vk: Fill out buffer surface state when updating descriptor set
[mesa.git] / src / vulkan / gen8_pipeline.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "anv_private.h"
31
32 #include "gen8_pack.h"
33 #include "gen9_pack.h"
34
35 static void
36 emit_vertex_input(struct anv_pipeline *pipeline,
37 const VkPipelineVertexInputStateCreateInfo *info,
38 const struct anv_graphics_pipeline_create_info *extra)
39 {
40
41 static_assert(ANV_GEN >= 8, "should be compiling this for gen < 8");
42
43 uint32_t vb_used;
44 if (extra && extra->disable_vs) {
45 /* If the VS is disabled, just assume the user knows what they're
46 * doing and apply the layout blindly. This can only come from
47 * meta, so this *should* be safe.
48 */
49 vb_used = 0;
50 for (uint32_t i = 0; i < info->vertexAttributeDescriptionCount; i++)
51 vb_used |= (1 << info->pVertexAttributeDescriptions[i].location);
52 } else {
53 /* Pull inputs_read out of the VS prog data */
54 uint64_t inputs_read = pipeline->vs_prog_data.inputs_read;
55 assert((inputs_read & ((1 << VERT_ATTRIB_GENERIC0) - 1)) == 0);
56 vb_used = inputs_read >> VERT_ATTRIB_GENERIC0;
57 }
58
59 const uint32_t num_dwords = 1 + __builtin_popcount(vb_used) * 2;
60
61 uint32_t *p;
62 if (vb_used != 0) {
63 p = anv_batch_emitn(&pipeline->batch, num_dwords,
64 GENX(3DSTATE_VERTEX_ELEMENTS));
65 memset(p + 1, 0, (num_dwords - 1) * 4);
66 }
67
68 for (uint32_t i = 0; i < info->vertexAttributeDescriptionCount; i++) {
69 const VkVertexInputAttributeDescription *desc =
70 &info->pVertexAttributeDescriptions[i];
71 const struct anv_format *format = anv_format_for_vk_format(desc->format);
72
73 assert(desc->binding < 32);
74
75 if ((vb_used & (1 << desc->location)) == 0)
76 continue; /* Binding unused */
77
78 uint32_t slot = __builtin_popcount(vb_used & ((1 << desc->location) - 1));
79
80 struct GENX(VERTEX_ELEMENT_STATE) element = {
81 .VertexBufferIndex = desc->binding,
82 .Valid = true,
83 .SourceElementFormat = format->surface_format,
84 .EdgeFlagEnable = false,
85 .SourceElementOffset = desc->offset,
86 .Component0Control = VFCOMP_STORE_SRC,
87 .Component1Control = format->num_channels >= 2 ? VFCOMP_STORE_SRC : VFCOMP_STORE_0,
88 .Component2Control = format->num_channels >= 3 ? VFCOMP_STORE_SRC : VFCOMP_STORE_0,
89 .Component3Control = format->num_channels >= 4 ? VFCOMP_STORE_SRC : VFCOMP_STORE_1_FP
90 };
91 GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + slot * 2], &element);
92
93 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_INSTANCING),
94 .InstancingEnable = pipeline->instancing_enable[desc->binding],
95 .VertexElementIndex = slot,
96 /* Vulkan so far doesn't have an instance divisor, so
97 * this is always 1 (ignored if not instancing). */
98 .InstanceDataStepRate = 1);
99 }
100
101 const uint32_t id_slot = __builtin_popcount(vb_used);
102 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_SGVS),
103 .VertexIDEnable = pipeline->vs_prog_data.uses_vertexid,
104 .VertexIDComponentNumber = 2,
105 .VertexIDElementOffset = id_slot,
106 .InstanceIDEnable = pipeline->vs_prog_data.uses_instanceid,
107 .InstanceIDComponentNumber = 3,
108 .InstanceIDElementOffset = id_slot);
109 }
110
111 static void
112 emit_ia_state(struct anv_pipeline *pipeline,
113 const VkPipelineInputAssemblyStateCreateInfo *info,
114 const struct anv_graphics_pipeline_create_info *extra)
115 {
116 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_TOPOLOGY),
117 .PrimitiveTopologyType = pipeline->topology);
118 }
119
120 static void
121 emit_rs_state(struct anv_pipeline *pipeline,
122 const VkPipelineRasterizationStateCreateInfo *info,
123 const struct anv_graphics_pipeline_create_info *extra)
124 {
125 static const uint32_t vk_to_gen_cullmode[] = {
126 [VK_CULL_MODE_NONE] = CULLMODE_NONE,
127 [VK_CULL_MODE_FRONT_BIT] = CULLMODE_FRONT,
128 [VK_CULL_MODE_BACK_BIT] = CULLMODE_BACK,
129 [VK_CULL_MODE_FRONT_AND_BACK] = CULLMODE_BOTH
130 };
131
132 static const uint32_t vk_to_gen_fillmode[] = {
133 [VK_POLYGON_MODE_FILL] = RASTER_SOLID,
134 [VK_POLYGON_MODE_LINE] = RASTER_WIREFRAME,
135 [VK_POLYGON_MODE_POINT] = RASTER_POINT,
136 };
137
138 static const uint32_t vk_to_gen_front_face[] = {
139 [VK_FRONT_FACE_COUNTER_CLOCKWISE] = 1,
140 [VK_FRONT_FACE_CLOCKWISE] = 0
141 };
142
143 struct GENX(3DSTATE_SF) sf = {
144 GENX(3DSTATE_SF_header),
145 .ViewportTransformEnable = !(extra && extra->disable_viewport),
146 .TriangleStripListProvokingVertexSelect = 0,
147 .LineStripListProvokingVertexSelect = 0,
148 .TriangleFanProvokingVertexSelect = 0,
149 .PointWidthSource = pipeline->writes_point_size ? Vertex : State,
150 .PointWidth = 1.0,
151 };
152
153 /* FINISHME: VkBool32 rasterizerDiscardEnable; */
154
155 GENX(3DSTATE_SF_pack)(NULL, pipeline->gen8.sf, &sf);
156
157 struct GENX(3DSTATE_RASTER) raster = {
158 GENX(3DSTATE_RASTER_header),
159 .FrontWinding = vk_to_gen_front_face[info->frontFace],
160 .CullMode = vk_to_gen_cullmode[info->cullMode],
161 .FrontFaceFillMode = vk_to_gen_fillmode[info->polygonMode],
162 .BackFaceFillMode = vk_to_gen_fillmode[info->polygonMode],
163 .ScissorRectangleEnable = !(extra && extra->disable_scissor),
164 #if ANV_GEN == 8
165 .ViewportZClipTestEnable = true,
166 #else
167 /* GEN9+ splits ViewportZClipTestEnable into near and far enable bits */
168 .ViewportZFarClipTestEnable = true,
169 .ViewportZNearClipTestEnable = true,
170 #endif
171 };
172
173 GENX(3DSTATE_RASTER_pack)(NULL, pipeline->gen8.raster, &raster);
174 }
175
176 static void
177 emit_cb_state(struct anv_pipeline *pipeline,
178 const VkPipelineColorBlendStateCreateInfo *info,
179 const VkPipelineMultisampleStateCreateInfo *ms_info)
180 {
181 struct anv_device *device = pipeline->device;
182
183 static const uint32_t vk_to_gen_logic_op[] = {
184 [VK_LOGIC_OP_COPY] = LOGICOP_COPY,
185 [VK_LOGIC_OP_CLEAR] = LOGICOP_CLEAR,
186 [VK_LOGIC_OP_AND] = LOGICOP_AND,
187 [VK_LOGIC_OP_AND_REVERSE] = LOGICOP_AND_REVERSE,
188 [VK_LOGIC_OP_AND_INVERTED] = LOGICOP_AND_INVERTED,
189 [VK_LOGIC_OP_NO_OP] = LOGICOP_NOOP,
190 [VK_LOGIC_OP_XOR] = LOGICOP_XOR,
191 [VK_LOGIC_OP_OR] = LOGICOP_OR,
192 [VK_LOGIC_OP_NOR] = LOGICOP_NOR,
193 [VK_LOGIC_OP_EQUIVALENT] = LOGICOP_EQUIV,
194 [VK_LOGIC_OP_INVERT] = LOGICOP_INVERT,
195 [VK_LOGIC_OP_OR_REVERSE] = LOGICOP_OR_REVERSE,
196 [VK_LOGIC_OP_COPY_INVERTED] = LOGICOP_COPY_INVERTED,
197 [VK_LOGIC_OP_OR_INVERTED] = LOGICOP_OR_INVERTED,
198 [VK_LOGIC_OP_NAND] = LOGICOP_NAND,
199 [VK_LOGIC_OP_SET] = LOGICOP_SET,
200 };
201
202 static const uint32_t vk_to_gen_blend[] = {
203 [VK_BLEND_FACTOR_ZERO] = BLENDFACTOR_ZERO,
204 [VK_BLEND_FACTOR_ONE] = BLENDFACTOR_ONE,
205 [VK_BLEND_FACTOR_SRC_COLOR] = BLENDFACTOR_SRC_COLOR,
206 [VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR] = BLENDFACTOR_INV_SRC_COLOR,
207 [VK_BLEND_FACTOR_DST_COLOR] = BLENDFACTOR_DST_COLOR,
208 [VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR] = BLENDFACTOR_INV_DST_COLOR,
209 [VK_BLEND_FACTOR_SRC_ALPHA] = BLENDFACTOR_SRC_ALPHA,
210 [VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA] = BLENDFACTOR_INV_SRC_ALPHA,
211 [VK_BLEND_FACTOR_DST_ALPHA] = BLENDFACTOR_DST_ALPHA,
212 [VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA] = BLENDFACTOR_INV_DST_ALPHA,
213 [VK_BLEND_FACTOR_CONSTANT_COLOR] = BLENDFACTOR_CONST_COLOR,
214 [VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR]= BLENDFACTOR_INV_CONST_COLOR,
215 [VK_BLEND_FACTOR_CONSTANT_ALPHA] = BLENDFACTOR_CONST_ALPHA,
216 [VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA]= BLENDFACTOR_INV_CONST_ALPHA,
217 [VK_BLEND_FACTOR_SRC_ALPHA_SATURATE] = BLENDFACTOR_SRC_ALPHA_SATURATE,
218 [VK_BLEND_FACTOR_SRC1_COLOR] = BLENDFACTOR_SRC1_COLOR,
219 [VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR] = BLENDFACTOR_INV_SRC1_COLOR,
220 [VK_BLEND_FACTOR_SRC1_ALPHA] = BLENDFACTOR_SRC1_ALPHA,
221 [VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA] = BLENDFACTOR_INV_SRC1_ALPHA,
222 };
223
224 static const uint32_t vk_to_gen_blend_op[] = {
225 [VK_BLEND_OP_ADD] = BLENDFUNCTION_ADD,
226 [VK_BLEND_OP_SUBTRACT] = BLENDFUNCTION_SUBTRACT,
227 [VK_BLEND_OP_REVERSE_SUBTRACT] = BLENDFUNCTION_REVERSE_SUBTRACT,
228 [VK_BLEND_OP_MIN] = BLENDFUNCTION_MIN,
229 [VK_BLEND_OP_MAX] = BLENDFUNCTION_MAX,
230 };
231
232 uint32_t num_dwords = GENX(BLEND_STATE_length);
233 pipeline->blend_state =
234 anv_state_pool_alloc(&device->dynamic_state_pool, num_dwords * 4, 64);
235
236 struct GENX(BLEND_STATE) blend_state = {
237 .AlphaToCoverageEnable = ms_info && ms_info->alphaToCoverageEnable,
238 .AlphaToOneEnable = ms_info && ms_info->alphaToOneEnable,
239 };
240
241 for (uint32_t i = 0; i < info->attachmentCount; i++) {
242 const VkPipelineColorBlendAttachmentState *a = &info->pAttachments[i];
243
244 if (a->srcColorBlendFactor != a->srcAlphaBlendFactor ||
245 a->dstColorBlendFactor != a->dstAlphaBlendFactor ||
246 a->colorBlendOp != a->alphaBlendOp) {
247 blend_state.IndependentAlphaBlendEnable = true;
248 }
249
250 blend_state.Entry[i] = (struct GENX(BLEND_STATE_ENTRY)) {
251 .LogicOpEnable = info->logicOpEnable,
252 .LogicOpFunction = vk_to_gen_logic_op[info->logicOp],
253 .ColorBufferBlendEnable = a->blendEnable,
254 .PreBlendSourceOnlyClampEnable = false,
255 .ColorClampRange = COLORCLAMP_RTFORMAT,
256 .PreBlendColorClampEnable = true,
257 .PostBlendColorClampEnable = true,
258 .SourceBlendFactor = vk_to_gen_blend[a->srcColorBlendFactor],
259 .DestinationBlendFactor = vk_to_gen_blend[a->dstColorBlendFactor],
260 .ColorBlendFunction = vk_to_gen_blend_op[a->colorBlendOp],
261 .SourceAlphaBlendFactor = vk_to_gen_blend[a->srcAlphaBlendFactor],
262 .DestinationAlphaBlendFactor = vk_to_gen_blend[a->dstAlphaBlendFactor],
263 .AlphaBlendFunction = vk_to_gen_blend_op[a->alphaBlendOp],
264 .WriteDisableAlpha = !(a->colorWriteMask & VK_COLOR_COMPONENT_A_BIT),
265 .WriteDisableRed = !(a->colorWriteMask & VK_COLOR_COMPONENT_R_BIT),
266 .WriteDisableGreen = !(a->colorWriteMask & VK_COLOR_COMPONENT_G_BIT),
267 .WriteDisableBlue = !(a->colorWriteMask & VK_COLOR_COMPONENT_B_BIT),
268 };
269
270 /* Our hardware applies the blend factor prior to the blend function
271 * regardless of what function is used. Technically, this means the
272 * hardware can do MORE than GL or Vulkan specify. However, it also
273 * means that, for MIN and MAX, we have to stomp the blend factor to
274 * ONE to make it a no-op.
275 */
276 if (a->colorBlendOp == VK_BLEND_OP_MIN ||
277 a->colorBlendOp == VK_BLEND_OP_MAX) {
278 blend_state.Entry[i].SourceBlendFactor = BLENDFACTOR_ONE;
279 blend_state.Entry[i].DestinationBlendFactor = BLENDFACTOR_ONE;
280 }
281 if (a->alphaBlendOp == VK_BLEND_OP_MIN ||
282 a->alphaBlendOp == VK_BLEND_OP_MAX) {
283 blend_state.Entry[i].SourceAlphaBlendFactor = BLENDFACTOR_ONE;
284 blend_state.Entry[i].DestinationAlphaBlendFactor = BLENDFACTOR_ONE;
285 }
286 }
287
288 GENX(BLEND_STATE_pack)(NULL, pipeline->blend_state.map, &blend_state);
289 if (!device->info.has_llc)
290 anv_state_clflush(pipeline->blend_state);
291
292 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_BLEND_STATE_POINTERS),
293 .BlendStatePointer = pipeline->blend_state.offset,
294 .BlendStatePointerValid = true);
295 }
296
297 static const uint32_t vk_to_gen_compare_op[] = {
298 [VK_COMPARE_OP_NEVER] = PREFILTEROPNEVER,
299 [VK_COMPARE_OP_LESS] = PREFILTEROPLESS,
300 [VK_COMPARE_OP_EQUAL] = PREFILTEROPEQUAL,
301 [VK_COMPARE_OP_LESS_OR_EQUAL] = PREFILTEROPLEQUAL,
302 [VK_COMPARE_OP_GREATER] = PREFILTEROPGREATER,
303 [VK_COMPARE_OP_NOT_EQUAL] = PREFILTEROPNOTEQUAL,
304 [VK_COMPARE_OP_GREATER_OR_EQUAL] = PREFILTEROPGEQUAL,
305 [VK_COMPARE_OP_ALWAYS] = PREFILTEROPALWAYS,
306 };
307
308 static const uint32_t vk_to_gen_stencil_op[] = {
309 [VK_STENCIL_OP_KEEP] = STENCILOP_KEEP,
310 [VK_STENCIL_OP_ZERO] = STENCILOP_ZERO,
311 [VK_STENCIL_OP_REPLACE] = STENCILOP_REPLACE,
312 [VK_STENCIL_OP_INCREMENT_AND_CLAMP] = STENCILOP_INCRSAT,
313 [VK_STENCIL_OP_DECREMENT_AND_CLAMP] = STENCILOP_DECRSAT,
314 [VK_STENCIL_OP_INVERT] = STENCILOP_INVERT,
315 [VK_STENCIL_OP_INCREMENT_AND_WRAP] = STENCILOP_INCR,
316 [VK_STENCIL_OP_DECREMENT_AND_WRAP] = STENCILOP_DECR,
317 };
318
319 static void
320 emit_ds_state(struct anv_pipeline *pipeline,
321 const VkPipelineDepthStencilStateCreateInfo *info)
322 {
323 uint32_t *dw = ANV_GEN == 8 ?
324 pipeline->gen8.wm_depth_stencil : pipeline->gen9.wm_depth_stencil;
325
326 if (info == NULL) {
327 /* We're going to OR this together with the dynamic state. We need
328 * to make sure it's initialized to something useful.
329 */
330 memset(pipeline->gen8.wm_depth_stencil, 0,
331 sizeof(pipeline->gen8.wm_depth_stencil));
332 memset(pipeline->gen9.wm_depth_stencil, 0,
333 sizeof(pipeline->gen9.wm_depth_stencil));
334 return;
335 }
336
337 /* VkBool32 depthBoundsTestEnable; // optional (depth_bounds_test) */
338
339 struct GENX(3DSTATE_WM_DEPTH_STENCIL) wm_depth_stencil = {
340 .DepthTestEnable = info->depthTestEnable,
341 .DepthBufferWriteEnable = info->depthWriteEnable,
342 .DepthTestFunction = vk_to_gen_compare_op[info->depthCompareOp],
343 .DoubleSidedStencilEnable = true,
344
345 .StencilTestEnable = info->stencilTestEnable,
346 .StencilFailOp = vk_to_gen_stencil_op[info->front.failOp],
347 .StencilPassDepthPassOp = vk_to_gen_stencil_op[info->front.passOp],
348 .StencilPassDepthFailOp = vk_to_gen_stencil_op[info->front.depthFailOp],
349 .StencilTestFunction = vk_to_gen_compare_op[info->front.compareOp],
350 .BackfaceStencilFailOp = vk_to_gen_stencil_op[info->back.failOp],
351 .BackfaceStencilPassDepthPassOp = vk_to_gen_stencil_op[info->back.passOp],
352 .BackfaceStencilPassDepthFailOp =vk_to_gen_stencil_op[info->back.depthFailOp],
353 .BackfaceStencilTestFunction = vk_to_gen_compare_op[info->back.compareOp],
354 };
355
356 GENX(3DSTATE_WM_DEPTH_STENCIL_pack)(NULL, dw, &wm_depth_stencil);
357 }
358
359 VkResult
360 genX(graphics_pipeline_create)(
361 VkDevice _device,
362 const VkGraphicsPipelineCreateInfo* pCreateInfo,
363 const struct anv_graphics_pipeline_create_info *extra,
364 const VkAllocationCallbacks* pAllocator,
365 VkPipeline* pPipeline)
366 {
367 ANV_FROM_HANDLE(anv_device, device, _device);
368 struct anv_pipeline *pipeline;
369 VkResult result;
370 uint32_t offset, length;
371
372 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
373
374 pipeline = anv_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
375 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
376 if (pipeline == NULL)
377 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
378
379 result = anv_pipeline_init(pipeline, device, pCreateInfo, extra, pAllocator);
380 if (result != VK_SUCCESS)
381 return result;
382
383 assert(pCreateInfo->pVertexInputState);
384 emit_vertex_input(pipeline, pCreateInfo->pVertexInputState, extra);
385 assert(pCreateInfo->pInputAssemblyState);
386 emit_ia_state(pipeline, pCreateInfo->pInputAssemblyState, extra);
387 assert(pCreateInfo->pRasterizationState);
388 emit_rs_state(pipeline, pCreateInfo->pRasterizationState, extra);
389 emit_ds_state(pipeline, pCreateInfo->pDepthStencilState);
390 emit_cb_state(pipeline, pCreateInfo->pColorBlendState,
391 pCreateInfo->pMultisampleState);
392
393 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_STATISTICS),
394 .StatisticsEnable = true);
395 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_HS), .Enable = false);
396 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_TE), .TEEnable = false);
397 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_DS), .FunctionEnable = false);
398 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_STREAMOUT), .SOFunctionEnable = false);
399
400 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS),
401 .ConstantBufferOffset = 0,
402 .ConstantBufferSize = 4);
403 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_GS),
404 .ConstantBufferOffset = 4,
405 .ConstantBufferSize = 4);
406 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS),
407 .ConstantBufferOffset = 8,
408 .ConstantBufferSize = 4);
409
410 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_WM_CHROMAKEY),
411 .ChromaKeyKillEnable = false);
412 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_AA_LINE_PARAMETERS));
413
414 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_CLIP),
415 .ClipEnable = true,
416 .ViewportXYClipTestEnable = !(extra && extra->disable_viewport),
417 .MinimumPointWidth = 0.125,
418 .MaximumPointWidth = 255.875);
419
420 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_WM),
421 .StatisticsEnable = true,
422 .LineEndCapAntialiasingRegionWidth = _05pixels,
423 .LineAntialiasingRegionWidth = _10pixels,
424 .EarlyDepthStencilControl = NORMAL,
425 .ForceThreadDispatchEnable = NORMAL,
426 .PointRasterizationRule = RASTRULE_UPPER_RIGHT,
427 .BarycentricInterpolationMode =
428 pipeline->wm_prog_data.barycentric_interp_modes);
429
430 uint32_t samples = 1;
431 uint32_t log2_samples = __builtin_ffs(samples) - 1;
432 bool enable_sampling = samples > 1 ? true : false;
433
434 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_MULTISAMPLE),
435 .PixelPositionOffsetEnable = enable_sampling,
436 .PixelLocation = CENTER,
437 .NumberofMultisamples = log2_samples);
438
439 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SAMPLE_MASK),
440 .SampleMask = 0xffff);
441
442 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_URB_VS),
443 .VSURBStartingAddress = pipeline->urb.vs_start,
444 .VSURBEntryAllocationSize = pipeline->urb.vs_size - 1,
445 .VSNumberofURBEntries = pipeline->urb.nr_vs_entries);
446
447 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_URB_GS),
448 .GSURBStartingAddress = pipeline->urb.gs_start,
449 .GSURBEntryAllocationSize = pipeline->urb.gs_size - 1,
450 .GSNumberofURBEntries = pipeline->urb.nr_gs_entries);
451
452 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_URB_HS),
453 .HSURBStartingAddress = pipeline->urb.vs_start,
454 .HSURBEntryAllocationSize = 0,
455 .HSNumberofURBEntries = 0);
456
457 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_URB_DS),
458 .DSURBStartingAddress = pipeline->urb.vs_start,
459 .DSURBEntryAllocationSize = 0,
460 .DSNumberofURBEntries = 0);
461
462 const struct brw_gs_prog_data *gs_prog_data = &pipeline->gs_prog_data;
463 offset = 1;
464 length = (gs_prog_data->base.vue_map.num_slots + 1) / 2 - offset;
465
466 if (pipeline->gs_kernel == NO_KERNEL)
467 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_GS), .Enable = false);
468 else
469 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_GS),
470 .SingleProgramFlow = false,
471 .KernelStartPointer = pipeline->gs_kernel,
472 .VectorMaskEnable = Dmask,
473 .SamplerCount = 0,
474 .BindingTableEntryCount = 0,
475 .ExpectedVertexCount = pipeline->gs_vertex_count,
476
477 .ScratchSpaceBasePointer = pipeline->scratch_start[MESA_SHADER_GEOMETRY],
478 .PerThreadScratchSpace = ffs(gs_prog_data->base.base.total_scratch / 2048),
479
480 .OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1,
481 .OutputTopology = gs_prog_data->output_topology,
482 .VertexURBEntryReadLength = gs_prog_data->base.urb_read_length,
483 .IncludeVertexHandles = gs_prog_data->base.include_vue_handles,
484 .DispatchGRFStartRegisterForURBData =
485 gs_prog_data->base.base.dispatch_grf_start_reg,
486
487 .MaximumNumberofThreads = device->info.max_gs_threads / 2 - 1,
488 .ControlDataHeaderSize = gs_prog_data->control_data_header_size_hwords,
489 .DispatchMode = gs_prog_data->base.dispatch_mode,
490 .StatisticsEnable = true,
491 .IncludePrimitiveID = gs_prog_data->include_primitive_id,
492 .ReorderMode = TRAILING,
493 .Enable = true,
494
495 .ControlDataFormat = gs_prog_data->control_data_format,
496
497 .StaticOutput = gs_prog_data->static_vertex_count >= 0,
498 .StaticOutputVertexCount =
499 gs_prog_data->static_vertex_count >= 0 ?
500 gs_prog_data->static_vertex_count : 0,
501
502 /* FIXME: mesa sets this based on ctx->Transform.ClipPlanesEnabled:
503 * UserClipDistanceClipTestEnableBitmask_3DSTATE_GS(v)
504 * UserClipDistanceCullTestEnableBitmask(v)
505 */
506
507 .VertexURBEntryOutputReadOffset = offset,
508 .VertexURBEntryOutputLength = length);
509
510 const struct brw_vue_prog_data *vue_prog_data = &pipeline->vs_prog_data.base;
511 /* Skip the VUE header and position slots */
512 offset = 1;
513 length = (vue_prog_data->vue_map.num_slots + 1) / 2 - offset;
514
515 uint32_t vs_start = pipeline->vs_simd8 != NO_KERNEL ? pipeline->vs_simd8 :
516 pipeline->vs_vec4;
517
518 if (vs_start == NO_KERNEL || (extra && extra->disable_vs))
519 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VS),
520 .FunctionEnable = false,
521 /* Even if VS is disabled, SBE still gets the amount of
522 * vertex data to read from this field. */
523 .VertexURBEntryOutputReadOffset = offset,
524 .VertexURBEntryOutputLength = length);
525 else
526 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VS),
527 .KernelStartPointer = vs_start,
528 .SingleVertexDispatch = Multiple,
529 .VectorMaskEnable = Dmask,
530 .SamplerCount = 0,
531 .BindingTableEntryCount =
532 vue_prog_data->base.binding_table.size_bytes / 4,
533 .ThreadDispatchPriority = Normal,
534 .FloatingPointMode = IEEE754,
535 .IllegalOpcodeExceptionEnable = false,
536 .AccessesUAV = false,
537 .SoftwareExceptionEnable = false,
538
539 .ScratchSpaceBasePointer = pipeline->scratch_start[MESA_SHADER_VERTEX],
540 .PerThreadScratchSpace = ffs(vue_prog_data->base.total_scratch / 2048),
541
542 .DispatchGRFStartRegisterForURBData =
543 vue_prog_data->base.dispatch_grf_start_reg,
544 .VertexURBEntryReadLength = vue_prog_data->urb_read_length,
545 .VertexURBEntryReadOffset = 0,
546
547 .MaximumNumberofThreads = device->info.max_vs_threads - 1,
548 .StatisticsEnable = false,
549 .SIMD8DispatchEnable = pipeline->vs_simd8 != NO_KERNEL,
550 .VertexCacheDisable = false,
551 .FunctionEnable = true,
552
553 .VertexURBEntryOutputReadOffset = offset,
554 .VertexURBEntryOutputLength = length,
555 .UserClipDistanceClipTestEnableBitmask = 0,
556 .UserClipDistanceCullTestEnableBitmask = 0);
557
558 const struct brw_wm_prog_data *wm_prog_data = &pipeline->wm_prog_data;
559
560 /* TODO: We should clean this up. Among other things, this is mostly
561 * shared with other gens.
562 */
563 const struct brw_vue_map *fs_input_map;
564 if (pipeline->gs_kernel == NO_KERNEL)
565 fs_input_map = &vue_prog_data->vue_map;
566 else
567 fs_input_map = &gs_prog_data->base.vue_map;
568
569 struct GENX(3DSTATE_SBE_SWIZ) swiz = {
570 GENX(3DSTATE_SBE_SWIZ_header),
571 };
572
573 int max_source_attr = 0;
574 for (int attr = 0; attr < VARYING_SLOT_MAX; attr++) {
575 int input_index = wm_prog_data->urb_setup[attr];
576
577 if (input_index < 0)
578 continue;
579
580 /* We have to subtract two slots to accout for the URB entry output
581 * read offset in the VS and GS stages.
582 */
583 int source_attr = fs_input_map->varying_to_slot[attr] - 2;
584 max_source_attr = MAX2(max_source_attr, source_attr);
585
586 if (input_index >= 16)
587 continue;
588
589 swiz.Attribute[input_index].SourceAttribute = source_attr;
590 }
591
592 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SBE),
593 .AttributeSwizzleEnable = true,
594 .ForceVertexURBEntryReadLength = false,
595 .ForceVertexURBEntryReadOffset = false,
596 .VertexURBEntryReadLength = DIV_ROUND_UP(max_source_attr + 1, 2),
597 .PointSpriteTextureCoordinateOrigin = UPPERLEFT,
598 .NumberofSFOutputAttributes =
599 wm_prog_data->num_varying_inputs,
600
601 #if ANV_GEN >= 9
602 .Attribute0ActiveComponentFormat = ACF_XYZW,
603 .Attribute1ActiveComponentFormat = ACF_XYZW,
604 .Attribute2ActiveComponentFormat = ACF_XYZW,
605 .Attribute3ActiveComponentFormat = ACF_XYZW,
606 .Attribute4ActiveComponentFormat = ACF_XYZW,
607 .Attribute5ActiveComponentFormat = ACF_XYZW,
608 .Attribute6ActiveComponentFormat = ACF_XYZW,
609 .Attribute7ActiveComponentFormat = ACF_XYZW,
610 .Attribute8ActiveComponentFormat = ACF_XYZW,
611 .Attribute9ActiveComponentFormat = ACF_XYZW,
612 .Attribute10ActiveComponentFormat = ACF_XYZW,
613 .Attribute11ActiveComponentFormat = ACF_XYZW,
614 .Attribute12ActiveComponentFormat = ACF_XYZW,
615 .Attribute13ActiveComponentFormat = ACF_XYZW,
616 .Attribute14ActiveComponentFormat = ACF_XYZW,
617 .Attribute15ActiveComponentFormat = ACF_XYZW,
618 /* wow, much field, very attribute */
619 .Attribute16ActiveComponentFormat = ACF_XYZW,
620 .Attribute17ActiveComponentFormat = ACF_XYZW,
621 .Attribute18ActiveComponentFormat = ACF_XYZW,
622 .Attribute19ActiveComponentFormat = ACF_XYZW,
623 .Attribute20ActiveComponentFormat = ACF_XYZW,
624 .Attribute21ActiveComponentFormat = ACF_XYZW,
625 .Attribute22ActiveComponentFormat = ACF_XYZW,
626 .Attribute23ActiveComponentFormat = ACF_XYZW,
627 .Attribute24ActiveComponentFormat = ACF_XYZW,
628 .Attribute25ActiveComponentFormat = ACF_XYZW,
629 .Attribute26ActiveComponentFormat = ACF_XYZW,
630 .Attribute27ActiveComponentFormat = ACF_XYZW,
631 .Attribute28ActiveComponentFormat = ACF_XYZW,
632 .Attribute29ActiveComponentFormat = ACF_XYZW,
633 .Attribute28ActiveComponentFormat = ACF_XYZW,
634 .Attribute29ActiveComponentFormat = ACF_XYZW,
635 .Attribute30ActiveComponentFormat = ACF_XYZW,
636 #endif
637 );
638
639 uint32_t *dw = anv_batch_emit_dwords(&pipeline->batch,
640 GENX(3DSTATE_SBE_SWIZ_length));
641 GENX(3DSTATE_SBE_SWIZ_pack)(&pipeline->batch, dw, &swiz);
642
643 const int num_thread_bias = ANV_GEN == 8 ? 2 : 1;
644 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS),
645 .KernelStartPointer0 = pipeline->ps_ksp0,
646
647 .SingleProgramFlow = false,
648 .VectorMaskEnable = true,
649 .SamplerCount = 1,
650
651 .ScratchSpaceBasePointer = pipeline->scratch_start[MESA_SHADER_FRAGMENT],
652 .PerThreadScratchSpace = ffs(wm_prog_data->base.total_scratch / 2048),
653
654 .MaximumNumberofThreadsPerPSD = 64 - num_thread_bias,
655 .PositionXYOffsetSelect = wm_prog_data->uses_pos_offset ?
656 POSOFFSET_SAMPLE: POSOFFSET_NONE,
657 .PushConstantEnable = wm_prog_data->base.nr_params > 0,
658 ._8PixelDispatchEnable = pipeline->ps_simd8 != NO_KERNEL,
659 ._16PixelDispatchEnable = pipeline->ps_simd16 != NO_KERNEL,
660 ._32PixelDispatchEnable = false,
661
662 .DispatchGRFStartRegisterForConstantSetupData0 = pipeline->ps_grf_start0,
663 .DispatchGRFStartRegisterForConstantSetupData1 = 0,
664 .DispatchGRFStartRegisterForConstantSetupData2 = pipeline->ps_grf_start2,
665
666 .KernelStartPointer1 = 0,
667 .KernelStartPointer2 = pipeline->ps_ksp2);
668
669 bool per_sample_ps = false;
670 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_EXTRA),
671 .PixelShaderValid = true,
672 .PixelShaderKillsPixel = wm_prog_data->uses_kill,
673 .PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode,
674 .AttributeEnable = wm_prog_data->num_varying_inputs > 0,
675 .oMaskPresenttoRenderTarget = wm_prog_data->uses_omask,
676 .PixelShaderIsPerSample = per_sample_ps,
677 #if ANV_GEN >= 9
678 .PixelShaderPullsBary = wm_prog_data->pulls_bary,
679 .InputCoverageMaskState = ICMS_NONE
680 #endif
681 );
682
683 *pPipeline = anv_pipeline_to_handle(pipeline);
684
685 return VK_SUCCESS;
686 }
687
688 VkResult genX(compute_pipeline_create)(
689 VkDevice _device,
690 const VkComputePipelineCreateInfo* pCreateInfo,
691 const VkAllocationCallbacks* pAllocator,
692 VkPipeline* pPipeline)
693 {
694 ANV_FROM_HANDLE(anv_device, device, _device);
695 struct anv_pipeline *pipeline;
696 VkResult result;
697
698 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO);
699
700 pipeline = anv_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
701 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
702 if (pipeline == NULL)
703 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
704
705 pipeline->device = device;
706 pipeline->layout = anv_pipeline_layout_from_handle(pCreateInfo->layout);
707
708 pipeline->blend_state.map = NULL;
709
710 result = anv_reloc_list_init(&pipeline->batch_relocs,
711 pAllocator ? pAllocator : &device->alloc);
712 if (result != VK_SUCCESS) {
713 anv_free2(&device->alloc, pAllocator, pipeline);
714 return result;
715 }
716 pipeline->batch.next = pipeline->batch.start = pipeline->batch_data;
717 pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data);
718 pipeline->batch.relocs = &pipeline->batch_relocs;
719
720 anv_state_stream_init(&pipeline->program_stream,
721 &device->instruction_block_pool);
722
723 /* When we free the pipeline, we detect stages based on the NULL status
724 * of various prog_data pointers. Make them NULL by default.
725 */
726 memset(pipeline->prog_data, 0, sizeof(pipeline->prog_data));
727 memset(pipeline->scratch_start, 0, sizeof(pipeline->scratch_start));
728
729 pipeline->vs_simd8 = NO_KERNEL;
730 pipeline->vs_vec4 = NO_KERNEL;
731 pipeline->gs_kernel = NO_KERNEL;
732
733 pipeline->active_stages = 0;
734 pipeline->total_scratch = 0;
735
736 assert(pCreateInfo->stage.stage == VK_SHADER_STAGE_COMPUTE_BIT);
737 ANV_FROM_HANDLE(anv_shader_module, module, pCreateInfo->stage.module);
738 anv_pipeline_compile_cs(pipeline, pCreateInfo, module,
739 pCreateInfo->stage.pName);
740
741 pipeline->use_repclear = false;
742
743 const struct brw_cs_prog_data *cs_prog_data = &pipeline->cs_prog_data;
744
745 anv_batch_emit(&pipeline->batch, GENX(MEDIA_VFE_STATE),
746 .ScratchSpaceBasePointer = pipeline->scratch_start[MESA_SHADER_COMPUTE],
747 .PerThreadScratchSpace = ffs(cs_prog_data->base.total_scratch / 2048),
748 .ScratchSpaceBasePointerHigh = 0,
749 .StackSize = 0,
750
751 .MaximumNumberofThreads = device->info.max_cs_threads - 1,
752 .NumberofURBEntries = 2,
753 .ResetGatewayTimer = true,
754 #if ANV_GEN == 8
755 .BypassGatewayControl = true,
756 #endif
757 .URBEntryAllocationSize = 2,
758 .CURBEAllocationSize = 0);
759
760 struct brw_cs_prog_data *prog_data = &pipeline->cs_prog_data;
761 uint32_t group_size = prog_data->local_size[0] *
762 prog_data->local_size[1] * prog_data->local_size[2];
763 pipeline->cs_thread_width_max = DIV_ROUND_UP(group_size, prog_data->simd_size);
764 uint32_t remainder = group_size & (prog_data->simd_size - 1);
765
766 if (remainder > 0)
767 pipeline->cs_right_mask = ~0u >> (32 - remainder);
768 else
769 pipeline->cs_right_mask = ~0u >> (32 - prog_data->simd_size);
770
771
772 *pPipeline = anv_pipeline_to_handle(pipeline);
773
774 return VK_SUCCESS;
775 }