the last in the list so we'll add it manually later.
2307 */
2308 if (bo == batch_bo)
2309 continue;
2310 if (bo->index < cmd_buffer->bo_count && cmd_buffer->exec2_bos[bo->index] == bo)
2311 continue;
2312
2313 anv_cmd_buffer_add_bo(cmd_buffer, bo, NULL);
2314 }
2315 }
2316
2317 static void
2318 anv_cmd_buffer_process_relocs(struct anv_cmd_buffer *cmd_buffer,
2319 struct anv_reloc_list *list)
2320 {
2321 struct anv_bo *bo;
2322
2323 /* If the kernel supports I915_EXEC_NO_RELOC, it will compare offset in
2324 * struct drm_i915_gem_exec_object2 against the bos current offset and if
2325 * all bos haven't moved it will skip relocation processing alltogether.
2326 * If I915_EXEC_NO_RELOC is not supported, the kernel ignores the incoming
2327 * value of offset so we can set it either way. For that to work we need
2328 * to make sure all relocs use the same presumed offset.
2329 */
2330
2331 for (size_t i = 0; i < list->num_relocs; i++) {
2332 bo = list->reloc_bos[i];
2333 if (bo->offset != list->relocs[i].presumed_offset)
2334 cmd_buffer->need_reloc = true;
2335
2336 list->relocs[i].target_handle = bo->index;
2337 }
2338 }
2339
2340 VkResult anv_EndCommandBuffer(
2341 VkCmdBuffer cmdBuffer)
2342 {
2343 struct anv_cmd_buffer *cmd_buffer = (struct anv_cmd_buffer *) cmdBuffer;
2344 struct anv_device *device = cmd_buffer->device;
2345 struct anv_batch *batch = &cmd_buffer->batch;
2346
2347 anv_batch_emit(batch, GEN8_MI_BATCH_BUFFER_END);
2348
2349 /* Round batch up to an even number of dwords. */
2350 if ((batch->next - batch->bo.map) & 4)
2351 anv_batch_emit(batch, GEN8_MI_NOOP);
2352
2353 cmd_buffer->bo_count = 0;
2354 cmd_buffer->need_reloc = false;
2355
2356 /* Lock for access to bo->index. */
2357 pthread_mutex_lock(&device->mutex);
2358
2359 /* Add block pool bos first so we can add them with their relocs. */
2360 anv_cmd_buffer_add_bo(cmd_buffer, &cmd_buffer->surface_bo,
2361 &cmd_buffer->surface_relocs);
2362
2363 anv_cmd_buffer_add_validate_bos(cmd_buffer, &cmd_buffer->surface_relocs);
2364 anv_cmd_buffer_add_validate_bos(cmd_buffer, &batch->cmd_relocs);
2365 anv_cmd_buffer_add_bo(cmd_buffer, &batch->bo, &batch->cmd_relocs);
2366 anv_cmd_buffer_process_relocs(cmd_buffer, &cmd_buffer->surface_relocs);
2367 anv_cmd_buffer_process_relocs(cmd_buffer, &batch->cmd_relocs);
2368
2369 cmd_buffer->execbuf.buffers_ptr = (uintptr_t) cmd_buffer->exec2_objects;
2370 cmd_buffer->execbuf.buffer_count = cmd_buffer->bo_count;
2371 cmd_buffer->execbuf.batch_start_offset = 0;
2372 cmd_buffer->execbuf.batch_len = batch->next - batch->bo.map;
2373 cmd_buffer->execbuf.cliprects_ptr = 0;
2374 cmd_buffer->execbuf.num_cliprects = 0;
2375 cmd_buffer->execbuf.DR1 = 0;
2376 cmd_buffer->execbuf.DR4 = 0;
2377
2378 cmd_buffer->execbuf.flags = I915_EXEC_HANDLE_LUT;
2379 if (!cmd_buffer->need_reloc)
2380 cmd_buffer->execbuf.flags |= I915_EXEC_NO_RELOC;
2381 cmd_buffer->execbuf.flags |= I915_EXEC_RENDER;
2382 cmd_buffer->execbuf.rsvd1 = device->context_id;
2383 cmd_buffer->execbuf.rsvd2 = 0;
2384
2385 pthread_mutex_unlock(&device->mutex);
2386
2387 return VK_SUCCESS;
2388 }
2389
2390 VkResult anv_ResetCommandBuffer(
2391 VkCmdBuffer cmdBuffer)
2392 {
2393 struct anv_cmd_buffer *cmd_buffer = (struct anv_cmd_buffer *) cmdBuffer;
2394
2395 anv_batch_reset(&cmd_buffer->batch);
2396 cmd_buffer->surface_next = 0;
2397 cmd_buffer->surface_relocs.num_relocs = 0;
2398
2399 return VK_SUCCESS;
2400 }
2401
2402 // Command buffer building functions
2403
2404 void anv_CmdBindPipeline(
2405 VkCmdBuffer cmdBuffer,
2406 VkPipelineBindPoint pipelineBindPoint,
2407 VkPipeline _pipeline)
2408 {
2409 struct anv_cmd_buffer *cmd_buffer = (struct anv_cmd_buffer *) cmdBuffer;
2410 struct anv_pipeline *pipeline = (struct anv_pipeline *) _pipeline;
2411
2412 cmd_buffer->pipeline = pipeline;
2413 cmd_buffer->vb_dirty |= pipeline->vb_used;
2414 cmd_buffer->dirty |= ANV_CMD_BUFFER_PIPELINE_DIRTY;
2415 }
2416
2417 void anv_CmdBindDynamicStateObject(
2418 VkCmdBuffer cmdBuffer,
2419 VkStateBindPoint stateBindPoint,
2420 VkDynamicStateObject dynamicState)
2421 {
2422 struct anv_cmd_buffer *cmd_buffer = (struct anv_cmd_buffer *) cmdBuffer;
2423 struct anv_dynamic_vp_state *vp_state;
2424
2425 switch (stateBindPoint) {
2426 case VK_STATE_BIND_POINT_VIEWPORT:
2427 vp_state = (struct anv_dynamic_vp_state *) dynamicState;
2428 /* We emit state immediately, but set cmd_buffer->vp_state to indicate
2429 * that vp state has been set in this command buffer. */
2430 cmd_buffer->vp_state = vp_state;
2431 anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_SCISSOR_STATE_POINTERS,
2432 .ScissorRectPointer = vp_state->scissor.offset);
2433 anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
2434 .CCViewportPointer = vp_state->cc_vp.offset);
2435 anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
2436 .SFClipViewportPointer = vp_state->sf_clip_vp.offset);
2437 break;
2438 case VK_STATE_BIND_POINT_RASTER:
2439 cmd_buffer->rs_state = (struct anv_dynamic_rs_state *) dynamicState;
2440 cmd_buffer->dirty |= ANV_CMD_BUFFER_RS_DIRTY;
2441 break;
2442 case VK_STATE_BIND_POINT_COLOR_BLEND:
2443 case VK_STATE_BIND_POINT_DEPTH_STENCIL:
2444 break;
2445 default:
2446 break;
2447 };
2448 }
2449
2450 static struct anv_state
2451 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer,
2452 uint32_t size, uint32_t alignment)
2453 {
2454 struct anv_state state;
2455
2456 state.offset = ALIGN_U32(cmd_buffer->surface_next, alignment);
2457 state.map = cmd_buffer->surface_bo.map + state.offset;
2458 state.alloc_size = size;
2459 cmd_buffer->surface_next = state.offset + size;
2460
2461 assert(state.offset + size < cmd_buffer->surface_bo.size);
2462
2463 return state;
2464 }
2465
2466 void anv_CmdBindDescriptorSets(
2467 VkCmdBuffer cmdBuffer,
2468 VkPipelineBindPoint pipelineBindPoint,
2469 uint32_t firstSet,
2470 uint32_t setCount,
2471 const VkDescriptorSet* pDescriptorSets,
2472 uint32_t dynamicOffsetCount,
2473 const uint32_t* pDynamicOffsets)
2474 {
2475 struct anv_cmd_buffer *cmd_buffer = (struct anv_cmd_buffer *) cmdBuffer;
2476 struct anv_pipeline_layout *layout = cmd_buffer->pipeline->layout;
2477 struct anv_bindings *bindings = cmd_buffer->bindings;
2478
2479 uint32_t offset = 0;
2480 for (uint32_t i = 0; i < setCount; i++) {
2481 struct anv_descriptor_set *set =
2482 (struct anv_descriptor_set *) pDescriptorSets[i];
2483 struct anv_descriptor_set_layout *set_layout = layout->set[firstSet + i].layout;
2484
2485 for (uint32_t s = 0; s < VK_NUM_SHADER_STAGE; s++) {
2486 uint32_t *surface_to_desc = set_layout->stage[s].surface_start;
2487 uint32_t *sampler_to_desc = set_layout->stage[s].sampler_start;
2488 uint32_t bias = s == VK_SHADER_STAGE_FRAGMENT ? MAX_RTS : 0;
2489 uint32_t start;
2490
2491 start = bias + layout->set[firstSet + i].surface_start[s];
2492 for (uint32_t b = 0; b < set_layout->stage[s].surface_count; b++) {
2493 struct anv_surface_view *view = set->descriptors[surface_to_desc[b]].view;
2494 if (!view)
2495 continue;
2496
2497 struct anv_state state =
2498 anv_cmd_buffer_alloc_surface_state(cmd_buffer, 64, 64);
2499 memcpy(state.map, view->surface_state.map, 64);
2500
2501 /* The address goes in dwords 8 and 9 of the SURFACE_STATE */
2502 *(uint64_t *)(state.map + 8 * 4) =
2503 anv_reloc_list_add(&cmd_buffer->surface_relocs,
2504 state.offset + 8 * 4,
2505 view->bo, view->offset);
2506
2507 bindings->descriptors[s].surfaces[start + b] = state.offset;
2508 }
2509
2510 start = layout->set[firstSet + i].sampler_start[s];
2511 for (uint32_t b = 0; b < set_layout->stage[s].sampler_count; b++) {
2512 struct anv_sampler *sampler = set->descriptors[sampler_to_desc[b]].sampler;
2513 if (!sampler)
2514 continue;
2515
2516 memcpy(&bindings->descriptors[s].samplers[start + b],
2517 sampler->state, sizeof(sampler->state));
2518 }
2519 }
2520
2521 offset += layout->set[firstSet + i].layout->num_dynamic_buffers;
2522 }
2523
2524 cmd_buffer->dirty |= ANV_CMD_BUFFER_DESCRIPTOR_SET_DIRTY;
2525 }
2526
2527 void anv_CmdBindIndexBuffer(
2528 VkCmdBuffer cmdBuffer,
2529 VkBuffer _buffer,
2530 VkDeviceSize offset,
2531 VkIndexType indexType)
2532 {
2533 struct anv_cmd_buffer *cmd_buffer = (struct anv_cmd_buffer *) cmdBuffer;
2534 struct anv_buffer *buffer = (struct anv_buffer *) _buffer;
2535
2536 static const uint32_t vk_to_gen_index_type[] = {
2537 [VK_INDEX_TYPE_UINT8] = INDEX_BYTE,
2538 [VK_INDEX_TYPE_UINT16] = INDEX_WORD,
2539 [VK_INDEX_TYPE_UINT32] = INDEX_DWORD,
2540 };
2541
2542 anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_INDEX_BUFFER,
2543 .IndexFormat = vk_to_gen_index_type[indexType],
2544 .MemoryObjectControlState = GEN8_MOCS,
2545 .BufferStartingAddress = { buffer->bo, buffer->offset + offset },
2546 .BufferSize = buffer->size - offset);
2547 }
2548
2549 void anv_CmdBindVertexBuffers(
2550 VkCmdBuffer cmdBuffer,
2551 uint32_t startBinding,
2552 uint32_t bindingCount,
2553 const VkBuffer* pBuffers,
2554 const VkDeviceSize* pOffsets)
2555 {
2556 struct anv_cmd_buffer *cmd_buffer = (struct anv_cmd_buffer *) cmdBuffer;
2557 struct anv_bindings *bindings = cmd_buffer->bindings;
2558
2559 /* We have to defer setting up vertex buffer since we need the buffer
2560 * stride from the pipeline. */
2561
2562 for (uint32_t i = 0; i < bindingCount; i++) {
2563 bindings->vb[startBinding + i].buffer = (struct anv_buffer *) pBuffers[i];
2564 bindings->vb[startBinding + i].offset = pOffsets[i];
2565 cmd_buffer->vb_dirty |= 1 << (startBinding + i);
2566 }
2567 }
2568
2569 static void
2570 flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer)
2571 {
2572 struct anv_pipeline_layout *layout = cmd_buffer->pipeline->layout;
2573 struct anv_bindings *bindings = cmd_buffer->bindings;
2574 uint32_t layers = cmd_buffer->framebuffer->layers;
2575
2576 for (uint32_t s = 0; s < VK_NUM_SHADER_STAGE; s++) {
2577 uint32_t bias;
2578
2579 if (s == VK_SHADER_STAGE_FRAGMENT) {
2580 bias = MAX_RTS;
2581 layers = cmd_buffer->framebuffer->layers;
2582 } else {
2583 bias = 0;
2584 layers = 0;
2585 }
2586
2587 /* This is a little awkward: layout can be NULL but we still have to
2588 * allocate and set a binding table for the PS stage for render
2589 * targets. */
2590 uint32_t surface_count = layout ? layout->stage[s].surface_count : 0;
2591
2592 if (layers + surface_count > 0) {
2593 struct anv_state state;
2594 uint32_t size;
2595
2596 size = (bias + surface_count) * sizeof(uint32_t);
2597 state = anv_cmd_buffer_alloc_surface_state(cmd_buffer, size, 32);
2598 memcpy(state.map, bindings->descriptors[s].surfaces, size);
2599
2600 static const uint32_t binding_table_opcodes[] = {
2601 [VK_SHADER_STAGE_VERTEX] = 38,
2602 [VK_SHADER_STAGE_TESS_CONTROL] = 39,
2603 [VK_SHADER_STAGE_TESS_EVALUATION] = 40,
2604 [VK_SHADER_STAGE_GEOMETRY] = 41,
2605 [VK_SHADER_STAGE_FRAGMENT] = 42,
2606 [VK_SHADER_STAGE_COMPUTE] = 0,
2607 };
2608
2609 anv_batch_emit(&cmd_buffer->batch,
2610 GEN8_3DSTATE_BINDING_TABLE_POINTERS_VS,
2611 ._3DCommandSubOpcode = binding_table_opcodes[s],
2612 .PointertoVSBindingTable = state.offset);
2613 }
2614
2615 if (layout && layout->stage[s].sampler_count > 0) {
2616 struct anv_state state;
2617 size_t size;
2618
2619 size = layout->stage[s].sampler_count * 16;
2620 state = anv_cmd_buffer_alloc_surface_state(cmd_buffer, size, 32);
2621 memcpy(state.map, bindings->descriptors[s].samplers, size);
2622
2623 static const uint32_t sampler_state_opcodes[] = {
2624 [VK_SHADER_STAGE_VERTEX] = 43,
2625 [VK_SHADER_STAGE_TESS_CONTROL] = 44, /* HS */
2626 [VK_SHADER_STAGE_TESS_EVALUATION] = 45, /* DS */
2627 [VK_SHADER_STAGE_GEOMETRY] = 46,
2628 [VK_SHADER_STAGE_FRAGMENT] = 47,
2629 [VK_SHADER_STAGE_COMPUTE] = 0,
2630 };
2631
2632 anv_batch_emit(&cmd_buffer->batch,
2633 GEN8_3DSTATE_SAMPLER_STATE_POINTERS_VS,
2634 ._3DCommandSubOpcode = sampler_state_opcodes[s],
2635 .PointertoVSSamplerState = state.offset);
2636 }
2637 }
2638 }
2639
2640 static void
2641 anv_cmd_buffer_flush_state(struct anv_cmd_buffer *cmd_buffer)
2642 {
2643 struct anv_pipeline *pipeline = cmd_buffer->pipeline;
2644 struct anv_bindings *bindings = cmd_buffer->bindings;
2645 uint32_t *p;
2646
2647 uint32_t vb_emit = cmd_buffer->vb_dirty & pipeline->vb_used;
2648 const uint32_t num_buffers = __builtin_popcount(vb_emit);
2649 const uint32_t num_dwords = 1 + num_buffers * 4;
2650
2651 if (vb_emit) {
2652 p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
2653 GEN8_3DSTATE_VERTEX_BUFFERS);
2654 uint32_t vb, i = 0;
2655 for_each_bit(vb, vb_emit) {
2656 struct anv_buffer *buffer = bindings->vb[vb].buffer;
2657 uint32_t offset = bindings->vb[vb].offset;
2658
2659 struct GEN8_VERTEX_BUFFER_STATE state = {
2660 .VertexBufferIndex = vb,
2661 .MemoryObjectControlState = GEN8_MOCS,
2662 .AddressModifyEnable = true,
2663 .BufferPitch = pipeline->binding_stride[vb],
2664 .BufferStartingAddress = { buffer->bo, buffer->offset + offset },
2665 .BufferSize = buffer->size - offset
2666 };
2667
2668 GEN8_VERTEX_BUFFER_STATE_pack(&cmd_buffer->batch, &p[1 + i * 4], &state);
2669 i++;
2670 }
2671 }
2672
2673 if (cmd_buffer->dirty & ANV_CMD_BUFFER_PIPELINE_DIRTY)
2674 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
2675
2676 if (cmd_buffer->dirty & ANV_CMD_BUFFER_DESCRIPTOR_SET_DIRTY)
2677 flush_descriptor_sets(cmd_buffer);
2678
2679 if (cmd_buffer->dirty & (ANV_CMD_BUFFER_PIPELINE_DIRTY | ANV_CMD_BUFFER_RS_DIRTY))
2680 anv_batch_emit_merge(&cmd_buffer->batch,
2681 cmd_buffer->rs_state->state_sf, pipeline->state_sf);
2682
2683 cmd_buffer->vb_dirty &= ~vb_emit;
2684 cmd_buffer->dirty = 0;
2685 }
2686
2687 void anv_CmdDraw(
2688 VkCmdBuffer cmdBuffer,
2689 uint32_t firstVertex,
2690 uint32_t vertexCount,
2691 uint32_t firstInstance,
2692 uint32_t instanceCount)
2693 {
2694 struct anv_cmd_buffer *cmd_buffer = (struct anv_cmd_buffer *) cmdBuffer;
2695
2696 anv_cmd_buffer_flush_state(cmd_buffer);
2697
2698 anv_batch_emit(&cmd_buffer->batch, GEN8_3DPRIMITIVE,
2699 .VertexAccessType = SEQUENTIAL,
2700 .VertexCountPerInstance = vertexCount,
2701 .StartVertexLocation = firstVertex,
2702 .InstanceCount = instanceCount,
2703 .StartInstanceLocation = firstInstance,
2704 .BaseVertexLocation = 0);
2705 }
2706
2707 void anv_CmdDrawIndexed(
2708 VkCmdBuffer cmdBuffer,
2709 uint32_t firstIndex,
2710 uint32_t indexCount,
2711 int32_t vertexOffset,
2712 uint32_t firstInstance,
2713 uint32_t instanceCount)
2714 {
2715 struct anv_cmd_buffer *cmd_buffer = (struct anv_cmd_buffer *) cmdBuffer;
2716
2717 anv_cmd_buffer_flush_state(cmd_buffer);
2718
2719 anv_batch_emit(&cmd_buffer->batch, GEN8_3DPRIMITIVE,
2720 .VertexAccessType = RANDOM,
2721 .VertexCountPerInstance = indexCount,
2722 .StartVertexLocation = firstIndex,
2723 .InstanceCount = instanceCount,
2724 .StartInstanceLocation = firstInstance,
2725 .BaseVertexLocation = 0);
2726 }
2727
2728 static void
2729 anv_batch_lrm(struct anv_batch *batch,
2730 uint32_t reg, struct anv_bo *bo, uint32_t offset)
2731 {
2732 anv_batch_emit(batch, GEN8_MI_LOAD_REGISTER_MEM,
2733 .RegisterAddress = reg,
2734 .MemoryAddress = { bo, offset });
2735 }
2736
2737 static void
2738 anv_batch_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
2739 {
2740 anv_batch_emit(batch, GEN8_MI_LOAD_REGISTER_IMM,
2741 .RegisterOffset = reg,
2742 .DataDWord = imm);
2743 }
2744
2745 /* Auto-Draw / Indirect Registers */
2746 #define GEN7_3DPRIM_END_OFFSET 0x2420
2747 #define GEN7_3DPRIM_START_VERTEX 0x2430
2748 #define GEN7_3DPRIM_VERTEX_COUNT 0x2434
2749 #define GEN7_3DPRIM_INSTANCE_COUNT 0x2438
2750 #define GEN7_3DPRIM_START_INSTANCE 0x243C
2751 #define GEN7_3DPRIM_BASE_VERTEX 0x2440
2752
2753 void anv_CmdDrawIndirect(
2754 VkCmdBuffer cmdBuffer,
2755 VkBuffer _buffer,
2756 VkDeviceSize offset,
2757 uint32_t count,
2758 uint32_t stride)
2759 {
2760 struct anv_cmd_buffer *cmd_buffer = (struct anv_cmd_buffer *) cmdBuffer;
2761 struct anv_buffer *buffer = (struct anv_buffer *) _buffer;
2762 struct anv_bo *bo = buffer->bo;
2763 uint32_t bo_offset = buffer->offset + offset;
2764
2765 anv_cmd_buffer_flush_state(cmd_buffer);
2766
2767 anv_batch_lrm(&cmd_buffer->batch, GEN7_3DPRIM_VERTEX_COUNT, bo, bo_offset);
2768 anv_batch_lrm(&cmd_buffer->batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
2769 anv_batch_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_VERTEX, bo, bo_offset + 8);
2770 anv_batch_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 12);
2771 anv_batch_lri(&cmd_buffer->batch, GEN7_3DPRIM_BASE_VERTEX, 0);
2772
2773 anv_batch_emit(&cmd_buffer->batch, GEN8_3DPRIMITIVE,
2774 .IndirectParameterEnable = true,
2775 .VertexAccessType = SEQUENTIAL);
2776 }
2777
2778 void anv_CmdDrawIndexedIndirect(
2779 VkCmdBuffer cmdBuffer,
2780 VkBuffer _buffer,
2781 VkDeviceSize offset,
2782 uint32_t count,
2783 uint32_t stride)
2784 {
2785 struct anv_cmd_buffer *cmd_buffer = (struct anv_cmd_buffer *) cmdBuffer;
2786 struct anv_buffer *buffer = (struct anv_buffer *) _buffer;
2787 struct anv_bo *bo = buffer->bo;
2788 uint32_t bo_offset = buffer->offset + offset;
2789
2790 anv_cmd_buffer_flush_state(cmd_buffer);
2791
2792 anv_batch_lrm(&cmd_buffer->batch, GEN7_3DPRIM_VERTEX_COUNT, bo, bo_offset);
2793 anv_batch_lrm(&cmd_buffer->batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
2794 anv_batch_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_VERTEX, bo, bo_offset + 8);
2795 anv_batch_lrm(&cmd_buffer->batch, GEN7_3DPRIM_BASE_VERTEX, bo, bo_offset + 12);
2796 anv_batch_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 16);
2797
2798 anv_batch_emit(&cmd_buffer->batch, GEN8_3DPRIMITIVE,
2799 .IndirectParameterEnable = true,
2800 .VertexAccessType = RANDOM);
2801 }
2802
2803 void anv_CmdDispatch(
2804 VkCmdBuffer cmdBuffer,
2805 uint32_t x,
2806 uint32_t y,
2807 uint32_t z)
2808 {
2809 stub();
2810 }
2811
2812 void anv_CmdDispatchIndirect(
2813 VkCmdBuffer cmdBuffer,
2814 VkBuffer buffer,
2815 VkDeviceSize offset)
2816 {
2817 stub();
2818 }
2819
2820 void anv_CmdSetEvent(
2821 VkCmdBuffer cmdBuffer,
2822 VkEvent event,
2823 VkPipeEvent pipeEvent)
2824 {
2825 stub();
2826 }
2827
2828 void anv_CmdResetEvent(
2829 VkCmdBuffer cmdBuffer,
2830 VkEvent event,
2831 VkPipeEvent pipeEvent)
2832 {
2833 stub();
2834 }
2835
2836 void anv_CmdWaitEvents(
2837 VkCmdBuffer cmdBuffer,
2838 VkWaitEvent waitEvent,
2839 uint32_t eventCount,
2840 const VkEvent* pEvents,
2841 uint32_t memBarrierCount,
2842 const void** ppMemBarriers)
2843 {
2844 stub();
2845 }
2846
2847 void anv_CmdPipelineBarrier(
2848 VkCmdBuffer cmdBuffer,
2849 VkWaitEvent waitEvent,
2850 uint32_t pipeEventCount,
2851 const VkPipeEvent* pPipeEvents,
2852 uint32_t memBarrierCount,
2853 const void** ppMemBarriers)
2854 {
2855 stub();
2856 }
2857
2858 static void
2859 anv_batch_emit_ps_depth_count(struct anv_batch *batch,
2860 struct anv_bo *bo, uint32_t offset)
2861 {
2862 anv_batch_emit(batch, GEN8_PIPE_CONTROL,
2863 .DestinationAddressType = DAT_PPGTT,
2864 .PostSyncOperation = WritePSDepthCount,
2865 .Address = { bo, offset }); /* FIXME: This is only lower 32 bits */
2866 }
2867
2868 void anv_CmdBeginQuery(
2869 VkCmdBuffer cmdBuffer,
2870 VkQueryPool queryPool,
2871 uint32_t slot,
2872 VkQueryControlFlags flags)
2873 {
2874 struct anv_cmd_buffer *cmd_buffer = (struct anv_cmd_buffer *) cmdBuffer;
2875 struct anv_query_pool *pool = (struct anv_query_pool *) queryPool;
2876
2877 switch (pool->type) {
2878 case VK_QUERY_TYPE_OCCLUSION:
2879 anv_batch_emit_ps_depth_count(&cmd_buffer->batch, &pool->bo,
2880 slot * sizeof(struct anv_query_pool_slot));
2881 break;
2882
2883 case VK_QUERY_TYPE_PIPELINE_STATISTICS:
2884 default:
2885 unreachable("");
2886 }
2887 }
2888
2889 void anv_CmdEndQuery(
2890 VkCmdBuffer cmdBuffer,
2891 VkQueryPool queryPool,
2892 uint32_t slot)
2893 {
2894 struct anv_cmd_buffer *cmd_buffer = (struct anv_cmd_buffer *) cmdBuffer;
2895 struct anv_query_pool *pool = (struct anv_query_pool *) queryPool;
2896
2897 switch (pool->type) {
2898 case VK_QUERY_TYPE_OCCLUSION:
2899 anv_batch_emit_ps_depth_count(&cmd_buffer->batch, &pool->bo,
2900 slot * sizeof(struct anv_query_pool_slot) + 8);
2901 break;
2902
2903 case VK_QUERY_TYPE_PIPELINE_STATISTICS:
2904 default:
2905 unreachable("");
2906 }
2907 }
2908
2909 void anv_CmdResetQueryPool(
2910 VkCmdBuffer cmdBuffer,
2911 VkQueryPool queryPool,
2912 uint32_t startQuery,
2913 uint32_t queryCount)
2914 {
2915 stub();
2916 }
2917
2918 #define TIMESTAMP 0x2358
2919
2920 void anv_CmdWriteTimestamp(
2921 VkCmdBuffer cmdBuffer,
2922 VkTimestampType timestampType,
2923 VkBuffer destBuffer,
2924 VkDeviceSize destOffset)
2925 {
2926 struct anv_cmd_buffer *cmd_buffer = (struct anv_cmd_buffer *) cmdBuffer;
2927 struct anv_buffer *buffer = (struct anv_buffer *) destBuffer;
2928 struct anv_bo *bo = buffer->bo;
2929
2930 switch (timestampType) {
2931 case VK_TIMESTAMP_TYPE_TOP:
2932 anv_batch_emit(&cmd_buffer->batch, GEN8_MI_STORE_REGISTER_MEM,
2933 .RegisterAddress = TIMESTAMP,
2934 .MemoryAddress = { bo, buffer->offset + destOffset });
2935 anv_batch_emit(&cmd_buffer->batch, GEN8_MI_STORE_REGISTER_MEM,
2936 .RegisterAddress = TIMESTAMP + 4,
2937 .MemoryAddress = { bo, buffer->offset + destOffset + 4 });
2938 break;
2939
2940 case VK_TIMESTAMP_TYPE_BOTTOM:
2941 anv_batch_emit(&cmd_buffer->batch, GEN8_PIPE_CONTROL,
2942 .DestinationAddressType = DAT_PPGTT,
2943 .PostSyncOperation = WriteTimestamp,
2944 .Address = /* FIXME: This is only lower 32 bits */
2945 { bo, buffer->offset + destOffset });
2946 break;
2947
2948 default:
2949 break;
2950 }
2951 }
2952
2953 #define alu_opcode(v) __gen_field((v), 20, 31)
2954 #define alu_operand1(v) __gen_field((v), 10, 19)
2955 #define alu_operand2(v) __gen_field((v), 0, 9)
2956 #define alu(opcode, operand1, operand2) \
2957 alu_opcode(opcode) | alu_operand1(operand1) | alu_operand2(operand2)
2958
2959 #define OPCODE_NOOP 0x000
2960 #define OPCODE_LOAD 0x080
2961 #define OPCODE_LOADINV 0x480
2962 #define OPCODE_LOAD0 0x081
2963 #define OPCODE_LOAD1 0x481
2964 #define OPCODE_ADD 0x100
2965 #define OPCODE_SUB 0x101
2966 #define OPCODE_AND 0x102
2967 #define OPCODE_OR 0x103
2968 #define OPCODE_XOR 0x104
2969 #define OPCODE_STORE 0x180
2970 #define OPCODE_STOREINV 0x580
2971
2972 #define OPERAND_R0 0x00
2973 #define OPERAND_R1 0x01
2974 #define OPERAND_R2 0x02
2975 #define OPERAND_R3 0x03
2976 #define OPERAND_R4 0x04
2977 #define OPERAND_SRCA 0x20
2978 #define OPERAND_SRCB 0x21
2979 #define OPERAND_ACCU 0x31
2980 #define OPERAND_ZF 0x32
2981 #define OPERAND_CF 0x33
2982
2983 #define CS_GPR(n) (0x2600 + (n) * 8)
2984
2985 static void
2986 emit_load_alu_reg_u64(struct anv_batch *batch, uint32_t reg,
2987 struct anv_bo *bo, uint32_t offset)
2988 {
2989 anv_batch_emit(batch, GEN8_MI_LOAD_REGISTER_MEM,
2990 .RegisterAddress = reg,
2991 .MemoryAddress = { bo, offset });
2992 anv_batch_emit(batch, GEN8_MI_LOAD_REGISTER_MEM,
2993 .RegisterAddress = reg + 4,
2994 .MemoryAddress = { bo, offset + 4 });
2995 }
2996
2997 void anv_CmdCopyQueryPoolResults(
2998 VkCmdBuffer cmdBuffer,
2999 VkQueryPool queryPool,
3000 uint32_t startQuery,
3001 uint32_t queryCount,
3002 VkBuffer destBuffer,
3003 VkDeviceSize destOffset,
3004 VkDeviceSize destStride,
3005 VkQueryResultFlags flags)
3006 {
3007 struct anv_cmd_buffer *cmd_buffer = (struct anv_cmd_buffer *) cmdBuffer;
3008 struct anv_query_pool *pool = (struct anv_query_pool *) queryPool;
3009 struct anv_buffer *buffer = (struct anv_buffer *) destBuffer;
3010 uint32_t slot_offset, dst_offset;
3011
3012 if (flags & VK_QUERY_RESULT_WITH_AVAILABILITY_BIT) {
3013 /* Where is the availabilty info supposed to go? */
3014 anv_finishme("VK_QUERY_RESULT_WITH_AVAILABILITY_BIT");
3015 return;
3016 }
3017
3018 assert(pool->type == VK_QUERY_TYPE_OCCLUSION);
3019
3020 /* FIXME: If we're not waiting, should we just do this on the CPU? */
3021 if (flags & VK_QUERY_RESULT_WAIT_BIT)
3022 anv_batch_emit(&cmd_buffer->batch, GEN8_PIPE_CONTROL,
3023 .CommandStreamerStallEnable = true);
3024
3025 dst_offset = buffer->offset + destOffset;
3026 for (uint32_t i = 0; i < queryCount; i++) {
3027
3028 slot_offset = (startQuery + i) * sizeof(struct anv_query_pool_slot);
3029
3030 emit_load_alu_reg_u64(&cmd_buffer->batch, CS_GPR(0), &pool->bo, slot_offset);
3031 emit_load_alu_reg_u64(&cmd_buffer->batch, CS_GPR(1), &pool->bo, slot_offset + 8);
3032
3033 /* FIXME: We need to clamp the result for 32 bit. */
3034
3035 uint32_t *dw = anv_batch_emitn(&cmd_buffer->batch, 5, GEN8_MI_MATH);
3036 dw[1] = alu(OPCODE_LOAD, OPERAND_SRCA, OPERAND_R1);
3037 dw[2] = alu(OPCODE_LOAD, OPERAND_SRCB, OPERAND_R0);
3038 dw[3] = alu(OPCODE_SUB, 0, 0);
3039 dw[4] = alu(OPCODE_STORE, OPERAND_R2, OPERAND_ACCU);
3040
3041 anv_batch_emit(&cmd_buffer->batch, GEN8_MI_STORE_REGISTER_MEM,
3042 .RegisterAddress = CS_GPR(2),
3043 /* FIXME: This is only lower 32 bits */
3044 .MemoryAddress = { buffer->bo, dst_offset });
3045
3046 if (flags & VK_QUERY_RESULT_64_BIT)
3047 anv_batch_emit(&cmd_buffer->batch, GEN8_MI_STORE_REGISTER_MEM,
3048 .RegisterAddress = CS_GPR(2) + 4,
3049 /* FIXME: This is only lower 32 bits */
3050 .MemoryAddress = { buffer->bo, dst_offset + 4 });
3051
3052 dst_offset += destStride;
3053 }
3054 }
3055
3056 void anv_CmdInitAtomicCounters(
3057 VkCmdBuffer cmdBuffer,
3058 VkPipelineBindPoint pipelineBindPoint,
3059 uint32_t startCounter,
3060 uint32_t counterCount,
3061 const uint32_t* pData)
3062 {
3063 stub();
3064 }
3065
3066 void anv_CmdLoadAtomicCounters(
3067 VkCmdBuffer cmdBuffer,
3068 VkPipelineBindPoint pipelineBindPoint,
3069 uint32_t startCounter,
3070 uint32_t counterCount,
3071 VkBuffer srcBuffer,
3072 VkDeviceSize srcOffset)
3073 {
3074 stub();
3075 }
3076
3077 void anv_CmdSaveAtomicCounters(
3078 VkCmdBuffer cmdBuffer,
3079 VkPipelineBindPoint pipelineBindPoint,
3080 uint32_t startCounter,
3081 uint32_t counterCount,
3082 VkBuffer destBuffer,
3083 VkDeviceSize destOffset)
3084 {
3085 stub();
3086 }
3087
3088 static void
3089 anv_framebuffer_destroy(struct anv_device *device,
3090 struct anv_object *object,
3091 VkObjectType obj_type)
3092 {
3093 struct anv_framebuffer *fb = (struct anv_framebuffer *)object;
3094
3095 assert(obj_type == VK_OBJECT_TYPE_FRAMEBUFFER);
3096
3097 anv_DestroyObject((VkDevice) device,
3098 VK_OBJECT_TYPE_DYNAMIC_VP_STATE,
3099 fb->vp_state);
3100
3101 anv_device_free(device, fb);
3102 }
3103
3104 VkResult anv_CreateFramebuffer(
3105 VkDevice _device,
3106 const VkFramebufferCreateInfo* pCreateInfo,
3107 VkFramebuffer* pFramebuffer)
3108 {
3109 struct anv_device *device = (struct anv_device *) _device;
3110 struct anv_framebuffer *framebuffer;
3111
3112 static const struct anv_depth_stencil_view null_view =
3113 { .depth_format = D16_UNORM, .depth_stride = 0, .stencil_stride = 0 };
3114
3115 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
3116
3117 framebuffer = anv_device_alloc(device, sizeof(*framebuffer), 8,
3118 VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
3119 if (framebuffer == NULL)
3120 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3121
3122 framebuffer->base.destructor = anv_framebuffer_destroy;
3123
3124 framebuffer->color_attachment_count = pCreateInfo->colorAttachmentCount;
3125 for (uint32_t i = 0; i < pCreateInfo->colorAttachmentCount; i++) {
3126 framebuffer->color_attachments[i] =
3127 (struct anv_surface_view *) pCreateInfo->pColorAttachments[i].view;
3128 }
3129
3130 if (pCreateInfo->pDepthStencilAttachment) {
3131 framebuffer->depth_stencil =
3132 (struct anv_depth_stencil_view *) pCreateInfo->pDepthStencilAttachment->view;
3133 } else {
3134 framebuffer->depth_stencil = &null_view;
3135 }
3136
3137 framebuffer->sample_count = pCreateInfo->sampleCount;
3138 framebuffer->width = pCreateInfo->width;
3139 framebuffer->height = pCreateInfo->height;
3140 framebuffer->layers = pCreateInfo->layers;
3141
3142 vkCreateDynamicViewportState((VkDevice) device,
3143 &(VkDynamicVpStateCreateInfo) {
3144 .sType = VK_STRUCTURE_TYPE_DYNAMIC_VP_STATE_CREATE_INFO,
3145 .viewportAndScissorCount = 1,
3146 .pViewports = (VkViewport[]) {
3147 {
3148 .originX = 0,
3149 .originY = 0,
3150 .width = pCreateInfo->width,
3151 .height = pCreateInfo->height,
3152 .minDepth = 0,
3153 .maxDepth = 1
3154 },
3155 },
3156 .pScissors = (VkRect[]) {
3157 { { 0, 0 },
3158 { pCreateInfo->width, pCreateInfo->height } },
3159 }
3160 },
3161 &framebuffer->vp_state);
3162
3163 *pFramebuffer = (VkFramebuffer) framebuffer;
3164
3165 return VK_SUCCESS;
3166 }
3167
3168 VkResult anv_CreateRenderPass(
3169 VkDevice _device,
3170 const VkRenderPassCreateInfo* pCreateInfo,
3171 VkRenderPass* pRenderPass)
3172 {
3173 struct anv_device *device = (struct anv_device *) _device;
3174 struct anv_render_pass *pass;
3175 size_t size;
3176
3177 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO);
3178
3179 size = sizeof(*pass) +
3180 pCreateInfo->layers * sizeof(struct anv_render_pass_layer);
3181 pass = anv_device_alloc(device, size, 8,
3182 VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
3183 if (pass == NULL)
3184 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
3185
3186 pass->render_area = pCreateInfo->renderArea;
3187
3188 pass->num_layers = pCreateInfo->layers;
3189
3190 pass->num_clear_layers = 0;
3191 for (uint32_t i = 0; i < pCreateInfo->layers; i++) {
3192 pass->layers[i].color_load_op = pCreateInfo->pColorLoadOps[i];
3193 pass->layers[i].clear_color = pCreateInfo->pColorLoadClearValues[i];
3194 if (pass->layers[i].color_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR)
3195 pass->num_clear_layers++;
3196 }
3197
3198 *pRenderPass = (VkRenderPass) pass;
3199
3200 return VK_SUCCESS;
3201 }
3202
3203 void
3204 anv_cmd_buffer_fill_render_targets(struct anv_cmd_buffer *cmd_buffer)
3205 {
3206 struct anv_framebuffer *framebuffer = cmd_buffer->framebuffer;
3207 struct anv_bindings *bindings = cmd_buffer->bindings;
3208
3209 for (uint32_t i = 0; i < framebuffer->color_attachment_count; i++) {
3210 const struct anv_surface_view *view = framebuffer->color_attachments[i];
3211
3212 struct anv_state state =
3213 anv_cmd_buffer_alloc_surface_state(cmd_buffer, 64, 64);
3214 memcpy(state.map, view->surface_state.map, 64);
3215
3216 /* The address goes in dwords 8 and 9 of the SURFACE_STATE */
3217 *(uint64_t *)(state.map + 8 * 4) =
3218 anv_reloc_list_add(&cmd_buffer->surface_relocs,
3219 state.offset + 8 * 4,
3220 view->bo, view->offset);
3221
3222 bindings->descriptors[VK_SHADER_STAGE_FRAGMENT].surfaces[i] = state.offset;
3223 }
3224 cmd_buffer->dirty |= ANV_CMD_BUFFER_DESCRIPTOR_SET_DIRTY;
3225 }
3226
3227 static void
3228 anv_cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
3229 struct anv_render_pass *pass)
3230 {
3231 const struct anv_depth_stencil_view *view =
3232 cmd_buffer->framebuffer->depth_stencil;
3233
3234 /* FIXME: Implement the PMA stall W/A */
3235
3236 anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_DEPTH_BUFFER,
3237 .SurfaceType = SURFTYPE_2D,
3238 .DepthWriteEnable = view->depth_stride > 0,
3239 .StencilWriteEnable = view->stencil_stride > 0,
3240 .HierarchicalDepthBufferEnable = false,
3241 .SurfaceFormat = view->depth_format,
3242 .SurfacePitch = view->depth_stride > 0 ? view->depth_stride - 1 : 0,
3243 .SurfaceBaseAddress = { view->bo, view->depth_offset },
3244 .Height = pass->render_area.extent.height - 1,
3245 .Width = pass->render_area.extent.width - 1,
3246 .LOD = 0,
3247 .Depth = 1 - 1,
3248 .MinimumArrayElement = 0,
3249 .DepthBufferObjectControlState = GEN8_MOCS,
3250 .RenderTargetViewExtent = 1 - 1,
3251 .SurfaceQPitch = 0);
3252
3253 /* Disable hierarchial depth buffers. */
3254 anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_HIER_DEPTH_BUFFER);
3255
3256 anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_STENCIL_BUFFER,
3257 .StencilBufferEnable = view->stencil_stride > 0,
3258 .StencilBufferObjectControlState = GEN8_MOCS,
3259 .SurfacePitch = view->stencil_stride > 0 ? view->stencil_stride - 1 : 0,
3260 .SurfaceBaseAddress = { view->bo, view->stencil_offset },
3261 .SurfaceQPitch = 0);
3262
3263 /* Clear the clear params. */
3264 anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_CLEAR_PARAMS);
3265 }
3266
3267 void anv_CmdBeginRenderPass(
3268 VkCmdBuffer cmdBuffer,
3269 const VkRenderPassBegin* pRenderPassBegin)
3270 {
3271 struct anv_cmd_buffer *cmd_buffer = (struct anv_cmd_buffer *) cmdBuffer;
3272 struct anv_render_pass *pass = (struct anv_render_pass *) pRenderPassBegin->renderPass;
3273 struct anv_framebuffer *framebuffer =
3274 (struct anv_framebuffer *) pRenderPassBegin->framebuffer;
3275
3276 cmd_buffer->framebuffer = framebuffer;
3277
3278 anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_DRAWING_RECTANGLE,
3279 .ClippedDrawingRectangleYMin = pass->render_area.offset.y,
3280 .ClippedDrawingRectangleXMin = pass->render_area.offset.x,
3281 .ClippedDrawingRectangleYMax =
3282 pass->render_area.offset.y + pass->render_area.extent.height - 1,
3283 .ClippedDrawingRectangleXMax =
3284 pass->render_area.offset.x + pass->render_area.extent.width - 1,
3285 .DrawingRectangleOriginY = 0,
3286 .DrawingRectangleOriginX = 0);
3287
3288 anv_cmd_buffer_fill_render_targets(cmd_buffer);
3289
3290 anv_cmd_buffer_emit_depth_stencil(cmd_buffer, pass);
3291
3292 anv_cmd_buffer_clear(cmd_buffer, pass);
3293 }
3294
3295 void anv_CmdEndRenderPass(
3296 VkCmdBuffer cmdBuffer,
3297 VkRenderPass renderPass)
3298 {
3299 /* Emit a flushing pipe control at the end of a pass. This is kind of a
3300 * hack but it ensures that render targets always actually get written.
3301 * Eventually, we should do flushing based on image format transitions
3302 * or something of that nature.
3303 */
3304 struct anv_cmd_buffer *cmd_buffer = (struct anv_cmd_buffer *)cmdBuffer;
3305 anv_batch_emit(&cmd_buffer->batch, GEN8_PIPE_CONTROL,
3306 .PostSyncOperation = NoWrite,
3307 .RenderTargetCacheFlushEnable = true,
3308 .InstructionCacheInvalidateEnable = true,
3309 .DepthCacheFlushEnable = true,
3310 .VFCacheInvalidationEnable = true,
3311 .TextureCacheInvalidationEnable = true,
3312 .CommandStreamerStallEnable = true);
3313 }
3314
3315 void vkCmdDbgMarkerBegin(
3316 VkCmdBuffer cmdBuffer,
3317 const char* pMarker)
3318 __attribute__ ((visibility ("default")));
3319
3320 void vkCmdDbgMarkerEnd(
3321 VkCmdBuffer cmdBuffer)
3322 __attribute__ ((visibility ("default")));
3323
3324 VkResult vkDbgSetObjectTag(
3325 VkDevice device,
3326 VkObject object,
3327 size_t tagSize,
3328 const void* pTag)
3329 __attribute__ ((visibility ("default")));
3330
3331
3332 void vkCmdDbgMarkerBegin(
3333 VkCmdBuffer cmdBuffer,
3334 const char* pMarker)
3335 {
3336 }
3337
3338 void vkCmdDbgMarkerEnd(
3339 VkCmdBuffer cmdBuffer)
3340 {
3341 }
3342
3343 VkResult vkDbgSetObjectTag(
3344 VkDevice device,
3345 VkObject object,
3346 size_t tagSize,
3347 const void* pTag)
3348 {
3349 return VK_SUCCESS;
3350 }