vk: Consolidate image, buffer and color attachment views
[mesa.git] / src / vulkan / device.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "private.h"
31
32 static int
33 anv_env_get_int(const char *name)
34 {
35 const char *val = getenv(name);
36
37 if (!val)
38 return 0;
39
40 return strtol(val, NULL, 0);
41 }
42
43 static VkResult
44 fill_physical_device(struct anv_physical_device *device,
45 struct anv_instance *instance,
46 const char *path)
47 {
48 int fd;
49
50 fd = open("/dev/dri/renderD128", O_RDWR | O_CLOEXEC);
51 if (fd < 0)
52 return vk_error(VK_ERROR_UNAVAILABLE);
53
54 device->instance = instance;
55 device->path = path;
56
57 device->chipset_id = anv_env_get_int("INTEL_DEVID_OVERRIDE");
58 device->no_hw = false;
59 if (device->chipset_id) {
60 /* INTEL_DEVID_OVERRIDE implies INTEL_NO_HW. */
61 device->no_hw = true;
62 } else {
63 device->chipset_id = anv_gem_get_param(fd, I915_PARAM_CHIPSET_ID);
64 }
65 if (!device->chipset_id)
66 goto fail;
67
68 device->name = brw_get_device_name(device->chipset_id);
69 device->info = brw_get_device_info(device->chipset_id, -1);
70 if (!device->info)
71 goto fail;
72
73 if (!anv_gem_get_param(fd, I915_PARAM_HAS_WAIT_TIMEOUT))
74 goto fail;
75
76 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXECBUF2))
77 goto fail;
78
79 if (!anv_gem_get_param(fd, I915_PARAM_HAS_LLC))
80 goto fail;
81
82 if (!anv_gem_get_param(fd, I915_PARAM_HAS_EXEC_CONSTANTS))
83 goto fail;
84
85 close(fd);
86
87 return VK_SUCCESS;
88
89 fail:
90 close(fd);
91
92 return vk_error(VK_ERROR_UNAVAILABLE);
93 }
94
95 static void *default_alloc(
96 void* pUserData,
97 size_t size,
98 size_t alignment,
99 VkSystemAllocType allocType)
100 {
101 return malloc(size);
102 }
103
104 static void default_free(
105 void* pUserData,
106 void* pMem)
107 {
108 free(pMem);
109 }
110
111 static const VkAllocCallbacks default_alloc_callbacks = {
112 .pUserData = NULL,
113 .pfnAlloc = default_alloc,
114 .pfnFree = default_free
115 };
116
117 VkResult VKAPI vkCreateInstance(
118 const VkInstanceCreateInfo* pCreateInfo,
119 VkInstance* pInstance)
120 {
121 struct anv_instance *instance;
122 const VkAllocCallbacks *alloc_callbacks = &default_alloc_callbacks;
123 void *user_data = NULL;
124 VkResult result;
125
126 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO);
127
128 if (pCreateInfo->pAllocCb) {
129 alloc_callbacks = pCreateInfo->pAllocCb;
130 user_data = pCreateInfo->pAllocCb->pUserData;
131 }
132 instance = alloc_callbacks->pfnAlloc(user_data, sizeof(*instance), 8,
133 VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
134 if (!instance)
135 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
136
137 instance->pAllocUserData = alloc_callbacks->pUserData;
138 instance->pfnAlloc = alloc_callbacks->pfnAlloc;
139 instance->pfnFree = alloc_callbacks->pfnFree;
140 instance->apiVersion = pCreateInfo->pAppInfo->apiVersion;
141
142 instance->physicalDeviceCount = 0;
143 result = fill_physical_device(&instance->physicalDevice,
144 instance, "/dev/dri/renderD128");
145 if (result == VK_SUCCESS)
146 instance->physicalDeviceCount++;
147
148 *pInstance = (VkInstance) instance;
149
150 return VK_SUCCESS;
151 }
152
153 VkResult VKAPI vkDestroyInstance(
154 VkInstance _instance)
155 {
156 struct anv_instance *instance = (struct anv_instance *) _instance;
157
158 instance->pfnFree(instance->pAllocUserData, instance);
159
160 return VK_SUCCESS;
161 }
162
163 VkResult VKAPI vkEnumeratePhysicalDevices(
164 VkInstance _instance,
165 uint32_t* pPhysicalDeviceCount,
166 VkPhysicalDevice* pPhysicalDevices)
167 {
168 struct anv_instance *instance = (struct anv_instance *) _instance;
169
170 if (*pPhysicalDeviceCount >= 1)
171 pPhysicalDevices[0] = (VkPhysicalDevice) &instance->physicalDevice;
172 *pPhysicalDeviceCount = instance->physicalDeviceCount;
173
174 return VK_SUCCESS;
175 }
176
177 VkResult VKAPI vkGetPhysicalDeviceInfo(
178 VkPhysicalDevice physicalDevice,
179 VkPhysicalDeviceInfoType infoType,
180 size_t* pDataSize,
181 void* pData)
182 {
183 struct anv_physical_device *device = (struct anv_physical_device *) physicalDevice;
184 VkPhysicalDeviceProperties *properties;
185 VkPhysicalDevicePerformance *performance;
186 VkPhysicalDeviceQueueProperties *queue_properties;
187 VkPhysicalDeviceMemoryProperties *memory_properties;
188 uint64_t ns_per_tick = 80;
189
190 switch (infoType) {
191 case VK_PHYSICAL_DEVICE_INFO_TYPE_PROPERTIES:
192 properties = pData;
193 assert(*pDataSize >= sizeof(*properties));
194 *pDataSize = sizeof(*properties); /* Assuming we have to return the size of our struct. */
195
196 properties->apiVersion = 1;
197 properties->driverVersion = 1;
198 properties->vendorId = 0x8086;
199 properties->deviceId = device->chipset_id;
200 properties->deviceType = VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU;
201 strcpy(properties->deviceName, device->name);
202 properties->maxInlineMemoryUpdateSize = 0;
203 properties->maxBoundDescriptorSets = 0;
204 properties->maxThreadGroupSize = 0;
205 properties->timestampFrequency = 1000 * 1000 * 1000 / ns_per_tick;
206 properties->multiColorAttachmentClears = 0;
207 properties->maxDescriptorSets = 2;
208 properties->maxViewports = 16;
209 properties->maxColorAttachments = 8;
210 return VK_SUCCESS;
211
212 case VK_PHYSICAL_DEVICE_INFO_TYPE_PERFORMANCE:
213 performance = pData;
214 assert(*pDataSize >= sizeof(*performance));
215 *pDataSize = sizeof(*performance); /* Assuming we have to return the size of our struct. */
216
217 performance->maxDeviceClock = 1.0;
218 performance->aluPerClock = 1.0;
219 performance->texPerClock = 1.0;
220 performance->primsPerClock = 1.0;
221 performance->pixelsPerClock = 1.0;
222 return VK_SUCCESS;
223
224 case VK_PHYSICAL_DEVICE_INFO_TYPE_QUEUE_PROPERTIES:
225 queue_properties = pData;
226 assert(*pDataSize >= sizeof(*queue_properties));
227 *pDataSize = sizeof(*queue_properties);
228
229 queue_properties->queueFlags = 0;
230 queue_properties->queueCount = 1;
231 queue_properties->maxAtomicCounters = 0;
232 queue_properties->supportsTimestamps = 0;
233 queue_properties->maxMemReferences = 0;
234 return VK_SUCCESS;
235
236 case VK_PHYSICAL_DEVICE_INFO_TYPE_MEMORY_PROPERTIES:
237 memory_properties = pData;
238 assert(*pDataSize >= sizeof(*memory_properties));
239 *pDataSize = sizeof(*memory_properties);
240
241 memory_properties->supportsMigration = false;
242 memory_properties->supportsPinning = false;
243 return VK_SUCCESS;
244
245 default:
246 return VK_UNSUPPORTED;
247 }
248
249 }
250
251 void * vkGetProcAddr(
252 VkPhysicalDevice physicalDevice,
253 const char* pName)
254 {
255 return NULL;
256 }
257
258 static void
259 parse_debug_flags(struct anv_device *device)
260 {
261 const char *debug, *p, *end;
262
263 debug = getenv("INTEL_DEBUG");
264 device->dump_aub = false;
265 if (debug) {
266 for (p = debug; *p; p = end + 1) {
267 end = strchrnul(p, ',');
268 if (end - p == 3 && memcmp(p, "aub", 3) == 0)
269 device->dump_aub = true;
270 if (end - p == 5 && memcmp(p, "no_hw", 5) == 0)
271 device->no_hw = true;
272 if (*end == '\0')
273 break;
274 }
275 }
276 }
277
278 VkResult VKAPI vkCreateDevice(
279 VkPhysicalDevice _physicalDevice,
280 const VkDeviceCreateInfo* pCreateInfo,
281 VkDevice* pDevice)
282 {
283 struct anv_physical_device *physicalDevice =
284 (struct anv_physical_device *) _physicalDevice;
285 struct anv_instance *instance = physicalDevice->instance;
286 struct anv_device *device;
287
288 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO);
289
290 device = instance->pfnAlloc(instance->pAllocUserData,
291 sizeof(*device), 8,
292 VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
293 if (!device)
294 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
295
296 device->no_hw = physicalDevice->no_hw;
297 parse_debug_flags(device);
298
299 device->instance = physicalDevice->instance;
300 device->fd = open("/dev/dri/renderD128", O_RDWR | O_CLOEXEC);
301 if (device->fd == -1)
302 goto fail_device;
303
304 device->context_id = anv_gem_create_context(device);
305 if (device->context_id == -1)
306 goto fail_fd;
307
308 anv_block_pool_init(&device->dyn_state_block_pool, device, 2048);
309
310 anv_state_pool_init(&device->dyn_state_pool,
311 &device->dyn_state_block_pool);
312
313 anv_block_pool_init(&device->instruction_block_pool, device, 2048);
314 anv_block_pool_init(&device->surface_state_block_pool, device, 2048);
315
316 anv_state_pool_init(&device->surface_state_pool,
317 &device->surface_state_block_pool);
318
319 device->compiler = anv_compiler_create(device->fd);
320 device->aub_writer = NULL;
321
322 device->info = *physicalDevice->info;
323
324 pthread_mutex_init(&device->mutex, NULL);
325
326 anv_device_init_meta(device);
327
328 *pDevice = (VkDevice) device;
329
330 return VK_SUCCESS;
331
332 fail_fd:
333 close(device->fd);
334 fail_device:
335 anv_device_free(device, device);
336
337 return vk_error(VK_ERROR_UNAVAILABLE);
338 }
339
340 VkResult VKAPI vkDestroyDevice(
341 VkDevice _device)
342 {
343 struct anv_device *device = (struct anv_device *) _device;
344
345 anv_compiler_destroy(device->compiler);
346
347 anv_block_pool_finish(&device->dyn_state_block_pool);
348 anv_block_pool_finish(&device->instruction_block_pool);
349 anv_block_pool_finish(&device->surface_state_block_pool);
350
351 close(device->fd);
352
353 if (device->aub_writer)
354 anv_aub_writer_destroy(device->aub_writer);
355
356 anv_device_free(device, device);
357
358 return VK_SUCCESS;
359 }
360
361 VkResult VKAPI vkGetGlobalExtensionInfo(
362 VkExtensionInfoType infoType,
363 uint32_t extensionIndex,
364 size_t* pDataSize,
365 void* pData)
366 {
367 uint32_t *count;
368
369 switch (infoType) {
370 case VK_EXTENSION_INFO_TYPE_COUNT:
371 count = pData;
372 assert(*pDataSize == 4);
373 *count = 0;
374 return VK_SUCCESS;
375
376 case VK_EXTENSION_INFO_TYPE_PROPERTIES:
377 return vk_error(VK_ERROR_INVALID_EXTENSION);
378
379 default:
380 return VK_UNSUPPORTED;
381 }
382 }
383
384 VkResult VKAPI vkGetPhysicalDeviceExtensionInfo(
385 VkPhysicalDevice physicalDevice,
386 VkExtensionInfoType infoType,
387 uint32_t extensionIndex,
388 size_t* pDataSize,
389 void* pData)
390 {
391 uint32_t *count;
392
393 switch (infoType) {
394 case VK_EXTENSION_INFO_TYPE_COUNT:
395 count = pData;
396 assert(*pDataSize == 4);
397 *count = 0;
398 return VK_SUCCESS;
399
400 case VK_EXTENSION_INFO_TYPE_PROPERTIES:
401 return vk_error(VK_ERROR_INVALID_EXTENSION);
402
403 default:
404 return VK_UNSUPPORTED;
405 }
406 }
407
408 VkResult VKAPI vkEnumerateLayers(
409 VkPhysicalDevice physicalDevice,
410 size_t maxStringSize,
411 size_t* pLayerCount,
412 char* const* pOutLayers,
413 void* pReserved)
414 {
415 *pLayerCount = 0;
416
417 return VK_SUCCESS;
418 }
419
420 VkResult VKAPI vkGetDeviceQueue(
421 VkDevice _device,
422 uint32_t queueNodeIndex,
423 uint32_t queueIndex,
424 VkQueue* pQueue)
425 {
426 struct anv_device *device = (struct anv_device *) _device;
427 struct anv_queue *queue;
428
429 /* FIXME: Should allocate these at device create time. */
430
431 queue = anv_device_alloc(device, sizeof(*queue), 8,
432 VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
433 if (queue == NULL)
434 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
435
436 queue->device = device;
437 queue->pool = &device->surface_state_pool;
438
439 queue->completed_serial = anv_state_pool_alloc(queue->pool, 4, 4);
440 *(uint32_t *)queue->completed_serial.map = 0;
441 queue->next_serial = 1;
442
443 *pQueue = (VkQueue) queue;
444
445 return VK_SUCCESS;
446 }
447
448 static const uint32_t BATCH_SIZE = 8192;
449
450 VkResult
451 anv_batch_init(struct anv_batch *batch, struct anv_device *device)
452 {
453 VkResult result;
454
455 result = anv_bo_init_new(&batch->bo, device, BATCH_SIZE);
456 if (result != VK_SUCCESS)
457 return result;
458
459 batch->bo.map =
460 anv_gem_mmap(device, batch->bo.gem_handle, 0, BATCH_SIZE);
461 if (batch->bo.map == NULL) {
462 anv_gem_close(device, batch->bo.gem_handle);
463 return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
464 }
465
466 batch->cmd_relocs.num_relocs = 0;
467 batch->surf_relocs.num_relocs = 0;
468 batch->next = batch->bo.map;
469
470 return VK_SUCCESS;
471 }
472
473 void
474 anv_batch_finish(struct anv_batch *batch, struct anv_device *device)
475 {
476 anv_gem_munmap(batch->bo.map, BATCH_SIZE);
477 anv_gem_close(device, batch->bo.gem_handle);
478 }
479
480 void
481 anv_batch_reset(struct anv_batch *batch)
482 {
483 batch->next = batch->bo.map;
484 batch->cmd_relocs.num_relocs = 0;
485 batch->surf_relocs.num_relocs = 0;
486 }
487
488 void *
489 anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords)
490 {
491 void *p = batch->next;
492
493 batch->next += num_dwords * 4;
494
495 return p;
496 }
497
498 static void
499 anv_reloc_list_append(struct anv_reloc_list *list,
500 struct anv_reloc_list *other, uint32_t offset)
501 {
502 uint32_t i, count;
503
504 count = list->num_relocs;
505 memcpy(&list->relocs[count], &other->relocs[0],
506 other->num_relocs * sizeof(other->relocs[0]));
507 memcpy(&list->reloc_bos[count], &other->reloc_bos[0],
508 other->num_relocs * sizeof(other->reloc_bos[0]));
509 for (i = 0; i < other->num_relocs; i++)
510 list->relocs[i + count].offset += offset;
511
512 count += other->num_relocs;
513 }
514
515 static uint64_t
516 anv_reloc_list_add(struct anv_reloc_list *list,
517 uint32_t offset,
518 struct anv_bo *target_bo, uint32_t delta)
519 {
520 struct drm_i915_gem_relocation_entry *entry;
521 int index;
522
523 assert(list->num_relocs < ANV_BATCH_MAX_RELOCS);
524
525 /* XXX: Can we use I915_EXEC_HANDLE_LUT? */
526 index = list->num_relocs++;
527 list->reloc_bos[index] = target_bo;
528 entry = &list->relocs[index];
529 entry->target_handle = target_bo->gem_handle;
530 entry->delta = delta;
531 entry->offset = offset;
532 entry->presumed_offset = target_bo->offset;
533 entry->read_domains = 0;
534 entry->write_domain = 0;
535
536 return target_bo->offset + delta;
537 }
538
539 void
540 anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other)
541 {
542 uint32_t size, offset;
543
544 size = other->next - other->bo.map;
545 memcpy(batch->next, other->bo.map, size);
546
547 offset = batch->next - batch->bo.map;
548 anv_reloc_list_append(&batch->cmd_relocs, &other->cmd_relocs, offset);
549 anv_reloc_list_append(&batch->surf_relocs, &other->surf_relocs, offset);
550
551 batch->next += size;
552 }
553
554 uint64_t
555 anv_batch_emit_reloc(struct anv_batch *batch,
556 void *location, struct anv_bo *bo, uint32_t delta)
557 {
558 return anv_reloc_list_add(&batch->cmd_relocs,
559 location - batch->bo.map, bo, delta);
560 }
561
562 VkResult VKAPI vkQueueSubmit(
563 VkQueue _queue,
564 uint32_t cmdBufferCount,
565 const VkCmdBuffer* pCmdBuffers,
566 VkFence fence)
567 {
568 struct anv_queue *queue = (struct anv_queue *) _queue;
569 struct anv_device *device = queue->device;
570 int ret;
571
572 for (uint32_t i = 0; i < cmdBufferCount; i++) {
573 struct anv_cmd_buffer *cmd_buffer =
574 (struct anv_cmd_buffer *) pCmdBuffers[i];
575
576 if (device->dump_aub)
577 anv_cmd_buffer_dump(cmd_buffer);
578
579 if (!device->no_hw) {
580 ret = anv_gem_execbuffer(device, &cmd_buffer->execbuf);
581 if (ret != 0)
582 return vk_error(VK_ERROR_UNKNOWN);
583
584 for (uint32_t i = 0; i < cmd_buffer->bo_count; i++)
585 cmd_buffer->exec2_bos[i]->offset = cmd_buffer->exec2_objects[i].offset;
586 } else {
587 *(uint32_t *)queue->completed_serial.map = cmd_buffer->serial;
588 }
589 }
590
591 return VK_SUCCESS;
592 }
593
594 VkResult VKAPI vkQueueAddMemReferences(
595 VkQueue queue,
596 uint32_t count,
597 const VkDeviceMemory* pMems)
598 {
599 return VK_SUCCESS;
600 }
601
602 VkResult vkQueueRemoveMemReferences(
603 VkQueue queue,
604 uint32_t count,
605 const VkDeviceMemory* pMems)
606 {
607 return VK_SUCCESS;
608 }
609
610 VkResult VKAPI vkQueueWaitIdle(
611 VkQueue _queue)
612 {
613 struct anv_queue *queue = (struct anv_queue *) _queue;
614
615 return vkDeviceWaitIdle((VkDevice) queue->device);
616 }
617
618 VkResult VKAPI vkDeviceWaitIdle(
619 VkDevice _device)
620 {
621 struct anv_device *device = (struct anv_device *) _device;
622 struct anv_state state;
623 struct anv_batch batch;
624 struct drm_i915_gem_execbuffer2 execbuf;
625 struct drm_i915_gem_exec_object2 exec2_objects[1];
626 struct anv_bo *bo = NULL;
627 VkResult result;
628 int64_t timeout;
629 int ret;
630
631 state = anv_state_pool_alloc(&device->dyn_state_pool, 32, 32);
632 bo = &device->dyn_state_pool.block_pool->bo;
633 batch.next = state.map;
634 anv_batch_emit(&batch, GEN8_MI_BATCH_BUFFER_END);
635 anv_batch_emit(&batch, GEN8_MI_NOOP);
636
637 exec2_objects[0].handle = bo->gem_handle;
638 exec2_objects[0].relocation_count = 0;
639 exec2_objects[0].relocs_ptr = 0;
640 exec2_objects[0].alignment = 0;
641 exec2_objects[0].offset = bo->offset;
642 exec2_objects[0].flags = 0;
643 exec2_objects[0].rsvd1 = 0;
644 exec2_objects[0].rsvd2 = 0;
645
646 execbuf.buffers_ptr = (uintptr_t) exec2_objects;
647 execbuf.buffer_count = 1;
648 execbuf.batch_start_offset = state.offset;
649 execbuf.batch_len = batch.next - state.map;
650 execbuf.cliprects_ptr = 0;
651 execbuf.num_cliprects = 0;
652 execbuf.DR1 = 0;
653 execbuf.DR4 = 0;
654
655 execbuf.flags =
656 I915_EXEC_HANDLE_LUT | I915_EXEC_NO_RELOC | I915_EXEC_RENDER;
657 execbuf.rsvd1 = device->context_id;
658 execbuf.rsvd2 = 0;
659
660 if (!device->no_hw) {
661 ret = anv_gem_execbuffer(device, &execbuf);
662 if (ret != 0) {
663 result = vk_error(VK_ERROR_UNKNOWN);
664 goto fail;
665 }
666
667 timeout = INT64_MAX;
668 ret = anv_gem_wait(device, bo->gem_handle, &timeout);
669 if (ret != 0) {
670 result = vk_error(VK_ERROR_UNKNOWN);
671 goto fail;
672 }
673 }
674
675 anv_state_pool_free(&device->dyn_state_pool, state);
676
677 return VK_SUCCESS;
678
679 fail:
680 anv_state_pool_free(&device->dyn_state_pool, state);
681
682 return result;
683 }
684
685 void *
686 anv_device_alloc(struct anv_device * device,
687 size_t size,
688 size_t alignment,
689 VkSystemAllocType allocType)
690 {
691 return device->instance->pfnAlloc(device->instance->pAllocUserData,
692 size,
693 alignment,
694 allocType);
695 }
696
697 void
698 anv_device_free(struct anv_device * device,
699 void * mem)
700 {
701 return device->instance->pfnFree(device->instance->pAllocUserData,
702 mem);
703 }
704
705 VkResult
706 anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size)
707 {
708 bo->gem_handle = anv_gem_create(device, size);
709 if (!bo->gem_handle)
710 return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
711
712 bo->map = NULL;
713 bo->index = 0;
714 bo->offset = 0;
715 bo->size = size;
716
717 return VK_SUCCESS;
718 }
719
720 VkResult VKAPI vkAllocMemory(
721 VkDevice _device,
722 const VkMemoryAllocInfo* pAllocInfo,
723 VkDeviceMemory* pMem)
724 {
725 struct anv_device *device = (struct anv_device *) _device;
726 struct anv_device_memory *mem;
727 VkResult result;
728
729 assert(pAllocInfo->sType == VK_STRUCTURE_TYPE_MEMORY_ALLOC_INFO);
730
731 mem = anv_device_alloc(device, sizeof(*mem), 8,
732 VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
733 if (mem == NULL)
734 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
735
736 result = anv_bo_init_new(&mem->bo, device, pAllocInfo->allocationSize);
737 if (result != VK_SUCCESS)
738 goto fail;
739
740 *pMem = (VkDeviceMemory) mem;
741
742 return VK_SUCCESS;
743
744 fail:
745 anv_device_free(device, mem);
746
747 return result;
748 }
749
750 VkResult VKAPI vkFreeMemory(
751 VkDevice _device,
752 VkDeviceMemory _mem)
753 {
754 struct anv_device *device = (struct anv_device *) _device;
755 struct anv_device_memory *mem = (struct anv_device_memory *) _mem;
756
757 if (mem->bo.map)
758 anv_gem_munmap(mem->bo.map, mem->bo.size);
759
760 if (mem->bo.gem_handle != 0)
761 anv_gem_close(device, mem->bo.gem_handle);
762
763 anv_device_free(device, mem);
764
765 return VK_SUCCESS;
766 }
767
768 VkResult VKAPI vkSetMemoryPriority(
769 VkDevice device,
770 VkDeviceMemory mem,
771 VkMemoryPriority priority)
772 {
773 return VK_SUCCESS;
774 }
775
776 VkResult VKAPI vkMapMemory(
777 VkDevice _device,
778 VkDeviceMemory _mem,
779 VkDeviceSize offset,
780 VkDeviceSize size,
781 VkMemoryMapFlags flags,
782 void** ppData)
783 {
784 struct anv_device *device = (struct anv_device *) _device;
785 struct anv_device_memory *mem = (struct anv_device_memory *) _mem;
786
787 /* FIXME: Is this supposed to be thread safe? Since vkUnmapMemory() only
788 * takes a VkDeviceMemory pointer, it seems like only one map of the memory
789 * at a time is valid. We could just mmap up front and return an offset
790 * pointer here, but that may exhaust virtual memory on 32 bit
791 * userspace. */
792
793 mem->map = anv_gem_mmap(device, mem->bo.gem_handle, offset, size);
794 mem->map_size = size;
795
796 *ppData = mem->map;
797
798 return VK_SUCCESS;
799 }
800
801 VkResult VKAPI vkUnmapMemory(
802 VkDevice _device,
803 VkDeviceMemory _mem)
804 {
805 struct anv_device_memory *mem = (struct anv_device_memory *) _mem;
806
807 anv_gem_munmap(mem->map, mem->map_size);
808
809 return VK_SUCCESS;
810 }
811
812 VkResult VKAPI vkFlushMappedMemory(
813 VkDevice device,
814 VkDeviceMemory mem,
815 VkDeviceSize offset,
816 VkDeviceSize size)
817 {
818 /* clflush here for !llc platforms */
819
820 return VK_SUCCESS;
821 }
822
823 VkResult VKAPI vkPinSystemMemory(
824 VkDevice device,
825 const void* pSysMem,
826 size_t memSize,
827 VkDeviceMemory* pMem)
828 {
829 return VK_SUCCESS;
830 }
831
832 VkResult VKAPI vkGetMultiDeviceCompatibility(
833 VkPhysicalDevice physicalDevice0,
834 VkPhysicalDevice physicalDevice1,
835 VkPhysicalDeviceCompatibilityInfo* pInfo)
836 {
837 return VK_UNSUPPORTED;
838 }
839
840 VkResult VKAPI vkOpenSharedMemory(
841 VkDevice device,
842 const VkMemoryOpenInfo* pOpenInfo,
843 VkDeviceMemory* pMem)
844 {
845 return VK_UNSUPPORTED;
846 }
847
848 VkResult VKAPI vkOpenSharedSemaphore(
849 VkDevice device,
850 const VkSemaphoreOpenInfo* pOpenInfo,
851 VkSemaphore* pSemaphore)
852 {
853 return VK_UNSUPPORTED;
854 }
855
856 VkResult VKAPI vkOpenPeerMemory(
857 VkDevice device,
858 const VkPeerMemoryOpenInfo* pOpenInfo,
859 VkDeviceMemory* pMem)
860 {
861 return VK_UNSUPPORTED;
862 }
863
864 VkResult VKAPI vkOpenPeerImage(
865 VkDevice device,
866 const VkPeerImageOpenInfo* pOpenInfo,
867 VkImage* pImage,
868 VkDeviceMemory* pMem)
869 {
870 return VK_UNSUPPORTED;
871 }
872
873 static VkResult
874 anv_instance_destructor(struct anv_device * device,
875 VkObject object)
876 {
877 return vkDestroyInstance(object);
878 }
879
880 static VkResult
881 anv_noop_destructor(struct anv_device * device,
882 VkObject object)
883 {
884 return VK_SUCCESS;
885 }
886
887 static VkResult
888 anv_device_destructor(struct anv_device * device,
889 VkObject object)
890 {
891 return vkDestroyDevice(object);
892 }
893
894 static VkResult
895 anv_cmd_buffer_destructor(struct anv_device * device,
896 VkObject object)
897 {
898 struct anv_cmd_buffer *cmd_buffer = (struct anv_cmd_buffer *) object;
899
900 anv_state_stream_finish(&cmd_buffer->surface_state_stream);
901 anv_state_stream_finish(&cmd_buffer->dynamic_state_stream);
902 anv_batch_finish(&cmd_buffer->batch, device);
903 anv_device_free(device, cmd_buffer->exec2_objects);
904 anv_device_free(device, cmd_buffer->exec2_bos);
905 anv_device_free(device, cmd_buffer);
906
907 return VK_SUCCESS;
908 }
909
910 static VkResult
911 anv_pipeline_destructor(struct anv_device * device,
912 VkObject object)
913 {
914 struct anv_pipeline *pipeline = (struct anv_pipeline *) object;
915
916 return anv_pipeline_destroy(pipeline);
917 }
918
919 static VkResult
920 anv_free_destructor(struct anv_device * device,
921 VkObject object)
922 {
923 anv_device_free(device, (void *) object);
924
925 return VK_SUCCESS;
926 }
927
928 static VkResult (*anv_object_destructors[])(struct anv_device *device,
929 VkObject object) = {
930 [VK_OBJECT_TYPE_INSTANCE] = anv_instance_destructor,
931 [VK_OBJECT_TYPE_PHYSICAL_DEVICE] = anv_noop_destructor,
932 [VK_OBJECT_TYPE_DEVICE] = anv_device_destructor,
933 [VK_OBJECT_TYPE_QUEUE] = anv_noop_destructor,
934 [VK_OBJECT_TYPE_COMMAND_BUFFER] = anv_cmd_buffer_destructor,
935 [VK_OBJECT_TYPE_PIPELINE] = anv_pipeline_destructor,
936 [VK_OBJECT_TYPE_SHADER] = anv_free_destructor,
937 [VK_OBJECT_TYPE_BUFFER] = anv_free_destructor,
938 [VK_OBJECT_TYPE_IMAGE] = anv_free_destructor,
939 [VK_OBJECT_TYPE_RENDER_PASS] = anv_free_destructor
940 };
941
942 VkResult VKAPI vkDestroyObject(
943 VkDevice _device,
944 VkObjectType objType,
945 VkObject object)
946 {
947 struct anv_device *device = (struct anv_device *) _device;
948
949 assert(objType < ARRAY_SIZE(anv_object_destructors) &&
950 anv_object_destructors[objType] != NULL);
951
952 return anv_object_destructors[objType](device, object);
953 }
954
955 static void
956 fill_memory_requirements(
957 VkObjectType objType,
958 VkObject object,
959 VkMemoryRequirements * memory_requirements)
960 {
961 struct anv_buffer *buffer;
962 struct anv_image *image;
963
964 memory_requirements->memPropsAllowed =
965 VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
966 VK_MEMORY_PROPERTY_HOST_DEVICE_COHERENT_BIT |
967 /* VK_MEMORY_PROPERTY_HOST_UNCACHED_BIT | */
968 VK_MEMORY_PROPERTY_HOST_WRITE_COMBINED_BIT |
969 VK_MEMORY_PROPERTY_PREFER_HOST_LOCAL |
970 VK_MEMORY_PROPERTY_SHAREABLE_BIT;
971
972 memory_requirements->memPropsRequired = 0;
973
974 switch (objType) {
975 case VK_OBJECT_TYPE_BUFFER:
976 buffer = (struct anv_buffer *) object;
977 memory_requirements->size = buffer->size;
978 memory_requirements->alignment = 16;
979 break;
980 case VK_OBJECT_TYPE_IMAGE:
981 image = (struct anv_image *) object;
982 memory_requirements->size = image->size;
983 memory_requirements->alignment = image->alignment;
984 break;
985 default:
986 memory_requirements->size = 0;
987 break;
988 }
989 }
990
991 VkResult VKAPI vkGetObjectInfo(
992 VkDevice _device,
993 VkObjectType objType,
994 VkObject object,
995 VkObjectInfoType infoType,
996 size_t* pDataSize,
997 void* pData)
998 {
999 VkMemoryRequirements memory_requirements;
1000
1001 switch (infoType) {
1002 case VK_OBJECT_INFO_TYPE_MEMORY_REQUIREMENTS:
1003 fill_memory_requirements(objType, object, &memory_requirements);
1004 memcpy(pData, &memory_requirements,
1005 MIN2(*pDataSize, sizeof(memory_requirements)));
1006 *pDataSize = sizeof(memory_requirements);
1007 return VK_SUCCESS;
1008
1009 case VK_OBJECT_INFO_TYPE_MEMORY_ALLOCATION_COUNT:
1010 default:
1011 return VK_UNSUPPORTED;
1012 }
1013
1014 }
1015
1016 VkResult VKAPI vkQueueBindObjectMemory(
1017 VkQueue queue,
1018 VkObjectType objType,
1019 VkObject object,
1020 uint32_t allocationIdx,
1021 VkDeviceMemory _mem,
1022 VkDeviceSize memOffset)
1023 {
1024 struct anv_buffer *buffer;
1025 struct anv_image *image;
1026 struct anv_device_memory *mem = (struct anv_device_memory *) _mem;
1027
1028 switch (objType) {
1029 case VK_OBJECT_TYPE_BUFFER:
1030 buffer = (struct anv_buffer *) object;
1031 buffer->bo = &mem->bo;
1032 buffer->offset = memOffset;
1033 break;
1034 case VK_OBJECT_TYPE_IMAGE:
1035 image = (struct anv_image *) object;
1036 image->bo = &mem->bo;
1037 image->offset = memOffset;
1038 break;
1039 default:
1040 break;
1041 }
1042
1043 return VK_SUCCESS;
1044 }
1045
1046 VkResult VKAPI vkQueueBindObjectMemoryRange(
1047 VkQueue queue,
1048 VkObjectType objType,
1049 VkObject object,
1050 uint32_t allocationIdx,
1051 VkDeviceSize rangeOffset,
1052 VkDeviceSize rangeSize,
1053 VkDeviceMemory mem,
1054 VkDeviceSize memOffset)
1055 {
1056 stub_return(VK_UNSUPPORTED);
1057 }
1058
1059 VkResult vkQueueBindImageMemoryRange(
1060 VkQueue queue,
1061 VkImage image,
1062 uint32_t allocationIdx,
1063 const VkImageMemoryBindInfo* pBindInfo,
1064 VkDeviceMemory mem,
1065 VkDeviceSize memOffset)
1066 {
1067 stub_return(VK_UNSUPPORTED);
1068 }
1069
1070 VkResult VKAPI vkCreateFence(
1071 VkDevice device,
1072 const VkFenceCreateInfo* pCreateInfo,
1073 VkFence* pFence)
1074 {
1075 stub_return(VK_UNSUPPORTED);
1076 }
1077
1078 VkResult VKAPI vkResetFences(
1079 VkDevice device,
1080 uint32_t fenceCount,
1081 VkFence* pFences)
1082 {
1083 stub_return(VK_UNSUPPORTED);
1084 }
1085
1086 VkResult VKAPI vkGetFenceStatus(
1087 VkDevice device,
1088 VkFence fence)
1089 {
1090 stub_return(VK_UNSUPPORTED);
1091 }
1092
1093 VkResult VKAPI vkWaitForFences(
1094 VkDevice device,
1095 uint32_t fenceCount,
1096 const VkFence* pFences,
1097 bool32_t waitAll,
1098 uint64_t timeout)
1099 {
1100 stub_return(VK_UNSUPPORTED);
1101 }
1102
1103 // Queue semaphore functions
1104
1105 VkResult VKAPI vkCreateSemaphore(
1106 VkDevice device,
1107 const VkSemaphoreCreateInfo* pCreateInfo,
1108 VkSemaphore* pSemaphore)
1109 {
1110 stub_return(VK_UNSUPPORTED);
1111 }
1112
1113 VkResult VKAPI vkQueueSignalSemaphore(
1114 VkQueue queue,
1115 VkSemaphore semaphore)
1116 {
1117 stub_return(VK_UNSUPPORTED);
1118 }
1119
1120 VkResult VKAPI vkQueueWaitSemaphore(
1121 VkQueue queue,
1122 VkSemaphore semaphore)
1123 {
1124 stub_return(VK_UNSUPPORTED);
1125 }
1126
1127 // Event functions
1128
1129 VkResult VKAPI vkCreateEvent(
1130 VkDevice device,
1131 const VkEventCreateInfo* pCreateInfo,
1132 VkEvent* pEvent)
1133 {
1134 stub_return(VK_UNSUPPORTED);
1135 }
1136
1137 VkResult VKAPI vkGetEventStatus(
1138 VkDevice device,
1139 VkEvent event)
1140 {
1141 stub_return(VK_UNSUPPORTED);
1142 }
1143
1144 VkResult VKAPI vkSetEvent(
1145 VkDevice device,
1146 VkEvent event)
1147 {
1148 stub_return(VK_UNSUPPORTED);
1149 }
1150
1151 VkResult VKAPI vkResetEvent(
1152 VkDevice device,
1153 VkEvent event)
1154 {
1155 stub_return(VK_UNSUPPORTED);
1156 }
1157
1158 // Query functions
1159
1160 struct anv_query_pool {
1161 VkQueryType type;
1162 uint32_t slots;
1163 struct anv_bo bo;
1164 };
1165
1166 VkResult VKAPI vkCreateQueryPool(
1167 VkDevice _device,
1168 const VkQueryPoolCreateInfo* pCreateInfo,
1169 VkQueryPool* pQueryPool)
1170 {
1171 struct anv_device *device = (struct anv_device *) _device;
1172 struct anv_query_pool *pool;
1173 VkResult result;
1174
1175 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO);
1176
1177 pool = anv_device_alloc(device, sizeof(*pool), 8,
1178 VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
1179 if (pool == NULL)
1180 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1181
1182 pool->type = pCreateInfo->queryType;
1183 result = anv_bo_init_new(&pool->bo, device, pCreateInfo->slots * 16);
1184 if (result != VK_SUCCESS)
1185 goto fail;
1186
1187 *pQueryPool = (VkQueryPool) pool;
1188
1189 return VK_SUCCESS;
1190
1191 fail:
1192 anv_device_free(device, pool);
1193
1194 return result;
1195 }
1196
1197 VkResult VKAPI vkGetQueryPoolResults(
1198 VkDevice device,
1199 VkQueryPool queryPool,
1200 uint32_t startQuery,
1201 uint32_t queryCount,
1202 size_t* pDataSize,
1203 void* pData,
1204 VkQueryResultFlags flags)
1205 {
1206 stub_return(VK_UNSUPPORTED);
1207 }
1208
1209 // Format capabilities
1210
1211 VkResult VKAPI vkGetFormatInfo(
1212 VkDevice device,
1213 VkFormat format,
1214 VkFormatInfoType infoType,
1215 size_t* pDataSize,
1216 void* pData)
1217 {
1218 stub_return(VK_UNSUPPORTED);
1219 }
1220
1221 // Buffer functions
1222
1223 VkResult VKAPI vkCreateBuffer(
1224 VkDevice _device,
1225 const VkBufferCreateInfo* pCreateInfo,
1226 VkBuffer* pBuffer)
1227 {
1228 struct anv_device *device = (struct anv_device *) _device;
1229 struct anv_buffer *buffer;
1230
1231 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO);
1232
1233 buffer = anv_device_alloc(device, sizeof(*buffer), 8,
1234 VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
1235 if (buffer == NULL)
1236 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1237
1238 buffer->size = pCreateInfo->size;
1239 buffer->bo = NULL;
1240 buffer->offset = 0;
1241
1242 *pBuffer = (VkBuffer) buffer;
1243
1244 return VK_SUCCESS;
1245 }
1246
1247 // Buffer view functions
1248
1249 VkResult VKAPI vkCreateBufferView(
1250 VkDevice _device,
1251 const VkBufferViewCreateInfo* pCreateInfo,
1252 VkBufferView* pView)
1253 {
1254 struct anv_device *device = (struct anv_device *) _device;
1255 struct anv_buffer *buffer = (struct anv_buffer *) pCreateInfo->buffer;
1256 struct anv_surface_view *view;
1257 const struct anv_format *format;
1258
1259 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO);
1260
1261 view = anv_device_alloc(device, sizeof(*view), 8,
1262 VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
1263 if (view == NULL)
1264 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1265
1266 view->bo = buffer->bo;
1267 view->offset = buffer->offset + pCreateInfo->offset;
1268 view->surface_state =
1269 anv_state_pool_alloc(&device->surface_state_pool, 64, 64);
1270 view->format = pCreateInfo->format;
1271
1272 format = anv_format_for_vk_format(pCreateInfo->format);
1273 /* This assumes RGBA float format. */
1274 uint32_t stride = 4;
1275 uint32_t num_elements = pCreateInfo->range / stride;
1276 struct GEN8_RENDER_SURFACE_STATE surface_state = {
1277 .SurfaceType = SURFTYPE_BUFFER,
1278 .SurfaceArray = false,
1279 .SurfaceFormat = format->format,
1280 .SurfaceVerticalAlignment = VALIGN4,
1281 .SurfaceHorizontalAlignment = HALIGN4,
1282 .TileMode = LINEAR,
1283 .VerticalLineStride = 0,
1284 .VerticalLineStrideOffset = 0,
1285 .SamplerL2BypassModeDisable = true,
1286 .RenderCacheReadWriteMode = WriteOnlyCache,
1287 .MemoryObjectControlState = 0, /* FIXME: MOCS */
1288 .BaseMipLevel = 0,
1289 .SurfaceQPitch = 0,
1290 .Height = (num_elements >> 7) & 0x3fff,
1291 .Width = num_elements & 0x7f,
1292 .Depth = (num_elements >> 21) & 0x3f,
1293 .SurfacePitch = stride - 1,
1294 .MinimumArrayElement = 0,
1295 .NumberofMultisamples = MULTISAMPLECOUNT_1,
1296 .XOffset = 0,
1297 .YOffset = 0,
1298 .SurfaceMinLOD = 0,
1299 .MIPCountLOD = 0,
1300 .AuxiliarySurfaceMode = AUX_NONE,
1301 .RedClearColor = 0,
1302 .GreenClearColor = 0,
1303 .BlueClearColor = 0,
1304 .AlphaClearColor = 0,
1305 .ShaderChannelSelectRed = SCS_RED,
1306 .ShaderChannelSelectGreen = SCS_GREEN,
1307 .ShaderChannelSelectBlue = SCS_BLUE,
1308 .ShaderChannelSelectAlpha = SCS_ALPHA,
1309 .ResourceMinLOD = 0,
1310 /* FIXME: We assume that the image must be bound at this time. */
1311 .SurfaceBaseAddress = { NULL, view->offset },
1312 };
1313
1314 GEN8_RENDER_SURFACE_STATE_pack(NULL, view->surface_state.map, &surface_state);
1315
1316 *pView = (VkImageView) view;
1317
1318 return VK_SUCCESS;
1319 }
1320
1321 // Sampler functions
1322
1323 VkResult VKAPI vkCreateSampler(
1324 VkDevice _device,
1325 const VkSamplerCreateInfo* pCreateInfo,
1326 VkSampler* pSampler)
1327 {
1328 struct anv_device *device = (struct anv_device *) _device;
1329 struct anv_sampler *sampler;
1330
1331 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO);
1332
1333 sampler = anv_device_alloc(device, sizeof(*sampler), 8,
1334 VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
1335 if (!sampler)
1336 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1337
1338 static const uint32_t vk_to_gen_tex_filter[] = {
1339 [VK_TEX_FILTER_NEAREST] = MAPFILTER_NEAREST,
1340 [VK_TEX_FILTER_LINEAR] = MAPFILTER_LINEAR
1341 };
1342
1343 static const uint32_t vk_to_gen_mipmap_mode[] = {
1344 [VK_TEX_MIPMAP_MODE_BASE] = MIPFILTER_NONE,
1345 [VK_TEX_MIPMAP_MODE_NEAREST] = MIPFILTER_NEAREST,
1346 [VK_TEX_MIPMAP_MODE_LINEAR] = MIPFILTER_LINEAR
1347 };
1348
1349 static const uint32_t vk_to_gen_tex_address[] = {
1350 [VK_TEX_ADDRESS_WRAP] = TCM_WRAP,
1351 [VK_TEX_ADDRESS_MIRROR] = TCM_MIRROR,
1352 [VK_TEX_ADDRESS_CLAMP] = TCM_CLAMP,
1353 [VK_TEX_ADDRESS_MIRROR_ONCE] = TCM_MIRROR_ONCE,
1354 [VK_TEX_ADDRESS_CLAMP_BORDER] = TCM_CLAMP_BORDER,
1355 };
1356
1357 static const uint32_t vk_to_gen_compare_op[] = {
1358 [VK_COMPARE_OP_NEVER] = PREFILTEROPNEVER,
1359 [VK_COMPARE_OP_LESS] = PREFILTEROPLESS,
1360 [VK_COMPARE_OP_EQUAL] = PREFILTEROPEQUAL,
1361 [VK_COMPARE_OP_LESS_EQUAL] = PREFILTEROPLEQUAL,
1362 [VK_COMPARE_OP_GREATER] = PREFILTEROPGREATER,
1363 [VK_COMPARE_OP_NOT_EQUAL] = PREFILTEROPNOTEQUAL,
1364 [VK_COMPARE_OP_GREATER_EQUAL] = PREFILTEROPGEQUAL,
1365 [VK_COMPARE_OP_ALWAYS] = PREFILTEROPALWAYS,
1366 };
1367
1368 if (pCreateInfo->maxAnisotropy > 0)
1369 anv_finishme("missing support for anisotropic filtering");
1370
1371 struct GEN8_SAMPLER_STATE sampler_state = {
1372 .SamplerDisable = false,
1373 .TextureBorderColorMode = DX10OGL,
1374 .LODPreClampMode = 0,
1375 .BaseMipLevel = 0,
1376 .MipModeFilter = vk_to_gen_mipmap_mode[pCreateInfo->mipMode],
1377 .MagModeFilter = vk_to_gen_tex_filter[pCreateInfo->magFilter],
1378 .MinModeFilter = vk_to_gen_tex_filter[pCreateInfo->minFilter],
1379 .TextureLODBias = pCreateInfo->mipLodBias * 256,
1380 .AnisotropicAlgorithm = EWAApproximation,
1381 .MinLOD = pCreateInfo->minLod * 256,
1382 .MaxLOD = pCreateInfo->maxLod * 256,
1383 .ChromaKeyEnable = 0,
1384 .ChromaKeyIndex = 0,
1385 .ChromaKeyMode = 0,
1386 .ShadowFunction = vk_to_gen_compare_op[pCreateInfo->compareOp],
1387 .CubeSurfaceControlMode = 0,
1388 .IndirectStatePointer = 0,
1389 .LODClampMagnificationMode = MIPNONE,
1390 .MaximumAnisotropy = 0,
1391 .RAddressMinFilterRoundingEnable = 0,
1392 .RAddressMagFilterRoundingEnable = 0,
1393 .VAddressMinFilterRoundingEnable = 0,
1394 .VAddressMagFilterRoundingEnable = 0,
1395 .UAddressMinFilterRoundingEnable = 0,
1396 .UAddressMagFilterRoundingEnable = 0,
1397 .TrilinearFilterQuality = 0,
1398 .NonnormalizedCoordinateEnable = 0,
1399 .TCXAddressControlMode = vk_to_gen_tex_address[pCreateInfo->addressU],
1400 .TCYAddressControlMode = vk_to_gen_tex_address[pCreateInfo->addressV],
1401 .TCZAddressControlMode = vk_to_gen_tex_address[pCreateInfo->addressW],
1402 };
1403
1404 GEN8_SAMPLER_STATE_pack(NULL, sampler->state, &sampler_state);
1405
1406 *pSampler = (VkSampler) sampler;
1407
1408 return VK_SUCCESS;
1409 }
1410
1411 // Descriptor set functions
1412
1413 VkResult VKAPI vkCreateDescriptorSetLayout(
1414 VkDevice _device,
1415 const VkDescriptorSetLayoutCreateInfo* pCreateInfo,
1416 VkDescriptorSetLayout* pSetLayout)
1417 {
1418 struct anv_device *device = (struct anv_device *) _device;
1419 struct anv_descriptor_set_layout *set_layout;
1420 uint32_t count, k, num_entries;
1421 size_t size, sampler_total, surface_total;
1422
1423 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO);
1424
1425 count = 0;
1426 for (uint32_t i = 0; i < pCreateInfo->count; i++)
1427 count += pCreateInfo->pBinding[i].count;
1428
1429 size = sizeof(*set_layout) +
1430 count * sizeof(set_layout->bindings[0]);
1431 set_layout = anv_device_alloc(device, size, 8,
1432 VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
1433 if (!set_layout)
1434 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1435
1436 k = 0;
1437 sampler_total = 0;
1438 surface_total = 0;
1439 for (uint32_t i = 0; i < pCreateInfo->count; i++) {
1440 for (uint32_t j = 0; j < pCreateInfo->pBinding[i].count; j++) {
1441 set_layout->bindings[k].mask = pCreateInfo->pBinding[i].stageFlags;
1442 set_layout->bindings[k].type = pCreateInfo->pBinding[i].descriptorType;
1443 k++;
1444 }
1445
1446 num_entries = pCreateInfo->pBinding[i].count *
1447 __builtin_popcount(pCreateInfo->pBinding[i].stageFlags);
1448
1449 switch (pCreateInfo->pBinding[i].descriptorType) {
1450 case VK_DESCRIPTOR_TYPE_SAMPLER:
1451 sampler_total += num_entries;
1452 break;
1453 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1454 sampler_total += num_entries;
1455 surface_total += num_entries;
1456 break;
1457
1458 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
1459 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
1460 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
1461 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
1462 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
1463 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
1464 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
1465 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
1466 surface_total += num_entries;
1467 break;
1468
1469 default:
1470 unreachable("invalid descriptor type");
1471 }
1472 }
1473
1474 set_layout->sampler_total = sampler_total;
1475 set_layout->surface_total = surface_total;
1476 set_layout->count = count;
1477
1478 *pSetLayout = (VkDescriptorSetLayout) set_layout;
1479
1480 return VK_SUCCESS;
1481 }
1482
1483 VkResult VKAPI vkBeginDescriptorPoolUpdate(
1484 VkDevice device,
1485 VkDescriptorUpdateMode updateMode)
1486 {
1487 stub_return(VK_UNSUPPORTED);
1488 }
1489
1490 VkResult VKAPI vkEndDescriptorPoolUpdate(
1491 VkDevice device,
1492 VkCmdBuffer cmd)
1493 {
1494 stub_return(VK_UNSUPPORTED);
1495 }
1496
1497 VkResult VKAPI vkCreateDescriptorPool(
1498 VkDevice device,
1499 VkDescriptorPoolUsage poolUsage,
1500 uint32_t maxSets,
1501 const VkDescriptorPoolCreateInfo* pCreateInfo,
1502 VkDescriptorPool* pDescriptorPool)
1503 {
1504 stub_return(VK_UNSUPPORTED);
1505 }
1506
1507 VkResult VKAPI vkResetDescriptorPool(
1508 VkDevice device,
1509 VkDescriptorPool descriptorPool)
1510 {
1511 stub_return(VK_UNSUPPORTED);
1512 }
1513
1514 VkResult VKAPI vkAllocDescriptorSets(
1515 VkDevice _device,
1516 VkDescriptorPool descriptorPool,
1517 VkDescriptorSetUsage setUsage,
1518 uint32_t count,
1519 const VkDescriptorSetLayout* pSetLayouts,
1520 VkDescriptorSet* pDescriptorSets,
1521 uint32_t* pCount)
1522 {
1523 struct anv_device *device = (struct anv_device *) _device;
1524 const struct anv_descriptor_set_layout *layout;
1525 struct anv_descriptor_set *set;
1526 size_t size;
1527
1528 for (uint32_t i = 0; i < count; i++) {
1529 layout = (struct anv_descriptor_set_layout *) pSetLayouts[i];
1530 size = sizeof(*set) + layout->count * sizeof(set->descriptors[0]);
1531 set = anv_device_alloc(device, size, 8,
1532 VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
1533 if (!set) {
1534 *pCount = i;
1535 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1536 }
1537
1538 pDescriptorSets[i] = (VkDescriptorSet) set;
1539 }
1540
1541 *pCount = count;
1542
1543 return VK_UNSUPPORTED;
1544 }
1545
1546 void VKAPI vkClearDescriptorSets(
1547 VkDevice device,
1548 VkDescriptorPool descriptorPool,
1549 uint32_t count,
1550 const VkDescriptorSet* pDescriptorSets)
1551 {
1552 stub();
1553 }
1554
1555 void VKAPI vkUpdateDescriptors(
1556 VkDevice _device,
1557 VkDescriptorSet descriptorSet,
1558 uint32_t updateCount,
1559 const void** ppUpdateArray)
1560 {
1561 struct anv_descriptor_set *set = (struct anv_descriptor_set *) descriptorSet;
1562 VkUpdateSamplers *update_samplers;
1563 VkUpdateSamplerTextures *update_sampler_textures;
1564 VkUpdateImages *update_images;
1565 VkUpdateBuffers *update_buffers;
1566 VkUpdateAsCopy *update_as_copy;
1567
1568 for (uint32_t i = 0; i < updateCount; i++) {
1569 const struct anv_common *common = ppUpdateArray[i];
1570
1571 switch (common->sType) {
1572 case VK_STRUCTURE_TYPE_UPDATE_SAMPLERS:
1573 update_samplers = (VkUpdateSamplers *) common;
1574
1575 for (uint32_t j = 0; j < update_samplers->count; j++) {
1576 set->descriptors[update_samplers->binding + j].sampler =
1577 (struct anv_sampler *) update_samplers->pSamplers[j];
1578 }
1579 break;
1580
1581 case VK_STRUCTURE_TYPE_UPDATE_SAMPLER_TEXTURES:
1582 /* FIXME: Shouldn't this be *_UPDATE_SAMPLER_IMAGES? */
1583 update_sampler_textures = (VkUpdateSamplerTextures *) common;
1584
1585 for (uint32_t j = 0; j < update_sampler_textures->count; j++) {
1586 set->descriptors[update_sampler_textures->binding + j].view =
1587 (struct anv_surface_view *)
1588 update_sampler_textures->pSamplerImageViews[j].pImageView->view;
1589 set->descriptors[update_sampler_textures->binding + j].sampler =
1590 (struct anv_sampler *)
1591 update_sampler_textures->pSamplerImageViews[j].sampler;
1592 }
1593 break;
1594
1595 case VK_STRUCTURE_TYPE_UPDATE_IMAGES:
1596 update_images = (VkUpdateImages *) common;
1597
1598 for (uint32_t j = 0; j < update_images->count; j++) {
1599 set->descriptors[update_images->binding + j].view =
1600 (struct anv_surface_view *) update_images->pImageViews[j].view;
1601 }
1602 break;
1603
1604 case VK_STRUCTURE_TYPE_UPDATE_BUFFERS:
1605 update_buffers = (VkUpdateBuffers *) common;
1606
1607 for (uint32_t j = 0; j < update_buffers->count; j++) {
1608 set->descriptors[update_buffers->binding + j].view =
1609 (struct anv_surface_view *) update_buffers->pBufferViews[j].view;
1610 }
1611 /* FIXME: descriptor arrays? */
1612 break;
1613
1614 case VK_STRUCTURE_TYPE_UPDATE_AS_COPY:
1615 update_as_copy = (VkUpdateAsCopy *) common;
1616 (void) update_as_copy;
1617 break;
1618
1619 default:
1620 break;
1621 }
1622 }
1623 }
1624
1625 // State object functions
1626
1627 static inline int64_t
1628 clamp_int64(int64_t x, int64_t min, int64_t max)
1629 {
1630 if (x < min)
1631 return min;
1632 else if (x < max)
1633 return x;
1634 else
1635 return max;
1636 }
1637
1638 VkResult VKAPI vkCreateDynamicViewportState(
1639 VkDevice _device,
1640 const VkDynamicVpStateCreateInfo* pCreateInfo,
1641 VkDynamicVpState* pState)
1642 {
1643 struct anv_device *device = (struct anv_device *) _device;
1644 struct anv_dynamic_vp_state *state;
1645
1646 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DYNAMIC_VP_STATE_CREATE_INFO);
1647
1648 state = anv_device_alloc(device, sizeof(*state), 8,
1649 VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
1650 if (state == NULL)
1651 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1652
1653 unsigned count = pCreateInfo->viewportAndScissorCount;
1654 state->sf_clip_vp = anv_state_pool_alloc(&device->dyn_state_pool,
1655 count * 64, 64);
1656 state->cc_vp = anv_state_pool_alloc(&device->dyn_state_pool,
1657 count * 8, 32);
1658 state->scissor = anv_state_pool_alloc(&device->dyn_state_pool,
1659 count * 32, 32);
1660
1661 for (uint32_t i = 0; i < pCreateInfo->viewportAndScissorCount; i++) {
1662 const VkViewport *vp = &pCreateInfo->pViewports[i];
1663 const VkRect *s = &pCreateInfo->pScissors[i];
1664
1665 struct GEN8_SF_CLIP_VIEWPORT sf_clip_viewport = {
1666 .ViewportMatrixElementm00 = vp->width / 2,
1667 .ViewportMatrixElementm11 = vp->height / 2,
1668 .ViewportMatrixElementm22 = (vp->maxDepth - vp->minDepth) / 2,
1669 .ViewportMatrixElementm30 = vp->originX + vp->width / 2,
1670 .ViewportMatrixElementm31 = vp->originY + vp->height / 2,
1671 .ViewportMatrixElementm32 = (vp->maxDepth + vp->minDepth) / 2,
1672 .XMinClipGuardband = -1.0f,
1673 .XMaxClipGuardband = 1.0f,
1674 .YMinClipGuardband = -1.0f,
1675 .YMaxClipGuardband = 1.0f,
1676 .XMinViewPort = vp->originX,
1677 .XMaxViewPort = vp->originX + vp->width - 1,
1678 .YMinViewPort = vp->originY,
1679 .YMaxViewPort = vp->originY + vp->height - 1,
1680 };
1681
1682 struct GEN8_CC_VIEWPORT cc_viewport = {
1683 .MinimumDepth = vp->minDepth,
1684 .MaximumDepth = vp->maxDepth
1685 };
1686
1687 /* Since xmax and ymax are inclusive, we have to have xmax < xmin or
1688 * ymax < ymin for empty clips. In case clip x, y, width height are all
1689 * 0, the clamps below produce 0 for xmin, ymin, xmax, ymax, which isn't
1690 * what we want. Just special case empty clips and produce a canonical
1691 * empty clip. */
1692 static const struct GEN8_SCISSOR_RECT empty_scissor = {
1693 .ScissorRectangleYMin = 1,
1694 .ScissorRectangleXMin = 1,
1695 .ScissorRectangleYMax = 0,
1696 .ScissorRectangleXMax = 0
1697 };
1698
1699 const int max = 0xffff;
1700 struct GEN8_SCISSOR_RECT scissor = {
1701 /* Do this math using int64_t so overflow gets clamped correctly. */
1702 .ScissorRectangleYMin = clamp_int64(s->offset.y, 0, max),
1703 .ScissorRectangleXMin = clamp_int64(s->offset.x, 0, max),
1704 .ScissorRectangleYMax = clamp_int64((uint64_t) s->offset.y + s->extent.height - 1, 0, max),
1705 .ScissorRectangleXMax = clamp_int64((uint64_t) s->offset.x + s->extent.width - 1, 0, max)
1706 };
1707
1708 GEN8_SF_CLIP_VIEWPORT_pack(NULL, state->sf_clip_vp.map + i * 64, &sf_clip_viewport);
1709 GEN8_CC_VIEWPORT_pack(NULL, state->cc_vp.map + i * 32, &cc_viewport);
1710
1711 if (s->extent.width <= 0 || s->extent.height <= 0) {
1712 GEN8_SCISSOR_RECT_pack(NULL, state->scissor.map + i * 32, &empty_scissor);
1713 } else {
1714 GEN8_SCISSOR_RECT_pack(NULL, state->scissor.map + i * 32, &scissor);
1715 }
1716 }
1717
1718 *pState = (VkDynamicVpState) state;
1719
1720 return VK_SUCCESS;
1721 }
1722
1723 VkResult VKAPI vkCreateDynamicRasterState(
1724 VkDevice _device,
1725 const VkDynamicRsStateCreateInfo* pCreateInfo,
1726 VkDynamicRsState* pState)
1727 {
1728 struct anv_device *device = (struct anv_device *) _device;
1729 struct anv_dynamic_rs_state *state;
1730
1731 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DYNAMIC_RS_STATE_CREATE_INFO);
1732
1733 state = anv_device_alloc(device, sizeof(*state), 8,
1734 VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
1735 if (state == NULL)
1736 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1737
1738 /* Missing these:
1739 * float depthBias;
1740 * float depthBiasClamp;
1741 * float slopeScaledDepthBias;
1742 * float pointFadeThreshold;
1743 * // optional (GL45) - Size of point fade threshold
1744 */
1745
1746 struct GEN8_3DSTATE_SF sf = {
1747 GEN8_3DSTATE_SF_header,
1748 .LineWidth = pCreateInfo->lineWidth,
1749 .PointWidth = pCreateInfo->pointSize,
1750 };
1751
1752 GEN8_3DSTATE_SF_pack(NULL, state->state_sf, &sf);
1753
1754 *pState = (VkDynamicRsState) state;
1755
1756 return VK_SUCCESS;
1757 }
1758
1759 VkResult VKAPI vkCreateDynamicColorBlendState(
1760 VkDevice _device,
1761 const VkDynamicCbStateCreateInfo* pCreateInfo,
1762 VkDynamicCbState* pState)
1763 {
1764 struct anv_device *device = (struct anv_device *) _device;
1765 struct anv_dynamic_cb_state *state;
1766
1767 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_DYNAMIC_CB_STATE_CREATE_INFO);
1768
1769 state = anv_device_alloc(device, sizeof(*state), 8,
1770 VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
1771 if (state == NULL)
1772 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1773
1774 *pState = (VkDynamicCbState) state;
1775
1776 return VK_SUCCESS;
1777 }
1778
1779 VkResult VKAPI vkCreateDynamicDepthStencilState(
1780 VkDevice device,
1781 const VkDynamicDsStateCreateInfo* pCreateInfo,
1782 VkDynamicDsState* pState)
1783 {
1784 stub_return(VK_UNSUPPORTED);
1785 }
1786
1787 // Command buffer functions
1788
1789 VkResult VKAPI vkCreateCommandBuffer(
1790 VkDevice _device,
1791 const VkCmdBufferCreateInfo* pCreateInfo,
1792 VkCmdBuffer* pCmdBuffer)
1793 {
1794 struct anv_device *device = (struct anv_device *) _device;
1795 struct anv_cmd_buffer *cmd_buffer;
1796 VkResult result;
1797
1798 cmd_buffer = anv_device_alloc(device, sizeof(*cmd_buffer), 8,
1799 VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
1800 if (cmd_buffer == NULL)
1801 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1802
1803 cmd_buffer->device = device;
1804 cmd_buffer->rs_state = NULL;
1805 cmd_buffer->vp_state = NULL;
1806
1807 result = anv_batch_init(&cmd_buffer->batch, device);
1808 if (result != VK_SUCCESS)
1809 goto fail;
1810
1811 cmd_buffer->exec2_objects =
1812 anv_device_alloc(device, 8192 * sizeof(cmd_buffer->exec2_objects[0]), 8,
1813 VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
1814 if (cmd_buffer->exec2_objects == NULL) {
1815 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1816 goto fail_batch;
1817 }
1818
1819 cmd_buffer->exec2_bos =
1820 anv_device_alloc(device, 8192 * sizeof(cmd_buffer->exec2_bos[0]), 8,
1821 VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
1822 if (cmd_buffer->exec2_bos == NULL) {
1823 result = vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1824 goto fail_exec2_objects;
1825 }
1826
1827 anv_state_stream_init(&cmd_buffer->surface_state_stream,
1828 &device->surface_state_block_pool);
1829 anv_state_stream_init(&cmd_buffer->dynamic_state_stream,
1830 &device->dyn_state_block_pool);
1831
1832 cmd_buffer->dirty = 0;
1833 cmd_buffer->vb_dirty = 0;
1834
1835 *pCmdBuffer = (VkCmdBuffer) cmd_buffer;
1836
1837 return VK_SUCCESS;
1838
1839 fail_exec2_objects:
1840 anv_device_free(device, cmd_buffer->exec2_objects);
1841 fail_batch:
1842 anv_batch_finish(&cmd_buffer->batch, device);
1843 fail:
1844 anv_device_free(device, cmd_buffer);
1845
1846 return result;
1847 }
1848
1849 VkResult VKAPI vkBeginCommandBuffer(
1850 VkCmdBuffer cmdBuffer,
1851 const VkCmdBufferBeginInfo* pBeginInfo)
1852 {
1853 struct anv_cmd_buffer *cmd_buffer = (struct anv_cmd_buffer *) cmdBuffer;
1854 struct anv_device *device = cmd_buffer->device;
1855
1856 anv_batch_emit(&cmd_buffer->batch, GEN8_PIPELINE_SELECT,
1857 .PipelineSelection = _3D);
1858 anv_batch_emit(&cmd_buffer->batch, GEN8_STATE_SIP);
1859
1860 anv_batch_emit(&cmd_buffer->batch, GEN8_STATE_BASE_ADDRESS,
1861 .GeneralStateBaseAddress = { NULL, 0 },
1862 .GeneralStateBaseAddressModifyEnable = true,
1863 .GeneralStateBufferSize = 0xfffff,
1864 .GeneralStateBufferSizeModifyEnable = true,
1865
1866 .SurfaceStateBaseAddress = { &device->surface_state_block_pool.bo, 0 },
1867 .SurfaceStateMemoryObjectControlState = 0, /* FIXME: MOCS */
1868 .SurfaceStateBaseAddressModifyEnable = true,
1869
1870 .DynamicStateBaseAddress = { &device->dyn_state_block_pool.bo, 0 },
1871 .DynamicStateBaseAddressModifyEnable = true,
1872 .DynamicStateBufferSize = 0xfffff,
1873 .DynamicStateBufferSizeModifyEnable = true,
1874
1875 .IndirectObjectBaseAddress = { NULL, 0 },
1876 .IndirectObjectBaseAddressModifyEnable = true,
1877 .IndirectObjectBufferSize = 0xfffff,
1878 .IndirectObjectBufferSizeModifyEnable = true,
1879
1880 .InstructionBaseAddress = { &device->instruction_block_pool.bo, 0 },
1881 .InstructionBaseAddressModifyEnable = true,
1882 .InstructionBufferSize = 0xfffff,
1883 .InstructionBuffersizeModifyEnable = true);
1884
1885 anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_VF_STATISTICS,
1886 .StatisticsEnable = true);
1887 anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_HS, .Enable = false);
1888 anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_TE, .TEEnable = false);
1889 anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_DS, .FunctionEnable = false);
1890 anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_STREAMOUT, .SOFunctionEnable = false);
1891
1892 anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
1893 .ConstantBufferOffset = 0,
1894 .ConstantBufferSize = 4);
1895 anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
1896 .ConstantBufferOffset = 4,
1897 .ConstantBufferSize = 4);
1898 anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
1899 .ConstantBufferOffset = 8,
1900 .ConstantBufferSize = 4);
1901
1902 anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_WM_CHROMAKEY,
1903 .ChromaKeyKillEnable = false);
1904 anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_SBE_SWIZ);
1905 anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_AA_LINE_PARAMETERS);
1906
1907 /* Hardcoded state: */
1908 anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_DEPTH_BUFFER,
1909 .SurfaceType = SURFTYPE_2D,
1910 .Width = 1,
1911 .Height = 1,
1912 .SurfaceFormat = D16_UNORM,
1913 .SurfaceBaseAddress = { NULL, 0 },
1914 .HierarchicalDepthBufferEnable = 0);
1915
1916 anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_WM_DEPTH_STENCIL,
1917 .DepthTestEnable = false,
1918 .DepthBufferWriteEnable = false);
1919
1920 return VK_SUCCESS;
1921 }
1922
1923 static void
1924 anv_cmd_buffer_add_bo(struct anv_cmd_buffer *cmd_buffer,
1925 struct anv_bo *bo, struct anv_reloc_list *list)
1926 {
1927 struct drm_i915_gem_exec_object2 *obj;
1928
1929 bo->index = cmd_buffer->bo_count;
1930 obj = &cmd_buffer->exec2_objects[bo->index];
1931 cmd_buffer->exec2_bos[bo->index] = bo;
1932 cmd_buffer->bo_count++;
1933
1934 obj->handle = bo->gem_handle;
1935 obj->relocation_count = 0;
1936 obj->relocs_ptr = 0;
1937 obj->alignment = 0;
1938 obj->offset = bo->offset;
1939 obj->flags = 0;
1940 obj->rsvd1 = 0;
1941 obj->rsvd2 = 0;
1942
1943 if (list) {
1944 obj->relocation_count = list->num_relocs;
1945 obj->relocs_ptr = (uintptr_t) list->relocs;
1946 }
1947 }
1948
1949 static void
1950 anv_cmd_buffer_add_validate_bos(struct anv_cmd_buffer *cmd_buffer,
1951 struct anv_reloc_list *list)
1952 {
1953 struct anv_bo *bo, *batch_bo;
1954
1955 batch_bo = &cmd_buffer->batch.bo;
1956 for (size_t i = 0; i < list->num_relocs; i++) {
1957 bo = list->reloc_bos[i];
1958 /* Skip any relocations targeting the batch bo. We need to make sure
1959 * it's the last in the list so we'll add it manually later.
1960 */
1961 if (bo == batch_bo)
1962 continue;
1963 if (bo->index < cmd_buffer->bo_count && cmd_buffer->exec2_bos[bo->index] == bo)
1964 continue;
1965
1966 anv_cmd_buffer_add_bo(cmd_buffer, bo, NULL);
1967 }
1968 }
1969
1970 static void
1971 anv_cmd_buffer_process_relocs(struct anv_cmd_buffer *cmd_buffer,
1972 struct anv_reloc_list *list)
1973 {
1974 struct anv_bo *bo;
1975
1976 /* If the kernel supports I915_EXEC_NO_RELOC, it will compare offset in
1977 * struct drm_i915_gem_exec_object2 against the bos current offset and if
1978 * all bos haven't moved it will skip relocation processing alltogether.
1979 * If I915_EXEC_NO_RELOC is not supported, the kernel ignores the incoming
1980 * value of offset so we can set it either way. For that to work we need
1981 * to make sure all relocs use the same presumed offset.
1982 */
1983
1984 for (size_t i = 0; i < list->num_relocs; i++) {
1985 bo = list->reloc_bos[i];
1986 if (bo->offset != list->relocs[i].presumed_offset)
1987 cmd_buffer->need_reloc = true;
1988
1989 list->relocs[i].target_handle = bo->index;
1990 }
1991 }
1992
1993 VkResult VKAPI vkEndCommandBuffer(
1994 VkCmdBuffer cmdBuffer)
1995 {
1996 struct anv_cmd_buffer *cmd_buffer = (struct anv_cmd_buffer *) cmdBuffer;
1997 struct anv_device *device = cmd_buffer->device;
1998 struct anv_batch *batch = &cmd_buffer->batch;
1999
2000 anv_batch_emit(batch, GEN8_MI_BATCH_BUFFER_END);
2001
2002 /* Round batch up to an even number of dwords. */
2003 if ((batch->next - batch->bo.map) & 4)
2004 anv_batch_emit(batch, GEN8_MI_NOOP);
2005
2006 cmd_buffer->bo_count = 0;
2007 cmd_buffer->need_reloc = false;
2008
2009 /* Lock for access to bo->index. */
2010 pthread_mutex_lock(&device->mutex);
2011
2012 /* Add block pool bos first so we can add them with their relocs. */
2013 anv_cmd_buffer_add_bo(cmd_buffer, &device->surface_state_block_pool.bo,
2014 &batch->surf_relocs);
2015
2016 anv_cmd_buffer_add_validate_bos(cmd_buffer, &batch->surf_relocs);
2017 anv_cmd_buffer_add_validate_bos(cmd_buffer, &batch->cmd_relocs);
2018 anv_cmd_buffer_add_bo(cmd_buffer, &batch->bo, &batch->cmd_relocs);
2019 anv_cmd_buffer_process_relocs(cmd_buffer, &batch->surf_relocs);
2020 anv_cmd_buffer_process_relocs(cmd_buffer, &batch->cmd_relocs);
2021
2022 cmd_buffer->execbuf.buffers_ptr = (uintptr_t) cmd_buffer->exec2_objects;
2023 cmd_buffer->execbuf.buffer_count = cmd_buffer->bo_count;
2024 cmd_buffer->execbuf.batch_start_offset = 0;
2025 cmd_buffer->execbuf.batch_len = batch->next - batch->bo.map;
2026 cmd_buffer->execbuf.cliprects_ptr = 0;
2027 cmd_buffer->execbuf.num_cliprects = 0;
2028 cmd_buffer->execbuf.DR1 = 0;
2029 cmd_buffer->execbuf.DR4 = 0;
2030
2031 cmd_buffer->execbuf.flags = I915_EXEC_HANDLE_LUT;
2032 if (!cmd_buffer->need_reloc)
2033 cmd_buffer->execbuf.flags |= I915_EXEC_NO_RELOC;
2034 cmd_buffer->execbuf.flags |= I915_EXEC_RENDER;
2035 cmd_buffer->execbuf.rsvd1 = device->context_id;
2036 cmd_buffer->execbuf.rsvd2 = 0;
2037
2038 pthread_mutex_unlock(&device->mutex);
2039
2040 return VK_SUCCESS;
2041 }
2042
2043 VkResult VKAPI vkResetCommandBuffer(
2044 VkCmdBuffer cmdBuffer)
2045 {
2046 struct anv_cmd_buffer *cmd_buffer = (struct anv_cmd_buffer *) cmdBuffer;
2047
2048 anv_batch_reset(&cmd_buffer->batch);
2049
2050 return VK_SUCCESS;
2051 }
2052
2053 // Command buffer building functions
2054
2055 void VKAPI vkCmdBindPipeline(
2056 VkCmdBuffer cmdBuffer,
2057 VkPipelineBindPoint pipelineBindPoint,
2058 VkPipeline _pipeline)
2059 {
2060 struct anv_cmd_buffer *cmd_buffer = (struct anv_cmd_buffer *) cmdBuffer;
2061
2062 cmd_buffer->pipeline = (struct anv_pipeline *) _pipeline;
2063 cmd_buffer->dirty |= ANV_CMD_BUFFER_PIPELINE_DIRTY;
2064 }
2065
2066 void VKAPI vkCmdBindDynamicStateObject(
2067 VkCmdBuffer cmdBuffer,
2068 VkStateBindPoint stateBindPoint,
2069 VkDynamicStateObject dynamicState)
2070 {
2071 struct anv_cmd_buffer *cmd_buffer = (struct anv_cmd_buffer *) cmdBuffer;
2072 struct anv_dynamic_vp_state *vp_state;
2073
2074 switch (stateBindPoint) {
2075 case VK_STATE_BIND_POINT_VIEWPORT:
2076 vp_state = (struct anv_dynamic_vp_state *) dynamicState;
2077 /* We emit state immediately, but set cmd_buffer->vp_state to indicate
2078 * that vp state has been set in this command buffer. */
2079 cmd_buffer->vp_state = vp_state;
2080 anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_SCISSOR_STATE_POINTERS,
2081 .ScissorRectPointer = vp_state->scissor.offset);
2082 anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
2083 .CCViewportPointer = vp_state->cc_vp.offset);
2084 anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
2085 .SFClipViewportPointer = vp_state->sf_clip_vp.offset);
2086 break;
2087 case VK_STATE_BIND_POINT_RASTER:
2088 cmd_buffer->rs_state = (struct anv_dynamic_rs_state *) dynamicState;
2089 cmd_buffer->dirty |= ANV_CMD_BUFFER_RS_DIRTY;
2090 break;
2091 case VK_STATE_BIND_POINT_COLOR_BLEND:
2092 case VK_STATE_BIND_POINT_DEPTH_STENCIL:
2093 break;
2094 default:
2095 break;
2096 };
2097 }
2098
2099 void VKAPI vkCmdBindDescriptorSets(
2100 VkCmdBuffer cmdBuffer,
2101 VkPipelineBindPoint pipelineBindPoint,
2102 uint32_t firstSet,
2103 uint32_t setCount,
2104 const VkDescriptorSet* pDescriptorSets,
2105 uint32_t dynamicOffsetCount,
2106 const uint32_t* pDynamicOffsets)
2107 {
2108 struct anv_cmd_buffer *cmd_buffer = (struct anv_cmd_buffer *) cmdBuffer;
2109
2110 /* What are the semantics for setting descriptor sets? Assuming that
2111 * setting preserves lower sets and invalidate higher sets. This means that
2112 * we can set the number of active sets to firstSet + setCount.
2113 */
2114
2115 for (uint32_t i = 0; i < setCount; i++)
2116 cmd_buffer->descriptor_sets[firstSet + i] =
2117 (struct anv_descriptor_set *) pDescriptorSets[i];
2118
2119 cmd_buffer->num_descriptor_sets = firstSet + setCount;
2120 cmd_buffer->dirty |= ANV_CMD_BUFFER_DESCRIPTOR_SET_DIRTY;
2121 }
2122
2123 void VKAPI vkCmdBindIndexBuffer(
2124 VkCmdBuffer cmdBuffer,
2125 VkBuffer _buffer,
2126 VkDeviceSize offset,
2127 VkIndexType indexType)
2128 {
2129 struct anv_cmd_buffer *cmd_buffer = (struct anv_cmd_buffer *) cmdBuffer;
2130 struct anv_buffer *buffer = (struct anv_buffer *) _buffer;
2131
2132 static const uint32_t vk_to_gen_index_type[] = {
2133 [VK_INDEX_TYPE_UINT8] = INDEX_BYTE,
2134 [VK_INDEX_TYPE_UINT16] = INDEX_WORD,
2135 [VK_INDEX_TYPE_UINT32] = INDEX_DWORD,
2136 };
2137
2138 anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_INDEX_BUFFER,
2139 .IndexFormat = vk_to_gen_index_type[indexType],
2140 .MemoryObjectControlState = 0,
2141 .BufferStartingAddress = { buffer->bo, buffer->offset + offset },
2142 .BufferSize = buffer->size - offset);
2143 }
2144
2145 void VKAPI vkCmdBindVertexBuffers(
2146 VkCmdBuffer cmdBuffer,
2147 uint32_t startBinding,
2148 uint32_t bindingCount,
2149 const VkBuffer* pBuffers,
2150 const VkDeviceSize* pOffsets)
2151 {
2152 struct anv_cmd_buffer *cmd_buffer = (struct anv_cmd_buffer *) cmdBuffer;
2153
2154 /* We have to defer setting up vertex buffer since we need the buffer
2155 * stride from the pipeline. */
2156
2157 for (uint32_t i = 0; i < bindingCount; i++) {
2158 cmd_buffer->vb[startBinding + i].buffer = (struct anv_buffer *) pBuffers[i];
2159 cmd_buffer->vb[startBinding + i].offset = pOffsets[i];
2160 cmd_buffer->vb_dirty |= 1 << (startBinding + i);
2161 }
2162 }
2163
2164 static void
2165 flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer)
2166 {
2167 struct anv_pipeline_layout *layout = cmd_buffer->pipeline->layout;
2168 struct anv_framebuffer *framebuffer = cmd_buffer->framebuffer;
2169
2170 for (uint32_t s = 0; s < VK_NUM_SHADER_STAGE; s++) {
2171
2172 uint32_t bias = s == VK_SHADER_STAGE_FRAGMENT ? MAX_RTS : 0;
2173 uint32_t binding_table_length, *table;
2174 struct anv_state table_state;
2175
2176 if (layout)
2177 binding_table_length = layout->stage[s].surface_count + bias;
2178 else if (s == VK_SHADER_STAGE_FRAGMENT)
2179 binding_table_length = framebuffer->color_attachment_count;
2180 else
2181 binding_table_length = 0;
2182
2183 if (binding_table_length > 0)
2184 table_state = anv_state_stream_alloc(&cmd_buffer->surface_state_stream,
2185 binding_table_length * 4, 32);
2186 table = table_state.map;
2187
2188 if (s == VK_SHADER_STAGE_FRAGMENT) {
2189 for (uint32_t i = 0; i < framebuffer->color_attachment_count; i++) {
2190 struct anv_surface_view *view = framebuffer->color_attachments[i];
2191 table[i] = view->surface_state.offset;
2192
2193 /* Don't write the reloc back to the surface state. We do that at
2194 * submit time. Surface address is dwords 8-9. */
2195 anv_reloc_list_add(&cmd_buffer->batch.surf_relocs,
2196 view->surface_state.offset + 8 * sizeof(int32_t),
2197 view->bo, view->offset);
2198 }
2199 }
2200
2201 if (layout) {
2202 for (uint32_t i = 0; i < layout->stage[s].surface_count; i++) {
2203 struct anv_pipeline_layout_entry *e = &layout->stage[s].surface_entries[i];
2204 struct anv_surface_view *view;
2205
2206 switch (e->type) {
2207 case VK_DESCRIPTOR_TYPE_SAMPLER:
2208 unreachable("sampler-only descriptor in the surface entries");
2209 break;
2210 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
2211 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
2212 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
2213 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
2214 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
2215 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
2216 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
2217 view = cmd_buffer->descriptor_sets[e->set]->descriptors[e->index].view;
2218 table[bias + i] = view->surface_state.offset;
2219 anv_reloc_list_add(&cmd_buffer->batch.surf_relocs,
2220 view->surface_state.offset + 8 * sizeof(int32_t),
2221 view->bo, view->offset);
2222 break;
2223
2224 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
2225 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
2226 break;
2227 default:
2228 break;
2229 }
2230 }
2231 }
2232
2233 /* The binding table pointer commands all have the same structure, only
2234 * the opcode differs.
2235 */
2236 static const uint32_t binding_table_opcodes[] = {
2237 [VK_SHADER_STAGE_VERTEX] = 38,
2238 [VK_SHADER_STAGE_TESS_CONTROL] = 39,
2239 [VK_SHADER_STAGE_TESS_EVALUATION] = 40,
2240 [VK_SHADER_STAGE_GEOMETRY] = 41,
2241 [VK_SHADER_STAGE_FRAGMENT] = 42,
2242 [VK_SHADER_STAGE_COMPUTE] = 0,
2243 };
2244
2245 if (binding_table_length > 0)
2246 anv_batch_emit(&cmd_buffer->batch,
2247 GEN8_3DSTATE_BINDING_TABLE_POINTERS_VS,
2248 ._3DCommandSubOpcode = binding_table_opcodes[s],
2249 .PointertoVSBindingTable = table_state.offset);
2250
2251
2252 if (layout && layout->stage[s].sampler_count > 0) {
2253 struct anv_state sampler_state;
2254
2255 sampler_state = anv_state_stream_alloc(&cmd_buffer->dynamic_state_stream,
2256 layout->stage[s].sampler_count * 16, 32);
2257 for (uint32_t i = 0; i < layout->stage[s].sampler_count; i++) {
2258 struct anv_pipeline_layout_entry *e = &layout->stage[s].sampler_entries[i];
2259 struct anv_sampler *sampler;
2260
2261 switch (e->type) {
2262 case VK_DESCRIPTOR_TYPE_SAMPLER:
2263 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
2264 sampler =
2265 cmd_buffer->descriptor_sets[e->set]->descriptors[e->index].sampler;
2266 break;
2267 default:
2268 unreachable("non-sampler descriptor in sampler entries");
2269 break;
2270 }
2271
2272 memcpy(sampler_state.map + i * 16, sampler->state, sizeof(sampler->state));
2273 }
2274
2275 static const uint32_t sampler_state_opcodes[] = {
2276 [VK_SHADER_STAGE_VERTEX] = 43,
2277 [VK_SHADER_STAGE_TESS_CONTROL] = 44, /* HS */
2278 [VK_SHADER_STAGE_TESS_EVALUATION] = 45, /* DS */
2279 [VK_SHADER_STAGE_GEOMETRY] = 46,
2280 [VK_SHADER_STAGE_FRAGMENT] = 47,
2281 [VK_SHADER_STAGE_COMPUTE] = 0,
2282 };
2283
2284 anv_batch_emit(&cmd_buffer->batch,
2285 GEN8_3DSTATE_SAMPLER_STATE_POINTERS_VS,
2286 ._3DCommandSubOpcode = sampler_state_opcodes[s],
2287 .PointertoVSSamplerState = sampler_state.offset);
2288 }
2289 }
2290 }
2291
2292 static void
2293 anv_cmd_buffer_flush_state(struct anv_cmd_buffer *cmd_buffer)
2294 {
2295 struct anv_pipeline *pipeline = cmd_buffer->pipeline;
2296 const uint32_t num_buffers = __builtin_popcount(cmd_buffer->vb_dirty);
2297 const uint32_t num_dwords = 1 + num_buffers * 4;
2298 uint32_t *p;
2299
2300 if (cmd_buffer->vb_dirty) {
2301 p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
2302 GEN8_3DSTATE_VERTEX_BUFFERS);
2303 uint32_t vb, i = 0;
2304 for_each_bit(vb, cmd_buffer->vb_dirty) {
2305 struct anv_buffer *buffer = cmd_buffer->vb[vb].buffer;
2306 uint32_t offset = cmd_buffer->vb[vb].offset;
2307
2308 struct GEN8_VERTEX_BUFFER_STATE state = {
2309 .VertexBufferIndex = vb,
2310 .MemoryObjectControlState = 0,
2311 .AddressModifyEnable = true,
2312 .BufferPitch = pipeline->binding_stride[vb],
2313 .BufferStartingAddress = { buffer->bo, buffer->offset + offset },
2314 .BufferSize = buffer->size - offset
2315 };
2316
2317 GEN8_VERTEX_BUFFER_STATE_pack(&cmd_buffer->batch, &p[1 + i * 4], &state);
2318 i++;
2319 }
2320 }
2321
2322 if (cmd_buffer->dirty & ANV_CMD_BUFFER_PIPELINE_DIRTY)
2323 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
2324
2325 if (cmd_buffer->dirty & ANV_CMD_BUFFER_DESCRIPTOR_SET_DIRTY)
2326 flush_descriptor_sets(cmd_buffer);
2327
2328 if (cmd_buffer->dirty & (ANV_CMD_BUFFER_PIPELINE_DIRTY | ANV_CMD_BUFFER_RS_DIRTY))
2329 anv_batch_emit_merge(&cmd_buffer->batch,
2330 cmd_buffer->rs_state->state_sf, pipeline->state_sf);
2331
2332 cmd_buffer->vb_dirty = 0;
2333 cmd_buffer->dirty = 0;
2334 }
2335
2336 void VKAPI vkCmdDraw(
2337 VkCmdBuffer cmdBuffer,
2338 uint32_t firstVertex,
2339 uint32_t vertexCount,
2340 uint32_t firstInstance,
2341 uint32_t instanceCount)
2342 {
2343 struct anv_cmd_buffer *cmd_buffer = (struct anv_cmd_buffer *) cmdBuffer;
2344
2345 anv_cmd_buffer_flush_state(cmd_buffer);
2346
2347 anv_batch_emit(&cmd_buffer->batch, GEN8_3DPRIMITIVE,
2348 .VertexAccessType = SEQUENTIAL,
2349 .VertexCountPerInstance = vertexCount,
2350 .StartVertexLocation = firstVertex,
2351 .InstanceCount = instanceCount,
2352 .StartInstanceLocation = firstInstance,
2353 .BaseVertexLocation = 0);
2354 }
2355
2356 void VKAPI vkCmdDrawIndexed(
2357 VkCmdBuffer cmdBuffer,
2358 uint32_t firstIndex,
2359 uint32_t indexCount,
2360 int32_t vertexOffset,
2361 uint32_t firstInstance,
2362 uint32_t instanceCount)
2363 {
2364 struct anv_cmd_buffer *cmd_buffer = (struct anv_cmd_buffer *) cmdBuffer;
2365
2366 anv_cmd_buffer_flush_state(cmd_buffer);
2367
2368 anv_batch_emit(&cmd_buffer->batch, GEN8_3DPRIMITIVE,
2369 .VertexAccessType = RANDOM,
2370 .VertexCountPerInstance = indexCount,
2371 .StartVertexLocation = firstIndex,
2372 .InstanceCount = instanceCount,
2373 .StartInstanceLocation = firstInstance,
2374 .BaseVertexLocation = 0);
2375 }
2376
2377 static void
2378 anv_batch_lrm(struct anv_batch *batch,
2379 uint32_t reg, struct anv_bo *bo, uint32_t offset)
2380 {
2381 anv_batch_emit(batch, GEN8_MI_LOAD_REGISTER_MEM,
2382 .RegisterAddress = reg,
2383 .MemoryAddress = { bo, offset });
2384 }
2385
2386 static void
2387 anv_batch_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
2388 {
2389 anv_batch_emit(batch, GEN8_MI_LOAD_REGISTER_IMM,
2390 .RegisterOffset = reg,
2391 .DataDWord = imm);
2392 }
2393
2394 /* Auto-Draw / Indirect Registers */
2395 #define GEN7_3DPRIM_END_OFFSET 0x2420
2396 #define GEN7_3DPRIM_START_VERTEX 0x2430
2397 #define GEN7_3DPRIM_VERTEX_COUNT 0x2434
2398 #define GEN7_3DPRIM_INSTANCE_COUNT 0x2438
2399 #define GEN7_3DPRIM_START_INSTANCE 0x243C
2400 #define GEN7_3DPRIM_BASE_VERTEX 0x2440
2401
2402 void VKAPI vkCmdDrawIndirect(
2403 VkCmdBuffer cmdBuffer,
2404 VkBuffer _buffer,
2405 VkDeviceSize offset,
2406 uint32_t count,
2407 uint32_t stride)
2408 {
2409 struct anv_cmd_buffer *cmd_buffer = (struct anv_cmd_buffer *) cmdBuffer;
2410 struct anv_buffer *buffer = (struct anv_buffer *) _buffer;
2411 struct anv_bo *bo = buffer->bo;
2412 uint32_t bo_offset = buffer->offset + offset;
2413
2414 anv_cmd_buffer_flush_state(cmd_buffer);
2415
2416 anv_batch_lrm(&cmd_buffer->batch, GEN7_3DPRIM_VERTEX_COUNT, bo, bo_offset);
2417 anv_batch_lrm(&cmd_buffer->batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
2418 anv_batch_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_VERTEX, bo, bo_offset + 8);
2419 anv_batch_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 12);
2420 anv_batch_lri(&cmd_buffer->batch, GEN7_3DPRIM_BASE_VERTEX, 0);
2421
2422 anv_batch_emit(&cmd_buffer->batch, GEN8_3DPRIMITIVE,
2423 .IndirectParameterEnable = true,
2424 .VertexAccessType = SEQUENTIAL);
2425 }
2426
2427 void VKAPI vkCmdDrawIndexedIndirect(
2428 VkCmdBuffer cmdBuffer,
2429 VkBuffer _buffer,
2430 VkDeviceSize offset,
2431 uint32_t count,
2432 uint32_t stride)
2433 {
2434 struct anv_cmd_buffer *cmd_buffer = (struct anv_cmd_buffer *) cmdBuffer;
2435 struct anv_buffer *buffer = (struct anv_buffer *) _buffer;
2436 struct anv_bo *bo = buffer->bo;
2437 uint32_t bo_offset = buffer->offset + offset;
2438
2439 anv_cmd_buffer_flush_state(cmd_buffer);
2440
2441 anv_batch_lrm(&cmd_buffer->batch, GEN7_3DPRIM_VERTEX_COUNT, bo, bo_offset);
2442 anv_batch_lrm(&cmd_buffer->batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
2443 anv_batch_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_VERTEX, bo, bo_offset + 8);
2444 anv_batch_lrm(&cmd_buffer->batch, GEN7_3DPRIM_BASE_VERTEX, bo, bo_offset + 12);
2445 anv_batch_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 16);
2446
2447 anv_batch_emit(&cmd_buffer->batch, GEN8_3DPRIMITIVE,
2448 .IndirectParameterEnable = true,
2449 .VertexAccessType = RANDOM);
2450 }
2451
2452 void VKAPI vkCmdDispatch(
2453 VkCmdBuffer cmdBuffer,
2454 uint32_t x,
2455 uint32_t y,
2456 uint32_t z)
2457 {
2458 stub();
2459 }
2460
2461 void VKAPI vkCmdDispatchIndirect(
2462 VkCmdBuffer cmdBuffer,
2463 VkBuffer buffer,
2464 VkDeviceSize offset)
2465 {
2466 stub();
2467 }
2468
2469 void VKAPI vkCmdSetEvent(
2470 VkCmdBuffer cmdBuffer,
2471 VkEvent event,
2472 VkPipeEvent pipeEvent)
2473 {
2474 stub();
2475 }
2476
2477 void VKAPI vkCmdResetEvent(
2478 VkCmdBuffer cmdBuffer,
2479 VkEvent event,
2480 VkPipeEvent pipeEvent)
2481 {
2482 stub();
2483 }
2484
2485 void VKAPI vkCmdWaitEvents(
2486 VkCmdBuffer cmdBuffer,
2487 VkWaitEvent waitEvent,
2488 uint32_t eventCount,
2489 const VkEvent* pEvents,
2490 uint32_t memBarrierCount,
2491 const void** ppMemBarriers)
2492 {
2493 stub();
2494 }
2495
2496 void VKAPI vkCmdPipelineBarrier(
2497 VkCmdBuffer cmdBuffer,
2498 VkWaitEvent waitEvent,
2499 uint32_t pipeEventCount,
2500 const VkPipeEvent* pPipeEvents,
2501 uint32_t memBarrierCount,
2502 const void** ppMemBarriers)
2503 {
2504 stub();
2505 }
2506
2507 static void
2508 anv_batch_emit_ps_depth_count(struct anv_batch *batch,
2509 struct anv_bo *bo, uint32_t offset)
2510 {
2511 anv_batch_emit(batch, GEN8_PIPE_CONTROL,
2512 .DestinationAddressType = DAT_PPGTT,
2513 .PostSyncOperation = WritePSDepthCount,
2514 .Address = { bo, offset }); /* FIXME: This is only lower 32 bits */
2515 }
2516
2517 void VKAPI vkCmdBeginQuery(
2518 VkCmdBuffer cmdBuffer,
2519 VkQueryPool queryPool,
2520 uint32_t slot,
2521 VkQueryControlFlags flags)
2522 {
2523 struct anv_cmd_buffer *cmd_buffer = (struct anv_cmd_buffer *) cmdBuffer;
2524 struct anv_query_pool *pool = (struct anv_query_pool *) queryPool;
2525
2526 switch (pool->type) {
2527 case VK_QUERY_TYPE_OCCLUSION:
2528 anv_batch_emit_ps_depth_count(&cmd_buffer->batch, &pool->bo, slot * 16);
2529 break;
2530
2531 case VK_QUERY_TYPE_PIPELINE_STATISTICS:
2532 break;
2533
2534 default:
2535 break;
2536 }
2537 }
2538
2539 void VKAPI vkCmdEndQuery(
2540 VkCmdBuffer cmdBuffer,
2541 VkQueryPool queryPool,
2542 uint32_t slot)
2543 {
2544 struct anv_cmd_buffer *cmd_buffer = (struct anv_cmd_buffer *) cmdBuffer;
2545 struct anv_query_pool *pool = (struct anv_query_pool *) queryPool;
2546
2547 switch (pool->type) {
2548 case VK_QUERY_TYPE_OCCLUSION:
2549 anv_batch_emit_ps_depth_count(&cmd_buffer->batch, &pool->bo, slot * 16 + 8);
2550 break;
2551
2552 case VK_QUERY_TYPE_PIPELINE_STATISTICS:
2553 break;
2554
2555 default:
2556 break;
2557 }
2558 }
2559
2560 void VKAPI vkCmdResetQueryPool(
2561 VkCmdBuffer cmdBuffer,
2562 VkQueryPool queryPool,
2563 uint32_t startQuery,
2564 uint32_t queryCount)
2565 {
2566 stub();
2567 }
2568
2569 #define TIMESTAMP 0x44070
2570
2571 void VKAPI vkCmdWriteTimestamp(
2572 VkCmdBuffer cmdBuffer,
2573 VkTimestampType timestampType,
2574 VkBuffer destBuffer,
2575 VkDeviceSize destOffset)
2576 {
2577 struct anv_cmd_buffer *cmd_buffer = (struct anv_cmd_buffer *) cmdBuffer;
2578 struct anv_buffer *buffer = (struct anv_buffer *) destBuffer;
2579 struct anv_bo *bo = buffer->bo;
2580
2581 switch (timestampType) {
2582 case VK_TIMESTAMP_TYPE_TOP:
2583 anv_batch_emit(&cmd_buffer->batch, GEN8_MI_STORE_REGISTER_MEM,
2584 .RegisterAddress = TIMESTAMP,
2585 .MemoryAddress = { bo, buffer->offset + destOffset });
2586 break;
2587
2588 case VK_TIMESTAMP_TYPE_BOTTOM:
2589 anv_batch_emit(&cmd_buffer->batch, GEN8_PIPE_CONTROL,
2590 .DestinationAddressType = DAT_PPGTT,
2591 .PostSyncOperation = WriteTimestamp,
2592 .Address = /* FIXME: This is only lower 32 bits */
2593 { bo, buffer->offset + destOffset });
2594 break;
2595
2596 default:
2597 break;
2598 }
2599 }
2600
2601 void VKAPI vkCmdCopyQueryPoolResults(
2602 VkCmdBuffer cmdBuffer,
2603 VkQueryPool queryPool,
2604 uint32_t startQuery,
2605 uint32_t queryCount,
2606 VkBuffer destBuffer,
2607 VkDeviceSize destOffset,
2608 VkDeviceSize destStride,
2609 VkQueryResultFlags flags)
2610 {
2611 stub();
2612 }
2613
2614 void VKAPI vkCmdInitAtomicCounters(
2615 VkCmdBuffer cmdBuffer,
2616 VkPipelineBindPoint pipelineBindPoint,
2617 uint32_t startCounter,
2618 uint32_t counterCount,
2619 const uint32_t* pData)
2620 {
2621 stub();
2622 }
2623
2624 void VKAPI vkCmdLoadAtomicCounters(
2625 VkCmdBuffer cmdBuffer,
2626 VkPipelineBindPoint pipelineBindPoint,
2627 uint32_t startCounter,
2628 uint32_t counterCount,
2629 VkBuffer srcBuffer,
2630 VkDeviceSize srcOffset)
2631 {
2632 stub();
2633 }
2634
2635 void VKAPI vkCmdSaveAtomicCounters(
2636 VkCmdBuffer cmdBuffer,
2637 VkPipelineBindPoint pipelineBindPoint,
2638 uint32_t startCounter,
2639 uint32_t counterCount,
2640 VkBuffer destBuffer,
2641 VkDeviceSize destOffset)
2642 {
2643 stub();
2644 }
2645
2646 VkResult VKAPI vkCreateFramebuffer(
2647 VkDevice _device,
2648 const VkFramebufferCreateInfo* pCreateInfo,
2649 VkFramebuffer* pFramebuffer)
2650 {
2651 struct anv_device *device = (struct anv_device *) _device;
2652 struct anv_framebuffer *framebuffer;
2653
2654 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO);
2655
2656 framebuffer = anv_device_alloc(device, sizeof(*framebuffer), 8,
2657 VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
2658 if (framebuffer == NULL)
2659 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2660
2661 framebuffer->color_attachment_count = pCreateInfo->colorAttachmentCount;
2662 for (uint32_t i = 0; i < pCreateInfo->colorAttachmentCount; i++) {
2663 framebuffer->color_attachments[i] =
2664 (struct anv_surface_view *) pCreateInfo->pColorAttachments[i].view;
2665 }
2666
2667 if (pCreateInfo->pDepthStencilAttachment) {
2668 framebuffer->depth_stencil =
2669 (struct anv_depth_stencil_view *) pCreateInfo->pDepthStencilAttachment->view;
2670 }
2671
2672 framebuffer->sample_count = pCreateInfo->sampleCount;
2673 framebuffer->width = pCreateInfo->width;
2674 framebuffer->height = pCreateInfo->height;
2675 framebuffer->layers = pCreateInfo->layers;
2676
2677 vkCreateDynamicViewportState((VkDevice) device,
2678 &(VkDynamicVpStateCreateInfo) {
2679 .sType = VK_STRUCTURE_TYPE_DYNAMIC_VP_STATE_CREATE_INFO,
2680 .viewportAndScissorCount = 2,
2681 .pViewports = (VkViewport[]) {
2682 {
2683 .originX = 0,
2684 .originY = 0,
2685 .width = pCreateInfo->width,
2686 .height = pCreateInfo->height,
2687 .minDepth = 0,
2688 .maxDepth = 1
2689 },
2690 },
2691 .pScissors = (VkRect[]) {
2692 { { 0, 0 },
2693 { pCreateInfo->width, pCreateInfo->height } },
2694 }
2695 },
2696 &framebuffer->vp_state);
2697
2698 *pFramebuffer = (VkFramebuffer) framebuffer;
2699
2700 return VK_SUCCESS;
2701 }
2702
2703 VkResult VKAPI vkCreateRenderPass(
2704 VkDevice _device,
2705 const VkRenderPassCreateInfo* pCreateInfo,
2706 VkRenderPass* pRenderPass)
2707 {
2708 struct anv_device *device = (struct anv_device *) _device;
2709 struct anv_render_pass *pass;
2710 size_t size;
2711
2712 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO);
2713
2714 size = sizeof(*pass) +
2715 pCreateInfo->layers * sizeof(struct anv_render_pass_layer);
2716 pass = anv_device_alloc(device, size, 8,
2717 VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
2718 if (pass == NULL)
2719 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2720
2721 pass->render_area = pCreateInfo->renderArea;
2722
2723 pass->num_layers = pCreateInfo->layers;
2724
2725 pass->num_clear_layers = 0;
2726 for (uint32_t i = 0; i < pCreateInfo->layers; i++) {
2727 pass->layers[i].color_load_op = pCreateInfo->pColorLoadOps[i];
2728 pass->layers[i].clear_color = pCreateInfo->pColorLoadClearValues[i];
2729 if (pass->layers[i].color_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR)
2730 pass->num_clear_layers++;
2731 }
2732
2733 *pRenderPass = (VkRenderPass) pass;
2734
2735 return VK_SUCCESS;
2736 }
2737
2738 void VKAPI vkCmdBeginRenderPass(
2739 VkCmdBuffer cmdBuffer,
2740 const VkRenderPassBegin* pRenderPassBegin)
2741 {
2742 struct anv_cmd_buffer *cmd_buffer = (struct anv_cmd_buffer *) cmdBuffer;
2743 struct anv_render_pass *pass = (struct anv_render_pass *) pRenderPassBegin->renderPass;
2744
2745 cmd_buffer->framebuffer = (struct anv_framebuffer *) pRenderPassBegin->framebuffer;
2746 cmd_buffer->dirty |= ANV_CMD_BUFFER_DESCRIPTOR_SET_DIRTY;
2747
2748 anv_batch_emit(&cmd_buffer->batch, GEN8_3DSTATE_DRAWING_RECTANGLE,
2749 .ClippedDrawingRectangleYMin = pass->render_area.offset.y,
2750 .ClippedDrawingRectangleXMin = pass->render_area.offset.x,
2751 .ClippedDrawingRectangleYMax =
2752 pass->render_area.offset.y + pass->render_area.extent.height - 1,
2753 .ClippedDrawingRectangleXMax =
2754 pass->render_area.offset.x + pass->render_area.extent.width - 1,
2755 .DrawingRectangleOriginY = 0,
2756 .DrawingRectangleOriginX = 0);
2757
2758 anv_cmd_buffer_clear(cmd_buffer, pass);
2759 }
2760
2761 void VKAPI vkCmdEndRenderPass(
2762 VkCmdBuffer cmdBuffer,
2763 VkRenderPass renderPass)
2764 {
2765 /* Emit a flushing pipe control at the end of a pass. This is kind of a
2766 * hack but it ensures that render targets always actually get written.
2767 * Eventually, we should do flushing based on image format transitions
2768 * or something of that nature.
2769 */
2770 struct anv_cmd_buffer *cmd_buffer = (struct anv_cmd_buffer *)cmdBuffer;
2771 anv_batch_emit(&cmd_buffer->batch, GEN8_PIPE_CONTROL,
2772 .PostSyncOperation = NoWrite,
2773 .RenderTargetCacheFlushEnable = true,
2774 .InstructionCacheInvalidateEnable = true,
2775 .DepthCacheFlushEnable = true,
2776 .VFCacheInvalidationEnable = true,
2777 .TextureCacheInvalidationEnable = true,
2778 .CommandStreamerStallEnable = true);
2779
2780 stub();
2781 }