gen8/pipeline: Properly handle MIN/MAX blend ops
[mesa.git] / src / vulkan / gen8_pipeline.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "anv_private.h"
31
32 #include "gen8_pack.h"
33
34 static void
35 emit_vertex_input(struct anv_pipeline *pipeline,
36 const VkPipelineVertexInputStateCreateInfo *info)
37 {
38 const uint32_t num_dwords = 1 + info->attributeCount * 2;
39 uint32_t *p;
40
41 if (info->attributeCount > 0) {
42 p = anv_batch_emitn(&pipeline->batch, num_dwords,
43 GEN8_3DSTATE_VERTEX_ELEMENTS);
44 }
45
46 for (uint32_t i = 0; i < info->attributeCount; i++) {
47 const VkVertexInputAttributeDescription *desc =
48 &info->pVertexAttributeDescriptions[i];
49 const struct anv_format *format = anv_format_for_vk_format(desc->format);
50
51 struct GEN8_VERTEX_ELEMENT_STATE element = {
52 .VertexBufferIndex = desc->binding,
53 .Valid = true,
54 .SourceElementFormat = format->surface_format,
55 .EdgeFlagEnable = false,
56 .SourceElementOffset = desc->offsetInBytes,
57 .Component0Control = VFCOMP_STORE_SRC,
58 .Component1Control = format->num_channels >= 2 ? VFCOMP_STORE_SRC : VFCOMP_STORE_0,
59 .Component2Control = format->num_channels >= 3 ? VFCOMP_STORE_SRC : VFCOMP_STORE_0,
60 .Component3Control = format->num_channels >= 4 ? VFCOMP_STORE_SRC : VFCOMP_STORE_1_FP
61 };
62 GEN8_VERTEX_ELEMENT_STATE_pack(NULL, &p[1 + i * 2], &element);
63
64 anv_batch_emit(&pipeline->batch, GEN8_3DSTATE_VF_INSTANCING,
65 .InstancingEnable = pipeline->instancing_enable[desc->binding],
66 .VertexElementIndex = i,
67 /* Vulkan so far doesn't have an instance divisor, so
68 * this is always 1 (ignored if not instancing). */
69 .InstanceDataStepRate = 1);
70 }
71
72 anv_batch_emit(&pipeline->batch, GEN8_3DSTATE_VF_SGVS,
73 .VertexIDEnable = pipeline->vs_prog_data.uses_vertexid,
74 .VertexIDComponentNumber = 2,
75 .VertexIDElementOffset = info->bindingCount,
76 .InstanceIDEnable = pipeline->vs_prog_data.uses_instanceid,
77 .InstanceIDComponentNumber = 3,
78 .InstanceIDElementOffset = info->bindingCount);
79 }
80
81 static void
82 emit_ia_state(struct anv_pipeline *pipeline,
83 const VkPipelineInputAssemblyStateCreateInfo *info,
84 const struct anv_graphics_pipeline_create_info *extra)
85 {
86 anv_batch_emit(&pipeline->batch, GEN8_3DSTATE_VF_TOPOLOGY,
87 .PrimitiveTopologyType = pipeline->topology);
88 }
89
90 static void
91 emit_rs_state(struct anv_pipeline *pipeline,
92 const VkPipelineRasterStateCreateInfo *info,
93 const struct anv_graphics_pipeline_create_info *extra)
94 {
95 static const uint32_t vk_to_gen_cullmode[] = {
96 [VK_CULL_MODE_NONE] = CULLMODE_NONE,
97 [VK_CULL_MODE_FRONT] = CULLMODE_FRONT,
98 [VK_CULL_MODE_BACK] = CULLMODE_BACK,
99 [VK_CULL_MODE_FRONT_AND_BACK] = CULLMODE_BOTH
100 };
101
102 static const uint32_t vk_to_gen_fillmode[] = {
103 [VK_FILL_MODE_POINTS] = RASTER_POINT,
104 [VK_FILL_MODE_WIREFRAME] = RASTER_WIREFRAME,
105 [VK_FILL_MODE_SOLID] = RASTER_SOLID
106 };
107
108 static const uint32_t vk_to_gen_front_face[] = {
109 [VK_FRONT_FACE_CCW] = CounterClockwise,
110 [VK_FRONT_FACE_CW] = Clockwise
111 };
112
113 struct GEN8_3DSTATE_SF sf = {
114 GEN8_3DSTATE_SF_header,
115 .ViewportTransformEnable = !(extra && extra->disable_viewport),
116 .TriangleStripListProvokingVertexSelect = 0,
117 .LineStripListProvokingVertexSelect = 0,
118 .TriangleFanProvokingVertexSelect = 0,
119 .PointWidthSource = pipeline->writes_point_size ? Vertex : State,
120 .PointWidth = 1.0,
121 };
122
123 /* FINISHME: VkBool32 rasterizerDiscardEnable; */
124
125 GEN8_3DSTATE_SF_pack(NULL, pipeline->gen8.sf, &sf);
126
127 struct GEN8_3DSTATE_RASTER raster = {
128 GEN8_3DSTATE_RASTER_header,
129 .FrontWinding = vk_to_gen_front_face[info->frontFace],
130 .CullMode = vk_to_gen_cullmode[info->cullMode],
131 .FrontFaceFillMode = vk_to_gen_fillmode[info->fillMode],
132 .BackFaceFillMode = vk_to_gen_fillmode[info->fillMode],
133 .ScissorRectangleEnable = !(extra && extra->disable_scissor),
134 .ViewportZClipTestEnable = info->depthClipEnable
135 };
136
137 GEN8_3DSTATE_RASTER_pack(NULL, pipeline->gen8.raster, &raster);
138 }
139
140 static void
141 emit_cb_state(struct anv_pipeline *pipeline,
142 const VkPipelineColorBlendStateCreateInfo *info)
143 {
144 struct anv_device *device = pipeline->device;
145
146 static const uint32_t vk_to_gen_logic_op[] = {
147 [VK_LOGIC_OP_COPY] = LOGICOP_COPY,
148 [VK_LOGIC_OP_CLEAR] = LOGICOP_CLEAR,
149 [VK_LOGIC_OP_AND] = LOGICOP_AND,
150 [VK_LOGIC_OP_AND_REVERSE] = LOGICOP_AND_REVERSE,
151 [VK_LOGIC_OP_AND_INVERTED] = LOGICOP_AND_INVERTED,
152 [VK_LOGIC_OP_NOOP] = LOGICOP_NOOP,
153 [VK_LOGIC_OP_XOR] = LOGICOP_XOR,
154 [VK_LOGIC_OP_OR] = LOGICOP_OR,
155 [VK_LOGIC_OP_NOR] = LOGICOP_NOR,
156 [VK_LOGIC_OP_EQUIV] = LOGICOP_EQUIV,
157 [VK_LOGIC_OP_INVERT] = LOGICOP_INVERT,
158 [VK_LOGIC_OP_OR_REVERSE] = LOGICOP_OR_REVERSE,
159 [VK_LOGIC_OP_COPY_INVERTED] = LOGICOP_COPY_INVERTED,
160 [VK_LOGIC_OP_OR_INVERTED] = LOGICOP_OR_INVERTED,
161 [VK_LOGIC_OP_NAND] = LOGICOP_NAND,
162 [VK_LOGIC_OP_SET] = LOGICOP_SET,
163 };
164
165 static const uint32_t vk_to_gen_blend[] = {
166 [VK_BLEND_ZERO] = BLENDFACTOR_ZERO,
167 [VK_BLEND_ONE] = BLENDFACTOR_ONE,
168 [VK_BLEND_SRC_COLOR] = BLENDFACTOR_SRC_COLOR,
169 [VK_BLEND_ONE_MINUS_SRC_COLOR] = BLENDFACTOR_INV_SRC_COLOR,
170 [VK_BLEND_DEST_COLOR] = BLENDFACTOR_DST_COLOR,
171 [VK_BLEND_ONE_MINUS_DEST_COLOR] = BLENDFACTOR_INV_DST_COLOR,
172 [VK_BLEND_SRC_ALPHA] = BLENDFACTOR_SRC_ALPHA,
173 [VK_BLEND_ONE_MINUS_SRC_ALPHA] = BLENDFACTOR_INV_SRC_ALPHA,
174 [VK_BLEND_DEST_ALPHA] = BLENDFACTOR_DST_ALPHA,
175 [VK_BLEND_ONE_MINUS_DEST_ALPHA] = BLENDFACTOR_INV_DST_ALPHA,
176 [VK_BLEND_CONSTANT_COLOR] = BLENDFACTOR_CONST_COLOR,
177 [VK_BLEND_ONE_MINUS_CONSTANT_COLOR] = BLENDFACTOR_INV_CONST_COLOR,
178 [VK_BLEND_CONSTANT_ALPHA] = BLENDFACTOR_CONST_ALPHA,
179 [VK_BLEND_ONE_MINUS_CONSTANT_ALPHA] = BLENDFACTOR_INV_CONST_ALPHA,
180 [VK_BLEND_SRC_ALPHA_SATURATE] = BLENDFACTOR_SRC_ALPHA_SATURATE,
181 [VK_BLEND_SRC1_COLOR] = BLENDFACTOR_SRC1_COLOR,
182 [VK_BLEND_ONE_MINUS_SRC1_COLOR] = BLENDFACTOR_INV_SRC1_COLOR,
183 [VK_BLEND_SRC1_ALPHA] = BLENDFACTOR_SRC1_ALPHA,
184 [VK_BLEND_ONE_MINUS_SRC1_ALPHA] = BLENDFACTOR_INV_SRC1_ALPHA,
185 };
186
187 static const uint32_t vk_to_gen_blend_op[] = {
188 [VK_BLEND_OP_ADD] = BLENDFUNCTION_ADD,
189 [VK_BLEND_OP_SUBTRACT] = BLENDFUNCTION_SUBTRACT,
190 [VK_BLEND_OP_REVERSE_SUBTRACT] = BLENDFUNCTION_REVERSE_SUBTRACT,
191 [VK_BLEND_OP_MIN] = BLENDFUNCTION_MIN,
192 [VK_BLEND_OP_MAX] = BLENDFUNCTION_MAX,
193 };
194
195 uint32_t num_dwords = GEN8_BLEND_STATE_length;
196 pipeline->blend_state =
197 anv_state_pool_alloc(&device->dynamic_state_pool, num_dwords * 4, 64);
198
199 struct GEN8_BLEND_STATE blend_state = {
200 .AlphaToCoverageEnable = info->alphaToCoverageEnable,
201 .AlphaToOneEnable = info->alphaToOneEnable,
202 };
203
204 for (uint32_t i = 0; i < info->attachmentCount; i++) {
205 const VkPipelineColorBlendAttachmentState *a = &info->pAttachments[i];
206
207 if (a->srcBlendColor != a->srcBlendAlpha ||
208 a->destBlendColor != a->destBlendAlpha ||
209 a->blendOpColor != a->blendOpAlpha) {
210 blend_state.IndependentAlphaBlendEnable = true;
211 }
212
213 blend_state.Entry[i] = (struct GEN8_BLEND_STATE_ENTRY) {
214 .LogicOpEnable = info->logicOpEnable,
215 .LogicOpFunction = vk_to_gen_logic_op[info->logicOp],
216 .ColorBufferBlendEnable = a->blendEnable,
217 .PreBlendSourceOnlyClampEnable = false,
218 .ColorClampRange = COLORCLAMP_RTFORMAT,
219 .PreBlendColorClampEnable = true,
220 .PostBlendColorClampEnable = true,
221 .SourceBlendFactor = vk_to_gen_blend[a->srcBlendColor],
222 .DestinationBlendFactor = vk_to_gen_blend[a->destBlendColor],
223 .ColorBlendFunction = vk_to_gen_blend_op[a->blendOpColor],
224 .SourceAlphaBlendFactor = vk_to_gen_blend[a->srcBlendAlpha],
225 .DestinationAlphaBlendFactor = vk_to_gen_blend[a->destBlendAlpha],
226 .AlphaBlendFunction = vk_to_gen_blend_op[a->blendOpAlpha],
227 .WriteDisableAlpha = !(a->channelWriteMask & VK_CHANNEL_A_BIT),
228 .WriteDisableRed = !(a->channelWriteMask & VK_CHANNEL_R_BIT),
229 .WriteDisableGreen = !(a->channelWriteMask & VK_CHANNEL_G_BIT),
230 .WriteDisableBlue = !(a->channelWriteMask & VK_CHANNEL_B_BIT),
231 };
232
233 /* Our hardware applies the blend factor prior to the blend function
234 * regardless of what function is used. Technically, this means the
235 * hardware can do MORE than GL or Vulkan specify. However, it also
236 * means that, for MIN and MAX, we have to stomp the blend factor to
237 * ONE to make it a no-op.
238 */
239 if (a->blendOpColor == VK_BLEND_OP_MIN ||
240 a->blendOpColor == VK_BLEND_OP_MAX) {
241 blend_state.Entry[i].SourceBlendFactor = BLENDFACTOR_ONE;
242 blend_state.Entry[i].DestinationBlendFactor = BLENDFACTOR_ONE;
243 }
244 if (a->blendOpAlpha == VK_BLEND_OP_MIN ||
245 a->blendOpAlpha == VK_BLEND_OP_MAX) {
246 blend_state.Entry[i].SourceAlphaBlendFactor = BLENDFACTOR_ONE;
247 blend_state.Entry[i].DestinationAlphaBlendFactor = BLENDFACTOR_ONE;
248 }
249 }
250
251 GEN8_BLEND_STATE_pack(NULL, pipeline->blend_state.map, &blend_state);
252
253 anv_batch_emit(&pipeline->batch, GEN8_3DSTATE_BLEND_STATE_POINTERS,
254 .BlendStatePointer = pipeline->blend_state.offset,
255 .BlendStatePointerValid = true);
256 }
257
258 static const uint32_t vk_to_gen_compare_op[] = {
259 [VK_COMPARE_OP_NEVER] = COMPAREFUNCTION_NEVER,
260 [VK_COMPARE_OP_LESS] = COMPAREFUNCTION_LESS,
261 [VK_COMPARE_OP_EQUAL] = COMPAREFUNCTION_EQUAL,
262 [VK_COMPARE_OP_LESS_EQUAL] = COMPAREFUNCTION_LEQUAL,
263 [VK_COMPARE_OP_GREATER] = COMPAREFUNCTION_GREATER,
264 [VK_COMPARE_OP_NOT_EQUAL] = COMPAREFUNCTION_NOTEQUAL,
265 [VK_COMPARE_OP_GREATER_EQUAL] = COMPAREFUNCTION_GEQUAL,
266 [VK_COMPARE_OP_ALWAYS] = COMPAREFUNCTION_ALWAYS,
267 };
268
269 static const uint32_t vk_to_gen_stencil_op[] = {
270 [VK_STENCIL_OP_KEEP] = STENCILOP_KEEP,
271 [VK_STENCIL_OP_ZERO] = STENCILOP_ZERO,
272 [VK_STENCIL_OP_REPLACE] = STENCILOP_REPLACE,
273 [VK_STENCIL_OP_INC_CLAMP] = STENCILOP_INCRSAT,
274 [VK_STENCIL_OP_DEC_CLAMP] = STENCILOP_DECRSAT,
275 [VK_STENCIL_OP_INVERT] = STENCILOP_INVERT,
276 [VK_STENCIL_OP_INC_WRAP] = STENCILOP_INCR,
277 [VK_STENCIL_OP_DEC_WRAP] = STENCILOP_DECR,
278 };
279
280 static void
281 emit_ds_state(struct anv_pipeline *pipeline,
282 const VkPipelineDepthStencilStateCreateInfo *info)
283 {
284 if (info == NULL) {
285 /* We're going to OR this together with the dynamic state. We need
286 * to make sure it's initialized to something useful.
287 */
288 memset(pipeline->gen8.wm_depth_stencil, 0,
289 sizeof(pipeline->gen8.wm_depth_stencil));
290 return;
291 }
292
293 /* VkBool32 depthBoundsTestEnable; // optional (depth_bounds_test) */
294
295 struct GEN8_3DSTATE_WM_DEPTH_STENCIL wm_depth_stencil = {
296 .DepthTestEnable = info->depthTestEnable,
297 .DepthBufferWriteEnable = info->depthWriteEnable,
298 .DepthTestFunction = vk_to_gen_compare_op[info->depthCompareOp],
299 .DoubleSidedStencilEnable = true,
300
301 .StencilTestEnable = info->stencilTestEnable,
302 .StencilFailOp = vk_to_gen_stencil_op[info->front.stencilFailOp],
303 .StencilPassDepthPassOp = vk_to_gen_stencil_op[info->front.stencilPassOp],
304 .StencilPassDepthFailOp = vk_to_gen_stencil_op[info->front.stencilDepthFailOp],
305 .StencilTestFunction = vk_to_gen_compare_op[info->front.stencilCompareOp],
306 .BackfaceStencilFailOp = vk_to_gen_stencil_op[info->back.stencilFailOp],
307 .BackfaceStencilPassDepthPassOp = vk_to_gen_stencil_op[info->back.stencilPassOp],
308 .BackfaceStencilPassDepthFailOp =vk_to_gen_stencil_op[info->back.stencilDepthFailOp],
309 .BackfaceStencilTestFunction = vk_to_gen_compare_op[info->back.stencilCompareOp],
310 };
311
312 GEN8_3DSTATE_WM_DEPTH_STENCIL_pack(NULL, pipeline->gen8.wm_depth_stencil, &wm_depth_stencil);
313 }
314
315 VkResult
316 gen8_graphics_pipeline_create(
317 VkDevice _device,
318 const VkGraphicsPipelineCreateInfo* pCreateInfo,
319 const struct anv_graphics_pipeline_create_info *extra,
320 VkPipeline* pPipeline)
321 {
322 ANV_FROM_HANDLE(anv_device, device, _device);
323 struct anv_pipeline *pipeline;
324 VkResult result;
325 uint32_t offset, length;
326
327 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
328
329 pipeline = anv_device_alloc(device, sizeof(*pipeline), 8,
330 VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
331 if (pipeline == NULL)
332 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
333
334 result = anv_pipeline_init(pipeline, device, pCreateInfo, extra);
335 if (result != VK_SUCCESS)
336 return result;
337
338 /* FIXME: The compiler dead-codes FS inputs when we don't have a VS, so we
339 * hard code this to num_attributes - 2. This is because the attributes
340 * include VUE header and position, which aren't counted as varying
341 * inputs. */
342 if (pipeline->vs_simd8 == NO_KERNEL) {
343 pipeline->wm_prog_data.num_varying_inputs =
344 pCreateInfo->pVertexInputState->attributeCount - 2;
345 }
346
347 assert(pCreateInfo->pVertexInputState);
348 emit_vertex_input(pipeline, pCreateInfo->pVertexInputState);
349 assert(pCreateInfo->pInputAssemblyState);
350 emit_ia_state(pipeline, pCreateInfo->pInputAssemblyState, extra);
351 assert(pCreateInfo->pRasterState);
352 emit_rs_state(pipeline, pCreateInfo->pRasterState, extra);
353 emit_ds_state(pipeline, pCreateInfo->pDepthStencilState);
354 emit_cb_state(pipeline, pCreateInfo->pColorBlendState);
355
356 anv_batch_emit(&pipeline->batch, GEN8_3DSTATE_VF_STATISTICS,
357 .StatisticsEnable = true);
358 anv_batch_emit(&pipeline->batch, GEN8_3DSTATE_HS, .Enable = false);
359 anv_batch_emit(&pipeline->batch, GEN8_3DSTATE_TE, .TEEnable = false);
360 anv_batch_emit(&pipeline->batch, GEN8_3DSTATE_DS, .FunctionEnable = false);
361 anv_batch_emit(&pipeline->batch, GEN8_3DSTATE_STREAMOUT, .SOFunctionEnable = false);
362
363 anv_batch_emit(&pipeline->batch, GEN8_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
364 .ConstantBufferOffset = 0,
365 .ConstantBufferSize = 4);
366 anv_batch_emit(&pipeline->batch, GEN8_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
367 .ConstantBufferOffset = 4,
368 .ConstantBufferSize = 4);
369 anv_batch_emit(&pipeline->batch, GEN8_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
370 .ConstantBufferOffset = 8,
371 .ConstantBufferSize = 4);
372
373 anv_batch_emit(&pipeline->batch, GEN8_3DSTATE_WM_CHROMAKEY,
374 .ChromaKeyKillEnable = false);
375 anv_batch_emit(&pipeline->batch, GEN8_3DSTATE_AA_LINE_PARAMETERS);
376
377 anv_batch_emit(&pipeline->batch, GEN8_3DSTATE_CLIP,
378 .ClipEnable = true,
379 .ViewportXYClipTestEnable = !(extra && extra->disable_viewport),
380 .MinimumPointWidth = 0.125,
381 .MaximumPointWidth = 255.875);
382
383 anv_batch_emit(&pipeline->batch, GEN8_3DSTATE_WM,
384 .StatisticsEnable = true,
385 .LineEndCapAntialiasingRegionWidth = _05pixels,
386 .LineAntialiasingRegionWidth = _10pixels,
387 .EarlyDepthStencilControl = NORMAL,
388 .ForceThreadDispatchEnable = NORMAL,
389 .PointRasterizationRule = RASTRULE_UPPER_RIGHT,
390 .BarycentricInterpolationMode =
391 pipeline->wm_prog_data.barycentric_interp_modes);
392
393 uint32_t samples = 1;
394 uint32_t log2_samples = __builtin_ffs(samples) - 1;
395 bool enable_sampling = samples > 1 ? true : false;
396
397 anv_batch_emit(&pipeline->batch, GEN8_3DSTATE_MULTISAMPLE,
398 .PixelPositionOffsetEnable = enable_sampling,
399 .PixelLocation = CENTER,
400 .NumberofMultisamples = log2_samples);
401
402 anv_batch_emit(&pipeline->batch, GEN8_3DSTATE_SAMPLE_MASK,
403 .SampleMask = 0xffff);
404
405 anv_batch_emit(&pipeline->batch, GEN8_3DSTATE_URB_VS,
406 .VSURBStartingAddress = pipeline->urb.vs_start,
407 .VSURBEntryAllocationSize = pipeline->urb.vs_size - 1,
408 .VSNumberofURBEntries = pipeline->urb.nr_vs_entries);
409
410 anv_batch_emit(&pipeline->batch, GEN8_3DSTATE_URB_GS,
411 .GSURBStartingAddress = pipeline->urb.gs_start,
412 .GSURBEntryAllocationSize = pipeline->urb.gs_size - 1,
413 .GSNumberofURBEntries = pipeline->urb.nr_gs_entries);
414
415 anv_batch_emit(&pipeline->batch, GEN8_3DSTATE_URB_HS,
416 .HSURBStartingAddress = pipeline->urb.vs_start,
417 .HSURBEntryAllocationSize = 0,
418 .HSNumberofURBEntries = 0);
419
420 anv_batch_emit(&pipeline->batch, GEN8_3DSTATE_URB_DS,
421 .DSURBStartingAddress = pipeline->urb.vs_start,
422 .DSURBEntryAllocationSize = 0,
423 .DSNumberofURBEntries = 0);
424
425 const struct brw_gs_prog_data *gs_prog_data = &pipeline->gs_prog_data;
426 offset = 1;
427 length = (gs_prog_data->base.vue_map.num_slots + 1) / 2 - offset;
428
429 if (pipeline->gs_vec4 == NO_KERNEL)
430 anv_batch_emit(&pipeline->batch, GEN8_3DSTATE_GS, .Enable = false);
431 else
432 anv_batch_emit(&pipeline->batch, GEN8_3DSTATE_GS,
433 .SingleProgramFlow = false,
434 .KernelStartPointer = pipeline->gs_vec4,
435 .VectorMaskEnable = Dmask,
436 .SamplerCount = 0,
437 .BindingTableEntryCount = 0,
438 .ExpectedVertexCount = pipeline->gs_vertex_count,
439
440 .ScratchSpaceBasePointer = pipeline->scratch_start[VK_SHADER_STAGE_GEOMETRY],
441 .PerThreadScratchSpace = ffs(gs_prog_data->base.base.total_scratch / 2048),
442
443 .OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1,
444 .OutputTopology = gs_prog_data->output_topology,
445 .VertexURBEntryReadLength = gs_prog_data->base.urb_read_length,
446 .DispatchGRFStartRegisterForURBData =
447 gs_prog_data->base.base.dispatch_grf_start_reg,
448
449 .MaximumNumberofThreads = device->info.max_gs_threads / 2 - 1,
450 .ControlDataHeaderSize = gs_prog_data->control_data_header_size_hwords,
451 .DispatchMode = gs_prog_data->base.dispatch_mode,
452 .StatisticsEnable = true,
453 .IncludePrimitiveID = gs_prog_data->include_primitive_id,
454 .ReorderMode = TRAILING,
455 .Enable = true,
456
457 .ControlDataFormat = gs_prog_data->control_data_format,
458
459 .StaticOutput = gs_prog_data->static_vertex_count >= 0,
460 .StaticOutputVertexCount =
461 gs_prog_data->static_vertex_count >= 0 ?
462 gs_prog_data->static_vertex_count : 0,
463
464 /* FIXME: mesa sets this based on ctx->Transform.ClipPlanesEnabled:
465 * UserClipDistanceClipTestEnableBitmask_3DSTATE_GS(v)
466 * UserClipDistanceCullTestEnableBitmask(v)
467 */
468
469 .VertexURBEntryOutputReadOffset = offset,
470 .VertexURBEntryOutputLength = length);
471
472 const struct brw_vue_prog_data *vue_prog_data = &pipeline->vs_prog_data.base;
473 /* Skip the VUE header and position slots */
474 offset = 1;
475 length = (vue_prog_data->vue_map.num_slots + 1) / 2 - offset;
476
477 if (pipeline->vs_simd8 == NO_KERNEL || (extra && extra->disable_vs))
478 anv_batch_emit(&pipeline->batch, GEN8_3DSTATE_VS,
479 .FunctionEnable = false,
480 /* Even if VS is disabled, SBE still gets the amount of
481 * vertex data to read from this field. */
482 .VertexURBEntryOutputReadOffset = offset,
483 .VertexURBEntryOutputLength = length);
484 else
485 anv_batch_emit(&pipeline->batch, GEN8_3DSTATE_VS,
486 .KernelStartPointer = pipeline->vs_simd8,
487 .SingleVertexDispatch = Multiple,
488 .VectorMaskEnable = Dmask,
489 .SamplerCount = 0,
490 .BindingTableEntryCount =
491 vue_prog_data->base.binding_table.size_bytes / 4,
492 .ThreadDispatchPriority = Normal,
493 .FloatingPointMode = IEEE754,
494 .IllegalOpcodeExceptionEnable = false,
495 .AccessesUAV = false,
496 .SoftwareExceptionEnable = false,
497
498 .ScratchSpaceBasePointer = pipeline->scratch_start[VK_SHADER_STAGE_VERTEX],
499 .PerThreadScratchSpace = ffs(vue_prog_data->base.total_scratch / 2048),
500
501 .DispatchGRFStartRegisterForURBData =
502 vue_prog_data->base.dispatch_grf_start_reg,
503 .VertexURBEntryReadLength = vue_prog_data->urb_read_length,
504 .VertexURBEntryReadOffset = 0,
505
506 .MaximumNumberofThreads = device->info.max_vs_threads - 1,
507 .StatisticsEnable = false,
508 .SIMD8DispatchEnable = true,
509 .VertexCacheDisable = false,
510 .FunctionEnable = true,
511
512 .VertexURBEntryOutputReadOffset = offset,
513 .VertexURBEntryOutputLength = length,
514 .UserClipDistanceClipTestEnableBitmask = 0,
515 .UserClipDistanceCullTestEnableBitmask = 0);
516
517 const struct brw_wm_prog_data *wm_prog_data = &pipeline->wm_prog_data;
518
519 /* TODO: We should clean this up. Among other things, this is mostly
520 * shared with other gens.
521 */
522 const struct brw_vue_map *fs_input_map;
523 if (pipeline->gs_vec4 == NO_KERNEL)
524 fs_input_map = &vue_prog_data->vue_map;
525 else
526 fs_input_map = &gs_prog_data->base.vue_map;
527
528 struct GEN8_3DSTATE_SBE_SWIZ swiz = {
529 GEN8_3DSTATE_SBE_SWIZ_header,
530 };
531
532 int max_source_attr = 0;
533 for (int attr = 0; attr < VARYING_SLOT_MAX; attr++) {
534 int input_index = wm_prog_data->urb_setup[attr];
535
536 if (input_index < 0)
537 continue;
538
539 /* We have to subtract two slots to accout for the URB entry output
540 * read offset in the VS and GS stages.
541 */
542 int source_attr = fs_input_map->varying_to_slot[attr] - 2;
543 max_source_attr = MAX2(max_source_attr, source_attr);
544
545 if (input_index >= 16)
546 continue;
547
548 swiz.Attribute[input_index].SourceAttribute = source_attr;
549 }
550
551 anv_batch_emit(&pipeline->batch, GEN8_3DSTATE_SBE,
552 .AttributeSwizzleEnable = true,
553 .ForceVertexURBEntryReadLength = false,
554 .ForceVertexURBEntryReadOffset = false,
555 .VertexURBEntryReadLength = DIV_ROUND_UP(max_source_attr + 1, 2),
556 .PointSpriteTextureCoordinateOrigin = UPPERLEFT,
557 .NumberofSFOutputAttributes =
558 wm_prog_data->num_varying_inputs);
559
560 uint32_t *dw = anv_batch_emit_dwords(&pipeline->batch,
561 GEN8_3DSTATE_SBE_SWIZ_length);
562 GEN8_3DSTATE_SBE_SWIZ_pack(&pipeline->batch, dw, &swiz);
563
564 anv_batch_emit(&pipeline->batch, GEN8_3DSTATE_PS,
565 .KernelStartPointer0 = pipeline->ps_ksp0,
566
567 .SingleProgramFlow = false,
568 .VectorMaskEnable = true,
569 .SamplerCount = 1,
570
571 .ScratchSpaceBasePointer = pipeline->scratch_start[VK_SHADER_STAGE_FRAGMENT],
572 .PerThreadScratchSpace = ffs(wm_prog_data->base.total_scratch / 2048),
573
574 .MaximumNumberofThreadsPerPSD = 64 - 2,
575 .PositionXYOffsetSelect = wm_prog_data->uses_pos_offset ?
576 POSOFFSET_SAMPLE: POSOFFSET_NONE,
577 .PushConstantEnable = wm_prog_data->base.nr_params > 0,
578 ._8PixelDispatchEnable = pipeline->ps_simd8 != NO_KERNEL,
579 ._16PixelDispatchEnable = pipeline->ps_simd16 != NO_KERNEL,
580 ._32PixelDispatchEnable = false,
581
582 .DispatchGRFStartRegisterForConstantSetupData0 = pipeline->ps_grf_start0,
583 .DispatchGRFStartRegisterForConstantSetupData1 = 0,
584 .DispatchGRFStartRegisterForConstantSetupData2 = pipeline->ps_grf_start2,
585
586 .KernelStartPointer1 = 0,
587 .KernelStartPointer2 = pipeline->ps_ksp2);
588
589 bool per_sample_ps = false;
590 anv_batch_emit(&pipeline->batch, GEN8_3DSTATE_PS_EXTRA,
591 .PixelShaderValid = true,
592 .PixelShaderKillsPixel = wm_prog_data->uses_kill,
593 .PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode,
594 .AttributeEnable = wm_prog_data->num_varying_inputs > 0,
595 .oMaskPresenttoRenderTarget = wm_prog_data->uses_omask,
596 .PixelShaderIsPerSample = per_sample_ps);
597
598 *pPipeline = anv_pipeline_to_handle(pipeline);
599
600 return VK_SUCCESS;
601 }
602
603 VkResult gen8_compute_pipeline_create(
604 VkDevice _device,
605 const VkComputePipelineCreateInfo* pCreateInfo,
606 VkPipeline* pPipeline)
607 {
608 ANV_FROM_HANDLE(anv_device, device, _device);
609 struct anv_pipeline *pipeline;
610 VkResult result;
611
612 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO);
613
614 pipeline = anv_device_alloc(device, sizeof(*pipeline), 8,
615 VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
616 if (pipeline == NULL)
617 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
618
619 pipeline->device = device;
620 pipeline->layout = anv_pipeline_layout_from_handle(pCreateInfo->layout);
621
622 pipeline->blend_state.map = NULL;
623
624 result = anv_reloc_list_init(&pipeline->batch_relocs, device);
625 if (result != VK_SUCCESS) {
626 anv_device_free(device, pipeline);
627 return result;
628 }
629 pipeline->batch.next = pipeline->batch.start = pipeline->batch_data;
630 pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data);
631 pipeline->batch.relocs = &pipeline->batch_relocs;
632
633 anv_state_stream_init(&pipeline->program_stream,
634 &device->instruction_block_pool);
635
636 /* When we free the pipeline, we detect stages based on the NULL status
637 * of various prog_data pointers. Make them NULL by default.
638 */
639 memset(pipeline->prog_data, 0, sizeof(pipeline->prog_data));
640 memset(pipeline->scratch_start, 0, sizeof(pipeline->scratch_start));
641
642 pipeline->vs_simd8 = NO_KERNEL;
643 pipeline->vs_vec4 = NO_KERNEL;
644 pipeline->gs_vec4 = NO_KERNEL;
645
646 pipeline->active_stages = 0;
647 pipeline->total_scratch = 0;
648
649 assert(pCreateInfo->stage.stage == VK_SHADER_STAGE_COMPUTE);
650 ANV_FROM_HANDLE(anv_shader, shader, pCreateInfo->stage.shader);
651 anv_pipeline_compile_cs(pipeline, pCreateInfo, shader);
652
653 pipeline->use_repclear = false;
654
655 const struct brw_cs_prog_data *cs_prog_data = &pipeline->cs_prog_data;
656
657 anv_batch_emit(&pipeline->batch, GEN8_MEDIA_VFE_STATE,
658 .ScratchSpaceBasePointer = pipeline->scratch_start[VK_SHADER_STAGE_COMPUTE],
659 .PerThreadScratchSpace = ffs(cs_prog_data->base.total_scratch / 2048),
660 .ScratchSpaceBasePointerHigh = 0,
661 .StackSize = 0,
662
663 .MaximumNumberofThreads = device->info.max_cs_threads - 1,
664 .NumberofURBEntries = 2,
665 .ResetGatewayTimer = true,
666 .BypassGatewayControl = true,
667 .URBEntryAllocationSize = 2,
668 .CURBEAllocationSize = 0);
669
670 struct brw_cs_prog_data *prog_data = &pipeline->cs_prog_data;
671 uint32_t group_size = prog_data->local_size[0] *
672 prog_data->local_size[1] * prog_data->local_size[2];
673 pipeline->cs_thread_width_max = DIV_ROUND_UP(group_size, prog_data->simd_size);
674 uint32_t remainder = group_size & (prog_data->simd_size - 1);
675
676 if (remainder > 0)
677 pipeline->cs_right_mask = ~0u >> (32 - remainder);
678 else
679 pipeline->cs_right_mask = ~0u >> (32 - prog_data->simd_size);
680
681
682 *pPipeline = anv_pipeline_to_handle(pipeline);
683
684 return VK_SUCCESS;
685 }