vk/meta: Add the start of a blit implementation
[mesa.git] / src / vulkan / meta.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "private.h"
31
32 #define GLSL(src) "#version 330\n" #src
33
34 static void
35 anv_device_init_meta_clear_state(struct anv_device *device)
36 {
37 VkPipelineIaStateCreateInfo ia_create_info = {
38 .sType = VK_STRUCTURE_TYPE_PIPELINE_IA_STATE_CREATE_INFO,
39 .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
40 .disableVertexReuse = false,
41 .primitiveRestartEnable = false,
42 .primitiveRestartIndex = 0
43 };
44
45 /* We don't use a vertex shader for clearing, but instead build and pass
46 * the VUEs directly to the rasterization backend.
47 */
48 static const char fs_source[] = GLSL(
49 out vec4 f_color;
50 flat in vec4 v_color;
51 void main()
52 {
53 f_color = v_color;
54 });
55
56 VkShader fs;
57 vkCreateShader((VkDevice) device,
58 &(VkShaderCreateInfo) {
59 .sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO,
60 .codeSize = sizeof(fs_source),
61 .pCode = fs_source,
62 .flags = 0
63 },
64 &fs);
65
66 VkPipelineShaderStageCreateInfo fs_create_info = {
67 .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
68 .pNext = &ia_create_info,
69 .shader = {
70 .stage = VK_SHADER_STAGE_FRAGMENT,
71 .shader = fs,
72 .linkConstBufferCount = 0,
73 .pLinkConstBufferInfo = NULL,
74 .pSpecializationInfo = NULL
75 }
76 };
77
78 /* We use instanced rendering to clear multiple render targets. We have two
79 * vertex buffers: the first vertex buffer holds per-vertex data and
80 * provides the vertices for the clear rectangle. The second one holds
81 * per-instance data, which consists of the VUE header (which selects the
82 * layer) and the color (Vulkan supports per-RT clear colors).
83 */
84 VkPipelineVertexInputCreateInfo vi_create_info = {
85 .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_CREATE_INFO,
86 .pNext = &fs_create_info,
87 .bindingCount = 2,
88 .pVertexBindingDescriptions = (VkVertexInputBindingDescription[]) {
89 {
90 .binding = 0,
91 .strideInBytes = 8,
92 .stepRate = VK_VERTEX_INPUT_STEP_RATE_VERTEX
93 },
94 {
95 .binding = 1,
96 .strideInBytes = 32,
97 .stepRate = VK_VERTEX_INPUT_STEP_RATE_INSTANCE
98 },
99 },
100 .attributeCount = 3,
101 .pVertexAttributeDescriptions = (VkVertexInputAttributeDescription[]) {
102 {
103 /* VUE Header */
104 .location = 0,
105 .binding = 1,
106 .format = VK_FORMAT_R32G32B32A32_UINT,
107 .offsetInBytes = 0
108 },
109 {
110 /* Position */
111 .location = 1,
112 .binding = 0,
113 .format = VK_FORMAT_R32G32_SFLOAT,
114 .offsetInBytes = 0
115 },
116 {
117 /* Color */
118 .location = 2,
119 .binding = 1,
120 .format = VK_FORMAT_R32G32B32A32_SFLOAT,
121 .offsetInBytes = 16
122 }
123 }
124 };
125
126 VkPipelineRsStateCreateInfo rs_create_info = {
127 .sType = VK_STRUCTURE_TYPE_PIPELINE_RS_STATE_CREATE_INFO,
128 .pNext = &vi_create_info,
129 .depthClipEnable = true,
130 .rasterizerDiscardEnable = false,
131 .fillMode = VK_FILL_MODE_SOLID,
132 .cullMode = VK_CULL_MODE_NONE,
133 .frontFace = VK_FRONT_FACE_CCW
134 };
135
136 anv_pipeline_create((VkDevice) device,
137 &(VkGraphicsPipelineCreateInfo) {
138 .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
139 .pNext = &rs_create_info,
140 .flags = 0,
141 .layout = 0
142 },
143 &(struct anv_pipeline_create_info) {
144 .use_repclear = true,
145 .disable_viewport = true,
146 .use_rectlist = true
147 },
148 &device->clear_state.pipeline);
149
150 vkDestroyObject((VkDevice) device, VK_OBJECT_TYPE_SHADER, fs);
151
152 vkCreateDynamicRasterState((VkDevice) device,
153 &(VkDynamicRsStateCreateInfo) {
154 .sType = VK_STRUCTURE_TYPE_DYNAMIC_RS_STATE_CREATE_INFO,
155 },
156 &device->clear_state.rs_state);
157 }
158
159 struct anv_saved_state {
160 struct {
161 struct anv_buffer *buffer;
162 VkDeviceSize offset;
163 } vb[2];
164 struct anv_descriptor_set *dsets[1];
165 struct anv_pipeline *pipeline;
166 };
167
168 static void
169 anv_cmd_buffer_save(struct anv_cmd_buffer *cmd_buffer,
170 struct anv_saved_state *state)
171 {
172 memcpy(state->vb, cmd_buffer->vb, sizeof(state->vb));
173 memcpy(state->dsets, cmd_buffer->descriptor_sets, sizeof(state->dsets));
174 state->pipeline = cmd_buffer->pipeline;
175 }
176
177 static void
178 anv_cmd_buffer_restore(struct anv_cmd_buffer *cmd_buffer,
179 const struct anv_saved_state *state)
180 {
181 memcpy(cmd_buffer->vb, state->vb, sizeof(state->vb));
182 memcpy(cmd_buffer->descriptor_sets, state->dsets, sizeof(state->dsets));
183 cmd_buffer->pipeline = state->pipeline;
184
185 cmd_buffer->vb_dirty |= (1 << ARRAY_SIZE(state->vb)) - 1;
186 cmd_buffer->dirty |= ANV_CMD_BUFFER_PIPELINE_DIRTY |
187 ANV_CMD_BUFFER_DESCRIPTOR_SET_DIRTY;
188 }
189
190 struct vue_header {
191 uint32_t Reserved;
192 uint32_t RTAIndex;
193 uint32_t ViewportIndex;
194 float PointWidth;
195 };
196
197 void
198 anv_cmd_buffer_clear(struct anv_cmd_buffer *cmd_buffer,
199 struct anv_render_pass *pass)
200 {
201 struct anv_device *device = cmd_buffer->device;
202 struct anv_framebuffer *fb = cmd_buffer->framebuffer;
203 struct anv_saved_state saved_state;
204 struct anv_state state;
205 uint32_t size;
206
207 struct instance_data {
208 struct vue_header vue_header;
209 float color[4];
210 } *instance_data;
211
212 const float vertex_data[] = {
213 /* Rect-list coordinates */
214 0.0, 0.0,
215 fb->width, 0.0,
216 fb->width, fb->height,
217
218 /* Align to 16 bytes */
219 0.0, 0.0,
220 };
221
222 size = sizeof(vertex_data) + pass->num_clear_layers * sizeof(instance_data[0]);
223 state = anv_state_stream_alloc(&cmd_buffer->surface_state_stream, size, 16);
224
225 memcpy(state.map, vertex_data, sizeof(vertex_data));
226 instance_data = state.map + sizeof(vertex_data);
227
228 for (uint32_t i = 0; i < pass->num_layers; i++) {
229 if (pass->layers[i].color_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
230 *instance_data++ = (struct instance_data) {
231 .vue_header = {
232 .RTAIndex = i,
233 .ViewportIndex = 0,
234 .PointWidth = 0.0
235 },
236 .color = {
237 pass->layers[i].clear_color.color.floatColor[0],
238 pass->layers[i].clear_color.color.floatColor[1],
239 pass->layers[i].clear_color.color.floatColor[2],
240 pass->layers[i].clear_color.color.floatColor[3],
241 }
242 };
243 }
244 }
245
246 struct anv_buffer vertex_buffer = {
247 .device = cmd_buffer->device,
248 .size = size,
249 .bo = &device->surface_state_block_pool.bo,
250 .offset = state.offset
251 };
252
253 anv_cmd_buffer_save(cmd_buffer, &saved_state);
254
255 vkCmdBindVertexBuffers((VkCmdBuffer) cmd_buffer, 0, 2,
256 (VkBuffer[]) {
257 (VkBuffer) &vertex_buffer,
258 (VkBuffer) &vertex_buffer
259 },
260 (VkDeviceSize[]) {
261 0,
262 sizeof(vertex_data)
263 });
264
265 if ((VkPipeline) cmd_buffer->pipeline != device->clear_state.pipeline)
266 vkCmdBindPipeline((VkCmdBuffer) cmd_buffer,
267 VK_PIPELINE_BIND_POINT_GRAPHICS, device->clear_state.pipeline);
268
269 /* We don't need anything here, only set if not already set. */
270 if (cmd_buffer->rs_state == NULL)
271 vkCmdBindDynamicStateObject((VkCmdBuffer) cmd_buffer,
272 VK_STATE_BIND_POINT_RASTER,
273 device->clear_state.rs_state);
274
275 if (cmd_buffer->vp_state == NULL)
276 vkCmdBindDynamicStateObject((VkCmdBuffer) cmd_buffer,
277 VK_STATE_BIND_POINT_VIEWPORT,
278 cmd_buffer->framebuffer->vp_state);
279
280 vkCmdDraw((VkCmdBuffer) cmd_buffer, 0, 3, 0, pass->num_clear_layers);
281
282 /* Restore API state */
283 anv_cmd_buffer_restore(cmd_buffer, &saved_state);
284
285 }
286
287 static void
288 anv_device_init_meta_blit_state(struct anv_device *device)
289 {
290 VkPipelineIaStateCreateInfo ia_create_info = {
291 .sType = VK_STRUCTURE_TYPE_PIPELINE_IA_STATE_CREATE_INFO,
292 .topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP,
293 .disableVertexReuse = false,
294 .primitiveRestartEnable = false,
295 .primitiveRestartIndex = 0
296 };
297
298 /* We don't use a vertex shader for clearing, but instead build and pass
299 * the VUEs directly to the rasterization backend.
300 */
301 static const char vs_source[] = GLSL(
302 in vec2 a_pos;
303 in vec2 a_tex_coord;
304 out vec4 v_tex_coord;
305 void main()
306 {
307 v_tex_coord = vec4(a_tex_coord, 0, 1);
308 gl_Position = vec4(a_pos, 0, 1);
309 }
310 );
311
312 static const char fs_source[] = GLSL(
313 out vec4 f_color;
314 in vec4 v_tex_coord;
315 layout(set = 0, index = 0) uniform sampler2D u_tex;
316 void main()
317 {
318 f_color = texture2D(u_tex, v_tex_coord.xy);
319 }
320 );
321
322 VkShader vs;
323 vkCreateShader((VkDevice) device,
324 &(VkShaderCreateInfo) {
325 .sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO,
326 .codeSize = sizeof(vs_source),
327 .pCode = vs_source,
328 .flags = 0
329 },
330 &vs);
331
332 VkShader fs;
333 vkCreateShader((VkDevice) device,
334 &(VkShaderCreateInfo) {
335 .sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO,
336 .codeSize = sizeof(fs_source),
337 .pCode = fs_source,
338 .flags = 0
339 },
340 &fs);
341
342 VkPipelineShaderStageCreateInfo vs_create_info = {
343 .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
344 .pNext = &ia_create_info,
345 .shader = {
346 .stage = VK_SHADER_STAGE_VERTEX,
347 .shader = vs,
348 .linkConstBufferCount = 0,
349 .pLinkConstBufferInfo = NULL,
350 .pSpecializationInfo = NULL
351 }
352 };
353
354 VkPipelineShaderStageCreateInfo fs_create_info = {
355 .sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO,
356 .pNext = &vs_create_info,
357 .shader = {
358 .stage = VK_SHADER_STAGE_FRAGMENT,
359 .shader = fs,
360 .linkConstBufferCount = 0,
361 .pLinkConstBufferInfo = NULL,
362 .pSpecializationInfo = NULL
363 }
364 };
365
366 VkPipelineVertexInputCreateInfo vi_create_info = {
367 .sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_CREATE_INFO,
368 .pNext = &fs_create_info,
369 .bindingCount = 2,
370 .pVertexBindingDescriptions = (VkVertexInputBindingDescription[]) {
371 {
372 .binding = 0,
373 .strideInBytes = 0,
374 .stepRate = VK_VERTEX_INPUT_STEP_RATE_VERTEX
375 },
376 {
377 .binding = 1,
378 .strideInBytes = 16,
379 .stepRate = VK_VERTEX_INPUT_STEP_RATE_VERTEX
380 },
381 },
382 .attributeCount = 3,
383 .pVertexAttributeDescriptions = (VkVertexInputAttributeDescription[]) {
384 {
385 /* VUE Header */
386 .location = 0,
387 .binding = 0,
388 .format = VK_FORMAT_R32G32B32A32_UINT,
389 .offsetInBytes = 0
390 },
391 {
392 /* Position */
393 .location = 1,
394 .binding = 1,
395 .format = VK_FORMAT_R32G32_SFLOAT,
396 .offsetInBytes = 0
397 },
398 {
399 /* Texture Coordinate */
400 .location = 2,
401 .binding = 1,
402 .format = VK_FORMAT_R32G32_SFLOAT,
403 .offsetInBytes = 8
404 }
405 }
406 };
407
408 VkDescriptorSetLayoutCreateInfo ds_layout_info = {
409 .sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
410 .count = 1,
411 .pBinding = (VkDescriptorSetLayoutBinding[]) {
412 {
413 .descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
414 .count = 1,
415 .stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT,
416 .pImmutableSamplers = NULL
417 },
418 }
419 };
420 vkCreateDescriptorSetLayout((VkDevice) device, &ds_layout_info,
421 &device->blit_state.ds_layout);
422
423 VkPipelineLayoutCreateInfo pipeline_layout_info = {
424 .sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
425 .descriptorSetCount = 1,
426 .pSetLayouts = &device->blit_state.ds_layout,
427 };
428
429 VkPipelineLayout pipeline_layout;
430 vkCreatePipelineLayout((VkDevice) device, &pipeline_layout_info,
431 &pipeline_layout);
432
433 VkPipelineRsStateCreateInfo rs_create_info = {
434 .sType = VK_STRUCTURE_TYPE_PIPELINE_RS_STATE_CREATE_INFO,
435 .pNext = &vi_create_info,
436 .depthClipEnable = true,
437 .rasterizerDiscardEnable = false,
438 .fillMode = VK_FILL_MODE_SOLID,
439 .cullMode = VK_CULL_MODE_NONE,
440 .frontFace = VK_FRONT_FACE_CCW
441 };
442
443 VkGraphicsPipelineCreateInfo pipeline_info = {
444 .sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
445 .pNext = &rs_create_info,
446 .flags = 0,
447 .layout = pipeline_layout,
448 };
449
450 anv_pipeline_create((VkDevice) device, &pipeline_info,
451 &(struct anv_pipeline_create_info) {
452 .use_repclear = false,
453 .disable_viewport = true,
454 .disable_scissor = true,
455 .disable_vs = true,
456 .use_rectlist = true
457 },
458 &device->blit_state.pipeline);
459
460 vkDestroyObject((VkDevice) device, VK_OBJECT_TYPE_SHADER, vs);
461 vkDestroyObject((VkDevice) device, VK_OBJECT_TYPE_SHADER, fs);
462
463 vkCreateDynamicRasterState((VkDevice) device,
464 &(VkDynamicRsStateCreateInfo) {
465 .sType = VK_STRUCTURE_TYPE_DYNAMIC_RS_STATE_CREATE_INFO,
466 },
467 &device->blit_state.rs_state);
468 }
469
470 static void
471 meta_prepare_blit(struct anv_cmd_buffer *cmd_buffer,
472 struct anv_saved_state *saved_state)
473 {
474 struct anv_device *device = cmd_buffer->device;
475
476 anv_cmd_buffer_save(cmd_buffer, saved_state);
477
478 if ((VkPipeline) cmd_buffer->pipeline != device->blit_state.pipeline)
479 vkCmdBindPipeline((VkCmdBuffer) cmd_buffer,
480 VK_PIPELINE_BIND_POINT_GRAPHICS,
481 device->blit_state.pipeline);
482
483 /* We don't need anything here, only set if not already set. */
484 if (cmd_buffer->rs_state == NULL)
485 vkCmdBindDynamicStateObject((VkCmdBuffer) cmd_buffer,
486 VK_STATE_BIND_POINT_RASTER,
487 device->blit_state.rs_state);
488 }
489
490 struct blit_region {
491 VkOffset3D src_offset;
492 VkExtent3D src_extent;
493 VkOffset3D dest_offset;
494 VkExtent3D dest_extent;
495 };
496
497 static void
498 meta_emit_blit(struct anv_cmd_buffer *cmd_buffer,
499 struct anv_image_view *src,
500 VkOffset3D src_offset,
501 VkExtent3D src_extent,
502 struct anv_color_attachment_view *dest,
503 VkOffset3D dest_offset,
504 VkExtent3D dest_extent)
505 {
506 struct anv_device *device = cmd_buffer->device;
507
508 struct blit_vb_data {
509 float pos[2];
510 float tex_coord[2];
511 } *vb_data;
512
513 unsigned vb_size = sizeof(struct vue_header) + 3 * sizeof(*vb_data);
514
515 struct anv_state vb_state =
516 anv_state_stream_alloc(&cmd_buffer->surface_state_stream, vb_size, 16);
517 memset(vb_state.map, 0, sizeof(struct vue_header));
518 vb_data = vb_state.map + sizeof(struct vue_header);
519
520 vb_data[0] = (struct blit_vb_data) {
521 .pos = {
522 dest_offset.x + dest_extent.width,
523 dest_offset.y + dest_extent.height,
524 },
525 .tex_coord = {
526 (float)(src_offset.x + src_extent.width) / (float)src->extent.width,
527 (float)(src_offset.y + src_extent.height) / (float)src->extent.height,
528 },
529 };
530
531 vb_data[1] = (struct blit_vb_data) {
532 .pos = {
533 dest_offset.x,
534 dest_offset.y + dest_extent.height,
535 },
536 .tex_coord = {
537 (float)src_offset.x / (float)src->extent.width,
538 (float)(src_offset.y + src_extent.height) / (float)src->extent.height,
539 },
540 };
541
542 vb_data[2] = (struct blit_vb_data) {
543 .pos = {
544 dest_offset.x,
545 dest_offset.y,
546 },
547 .tex_coord = {
548 (float)src_offset.x / (float)src->extent.width,
549 (float)src_offset.y / (float)src->extent.height,
550 },
551 };
552
553 struct anv_buffer vertex_buffer = {
554 .device = device,
555 .size = vb_size,
556 .bo = &device->surface_state_block_pool.bo,
557 .offset = vb_state.offset,
558 };
559
560 vkCmdBindVertexBuffers((VkCmdBuffer) cmd_buffer, 0, 2,
561 (VkBuffer[]) {
562 (VkBuffer) &vertex_buffer,
563 (VkBuffer) &vertex_buffer
564 },
565 (VkDeviceSize[]) {
566 0,
567 sizeof(struct vue_header),
568 });
569
570 uint32_t count;
571 VkDescriptorSet set;
572 vkAllocDescriptorSets((VkDevice) device, 0 /* pool */,
573 VK_DESCRIPTOR_SET_USAGE_ONE_SHOT,
574 1, &device->blit_state.ds_layout, &set, &count);
575 vkUpdateDescriptors((VkDevice) device, set, 1,
576 (const void * []) {
577 &(VkUpdateImages) {
578 .sType = VK_STRUCTURE_TYPE_UPDATE_IMAGES,
579 .descriptorType = VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE,
580 .binding = 0,
581 .count = 1,
582 .pImageViews = (VkImageViewAttachInfo[]) {
583 {
584 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_ATTACH_INFO,
585 .view = (VkImageView) src,
586 .layout = VK_IMAGE_LAYOUT_GENERAL,
587 }
588 }
589 }
590 });
591
592 VkFramebufferCreateInfo fb_info = {
593 .sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
594 .colorAttachmentCount = 1,
595 .pColorAttachments = (VkColorAttachmentBindInfo[]) {
596 {
597 .view = (VkColorAttachmentView) dest,
598 .layout = VK_IMAGE_LAYOUT_GENERAL
599 }
600 },
601 .pDepthStencilAttachment = NULL,
602 .sampleCount = 1,
603 .width = dest->extent.width,
604 .height = dest->extent.height,
605 .layers = 1
606 };
607
608 struct anv_framebuffer *fb;
609 vkCreateFramebuffer((VkDevice) device, &fb_info, (VkFramebuffer *)&fb);
610
611 VkRenderPassCreateInfo pass_info = {
612 .sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
613 .renderArea = { { 0, 0 }, { dest->extent.width, dest->extent.height } },
614 .colorAttachmentCount = 1,
615 .extent = { },
616 .sampleCount = 1,
617 .layers = 1,
618 .pColorFormats = (VkFormat[]) { dest->image->format },
619 .pColorLayouts = (VkImageLayout[]) { VK_IMAGE_LAYOUT_GENERAL },
620 .pColorLoadOps = (VkAttachmentLoadOp[]) { VK_ATTACHMENT_LOAD_OP_LOAD },
621 .pColorStoreOps = (VkAttachmentStoreOp[]) { VK_ATTACHMENT_STORE_OP_STORE },
622 .pColorLoadClearValues = (VkClearColor[]) {
623 { .color = { .floatColor = { 1.0, 0.0, 0.0, 1.0 } }, .useRawValue = false }
624 },
625 .depthStencilFormat = VK_FORMAT_UNDEFINED,
626 };
627
628 VkRenderPass pass;
629 vkCreateRenderPass((VkDevice )device, &pass_info, &pass);
630
631 vkCmdBeginRenderPass((VkCmdBuffer) cmd_buffer,
632 &(VkRenderPassBegin) {
633 .renderPass = pass,
634 .framebuffer = (VkFramebuffer) fb,
635 });
636
637 vkCmdBindDynamicStateObject((VkCmdBuffer) cmd_buffer,
638 VK_STATE_BIND_POINT_VIEWPORT, fb->vp_state);
639
640 vkCmdBindDescriptorSets((VkCmdBuffer) cmd_buffer,
641 VK_PIPELINE_BIND_POINT_GRAPHICS, 0, 1,
642 &set, 0, NULL);
643
644 vkCmdDraw((VkCmdBuffer) cmd_buffer, 0, 3, 0, 1);
645
646 vkCmdEndRenderPass((VkCmdBuffer) cmd_buffer, pass);
647 }
648
649 static void
650 meta_finish_blit(struct anv_cmd_buffer *cmd_buffer,
651 const struct anv_saved_state *saved_state)
652 {
653 anv_cmd_buffer_restore(cmd_buffer, saved_state);
654 }
655
656 void VKAPI vkCmdCopyBuffer(
657 VkCmdBuffer cmdBuffer,
658 VkBuffer srcBuffer,
659 VkBuffer destBuffer,
660 uint32_t regionCount,
661 const VkBufferCopy* pRegions)
662 {
663 stub();
664 }
665
666 void VKAPI vkCmdCopyImage(
667 VkCmdBuffer cmdBuffer,
668 VkImage srcImage,
669 VkImageLayout srcImageLayout,
670 VkImage destImage,
671 VkImageLayout destImageLayout,
672 uint32_t regionCount,
673 const VkImageCopy* pRegions)
674 {
675 stub();
676 }
677
678 void VKAPI vkCmdBlitImage(
679 VkCmdBuffer cmdBuffer,
680 VkImage srcImage,
681 VkImageLayout srcImageLayout,
682 VkImage destImage,
683 VkImageLayout destImageLayout,
684 uint32_t regionCount,
685 const VkImageBlit* pRegions)
686 {
687 stub();
688 }
689
690 void VKAPI vkCmdCopyBufferToImage(
691 VkCmdBuffer cmdBuffer,
692 VkBuffer srcBuffer,
693 VkImage destImage,
694 VkImageLayout destImageLayout,
695 uint32_t regionCount,
696 const VkBufferImageCopy* pRegions)
697 {
698 stub();
699 }
700
701 void VKAPI vkCmdCopyImageToBuffer(
702 VkCmdBuffer cmdBuffer,
703 VkImage srcImage,
704 VkImageLayout srcImageLayout,
705 VkBuffer destBuffer,
706 uint32_t regionCount,
707 const VkBufferImageCopy* pRegions)
708 {
709 struct anv_cmd_buffer *cmd_buffer = (struct anv_cmd_buffer *)cmdBuffer;
710 VkDevice vk_device = (VkDevice) cmd_buffer->device;
711 struct anv_image *src_image = (struct anv_image *)srcImage;
712 struct anv_buffer *dest_buffer = (struct anv_buffer *)destBuffer;
713 struct anv_saved_state saved_state;
714
715 meta_prepare_blit(cmd_buffer, &saved_state);
716
717 for (unsigned r = 0; r < regionCount; r++) {
718 VkImageViewCreateInfo src_view_info = {
719 .sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
720 .image = srcImage,
721 .viewType = VK_IMAGE_VIEW_TYPE_2D,
722 .format = src_image->format,
723 .channels = {
724 VK_CHANNEL_SWIZZLE_R,
725 VK_CHANNEL_SWIZZLE_G,
726 VK_CHANNEL_SWIZZLE_B,
727 VK_CHANNEL_SWIZZLE_A
728 },
729 .subresourceRange = {
730 .aspect = pRegions[r].imageSubresource.aspect,
731 .baseMipLevel = pRegions[r].imageSubresource.mipLevel,
732 .mipLevels = 1,
733 .baseArraySlice = pRegions[r].imageSubresource.arraySlice,
734 .arraySize = 1
735 },
736 .minLod = 0
737 };
738
739 VkImageView src_view;
740 vkCreateImageView(vk_device, &src_view_info, &src_view);
741
742 VkImageCreateInfo dest_image_info = {
743 .sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
744 .imageType = VK_IMAGE_TYPE_2D,
745 .format = src_image->format,
746 .extent = {
747 .width = pRegions[r].imageExtent.width,
748 .height = pRegions[r].imageExtent.height,
749 .depth = 1,
750 },
751 .mipLevels = 1,
752 .arraySize = 1,
753 .samples = 1,
754 .tiling = VK_IMAGE_TILING_LINEAR,
755 .usage = VK_IMAGE_USAGE_SAMPLED_BIT,
756 .flags = 0,
757 };
758
759 struct anv_image *dest_image;
760 vkCreateImage(vk_device, &dest_image_info, (VkImage *)&dest_image);
761
762 /* We could use a vk call to bind memory, but that would require
763 * creating a dummy memory object etc. so there's really no point.
764 */
765 dest_image->bo = dest_buffer->bo;
766 dest_image->offset = dest_buffer->offset + pRegions[r].bufferOffset;
767
768 VkColorAttachmentViewCreateInfo dest_view_info = {
769 .sType = VK_STRUCTURE_TYPE_COLOR_ATTACHMENT_VIEW_CREATE_INFO,
770 .image = (VkImage)dest_image,
771 .format = src_image->format,
772 .mipLevel = 0,
773 .baseArraySlice = 0,
774 .arraySize = 1,
775 };
776
777 VkColorAttachmentView dest_view;
778 vkCreateColorAttachmentView(vk_device, &dest_view_info, &dest_view);
779
780 meta_emit_blit(cmd_buffer,
781 (struct anv_image_view *)src_view,
782 pRegions[r].imageOffset,
783 pRegions[r].imageExtent,
784 (struct anv_color_attachment_view *)dest_view,
785 (VkOffset3D) { 0, 0, 0 },
786 pRegions[r].imageExtent);
787 }
788
789 meta_finish_blit(cmd_buffer, &saved_state);
790 }
791
792 void VKAPI vkCmdCloneImageData(
793 VkCmdBuffer cmdBuffer,
794 VkImage srcImage,
795 VkImageLayout srcImageLayout,
796 VkImage destImage,
797 VkImageLayout destImageLayout)
798 {
799 stub();
800 }
801
802 void VKAPI vkCmdUpdateBuffer(
803 VkCmdBuffer cmdBuffer,
804 VkBuffer destBuffer,
805 VkDeviceSize destOffset,
806 VkDeviceSize dataSize,
807 const uint32_t* pData)
808 {
809 stub();
810 }
811
812 void VKAPI vkCmdFillBuffer(
813 VkCmdBuffer cmdBuffer,
814 VkBuffer destBuffer,
815 VkDeviceSize destOffset,
816 VkDeviceSize fillSize,
817 uint32_t data)
818 {
819 stub();
820 }
821
822 void VKAPI vkCmdClearColorImage(
823 VkCmdBuffer cmdBuffer,
824 VkImage image,
825 VkImageLayout imageLayout,
826 const VkClearColor* color,
827 uint32_t rangeCount,
828 const VkImageSubresourceRange* pRanges)
829 {
830 stub();
831 }
832
833 void VKAPI vkCmdClearDepthStencil(
834 VkCmdBuffer cmdBuffer,
835 VkImage image,
836 VkImageLayout imageLayout,
837 float depth,
838 uint32_t stencil,
839 uint32_t rangeCount,
840 const VkImageSubresourceRange* pRanges)
841 {
842 stub();
843 }
844
845 void VKAPI vkCmdResolveImage(
846 VkCmdBuffer cmdBuffer,
847 VkImage srcImage,
848 VkImageLayout srcImageLayout,
849 VkImage destImage,
850 VkImageLayout destImageLayout,
851 uint32_t regionCount,
852 const VkImageResolve* pRegions)
853 {
854 stub();
855 }
856
857 void
858 anv_device_init_meta(struct anv_device *device)
859 {
860 anv_device_init_meta_clear_state(device);
861 anv_device_init_meta_blit_state(device);
862 }