vk: Add SKL support
[mesa.git] / src / vulkan / gen8_pipeline.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "anv_private.h"
31
32 #include "gen8_pack.h"
33 #include "gen9_pack.h"
34
35 static void
36 emit_vertex_input(struct anv_pipeline *pipeline,
37 const VkPipelineVertexInputStateCreateInfo *info)
38 {
39 const uint32_t num_dwords = 1 + info->attributeCount * 2;
40 uint32_t *p;
41
42 static_assert(ANV_GEN >= 8, "should be compiling this for gen < 8");
43
44 if (info->attributeCount > 0) {
45 p = anv_batch_emitn(&pipeline->batch, num_dwords,
46 GENX(3DSTATE_VERTEX_ELEMENTS));
47 }
48
49 for (uint32_t i = 0; i < info->attributeCount; i++) {
50 const VkVertexInputAttributeDescription *desc =
51 &info->pVertexAttributeDescriptions[i];
52 const struct anv_format *format = anv_format_for_vk_format(desc->format);
53
54 struct GENX(VERTEX_ELEMENT_STATE) element = {
55 .VertexBufferIndex = desc->binding,
56 .Valid = true,
57 .SourceElementFormat = format->surface_format,
58 .EdgeFlagEnable = false,
59 .SourceElementOffset = desc->offsetInBytes,
60 .Component0Control = VFCOMP_STORE_SRC,
61 .Component1Control = format->num_channels >= 2 ? VFCOMP_STORE_SRC : VFCOMP_STORE_0,
62 .Component2Control = format->num_channels >= 3 ? VFCOMP_STORE_SRC : VFCOMP_STORE_0,
63 .Component3Control = format->num_channels >= 4 ? VFCOMP_STORE_SRC : VFCOMP_STORE_1_FP
64 };
65 GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + i * 2], &element);
66
67 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_INSTANCING),
68 .InstancingEnable = pipeline->instancing_enable[desc->binding],
69 .VertexElementIndex = i,
70 /* Vulkan so far doesn't have an instance divisor, so
71 * this is always 1 (ignored if not instancing). */
72 .InstanceDataStepRate = 1);
73 }
74
75 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_SGVS),
76 .VertexIDEnable = pipeline->vs_prog_data.uses_vertexid,
77 .VertexIDComponentNumber = 2,
78 .VertexIDElementOffset = info->bindingCount,
79 .InstanceIDEnable = pipeline->vs_prog_data.uses_instanceid,
80 .InstanceIDComponentNumber = 3,
81 .InstanceIDElementOffset = info->bindingCount);
82 }
83
84 static void
85 emit_ia_state(struct anv_pipeline *pipeline,
86 const VkPipelineInputAssemblyStateCreateInfo *info,
87 const struct anv_graphics_pipeline_create_info *extra)
88 {
89 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_TOPOLOGY),
90 .PrimitiveTopologyType = pipeline->topology);
91 }
92
93 static void
94 emit_rs_state(struct anv_pipeline *pipeline,
95 const VkPipelineRasterStateCreateInfo *info,
96 const struct anv_graphics_pipeline_create_info *extra)
97 {
98 static const uint32_t vk_to_gen_cullmode[] = {
99 [VK_CULL_MODE_NONE] = CULLMODE_NONE,
100 [VK_CULL_MODE_FRONT] = CULLMODE_FRONT,
101 [VK_CULL_MODE_BACK] = CULLMODE_BACK,
102 [VK_CULL_MODE_FRONT_AND_BACK] = CULLMODE_BOTH
103 };
104
105 static const uint32_t vk_to_gen_fillmode[] = {
106 [VK_FILL_MODE_POINTS] = RASTER_POINT,
107 [VK_FILL_MODE_WIREFRAME] = RASTER_WIREFRAME,
108 [VK_FILL_MODE_SOLID] = RASTER_SOLID
109 };
110
111 static const uint32_t vk_to_gen_front_face[] = {
112 [VK_FRONT_FACE_CCW] = CounterClockwise,
113 [VK_FRONT_FACE_CW] = Clockwise
114 };
115
116 struct GENX(3DSTATE_SF) sf = {
117 GENX(3DSTATE_SF_header),
118 .ViewportTransformEnable = !(extra && extra->disable_viewport),
119 .TriangleStripListProvokingVertexSelect = 0,
120 .LineStripListProvokingVertexSelect = 0,
121 .TriangleFanProvokingVertexSelect = 0,
122 .PointWidthSource = pipeline->writes_point_size ? Vertex : State,
123 .PointWidth = 1.0,
124 };
125
126 /* FINISHME: VkBool32 rasterizerDiscardEnable; */
127
128 GENX(3DSTATE_SF_pack)(NULL, pipeline->gen8.sf, &sf);
129
130 struct GENX(3DSTATE_RASTER) raster = {
131 GENX(3DSTATE_RASTER_header),
132 .FrontWinding = vk_to_gen_front_face[info->frontFace],
133 .CullMode = vk_to_gen_cullmode[info->cullMode],
134 .FrontFaceFillMode = vk_to_gen_fillmode[info->fillMode],
135 .BackFaceFillMode = vk_to_gen_fillmode[info->fillMode],
136 .ScissorRectangleEnable = !(extra && extra->disable_scissor),
137 #if ANV_GEN == 8
138 .ViewportZClipTestEnable = info->depthClipEnable
139 #else
140 /* GEN9+ splits ViewportZClipTestEnable into near and far enable bits */
141 .ViewportZFarClipTestEnable = info->depthClipEnable,
142 .ViewportZNearClipTestEnable = info->depthClipEnable,
143 #endif
144 };
145
146 GENX(3DSTATE_RASTER_pack)(NULL, pipeline->gen8.raster, &raster);
147 }
148
149 static void
150 emit_cb_state(struct anv_pipeline *pipeline,
151 const VkPipelineColorBlendStateCreateInfo *info)
152 {
153 struct anv_device *device = pipeline->device;
154
155 static const uint32_t vk_to_gen_logic_op[] = {
156 [VK_LOGIC_OP_COPY] = LOGICOP_COPY,
157 [VK_LOGIC_OP_CLEAR] = LOGICOP_CLEAR,
158 [VK_LOGIC_OP_AND] = LOGICOP_AND,
159 [VK_LOGIC_OP_AND_REVERSE] = LOGICOP_AND_REVERSE,
160 [VK_LOGIC_OP_AND_INVERTED] = LOGICOP_AND_INVERTED,
161 [VK_LOGIC_OP_NOOP] = LOGICOP_NOOP,
162 [VK_LOGIC_OP_XOR] = LOGICOP_XOR,
163 [VK_LOGIC_OP_OR] = LOGICOP_OR,
164 [VK_LOGIC_OP_NOR] = LOGICOP_NOR,
165 [VK_LOGIC_OP_EQUIV] = LOGICOP_EQUIV,
166 [VK_LOGIC_OP_INVERT] = LOGICOP_INVERT,
167 [VK_LOGIC_OP_OR_REVERSE] = LOGICOP_OR_REVERSE,
168 [VK_LOGIC_OP_COPY_INVERTED] = LOGICOP_COPY_INVERTED,
169 [VK_LOGIC_OP_OR_INVERTED] = LOGICOP_OR_INVERTED,
170 [VK_LOGIC_OP_NAND] = LOGICOP_NAND,
171 [VK_LOGIC_OP_SET] = LOGICOP_SET,
172 };
173
174 static const uint32_t vk_to_gen_blend[] = {
175 [VK_BLEND_ZERO] = BLENDFACTOR_ZERO,
176 [VK_BLEND_ONE] = BLENDFACTOR_ONE,
177 [VK_BLEND_SRC_COLOR] = BLENDFACTOR_SRC_COLOR,
178 [VK_BLEND_ONE_MINUS_SRC_COLOR] = BLENDFACTOR_INV_SRC_COLOR,
179 [VK_BLEND_DEST_COLOR] = BLENDFACTOR_DST_COLOR,
180 [VK_BLEND_ONE_MINUS_DEST_COLOR] = BLENDFACTOR_INV_DST_COLOR,
181 [VK_BLEND_SRC_ALPHA] = BLENDFACTOR_SRC_ALPHA,
182 [VK_BLEND_ONE_MINUS_SRC_ALPHA] = BLENDFACTOR_INV_SRC_ALPHA,
183 [VK_BLEND_DEST_ALPHA] = BLENDFACTOR_DST_ALPHA,
184 [VK_BLEND_ONE_MINUS_DEST_ALPHA] = BLENDFACTOR_INV_DST_ALPHA,
185 [VK_BLEND_CONSTANT_COLOR] = BLENDFACTOR_CONST_COLOR,
186 [VK_BLEND_ONE_MINUS_CONSTANT_COLOR] = BLENDFACTOR_INV_CONST_COLOR,
187 [VK_BLEND_CONSTANT_ALPHA] = BLENDFACTOR_CONST_ALPHA,
188 [VK_BLEND_ONE_MINUS_CONSTANT_ALPHA] = BLENDFACTOR_INV_CONST_ALPHA,
189 [VK_BLEND_SRC_ALPHA_SATURATE] = BLENDFACTOR_SRC_ALPHA_SATURATE,
190 [VK_BLEND_SRC1_COLOR] = BLENDFACTOR_SRC1_COLOR,
191 [VK_BLEND_ONE_MINUS_SRC1_COLOR] = BLENDFACTOR_INV_SRC1_COLOR,
192 [VK_BLEND_SRC1_ALPHA] = BLENDFACTOR_SRC1_ALPHA,
193 [VK_BLEND_ONE_MINUS_SRC1_ALPHA] = BLENDFACTOR_INV_SRC1_ALPHA,
194 };
195
196 static const uint32_t vk_to_gen_blend_op[] = {
197 [VK_BLEND_OP_ADD] = BLENDFUNCTION_ADD,
198 [VK_BLEND_OP_SUBTRACT] = BLENDFUNCTION_SUBTRACT,
199 [VK_BLEND_OP_REVERSE_SUBTRACT] = BLENDFUNCTION_REVERSE_SUBTRACT,
200 [VK_BLEND_OP_MIN] = BLENDFUNCTION_MIN,
201 [VK_BLEND_OP_MAX] = BLENDFUNCTION_MAX,
202 };
203
204 uint32_t num_dwords = GENX(BLEND_STATE_length);
205 pipeline->blend_state =
206 anv_state_pool_alloc(&device->dynamic_state_pool, num_dwords * 4, 64);
207
208 struct GENX(BLEND_STATE) blend_state = {
209 .AlphaToCoverageEnable = info->alphaToCoverageEnable,
210 .AlphaToOneEnable = info->alphaToOneEnable,
211 };
212
213 for (uint32_t i = 0; i < info->attachmentCount; i++) {
214 const VkPipelineColorBlendAttachmentState *a = &info->pAttachments[i];
215
216 if (a->srcBlendColor != a->srcBlendAlpha ||
217 a->destBlendColor != a->destBlendAlpha ||
218 a->blendOpColor != a->blendOpAlpha) {
219 blend_state.IndependentAlphaBlendEnable = true;
220 }
221
222 blend_state.Entry[i] = (struct GENX(BLEND_STATE_ENTRY)) {
223 .LogicOpEnable = info->logicOpEnable,
224 .LogicOpFunction = vk_to_gen_logic_op[info->logicOp],
225 .ColorBufferBlendEnable = a->blendEnable,
226 .PreBlendSourceOnlyClampEnable = false,
227 .ColorClampRange = COLORCLAMP_RTFORMAT,
228 .PreBlendColorClampEnable = true,
229 .PostBlendColorClampEnable = true,
230 .SourceBlendFactor = vk_to_gen_blend[a->srcBlendColor],
231 .DestinationBlendFactor = vk_to_gen_blend[a->destBlendColor],
232 .ColorBlendFunction = vk_to_gen_blend_op[a->blendOpColor],
233 .SourceAlphaBlendFactor = vk_to_gen_blend[a->srcBlendAlpha],
234 .DestinationAlphaBlendFactor = vk_to_gen_blend[a->destBlendAlpha],
235 .AlphaBlendFunction = vk_to_gen_blend_op[a->blendOpAlpha],
236 .WriteDisableAlpha = !(a->channelWriteMask & VK_CHANNEL_A_BIT),
237 .WriteDisableRed = !(a->channelWriteMask & VK_CHANNEL_R_BIT),
238 .WriteDisableGreen = !(a->channelWriteMask & VK_CHANNEL_G_BIT),
239 .WriteDisableBlue = !(a->channelWriteMask & VK_CHANNEL_B_BIT),
240 };
241
242 /* Our hardware applies the blend factor prior to the blend function
243 * regardless of what function is used. Technically, this means the
244 * hardware can do MORE than GL or Vulkan specify. However, it also
245 * means that, for MIN and MAX, we have to stomp the blend factor to
246 * ONE to make it a no-op.
247 */
248 if (a->blendOpColor == VK_BLEND_OP_MIN ||
249 a->blendOpColor == VK_BLEND_OP_MAX) {
250 blend_state.Entry[i].SourceBlendFactor = BLENDFACTOR_ONE;
251 blend_state.Entry[i].DestinationBlendFactor = BLENDFACTOR_ONE;
252 }
253 if (a->blendOpAlpha == VK_BLEND_OP_MIN ||
254 a->blendOpAlpha == VK_BLEND_OP_MAX) {
255 blend_state.Entry[i].SourceAlphaBlendFactor = BLENDFACTOR_ONE;
256 blend_state.Entry[i].DestinationAlphaBlendFactor = BLENDFACTOR_ONE;
257 }
258 }
259
260 GENX(BLEND_STATE_pack)(NULL, pipeline->blend_state.map, &blend_state);
261
262 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_BLEND_STATE_POINTERS),
263 .BlendStatePointer = pipeline->blend_state.offset,
264 .BlendStatePointerValid = true);
265 }
266
267 static const uint32_t vk_to_gen_compare_op[] = {
268 [VK_COMPARE_OP_NEVER] = COMPAREFUNCTION_NEVER,
269 [VK_COMPARE_OP_LESS] = COMPAREFUNCTION_LESS,
270 [VK_COMPARE_OP_EQUAL] = COMPAREFUNCTION_EQUAL,
271 [VK_COMPARE_OP_LESS_EQUAL] = COMPAREFUNCTION_LEQUAL,
272 [VK_COMPARE_OP_GREATER] = COMPAREFUNCTION_GREATER,
273 [VK_COMPARE_OP_NOT_EQUAL] = COMPAREFUNCTION_NOTEQUAL,
274 [VK_COMPARE_OP_GREATER_EQUAL] = COMPAREFUNCTION_GEQUAL,
275 [VK_COMPARE_OP_ALWAYS] = COMPAREFUNCTION_ALWAYS,
276 };
277
278 static const uint32_t vk_to_gen_stencil_op[] = {
279 [VK_STENCIL_OP_KEEP] = STENCILOP_KEEP,
280 [VK_STENCIL_OP_ZERO] = STENCILOP_ZERO,
281 [VK_STENCIL_OP_REPLACE] = STENCILOP_REPLACE,
282 [VK_STENCIL_OP_INC_CLAMP] = STENCILOP_INCRSAT,
283 [VK_STENCIL_OP_DEC_CLAMP] = STENCILOP_DECRSAT,
284 [VK_STENCIL_OP_INVERT] = STENCILOP_INVERT,
285 [VK_STENCIL_OP_INC_WRAP] = STENCILOP_INCR,
286 [VK_STENCIL_OP_DEC_WRAP] = STENCILOP_DECR,
287 };
288
289 static void
290 emit_ds_state(struct anv_pipeline *pipeline,
291 const VkPipelineDepthStencilStateCreateInfo *info)
292 {
293 if (info == NULL) {
294 /* We're going to OR this together with the dynamic state. We need
295 * to make sure it's initialized to something useful.
296 */
297 /* FIXME: gen9 wm_depth_stencil */
298 memset(pipeline->gen8.wm_depth_stencil, 0,
299 sizeof(pipeline->gen8.wm_depth_stencil));
300 return;
301 }
302
303 /* VkBool32 depthBoundsTestEnable; // optional (depth_bounds_test) */
304
305 struct GENX(3DSTATE_WM_DEPTH_STENCIL) wm_depth_stencil = {
306 .DepthTestEnable = info->depthTestEnable,
307 .DepthBufferWriteEnable = info->depthWriteEnable,
308 .DepthTestFunction = vk_to_gen_compare_op[info->depthCompareOp],
309 .DoubleSidedStencilEnable = true,
310
311 .StencilTestEnable = info->stencilTestEnable,
312 .StencilFailOp = vk_to_gen_stencil_op[info->front.stencilFailOp],
313 .StencilPassDepthPassOp = vk_to_gen_stencil_op[info->front.stencilPassOp],
314 .StencilPassDepthFailOp = vk_to_gen_stencil_op[info->front.stencilDepthFailOp],
315 .StencilTestFunction = vk_to_gen_compare_op[info->front.stencilCompareOp],
316 .BackfaceStencilFailOp = vk_to_gen_stencil_op[info->back.stencilFailOp],
317 .BackfaceStencilPassDepthPassOp = vk_to_gen_stencil_op[info->back.stencilPassOp],
318 .BackfaceStencilPassDepthFailOp =vk_to_gen_stencil_op[info->back.stencilDepthFailOp],
319 .BackfaceStencilTestFunction = vk_to_gen_compare_op[info->back.stencilCompareOp],
320 };
321
322 GENX(3DSTATE_WM_DEPTH_STENCIL_pack)(NULL, pipeline->gen8.wm_depth_stencil, &wm_depth_stencil);
323 }
324
325 VkResult
326 genX(graphics_pipeline_create)(
327 VkDevice _device,
328 const VkGraphicsPipelineCreateInfo* pCreateInfo,
329 const struct anv_graphics_pipeline_create_info *extra,
330 VkPipeline* pPipeline)
331 {
332 ANV_FROM_HANDLE(anv_device, device, _device);
333 struct anv_pipeline *pipeline;
334 VkResult result;
335 uint32_t offset, length;
336
337 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
338
339 pipeline = anv_device_alloc(device, sizeof(*pipeline), 8,
340 VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
341 if (pipeline == NULL)
342 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
343
344 result = anv_pipeline_init(pipeline, device, pCreateInfo, extra);
345 if (result != VK_SUCCESS)
346 return result;
347
348 /* FIXME: The compiler dead-codes FS inputs when we don't have a VS, so we
349 * hard code this to num_attributes - 2. This is because the attributes
350 * include VUE header and position, which aren't counted as varying
351 * inputs. */
352 if (pipeline->vs_simd8 == NO_KERNEL) {
353 pipeline->wm_prog_data.num_varying_inputs =
354 pCreateInfo->pVertexInputState->attributeCount - 2;
355 }
356
357 assert(pCreateInfo->pVertexInputState);
358 emit_vertex_input(pipeline, pCreateInfo->pVertexInputState);
359 assert(pCreateInfo->pInputAssemblyState);
360 emit_ia_state(pipeline, pCreateInfo->pInputAssemblyState, extra);
361 assert(pCreateInfo->pRasterState);
362 emit_rs_state(pipeline, pCreateInfo->pRasterState, extra);
363 emit_ds_state(pipeline, pCreateInfo->pDepthStencilState);
364 emit_cb_state(pipeline, pCreateInfo->pColorBlendState);
365
366 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_STATISTICS),
367 .StatisticsEnable = true);
368 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_HS), .Enable = false);
369 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_TE), .TEEnable = false);
370 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_DS), .FunctionEnable = false);
371 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_STREAMOUT), .SOFunctionEnable = false);
372
373 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS),
374 .ConstantBufferOffset = 0,
375 .ConstantBufferSize = 4);
376 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_GS),
377 .ConstantBufferOffset = 4,
378 .ConstantBufferSize = 4);
379 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS),
380 .ConstantBufferOffset = 8,
381 .ConstantBufferSize = 4);
382
383 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_WM_CHROMAKEY),
384 .ChromaKeyKillEnable = false);
385 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_AA_LINE_PARAMETERS));
386
387 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_CLIP),
388 .ClipEnable = true,
389 .ViewportXYClipTestEnable = !(extra && extra->disable_viewport),
390 .MinimumPointWidth = 0.125,
391 .MaximumPointWidth = 255.875);
392
393 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_WM),
394 .StatisticsEnable = true,
395 .LineEndCapAntialiasingRegionWidth = _05pixels,
396 .LineAntialiasingRegionWidth = _10pixels,
397 .EarlyDepthStencilControl = NORMAL,
398 .ForceThreadDispatchEnable = NORMAL,
399 .PointRasterizationRule = RASTRULE_UPPER_RIGHT,
400 .BarycentricInterpolationMode =
401 pipeline->wm_prog_data.barycentric_interp_modes);
402
403 uint32_t samples = 1;
404 uint32_t log2_samples = __builtin_ffs(samples) - 1;
405 bool enable_sampling = samples > 1 ? true : false;
406
407 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_MULTISAMPLE),
408 .PixelPositionOffsetEnable = enable_sampling,
409 .PixelLocation = CENTER,
410 .NumberofMultisamples = log2_samples);
411
412 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SAMPLE_MASK),
413 .SampleMask = 0xffff);
414
415 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_URB_VS),
416 .VSURBStartingAddress = pipeline->urb.vs_start,
417 .VSURBEntryAllocationSize = pipeline->urb.vs_size - 1,
418 .VSNumberofURBEntries = pipeline->urb.nr_vs_entries);
419
420 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_URB_GS),
421 .GSURBStartingAddress = pipeline->urb.gs_start,
422 .GSURBEntryAllocationSize = pipeline->urb.gs_size - 1,
423 .GSNumberofURBEntries = pipeline->urb.nr_gs_entries);
424
425 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_URB_HS),
426 .HSURBStartingAddress = pipeline->urb.vs_start,
427 .HSURBEntryAllocationSize = 0,
428 .HSNumberofURBEntries = 0);
429
430 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_URB_DS),
431 .DSURBStartingAddress = pipeline->urb.vs_start,
432 .DSURBEntryAllocationSize = 0,
433 .DSNumberofURBEntries = 0);
434
435 const struct brw_gs_prog_data *gs_prog_data = &pipeline->gs_prog_data;
436 offset = 1;
437 length = (gs_prog_data->base.vue_map.num_slots + 1) / 2 - offset;
438
439 if (pipeline->gs_vec4 == NO_KERNEL)
440 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_GS), .Enable = false);
441 else
442 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_GS),
443 .SingleProgramFlow = false,
444 .KernelStartPointer = pipeline->gs_vec4,
445 .VectorMaskEnable = Dmask,
446 .SamplerCount = 0,
447 .BindingTableEntryCount = 0,
448 .ExpectedVertexCount = pipeline->gs_vertex_count,
449
450 .ScratchSpaceBasePointer = pipeline->scratch_start[VK_SHADER_STAGE_GEOMETRY],
451 .PerThreadScratchSpace = ffs(gs_prog_data->base.base.total_scratch / 2048),
452
453 .OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1,
454 .OutputTopology = gs_prog_data->output_topology,
455 .VertexURBEntryReadLength = gs_prog_data->base.urb_read_length,
456 .DispatchGRFStartRegisterForURBData =
457 gs_prog_data->base.base.dispatch_grf_start_reg,
458
459 .MaximumNumberofThreads = device->info.max_gs_threads / 2 - 1,
460 .ControlDataHeaderSize = gs_prog_data->control_data_header_size_hwords,
461 .DispatchMode = gs_prog_data->base.dispatch_mode,
462 .StatisticsEnable = true,
463 .IncludePrimitiveID = gs_prog_data->include_primitive_id,
464 .ReorderMode = TRAILING,
465 .Enable = true,
466
467 .ControlDataFormat = gs_prog_data->control_data_format,
468
469 .StaticOutput = gs_prog_data->static_vertex_count >= 0,
470 .StaticOutputVertexCount =
471 gs_prog_data->static_vertex_count >= 0 ?
472 gs_prog_data->static_vertex_count : 0,
473
474 /* FIXME: mesa sets this based on ctx->Transform.ClipPlanesEnabled:
475 * UserClipDistanceClipTestEnableBitmask_3DSTATE_GS(v)
476 * UserClipDistanceCullTestEnableBitmask(v)
477 */
478
479 .VertexURBEntryOutputReadOffset = offset,
480 .VertexURBEntryOutputLength = length);
481
482 const struct brw_vue_prog_data *vue_prog_data = &pipeline->vs_prog_data.base;
483 /* Skip the VUE header and position slots */
484 offset = 1;
485 length = (vue_prog_data->vue_map.num_slots + 1) / 2 - offset;
486
487 if (pipeline->vs_simd8 == NO_KERNEL || (extra && extra->disable_vs))
488 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VS),
489 .FunctionEnable = false,
490 /* Even if VS is disabled, SBE still gets the amount of
491 * vertex data to read from this field. */
492 .VertexURBEntryOutputReadOffset = offset,
493 .VertexURBEntryOutputLength = length);
494 else
495 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VS),
496 .KernelStartPointer = pipeline->vs_simd8,
497 .SingleVertexDispatch = Multiple,
498 .VectorMaskEnable = Dmask,
499 .SamplerCount = 0,
500 .BindingTableEntryCount =
501 vue_prog_data->base.binding_table.size_bytes / 4,
502 .ThreadDispatchPriority = Normal,
503 .FloatingPointMode = IEEE754,
504 .IllegalOpcodeExceptionEnable = false,
505 .AccessesUAV = false,
506 .SoftwareExceptionEnable = false,
507
508 .ScratchSpaceBasePointer = pipeline->scratch_start[VK_SHADER_STAGE_VERTEX],
509 .PerThreadScratchSpace = ffs(vue_prog_data->base.total_scratch / 2048),
510
511 .DispatchGRFStartRegisterForURBData =
512 vue_prog_data->base.dispatch_grf_start_reg,
513 .VertexURBEntryReadLength = vue_prog_data->urb_read_length,
514 .VertexURBEntryReadOffset = 0,
515
516 .MaximumNumberofThreads = device->info.max_vs_threads - 1,
517 .StatisticsEnable = false,
518 .SIMD8DispatchEnable = true,
519 .VertexCacheDisable = false,
520 .FunctionEnable = true,
521
522 .VertexURBEntryOutputReadOffset = offset,
523 .VertexURBEntryOutputLength = length,
524 .UserClipDistanceClipTestEnableBitmask = 0,
525 .UserClipDistanceCullTestEnableBitmask = 0);
526
527 const struct brw_wm_prog_data *wm_prog_data = &pipeline->wm_prog_data;
528
529 /* TODO: We should clean this up. Among other things, this is mostly
530 * shared with other gens.
531 */
532 const struct brw_vue_map *fs_input_map;
533 if (pipeline->gs_vec4 == NO_KERNEL)
534 fs_input_map = &vue_prog_data->vue_map;
535 else
536 fs_input_map = &gs_prog_data->base.vue_map;
537
538 struct GENX(3DSTATE_SBE_SWIZ) swiz = {
539 GENX(3DSTATE_SBE_SWIZ_header),
540 };
541
542 int max_source_attr = 0;
543 for (int attr = 0; attr < VARYING_SLOT_MAX; attr++) {
544 int input_index = wm_prog_data->urb_setup[attr];
545
546 if (input_index < 0)
547 continue;
548
549 /* We have to subtract two slots to accout for the URB entry output
550 * read offset in the VS and GS stages.
551 */
552 int source_attr = fs_input_map->varying_to_slot[attr] - 2;
553 max_source_attr = MAX2(max_source_attr, source_attr);
554
555 if (input_index >= 16)
556 continue;
557
558 swiz.Attribute[input_index].SourceAttribute = source_attr;
559 }
560
561 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SBE),
562 .AttributeSwizzleEnable = true,
563 .ForceVertexURBEntryReadLength = false,
564 .ForceVertexURBEntryReadOffset = false,
565 .VertexURBEntryReadLength = DIV_ROUND_UP(max_source_attr + 1, 2),
566 .PointSpriteTextureCoordinateOrigin = UPPERLEFT,
567 .NumberofSFOutputAttributes =
568 wm_prog_data->num_varying_inputs,
569
570 #if ANV_GEN >= 9
571 .Attribute0ActiveComponentFormat = ACF_XYZW,
572 .Attribute1ActiveComponentFormat = ACF_XYZW,
573 .Attribute2ActiveComponentFormat = ACF_XYZW,
574 .Attribute3ActiveComponentFormat = ACF_XYZW,
575 .Attribute4ActiveComponentFormat = ACF_XYZW,
576 .Attribute5ActiveComponentFormat = ACF_XYZW,
577 .Attribute6ActiveComponentFormat = ACF_XYZW,
578 .Attribute7ActiveComponentFormat = ACF_XYZW,
579 .Attribute8ActiveComponentFormat = ACF_XYZW,
580 .Attribute9ActiveComponentFormat = ACF_XYZW,
581 .Attribute10ActiveComponentFormat = ACF_XYZW,
582 .Attribute11ActiveComponentFormat = ACF_XYZW,
583 .Attribute12ActiveComponentFormat = ACF_XYZW,
584 .Attribute13ActiveComponentFormat = ACF_XYZW,
585 .Attribute14ActiveComponentFormat = ACF_XYZW,
586 .Attribute15ActiveComponentFormat = ACF_XYZW,
587 /* wow, much field, very attribute */
588 .Attribute16ActiveComponentFormat = ACF_XYZW,
589 .Attribute17ActiveComponentFormat = ACF_XYZW,
590 .Attribute18ActiveComponentFormat = ACF_XYZW,
591 .Attribute19ActiveComponentFormat = ACF_XYZW,
592 .Attribute20ActiveComponentFormat = ACF_XYZW,
593 .Attribute21ActiveComponentFormat = ACF_XYZW,
594 .Attribute22ActiveComponentFormat = ACF_XYZW,
595 .Attribute23ActiveComponentFormat = ACF_XYZW,
596 .Attribute24ActiveComponentFormat = ACF_XYZW,
597 .Attribute25ActiveComponentFormat = ACF_XYZW,
598 .Attribute26ActiveComponentFormat = ACF_XYZW,
599 .Attribute27ActiveComponentFormat = ACF_XYZW,
600 .Attribute28ActiveComponentFormat = ACF_XYZW,
601 .Attribute29ActiveComponentFormat = ACF_XYZW,
602 .Attribute28ActiveComponentFormat = ACF_XYZW,
603 .Attribute29ActiveComponentFormat = ACF_XYZW,
604 .Attribute30ActiveComponentFormat = ACF_XYZW,
605 #endif
606 );
607
608 uint32_t *dw = anv_batch_emit_dwords(&pipeline->batch,
609 GENX(3DSTATE_SBE_SWIZ_length));
610 GENX(3DSTATE_SBE_SWIZ_pack)(&pipeline->batch, dw, &swiz);
611
612 const int num_thread_bias = ANV_GEN == 8 ? 2 : 1;
613 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS),
614 .KernelStartPointer0 = pipeline->ps_ksp0,
615
616 .SingleProgramFlow = false,
617 .VectorMaskEnable = true,
618 .SamplerCount = 1,
619
620 .ScratchSpaceBasePointer = pipeline->scratch_start[VK_SHADER_STAGE_FRAGMENT],
621 .PerThreadScratchSpace = ffs(wm_prog_data->base.total_scratch / 2048),
622
623 .MaximumNumberofThreadsPerPSD = 64 - num_thread_bias,
624 .PositionXYOffsetSelect = wm_prog_data->uses_pos_offset ?
625 POSOFFSET_SAMPLE: POSOFFSET_NONE,
626 .PushConstantEnable = wm_prog_data->base.nr_params > 0,
627 ._8PixelDispatchEnable = pipeline->ps_simd8 != NO_KERNEL,
628 ._16PixelDispatchEnable = pipeline->ps_simd16 != NO_KERNEL,
629 ._32PixelDispatchEnable = false,
630
631 .DispatchGRFStartRegisterForConstantSetupData0 = pipeline->ps_grf_start0,
632 .DispatchGRFStartRegisterForConstantSetupData1 = 0,
633 .DispatchGRFStartRegisterForConstantSetupData2 = pipeline->ps_grf_start2,
634
635 .KernelStartPointer1 = 0,
636 .KernelStartPointer2 = pipeline->ps_ksp2);
637
638 bool per_sample_ps = false;
639 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_EXTRA),
640 .PixelShaderValid = true,
641 .PixelShaderKillsPixel = wm_prog_data->uses_kill,
642 .PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode,
643 .AttributeEnable = wm_prog_data->num_varying_inputs > 0,
644 .oMaskPresenttoRenderTarget = wm_prog_data->uses_omask,
645 .PixelShaderIsPerSample = per_sample_ps,
646 #if ANV_GEN >= 9
647 .PixelShaderPullsBary = wm_prog_data->pulls_bary,
648 .InputCoverageMaskState = ICMS_NONE
649 #endif
650 );
651
652 *pPipeline = anv_pipeline_to_handle(pipeline);
653
654 return VK_SUCCESS;
655 }
656
657 VkResult genX(compute_pipeline_create)(
658 VkDevice _device,
659 const VkComputePipelineCreateInfo* pCreateInfo,
660 VkPipeline* pPipeline)
661 {
662 ANV_FROM_HANDLE(anv_device, device, _device);
663 struct anv_pipeline *pipeline;
664 VkResult result;
665
666 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO);
667
668 pipeline = anv_device_alloc(device, sizeof(*pipeline), 8,
669 VK_SYSTEM_ALLOC_TYPE_API_OBJECT);
670 if (pipeline == NULL)
671 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
672
673 pipeline->device = device;
674 pipeline->layout = anv_pipeline_layout_from_handle(pCreateInfo->layout);
675
676 pipeline->blend_state.map = NULL;
677
678 result = anv_reloc_list_init(&pipeline->batch_relocs, device);
679 if (result != VK_SUCCESS) {
680 anv_device_free(device, pipeline);
681 return result;
682 }
683 pipeline->batch.next = pipeline->batch.start = pipeline->batch_data;
684 pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data);
685 pipeline->batch.relocs = &pipeline->batch_relocs;
686
687 anv_state_stream_init(&pipeline->program_stream,
688 &device->instruction_block_pool);
689
690 /* When we free the pipeline, we detect stages based on the NULL status
691 * of various prog_data pointers. Make them NULL by default.
692 */
693 memset(pipeline->prog_data, 0, sizeof(pipeline->prog_data));
694 memset(pipeline->scratch_start, 0, sizeof(pipeline->scratch_start));
695
696 pipeline->vs_simd8 = NO_KERNEL;
697 pipeline->vs_vec4 = NO_KERNEL;
698 pipeline->gs_vec4 = NO_KERNEL;
699
700 pipeline->active_stages = 0;
701 pipeline->total_scratch = 0;
702
703 assert(pCreateInfo->stage.stage == VK_SHADER_STAGE_COMPUTE);
704 ANV_FROM_HANDLE(anv_shader, shader, pCreateInfo->stage.shader);
705 anv_pipeline_compile_cs(pipeline, pCreateInfo, shader);
706
707 pipeline->use_repclear = false;
708
709 const struct brw_cs_prog_data *cs_prog_data = &pipeline->cs_prog_data;
710
711 anv_batch_emit(&pipeline->batch, GENX(MEDIA_VFE_STATE),
712 .ScratchSpaceBasePointer = pipeline->scratch_start[VK_SHADER_STAGE_COMPUTE],
713 .PerThreadScratchSpace = ffs(cs_prog_data->base.total_scratch / 2048),
714 .ScratchSpaceBasePointerHigh = 0,
715 .StackSize = 0,
716
717 .MaximumNumberofThreads = device->info.max_cs_threads - 1,
718 .NumberofURBEntries = 2,
719 .ResetGatewayTimer = true,
720 #if ANV_GEN == 8
721 .BypassGatewayControl = true,
722 #endif
723 .URBEntryAllocationSize = 2,
724 .CURBEAllocationSize = 0);
725
726 struct brw_cs_prog_data *prog_data = &pipeline->cs_prog_data;
727 uint32_t group_size = prog_data->local_size[0] *
728 prog_data->local_size[1] * prog_data->local_size[2];
729 pipeline->cs_thread_width_max = DIV_ROUND_UP(group_size, prog_data->simd_size);
730 uint32_t remainder = group_size & (prog_data->simd_size - 1);
731
732 if (remainder > 0)
733 pipeline->cs_right_mask = ~0u >> (32 - remainder);
734 else
735 pipeline->cs_right_mask = ~0u >> (32 - prog_data->simd_size);
736
737
738 *pPipeline = anv_pipeline_to_handle(pipeline);
739
740 return VK_SUCCESS;
741 }