Merge remote-tracking branch 'mesa-public/master' into vulkan
[mesa.git] / src / vulkan / gen8_cmd_buffer.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "anv_private.h"
31
32 #include "gen8_pack.h"
33 #include "gen9_pack.h"
34
35 static uint32_t
36 cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer)
37 {
38 static const uint32_t push_constant_opcodes[] = {
39 [MESA_SHADER_VERTEX] = 21,
40 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
41 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
42 [MESA_SHADER_GEOMETRY] = 22,
43 [MESA_SHADER_FRAGMENT] = 23,
44 [MESA_SHADER_COMPUTE] = 0,
45 };
46
47 VkShaderStageFlags flushed = 0;
48
49 anv_foreach_stage(stage, cmd_buffer->state.push_constants_dirty) {
50 if (stage == MESA_SHADER_COMPUTE)
51 continue;
52
53 struct anv_state state = anv_cmd_buffer_push_constants(cmd_buffer, stage);
54
55 if (state.offset == 0)
56 continue;
57
58 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS),
59 ._3DCommandSubOpcode = push_constant_opcodes[stage],
60 .ConstantBody = {
61 .PointerToConstantBuffer0 = { .offset = state.offset },
62 .ConstantBuffer0ReadLength = DIV_ROUND_UP(state.alloc_size, 32),
63 });
64
65 flushed |= mesa_to_vk_shader_stage(stage);
66 }
67
68 cmd_buffer->state.push_constants_dirty &= ~flushed;
69
70 return flushed;
71 }
72
73 #if ANV_GEN == 8
74 static void
75 emit_viewport_state(struct anv_cmd_buffer *cmd_buffer,
76 uint32_t count, const VkViewport *viewports)
77 {
78 struct anv_state sf_clip_state =
79 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, count * 64, 64);
80 struct anv_state cc_state =
81 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, count * 8, 32);
82
83 for (uint32_t i = 0; i < count; i++) {
84 const VkViewport *vp = &viewports[i];
85
86 /* The gen7 state struct has just the matrix and guardband fields, the
87 * gen8 struct adds the min/max viewport fields. */
88 struct GENX(SF_CLIP_VIEWPORT) sf_clip_viewport = {
89 .ViewportMatrixElementm00 = vp->width / 2,
90 .ViewportMatrixElementm11 = vp->height / 2,
91 .ViewportMatrixElementm22 = (vp->maxDepth - vp->minDepth) / 2,
92 .ViewportMatrixElementm30 = vp->x + vp->width / 2,
93 .ViewportMatrixElementm31 = vp->y + vp->height / 2,
94 .ViewportMatrixElementm32 = (vp->maxDepth + vp->minDepth) / 2,
95 .XMinClipGuardband = -1.0f,
96 .XMaxClipGuardband = 1.0f,
97 .YMinClipGuardband = -1.0f,
98 .YMaxClipGuardband = 1.0f,
99 .XMinViewPort = vp->x,
100 .XMaxViewPort = vp->x + vp->width - 1,
101 .YMinViewPort = vp->y,
102 .YMaxViewPort = vp->y + vp->height - 1,
103 };
104
105 struct GENX(CC_VIEWPORT) cc_viewport = {
106 .MinimumDepth = vp->minDepth,
107 .MaximumDepth = vp->maxDepth
108 };
109
110 GENX(SF_CLIP_VIEWPORT_pack)(NULL, sf_clip_state.map + i * 64,
111 &sf_clip_viewport);
112 GENX(CC_VIEWPORT_pack)(NULL, cc_state.map + i * 8, &cc_viewport);
113 }
114
115 if (!cmd_buffer->device->info.has_llc) {
116 anv_state_clflush(sf_clip_state);
117 anv_state_clflush(cc_state);
118 }
119
120 anv_batch_emit(&cmd_buffer->batch,
121 GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC),
122 .CCViewportPointer = cc_state.offset);
123 anv_batch_emit(&cmd_buffer->batch,
124 GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP),
125 .SFClipViewportPointer = sf_clip_state.offset);
126 }
127
128 void
129 gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer)
130 {
131 if (cmd_buffer->state.dynamic.viewport.count > 0) {
132 emit_viewport_state(cmd_buffer, cmd_buffer->state.dynamic.viewport.count,
133 cmd_buffer->state.dynamic.viewport.viewports);
134 } else {
135 /* If viewport count is 0, this is taken to mean "use the default" */
136 emit_viewport_state(cmd_buffer, 1,
137 &(VkViewport) {
138 .x = 0.0f,
139 .y = 0.0f,
140 .width = cmd_buffer->state.framebuffer->width,
141 .height = cmd_buffer->state.framebuffer->height,
142 .minDepth = 0.0f,
143 .maxDepth = 1.0f,
144 });
145 }
146 }
147 #endif
148
149 static void
150 flush_pipeline_select_3d(struct anv_cmd_buffer *cmd_buffer)
151 {
152 if (cmd_buffer->state.current_pipeline != _3D) {
153 anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT),
154 #if ANV_GEN >= 9
155 .MaskBits = 3,
156 #endif
157 .PipelineSelection = _3D);
158 cmd_buffer->state.current_pipeline = _3D;
159 }
160 }
161
162 static void
163 cmd_buffer_flush_state(struct anv_cmd_buffer *cmd_buffer)
164 {
165 struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
166 uint32_t *p;
167
168 uint32_t vb_emit = cmd_buffer->state.vb_dirty & pipeline->vb_used;
169
170 assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0);
171
172 flush_pipeline_select_3d(cmd_buffer);
173
174 if (vb_emit) {
175 const uint32_t num_buffers = __builtin_popcount(vb_emit);
176 const uint32_t num_dwords = 1 + num_buffers * 4;
177
178 p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
179 GENX(3DSTATE_VERTEX_BUFFERS));
180 uint32_t vb, i = 0;
181 for_each_bit(vb, vb_emit) {
182 struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer;
183 uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset;
184
185 struct GENX(VERTEX_BUFFER_STATE) state = {
186 .VertexBufferIndex = vb,
187 .MemoryObjectControlState = GENX(MOCS),
188 .AddressModifyEnable = true,
189 .BufferPitch = pipeline->binding_stride[vb],
190 .BufferStartingAddress = { buffer->bo, buffer->offset + offset },
191 .BufferSize = buffer->size - offset
192 };
193
194 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state);
195 i++;
196 }
197 }
198
199 if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_PIPELINE) {
200 /* If somebody compiled a pipeline after starting a command buffer the
201 * scratch bo may have grown since we started this cmd buffer (and
202 * emitted STATE_BASE_ADDRESS). If we're binding that pipeline now,
203 * reemit STATE_BASE_ADDRESS so that we use the bigger scratch bo. */
204 if (cmd_buffer->state.scratch_size < pipeline->total_scratch)
205 anv_cmd_buffer_emit_state_base_address(cmd_buffer);
206
207 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
208 }
209
210 /* We emit the binding tables and sampler tables first, then emit push
211 * constants and then finally emit binding table and sampler table
212 * pointers. It has to happen in this order, since emitting the binding
213 * tables may change the push constants (in case of storage images). After
214 * emitting push constants, on SKL+ we have to emit the corresponding
215 * 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect.
216 */
217 uint32_t dirty = 0;
218 if (cmd_buffer->state.descriptors_dirty)
219 dirty = gen7_cmd_buffer_flush_descriptor_sets(cmd_buffer);
220
221 if (cmd_buffer->state.push_constants_dirty)
222 dirty |= cmd_buffer_flush_push_constants(cmd_buffer);
223
224 if (dirty)
225 gen7_cmd_buffer_emit_descriptor_pointers(cmd_buffer, dirty);
226
227 if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT)
228 gen8_cmd_buffer_emit_viewport(cmd_buffer);
229
230 if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_DYNAMIC_SCISSOR)
231 gen7_cmd_buffer_emit_scissor(cmd_buffer);
232
233 if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE |
234 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH)) {
235 uint32_t sf_dw[GENX(3DSTATE_SF_length)];
236 struct GENX(3DSTATE_SF) sf = {
237 GENX(3DSTATE_SF_header),
238 .LineWidth = cmd_buffer->state.dynamic.line_width,
239 };
240 GENX(3DSTATE_SF_pack)(NULL, sf_dw, &sf);
241 /* FIXME: gen9.fs */
242 anv_batch_emit_merge(&cmd_buffer->batch, sf_dw, pipeline->gen8.sf);
243 }
244
245 if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE |
246 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS)){
247 bool enable_bias = cmd_buffer->state.dynamic.depth_bias.bias != 0.0f ||
248 cmd_buffer->state.dynamic.depth_bias.slope != 0.0f;
249
250 uint32_t raster_dw[GENX(3DSTATE_RASTER_length)];
251 struct GENX(3DSTATE_RASTER) raster = {
252 GENX(3DSTATE_RASTER_header),
253 .GlobalDepthOffsetEnableSolid = enable_bias,
254 .GlobalDepthOffsetEnableWireframe = enable_bias,
255 .GlobalDepthOffsetEnablePoint = enable_bias,
256 .GlobalDepthOffsetConstant = cmd_buffer->state.dynamic.depth_bias.bias,
257 .GlobalDepthOffsetScale = cmd_buffer->state.dynamic.depth_bias.slope,
258 .GlobalDepthOffsetClamp = cmd_buffer->state.dynamic.depth_bias.clamp
259 };
260 GENX(3DSTATE_RASTER_pack)(NULL, raster_dw, &raster);
261 anv_batch_emit_merge(&cmd_buffer->batch, raster_dw,
262 pipeline->gen8.raster);
263 }
264
265 /* Stencil reference values moved from COLOR_CALC_STATE in gen8 to
266 * 3DSTATE_WM_DEPTH_STENCIL in gen9. That means the dirty bits gets split
267 * across different state packets for gen8 and gen9. We handle that by
268 * using a big old #if switch here.
269 */
270 #if ANV_GEN == 8
271 if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS |
272 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE)) {
273 struct anv_state cc_state =
274 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
275 GEN8_COLOR_CALC_STATE_length * 4,
276 64);
277 struct GEN8_COLOR_CALC_STATE cc = {
278 .BlendConstantColorRed = cmd_buffer->state.dynamic.blend_constants[0],
279 .BlendConstantColorGreen = cmd_buffer->state.dynamic.blend_constants[1],
280 .BlendConstantColorBlue = cmd_buffer->state.dynamic.blend_constants[2],
281 .BlendConstantColorAlpha = cmd_buffer->state.dynamic.blend_constants[3],
282 .StencilReferenceValue =
283 cmd_buffer->state.dynamic.stencil_reference.front,
284 .BackFaceStencilReferenceValue =
285 cmd_buffer->state.dynamic.stencil_reference.back,
286 };
287 GEN8_COLOR_CALC_STATE_pack(NULL, cc_state.map, &cc);
288
289 if (!cmd_buffer->device->info.has_llc)
290 anv_state_clflush(cc_state);
291
292 anv_batch_emit(&cmd_buffer->batch,
293 GEN8_3DSTATE_CC_STATE_POINTERS,
294 .ColorCalcStatePointer = cc_state.offset,
295 .ColorCalcStatePointerValid = true);
296 }
297
298 if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE |
299 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK |
300 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK)) {
301 uint32_t wm_depth_stencil_dw[GEN8_3DSTATE_WM_DEPTH_STENCIL_length];
302
303 struct GEN8_3DSTATE_WM_DEPTH_STENCIL wm_depth_stencil = {
304 GEN8_3DSTATE_WM_DEPTH_STENCIL_header,
305
306 /* Is this what we need to do? */
307 .StencilBufferWriteEnable =
308 cmd_buffer->state.dynamic.stencil_write_mask.front != 0,
309
310 .StencilTestMask =
311 cmd_buffer->state.dynamic.stencil_compare_mask.front & 0xff,
312 .StencilWriteMask =
313 cmd_buffer->state.dynamic.stencil_write_mask.front & 0xff,
314
315 .BackfaceStencilTestMask =
316 cmd_buffer->state.dynamic.stencil_compare_mask.back & 0xff,
317 .BackfaceStencilWriteMask =
318 cmd_buffer->state.dynamic.stencil_write_mask.back & 0xff,
319 };
320 GEN8_3DSTATE_WM_DEPTH_STENCIL_pack(NULL, wm_depth_stencil_dw,
321 &wm_depth_stencil);
322
323 anv_batch_emit_merge(&cmd_buffer->batch, wm_depth_stencil_dw,
324 pipeline->gen8.wm_depth_stencil);
325 }
326 #else
327 if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS) {
328 struct anv_state cc_state =
329 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
330 GEN9_COLOR_CALC_STATE_length * 4,
331 64);
332 struct GEN9_COLOR_CALC_STATE cc = {
333 .BlendConstantColorRed = cmd_buffer->state.dynamic.blend_constants[0],
334 .BlendConstantColorGreen = cmd_buffer->state.dynamic.blend_constants[1],
335 .BlendConstantColorBlue = cmd_buffer->state.dynamic.blend_constants[2],
336 .BlendConstantColorAlpha = cmd_buffer->state.dynamic.blend_constants[3],
337 };
338 GEN9_COLOR_CALC_STATE_pack(NULL, cc_state.map, &cc);
339
340 if (!cmd_buffer->device->info.has_llc)
341 anv_state_clflush(cc_state);
342
343 anv_batch_emit(&cmd_buffer->batch,
344 GEN9_3DSTATE_CC_STATE_POINTERS,
345 .ColorCalcStatePointer = cc_state.offset,
346 .ColorCalcStatePointerValid = true);
347 }
348
349 if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE |
350 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK |
351 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK |
352 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE)) {
353 uint32_t dwords[GEN9_3DSTATE_WM_DEPTH_STENCIL_length];
354 struct anv_dynamic_state *d = &cmd_buffer->state.dynamic;
355 struct GEN9_3DSTATE_WM_DEPTH_STENCIL wm_depth_stencil = {
356 GEN9_3DSTATE_WM_DEPTH_STENCIL_header,
357
358 .StencilBufferWriteEnable = d->stencil_write_mask.front != 0,
359
360 .StencilTestMask = d->stencil_compare_mask.front & 0xff,
361 .StencilWriteMask = d->stencil_write_mask.front & 0xff,
362
363 .BackfaceStencilTestMask = d->stencil_compare_mask.back & 0xff,
364 .BackfaceStencilWriteMask = d->stencil_write_mask.back & 0xff,
365
366 .StencilReferenceValue = d->stencil_reference.front,
367 .BackfaceStencilReferenceValue = d->stencil_reference.back
368 };
369 GEN9_3DSTATE_WM_DEPTH_STENCIL_pack(NULL, dwords, &wm_depth_stencil);
370
371 anv_batch_emit_merge(&cmd_buffer->batch, dwords,
372 pipeline->gen9.wm_depth_stencil);
373 }
374 #endif
375
376 if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE |
377 ANV_CMD_DIRTY_INDEX_BUFFER)) {
378 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_VF),
379 .IndexedDrawCutIndexEnable = pipeline->primitive_restart,
380 .CutIndex = cmd_buffer->state.restart_index,
381 );
382 }
383
384 cmd_buffer->state.vb_dirty &= ~vb_emit;
385 cmd_buffer->state.dirty = 0;
386 }
387
388 void genX(CmdDraw)(
389 VkCommandBuffer commandBuffer,
390 uint32_t vertexCount,
391 uint32_t instanceCount,
392 uint32_t firstVertex,
393 uint32_t firstInstance)
394 {
395 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
396
397 cmd_buffer_flush_state(cmd_buffer);
398
399 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE),
400 .VertexAccessType = SEQUENTIAL,
401 .VertexCountPerInstance = vertexCount,
402 .StartVertexLocation = firstVertex,
403 .InstanceCount = instanceCount,
404 .StartInstanceLocation = firstInstance,
405 .BaseVertexLocation = 0);
406 }
407
408 void genX(CmdDrawIndexed)(
409 VkCommandBuffer commandBuffer,
410 uint32_t indexCount,
411 uint32_t instanceCount,
412 uint32_t firstIndex,
413 int32_t vertexOffset,
414 uint32_t firstInstance)
415 {
416 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
417
418 cmd_buffer_flush_state(cmd_buffer);
419
420 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE),
421 .VertexAccessType = RANDOM,
422 .VertexCountPerInstance = indexCount,
423 .StartVertexLocation = firstIndex,
424 .InstanceCount = instanceCount,
425 .StartInstanceLocation = firstInstance,
426 .BaseVertexLocation = vertexOffset);
427 }
428
429 static void
430 emit_lrm(struct anv_batch *batch,
431 uint32_t reg, struct anv_bo *bo, uint32_t offset)
432 {
433 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM),
434 .RegisterAddress = reg,
435 .MemoryAddress = { bo, offset });
436 }
437
438 static void
439 emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
440 {
441 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM),
442 .RegisterOffset = reg,
443 .DataDWord = imm);
444 }
445
446 /* Auto-Draw / Indirect Registers */
447 #define GEN7_3DPRIM_END_OFFSET 0x2420
448 #define GEN7_3DPRIM_START_VERTEX 0x2430
449 #define GEN7_3DPRIM_VERTEX_COUNT 0x2434
450 #define GEN7_3DPRIM_INSTANCE_COUNT 0x2438
451 #define GEN7_3DPRIM_START_INSTANCE 0x243C
452 #define GEN7_3DPRIM_BASE_VERTEX 0x2440
453
454 void genX(CmdDrawIndirect)(
455 VkCommandBuffer commandBuffer,
456 VkBuffer _buffer,
457 VkDeviceSize offset,
458 uint32_t drawCount,
459 uint32_t stride)
460 {
461 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
462 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
463 struct anv_bo *bo = buffer->bo;
464 uint32_t bo_offset = buffer->offset + offset;
465
466 cmd_buffer_flush_state(cmd_buffer);
467
468 emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_VERTEX_COUNT, bo, bo_offset);
469 emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
470 emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_VERTEX, bo, bo_offset + 8);
471 emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 12);
472 emit_lri(&cmd_buffer->batch, GEN7_3DPRIM_BASE_VERTEX, 0);
473
474 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE),
475 .IndirectParameterEnable = true,
476 .VertexAccessType = SEQUENTIAL);
477 }
478
479 void genX(CmdBindIndexBuffer)(
480 VkCommandBuffer commandBuffer,
481 VkBuffer _buffer,
482 VkDeviceSize offset,
483 VkIndexType indexType)
484 {
485 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
486 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
487
488 static const uint32_t vk_to_gen_index_type[] = {
489 [VK_INDEX_TYPE_UINT16] = INDEX_WORD,
490 [VK_INDEX_TYPE_UINT32] = INDEX_DWORD,
491 };
492
493 static const uint32_t restart_index_for_type[] = {
494 [VK_INDEX_TYPE_UINT16] = UINT16_MAX,
495 [VK_INDEX_TYPE_UINT32] = UINT32_MAX,
496 };
497
498 cmd_buffer->state.restart_index = restart_index_for_type[indexType];
499
500 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_INDEX_BUFFER),
501 .IndexFormat = vk_to_gen_index_type[indexType],
502 .MemoryObjectControlState = GENX(MOCS),
503 .BufferStartingAddress = { buffer->bo, buffer->offset + offset },
504 .BufferSize = buffer->size - offset);
505
506 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_INDEX_BUFFER;
507 }
508
509 static VkResult
510 flush_compute_descriptor_set(struct anv_cmd_buffer *cmd_buffer)
511 {
512 struct anv_device *device = cmd_buffer->device;
513 struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
514 struct anv_state surfaces = { 0, }, samplers = { 0, };
515 VkResult result;
516
517 result = anv_cmd_buffer_emit_samplers(cmd_buffer,
518 MESA_SHADER_COMPUTE, &samplers);
519 if (result != VK_SUCCESS)
520 return result;
521 result = anv_cmd_buffer_emit_binding_table(cmd_buffer,
522 MESA_SHADER_COMPUTE, &surfaces);
523 if (result != VK_SUCCESS)
524 return result;
525
526 struct anv_state push_state = anv_cmd_buffer_cs_push_constants(cmd_buffer);
527
528 const struct brw_cs_prog_data *cs_prog_data = &pipeline->cs_prog_data;
529 const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
530
531 unsigned local_id_dwords = cs_prog_data->local_invocation_id_regs * 8;
532 unsigned push_constant_data_size =
533 (prog_data->nr_params + local_id_dwords) * 4;
534 unsigned reg_aligned_constant_size = ALIGN(push_constant_data_size, 32);
535 unsigned push_constant_regs = reg_aligned_constant_size / 32;
536
537 if (push_state.alloc_size) {
538 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD),
539 .CURBETotalDataLength = push_state.alloc_size,
540 .CURBEDataStartAddress = push_state.offset);
541 }
542
543 struct anv_state state =
544 anv_state_pool_emit(&device->dynamic_state_pool,
545 GENX(INTERFACE_DESCRIPTOR_DATA), 64,
546 .KernelStartPointer = pipeline->cs_simd,
547 .KernelStartPointerHigh = 0,
548 .BindingTablePointer = surfaces.offset,
549 .BindingTableEntryCount = 0,
550 .SamplerStatePointer = samplers.offset,
551 .SamplerCount = 0,
552 .ConstantIndirectURBEntryReadLength = push_constant_regs,
553 .ConstantURBEntryReadOffset = 0,
554 .BarrierEnable = cs_prog_data->uses_barrier,
555 .NumberofThreadsinGPGPUThreadGroup =
556 pipeline->cs_thread_width_max);
557
558 uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
559 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD),
560 .InterfaceDescriptorTotalLength = size,
561 .InterfaceDescriptorDataStartAddress = state.offset);
562
563 return VK_SUCCESS;
564 }
565
566 static void
567 cmd_buffer_flush_compute_state(struct anv_cmd_buffer *cmd_buffer)
568 {
569 struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
570 VkResult result;
571
572 assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT);
573
574 if (cmd_buffer->state.current_pipeline != GPGPU) {
575 anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT),
576 #if ANV_GEN >= 9
577 .MaskBits = 3,
578 #endif
579 .PipelineSelection = GPGPU);
580 cmd_buffer->state.current_pipeline = GPGPU;
581 }
582
583 if (cmd_buffer->state.compute_dirty & ANV_CMD_DIRTY_PIPELINE)
584 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
585
586 if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
587 (cmd_buffer->state.compute_dirty & ANV_CMD_DIRTY_PIPELINE)) {
588 result = flush_compute_descriptor_set(cmd_buffer);
589 assert(result == VK_SUCCESS);
590 cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
591 }
592
593 cmd_buffer->state.compute_dirty = 0;
594 }
595
596 void genX(CmdDrawIndexedIndirect)(
597 VkCommandBuffer commandBuffer,
598 VkBuffer _buffer,
599 VkDeviceSize offset,
600 uint32_t drawCount,
601 uint32_t stride)
602 {
603 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
604 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
605 struct anv_bo *bo = buffer->bo;
606 uint32_t bo_offset = buffer->offset + offset;
607
608 cmd_buffer_flush_state(cmd_buffer);
609
610 emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_VERTEX_COUNT, bo, bo_offset);
611 emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
612 emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_VERTEX, bo, bo_offset + 8);
613 emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_BASE_VERTEX, bo, bo_offset + 12);
614 emit_lrm(&cmd_buffer->batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 16);
615
616 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE),
617 .IndirectParameterEnable = true,
618 .VertexAccessType = RANDOM);
619 }
620
621 void genX(CmdDispatch)(
622 VkCommandBuffer commandBuffer,
623 uint32_t x,
624 uint32_t y,
625 uint32_t z)
626 {
627 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
628 struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
629 struct brw_cs_prog_data *prog_data = &pipeline->cs_prog_data;
630
631 if (prog_data->uses_num_work_groups) {
632 struct anv_state state =
633 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4);
634 uint32_t *sizes = state.map;
635 sizes[0] = x;
636 sizes[1] = y;
637 sizes[2] = z;
638 if (!cmd_buffer->device->info.has_llc)
639 anv_state_clflush(state);
640 cmd_buffer->state.num_workgroups_offset = state.offset;
641 cmd_buffer->state.num_workgroups_bo =
642 &cmd_buffer->device->dynamic_state_block_pool.bo;
643 }
644
645 cmd_buffer_flush_compute_state(cmd_buffer);
646
647 anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER),
648 .SIMDSize = prog_data->simd_size / 16,
649 .ThreadDepthCounterMaximum = 0,
650 .ThreadHeightCounterMaximum = 0,
651 .ThreadWidthCounterMaximum = pipeline->cs_thread_width_max - 1,
652 .ThreadGroupIDXDimension = x,
653 .ThreadGroupIDYDimension = y,
654 .ThreadGroupIDZDimension = z,
655 .RightExecutionMask = pipeline->cs_right_mask,
656 .BottomExecutionMask = 0xffffffff);
657
658 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH));
659 }
660
661 #define GPGPU_DISPATCHDIMX 0x2500
662 #define GPGPU_DISPATCHDIMY 0x2504
663 #define GPGPU_DISPATCHDIMZ 0x2508
664
665 void genX(CmdDispatchIndirect)(
666 VkCommandBuffer commandBuffer,
667 VkBuffer _buffer,
668 VkDeviceSize offset)
669 {
670 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
671 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
672 struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
673 struct brw_cs_prog_data *prog_data = &pipeline->cs_prog_data;
674 struct anv_bo *bo = buffer->bo;
675 uint32_t bo_offset = buffer->offset + offset;
676
677 if (prog_data->uses_num_work_groups) {
678 cmd_buffer->state.num_workgroups_offset = bo_offset;
679 cmd_buffer->state.num_workgroups_bo = bo;
680 }
681
682 cmd_buffer_flush_compute_state(cmd_buffer);
683
684 emit_lrm(&cmd_buffer->batch, GPGPU_DISPATCHDIMX, bo, bo_offset);
685 emit_lrm(&cmd_buffer->batch, GPGPU_DISPATCHDIMY, bo, bo_offset + 4);
686 emit_lrm(&cmd_buffer->batch, GPGPU_DISPATCHDIMZ, bo, bo_offset + 8);
687
688 anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER),
689 .IndirectParameterEnable = true,
690 .SIMDSize = prog_data->simd_size / 16,
691 .ThreadDepthCounterMaximum = 0,
692 .ThreadHeightCounterMaximum = 0,
693 .ThreadWidthCounterMaximum = pipeline->cs_thread_width_max - 1,
694 .RightExecutionMask = pipeline->cs_right_mask,
695 .BottomExecutionMask = 0xffffffff);
696
697 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH));
698 }
699
700 static void
701 cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
702 {
703 const struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
704 const struct anv_image_view *iview =
705 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
706 const struct anv_image *image = iview ? iview->image : NULL;
707
708 /* XXX: isl needs to grow depth format support */
709 const struct anv_format *anv_format =
710 iview ? anv_format_for_vk_format(iview->vk_format) : NULL;
711
712 const bool has_depth = iview && anv_format->depth_format;
713 const bool has_stencil = iview && anv_format->has_stencil;
714
715 /* FIXME: Implement the PMA stall W/A */
716 /* FIXME: Width and Height are wrong */
717
718 /* Emit 3DSTATE_DEPTH_BUFFER */
719 if (has_depth) {
720 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_DEPTH_BUFFER),
721 .SurfaceType = SURFTYPE_2D,
722 .DepthWriteEnable = anv_format->depth_format,
723 .StencilWriteEnable = has_stencil,
724 .HierarchicalDepthBufferEnable = false,
725 .SurfaceFormat = anv_format->depth_format,
726 .SurfacePitch = image->depth_surface.isl.row_pitch - 1,
727 .SurfaceBaseAddress = {
728 .bo = image->bo,
729 .offset = image->depth_surface.offset,
730 },
731 .Height = fb->height - 1,
732 .Width = fb->width - 1,
733 .LOD = 0,
734 .Depth = 1 - 1,
735 .MinimumArrayElement = 0,
736 .DepthBufferObjectControlState = GENX(MOCS),
737 .RenderTargetViewExtent = 1 - 1,
738 .SurfaceQPitch = isl_surf_get_array_pitch_el_rows(&image->depth_surface.isl) >> 2);
739 } else {
740 /* Even when no depth buffer is present, the hardware requires that
741 * 3DSTATE_DEPTH_BUFFER be programmed correctly. The Broadwell PRM says:
742 *
743 * If a null depth buffer is bound, the driver must instead bind depth as:
744 * 3DSTATE_DEPTH.SurfaceType = SURFTYPE_2D
745 * 3DSTATE_DEPTH.Width = 1
746 * 3DSTATE_DEPTH.Height = 1
747 * 3DSTATE_DEPTH.SuraceFormat = D16_UNORM
748 * 3DSTATE_DEPTH.SurfaceBaseAddress = 0
749 * 3DSTATE_DEPTH.HierarchicalDepthBufferEnable = 0
750 * 3DSTATE_WM_DEPTH_STENCIL.DepthTestEnable = 0
751 * 3DSTATE_WM_DEPTH_STENCIL.DepthBufferWriteEnable = 0
752 *
753 * The PRM is wrong, though. The width and height must be programmed to
754 * actual framebuffer's width and height, even when neither depth buffer
755 * nor stencil buffer is present.
756 */
757 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_DEPTH_BUFFER),
758 .SurfaceType = SURFTYPE_2D,
759 .SurfaceFormat = D16_UNORM,
760 .Width = fb->width - 1,
761 .Height = fb->height - 1,
762 .StencilWriteEnable = has_stencil);
763 }
764
765 /* Emit 3DSTATE_STENCIL_BUFFER */
766 if (has_stencil) {
767 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_STENCIL_BUFFER),
768 .StencilBufferEnable = true,
769 .StencilBufferObjectControlState = GENX(MOCS),
770
771 /* Stencil buffers have strange pitch. The PRM says:
772 *
773 * The pitch must be set to 2x the value computed based on width,
774 * as the stencil buffer is stored with two rows interleaved.
775 */
776 .SurfacePitch = 2 * image->stencil_surface.isl.row_pitch - 1,
777
778 .SurfaceBaseAddress = {
779 .bo = image->bo,
780 .offset = image->offset + image->stencil_surface.offset,
781 },
782 .SurfaceQPitch = isl_surf_get_array_pitch_el_rows(&image->stencil_surface.isl) >> 2);
783 } else {
784 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_STENCIL_BUFFER));
785 }
786
787 /* Disable hierarchial depth buffers. */
788 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_HIER_DEPTH_BUFFER));
789
790 /* Clear the clear params. */
791 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CLEAR_PARAMS));
792 }
793
794 void
795 genX(cmd_buffer_begin_subpass)(struct anv_cmd_buffer *cmd_buffer,
796 struct anv_subpass *subpass)
797 {
798 cmd_buffer->state.subpass = subpass;
799
800 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
801
802 cmd_buffer_emit_depth_stencil(cmd_buffer);
803 }
804
805 void genX(CmdBeginRenderPass)(
806 VkCommandBuffer commandBuffer,
807 const VkRenderPassBeginInfo* pRenderPassBegin,
808 VkSubpassContents contents)
809 {
810 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
811 ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass);
812 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer);
813
814 cmd_buffer->state.framebuffer = framebuffer;
815 cmd_buffer->state.pass = pass;
816
817 flush_pipeline_select_3d(cmd_buffer);
818
819 const VkRect2D *render_area = &pRenderPassBegin->renderArea;
820
821 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_DRAWING_RECTANGLE),
822 .ClippedDrawingRectangleYMin = render_area->offset.y,
823 .ClippedDrawingRectangleXMin = render_area->offset.x,
824 .ClippedDrawingRectangleYMax =
825 render_area->offset.y + render_area->extent.height - 1,
826 .ClippedDrawingRectangleXMax =
827 render_area->offset.x + render_area->extent.width - 1,
828 .DrawingRectangleOriginY = 0,
829 .DrawingRectangleOriginX = 0);
830
831 anv_cmd_buffer_clear_attachments(cmd_buffer, pass,
832 pRenderPassBegin->pClearValues);
833
834 genX(cmd_buffer_begin_subpass)(cmd_buffer, pass->subpasses);
835 }
836
837 void genX(CmdNextSubpass)(
838 VkCommandBuffer commandBuffer,
839 VkSubpassContents contents)
840 {
841 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
842
843 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
844
845 genX(cmd_buffer_begin_subpass)(cmd_buffer, cmd_buffer->state.subpass + 1);
846 }
847
848 void genX(CmdEndRenderPass)(
849 VkCommandBuffer commandBuffer)
850 {
851 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
852
853 /* Emit a flushing pipe control at the end of a pass. This is kind of a
854 * hack but it ensures that render targets always actually get written.
855 * Eventually, we should do flushing based on image format transitions
856 * or something of that nature.
857 */
858 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL),
859 .PostSyncOperation = NoWrite,
860 .RenderTargetCacheFlushEnable = true,
861 .InstructionCacheInvalidateEnable = true,
862 .DepthCacheFlushEnable = true,
863 .VFCacheInvalidationEnable = true,
864 .TextureCacheInvalidationEnable = true,
865 .CommandStreamerStallEnable = true);
866 }
867
868 static void
869 emit_ps_depth_count(struct anv_batch *batch,
870 struct anv_bo *bo, uint32_t offset)
871 {
872 anv_batch_emit(batch, GENX(PIPE_CONTROL),
873 .DestinationAddressType = DAT_PPGTT,
874 .PostSyncOperation = WritePSDepthCount,
875 .DepthStallEnable = true,
876 .Address = { bo, offset });
877 }
878
879 static void
880 emit_query_availability(struct anv_batch *batch,
881 struct anv_bo *bo, uint32_t offset)
882 {
883 anv_batch_emit(batch, GENX(PIPE_CONTROL),
884 .DestinationAddressType = DAT_PPGTT,
885 .PostSyncOperation = WriteImmediateData,
886 .Address = { bo, offset },
887 .ImmediateData = 1);
888 }
889
890 void genX(CmdBeginQuery)(
891 VkCommandBuffer commandBuffer,
892 VkQueryPool queryPool,
893 uint32_t query,
894 VkQueryControlFlags flags)
895 {
896 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
897 ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
898
899 /* Workaround: When meta uses the pipeline with the VS disabled, it seems
900 * that the pipelining of the depth write breaks. What we see is that
901 * samples from the render pass clear leaks into the first query
902 * immediately after the clear. Doing a pipecontrol with a post-sync
903 * operation and DepthStallEnable seems to work around the issue.
904 */
905 if (cmd_buffer->state.need_query_wa) {
906 cmd_buffer->state.need_query_wa = false;
907 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL),
908 .DepthCacheFlushEnable = true,
909 .DepthStallEnable = true);
910 }
911
912 switch (pool->type) {
913 case VK_QUERY_TYPE_OCCLUSION:
914 emit_ps_depth_count(&cmd_buffer->batch, &pool->bo,
915 query * sizeof(struct anv_query_pool_slot));
916 break;
917
918 case VK_QUERY_TYPE_PIPELINE_STATISTICS:
919 default:
920 unreachable("");
921 }
922 }
923
924 void genX(CmdEndQuery)(
925 VkCommandBuffer commandBuffer,
926 VkQueryPool queryPool,
927 uint32_t query)
928 {
929 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
930 ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
931
932 switch (pool->type) {
933 case VK_QUERY_TYPE_OCCLUSION:
934 emit_ps_depth_count(&cmd_buffer->batch, &pool->bo,
935 query * sizeof(struct anv_query_pool_slot) + 8);
936
937 emit_query_availability(&cmd_buffer->batch, &pool->bo,
938 query * sizeof(struct anv_query_pool_slot) + 16);
939 break;
940
941 case VK_QUERY_TYPE_PIPELINE_STATISTICS:
942 default:
943 unreachable("");
944 }
945 }
946
947 #define TIMESTAMP 0x2358
948
949 void genX(CmdWriteTimestamp)(
950 VkCommandBuffer commandBuffer,
951 VkPipelineStageFlagBits pipelineStage,
952 VkQueryPool queryPool,
953 uint32_t query)
954 {
955 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
956 ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
957 uint32_t offset = query * sizeof(struct anv_query_pool_slot);
958
959 assert(pool->type == VK_QUERY_TYPE_TIMESTAMP);
960
961 switch (pipelineStage) {
962 case VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT:
963 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM),
964 .RegisterAddress = TIMESTAMP,
965 .MemoryAddress = { &pool->bo, offset });
966 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM),
967 .RegisterAddress = TIMESTAMP + 4,
968 .MemoryAddress = { &pool->bo, offset + 4 });
969 break;
970
971 default:
972 /* Everything else is bottom-of-pipe */
973 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL),
974 .DestinationAddressType = DAT_PPGTT,
975 .PostSyncOperation = WriteTimestamp,
976 .Address = { &pool->bo, offset });
977 break;
978 }
979
980 emit_query_availability(&cmd_buffer->batch, &pool->bo, query + 16);
981 }
982
983 #define alu_opcode(v) __gen_field((v), 20, 31)
984 #define alu_operand1(v) __gen_field((v), 10, 19)
985 #define alu_operand2(v) __gen_field((v), 0, 9)
986 #define alu(opcode, operand1, operand2) \
987 alu_opcode(opcode) | alu_operand1(operand1) | alu_operand2(operand2)
988
989 #define OPCODE_NOOP 0x000
990 #define OPCODE_LOAD 0x080
991 #define OPCODE_LOADINV 0x480
992 #define OPCODE_LOAD0 0x081
993 #define OPCODE_LOAD1 0x481
994 #define OPCODE_ADD 0x100
995 #define OPCODE_SUB 0x101
996 #define OPCODE_AND 0x102
997 #define OPCODE_OR 0x103
998 #define OPCODE_XOR 0x104
999 #define OPCODE_STORE 0x180
1000 #define OPCODE_STOREINV 0x580
1001
1002 #define OPERAND_R0 0x00
1003 #define OPERAND_R1 0x01
1004 #define OPERAND_R2 0x02
1005 #define OPERAND_R3 0x03
1006 #define OPERAND_R4 0x04
1007 #define OPERAND_SRCA 0x20
1008 #define OPERAND_SRCB 0x21
1009 #define OPERAND_ACCU 0x31
1010 #define OPERAND_ZF 0x32
1011 #define OPERAND_CF 0x33
1012
1013 #define CS_GPR(n) (0x2600 + (n) * 8)
1014
1015 static void
1016 emit_load_alu_reg_u64(struct anv_batch *batch, uint32_t reg,
1017 struct anv_bo *bo, uint32_t offset)
1018 {
1019 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM),
1020 .RegisterAddress = reg,
1021 .MemoryAddress = { bo, offset });
1022 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM),
1023 .RegisterAddress = reg + 4,
1024 .MemoryAddress = { bo, offset + 4 });
1025 }
1026
1027 static void
1028 store_query_result(struct anv_batch *batch, uint32_t reg,
1029 struct anv_bo *bo, uint32_t offset, VkQueryResultFlags flags)
1030 {
1031 anv_batch_emit(batch, GENX(MI_STORE_REGISTER_MEM),
1032 .RegisterAddress = reg,
1033 .MemoryAddress = { bo, offset });
1034
1035 if (flags & VK_QUERY_RESULT_64_BIT)
1036 anv_batch_emit(batch, GENX(MI_STORE_REGISTER_MEM),
1037 .RegisterAddress = reg + 4,
1038 .MemoryAddress = { bo, offset + 4 });
1039 }
1040
1041 void genX(CmdCopyQueryPoolResults)(
1042 VkCommandBuffer commandBuffer,
1043 VkQueryPool queryPool,
1044 uint32_t firstQuery,
1045 uint32_t queryCount,
1046 VkBuffer destBuffer,
1047 VkDeviceSize destOffset,
1048 VkDeviceSize destStride,
1049 VkQueryResultFlags flags)
1050 {
1051 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1052 ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
1053 ANV_FROM_HANDLE(anv_buffer, buffer, destBuffer);
1054 uint32_t slot_offset, dst_offset;
1055
1056 if (flags & VK_QUERY_RESULT_WAIT_BIT)
1057 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL),
1058 .CommandStreamerStallEnable = true,
1059 .StallAtPixelScoreboard = true);
1060
1061 dst_offset = buffer->offset + destOffset;
1062 for (uint32_t i = 0; i < queryCount; i++) {
1063
1064 slot_offset = (firstQuery + i) * sizeof(struct anv_query_pool_slot);
1065 switch (pool->type) {
1066 case VK_QUERY_TYPE_OCCLUSION:
1067 emit_load_alu_reg_u64(&cmd_buffer->batch,
1068 CS_GPR(0), &pool->bo, slot_offset);
1069 emit_load_alu_reg_u64(&cmd_buffer->batch,
1070 CS_GPR(1), &pool->bo, slot_offset + 8);
1071
1072 /* FIXME: We need to clamp the result for 32 bit. */
1073
1074 uint32_t *dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(MI_MATH));
1075 dw[1] = alu(OPCODE_LOAD, OPERAND_SRCA, OPERAND_R1);
1076 dw[2] = alu(OPCODE_LOAD, OPERAND_SRCB, OPERAND_R0);
1077 dw[3] = alu(OPCODE_SUB, 0, 0);
1078 dw[4] = alu(OPCODE_STORE, OPERAND_R2, OPERAND_ACCU);
1079 break;
1080
1081 case VK_QUERY_TYPE_TIMESTAMP:
1082 emit_load_alu_reg_u64(&cmd_buffer->batch,
1083 CS_GPR(2), &pool->bo, slot_offset);
1084 break;
1085
1086 default:
1087 unreachable("unhandled query type");
1088 }
1089
1090 store_query_result(&cmd_buffer->batch,
1091 CS_GPR(2), buffer->bo, dst_offset, flags);
1092
1093 if (flags & VK_QUERY_RESULT_WITH_AVAILABILITY_BIT) {
1094 emit_load_alu_reg_u64(&cmd_buffer->batch, CS_GPR(0),
1095 &pool->bo, slot_offset + 16);
1096 if (flags & VK_QUERY_RESULT_64_BIT)
1097 store_query_result(&cmd_buffer->batch,
1098 CS_GPR(0), buffer->bo, dst_offset + 8, flags);
1099 else
1100 store_query_result(&cmd_buffer->batch,
1101 CS_GPR(0), buffer->bo, dst_offset + 4, flags);
1102 }
1103
1104 dst_offset += destStride;
1105 }
1106 }
1107
1108 void genX(CmdSetEvent)(
1109 VkCommandBuffer commandBuffer,
1110 VkEvent _event,
1111 VkPipelineStageFlags stageMask)
1112 {
1113 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1114 ANV_FROM_HANDLE(anv_event, event, _event);
1115
1116 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL),
1117 .DestinationAddressType = DAT_PPGTT,
1118 .PostSyncOperation = WriteImmediateData,
1119 .Address = {
1120 &cmd_buffer->device->dynamic_state_block_pool.bo,
1121 event->state.offset
1122 },
1123 .ImmediateData = VK_EVENT_SET);
1124 }
1125
1126 void genX(CmdResetEvent)(
1127 VkCommandBuffer commandBuffer,
1128 VkEvent _event,
1129 VkPipelineStageFlags stageMask)
1130 {
1131 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1132 ANV_FROM_HANDLE(anv_event, event, _event);
1133
1134 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL),
1135 .DestinationAddressType = DAT_PPGTT,
1136 .PostSyncOperation = WriteImmediateData,
1137 .Address = {
1138 &cmd_buffer->device->dynamic_state_block_pool.bo,
1139 event->state.offset
1140 },
1141 .ImmediateData = VK_EVENT_RESET);
1142 }
1143
1144 void genX(CmdWaitEvents)(
1145 VkCommandBuffer commandBuffer,
1146 uint32_t eventCount,
1147 const VkEvent* pEvents,
1148 VkPipelineStageFlags srcStageMask,
1149 VkPipelineStageFlags destStageMask,
1150 uint32_t memoryBarrierCount,
1151 const VkMemoryBarrier* pMemoryBarriers,
1152 uint32_t bufferMemoryBarrierCount,
1153 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
1154 uint32_t imageMemoryBarrierCount,
1155 const VkImageMemoryBarrier* pImageMemoryBarriers)
1156 {
1157 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1158 for (uint32_t i = 0; i < eventCount; i++) {
1159 ANV_FROM_HANDLE(anv_event, event, pEvents[i]);
1160
1161 anv_batch_emit(&cmd_buffer->batch, GENX(MI_SEMAPHORE_WAIT),
1162 .WaitMode = PollingMode,
1163 .CompareOperation = SAD_EQUAL_SDD,
1164 .SemaphoreDataDword = VK_EVENT_SET,
1165 .SemaphoreAddress = {
1166 &cmd_buffer->device->dynamic_state_block_pool.bo,
1167 event->state.offset
1168 });
1169 }
1170
1171 genX(CmdPipelineBarrier)(commandBuffer, srcStageMask, destStageMask,
1172 false, /* byRegion */
1173 memoryBarrierCount, pMemoryBarriers,
1174 bufferMemoryBarrierCount, pBufferMemoryBarriers,
1175 imageMemoryBarrierCount, pImageMemoryBarriers);
1176 }