Move neg-pol to pos-pol mapping from ff_map to cells_map.v
[yosys.git] / techlibs / xilinx / cells_map.v
1 /*
2 * yosys -- Yosys Open SYnthesis Suite
3 *
4 * Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
5 * 2019 Eddie Hung <eddie@fpgeh.com>
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 *
19 */
20
21 // Convert negative-polarity reset to positive-polarity
22 module \$_DFF_NN0_ (input D, C, R, output Q); \$_DFF_NP0_ _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R)); endmodule
23 module \$_DFF_PN0_ (input D, C, R, output Q); \$_DFF_PP0_ _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R)); endmodule
24
25 module \$_DFF_NN1_ (input D, C, R, output Q); \$_DFF_NP1 _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R)); endmodule
26 module \$_DFF_PN1_ (input D, C, R, output Q); \$_DFF_PP1 _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R)); endmodule
27
28
29 module \$__SHREG_ (input C, input D, input E, output Q);
30 parameter DEPTH = 0;
31 parameter [DEPTH-1:0] INIT = 0;
32 parameter CLKPOL = 1;
33 parameter ENPOL = 2;
34
35 \$__XILINX_SHREG_ #(.DEPTH(DEPTH), .INIT(INIT), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) _TECHMAP_REPLACE_ (.C(C), .D(D), .L(DEPTH-1), .E(E), .Q(Q));
36 endmodule
37
38 module \$__XILINX_SHREG_ (input C, input D, input [31:0] L, input E, output Q, output SO);
39 parameter DEPTH = 0;
40 parameter [DEPTH-1:0] INIT = 0;
41 parameter CLKPOL = 1;
42 parameter ENPOL = 2;
43
44 // shregmap's INIT parameter shifts out LSB first;
45 // however Xilinx expects MSB first
46 function [DEPTH-1:0] brev;
47 input [DEPTH-1:0] din;
48 integer i;
49 begin
50 for (i = 0; i < DEPTH; i=i+1)
51 brev[i] = din[DEPTH-1-i];
52 end
53 endfunction
54 localparam [DEPTH-1:0] INIT_R = brev(INIT);
55
56 parameter _TECHMAP_CONSTMSK_L_ = 0;
57 parameter _TECHMAP_CONSTVAL_L_ = 0;
58
59 wire CE;
60 generate
61 if (ENPOL == 0)
62 assign CE = ~E;
63 else if (ENPOL == 1)
64 assign CE = E;
65 else
66 assign CE = 1'b1;
67 if (DEPTH == 1) begin
68 if (CLKPOL)
69 FDRE #(.INIT(INIT_R)) _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .CE(CE), .R(1'b0));
70 else
71 FDRE_1 #(.INIT(INIT_R)) _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .CE(CE), .R(1'b0));
72 end else
73 if (DEPTH <= 16) begin
74 SRL16E #(.INIT(INIT_R), .IS_CLK_INVERTED(~CLKPOL[0])) _TECHMAP_REPLACE_ (.A0(L[0]), .A1(L[1]), .A2(L[2]), .A3(L[3]), .CE(CE), .CLK(C), .D(D), .Q(Q));
75 end else
76 if (DEPTH > 17 && DEPTH <= 32) begin
77 SRLC32E #(.INIT(INIT_R), .IS_CLK_INVERTED(~CLKPOL[0])) _TECHMAP_REPLACE_ (.A(L[4:0]), .CE(CE), .CLK(C), .D(D), .Q(Q));
78 end else
79 if (DEPTH > 33 && DEPTH <= 64) begin
80 wire T0, T1, T2;
81 SRLC32E #(.INIT(INIT_R[32-1:0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D(D), .Q(T0), .Q31(T1));
82 \$__XILINX_SHREG_ #(.DEPTH(DEPTH-32), .INIT(INIT[DEPTH-32-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_1 (.C(C), .D(T1), .L(L), .E(E), .Q(T2));
83 if (&_TECHMAP_CONSTMSK_L_)
84 assign Q = T2;
85 else
86 MUXF7 fpga_mux_0 (.O(Q), .I0(T0), .I1(T2), .S(L[5]));
87 end else
88 if (DEPTH > 65 && DEPTH <= 96) begin
89 wire T0, T1, T2, T3, T4, T5, T6;
90 SRLC32E #(.INIT(INIT_R[32-1: 0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D( D), .Q(T0), .Q31(T1));
91 SRLC32E #(.INIT(INIT_R[64-1:32]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_1 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T1), .Q(T2), .Q31(T3));
92 \$__XILINX_SHREG_ #(.DEPTH(DEPTH-64), .INIT(INIT[DEPTH-64-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_2 (.C(C), .D(T3), .L(L[4:0]), .E(E), .Q(T4));
93 if (&_TECHMAP_CONSTMSK_L_)
94 assign Q = T4;
95 else begin
96 MUXF7 fpga_mux_0 (.O(T5), .I0(T0), .I1(T2), .S(L[5]));
97 MUXF7 fpga_mux_1 (.O(T6), .I0(T4), .I1(1'b0 /* unused */), .S(L[5]));
98 MUXF8 fpga_mux_2 (.O(Q), .I0(T5), .I1(T6), .S(L[6]));
99 end
100 end else
101 if (DEPTH > 97 && DEPTH < 128) begin
102 wire T0, T1, T2, T3, T4, T5, T6, T7, T8;
103 SRLC32E #(.INIT(INIT_R[32-1: 0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D( D), .Q(T0), .Q31(T1));
104 SRLC32E #(.INIT(INIT_R[64-1:32]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_1 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T1), .Q(T2), .Q31(T3));
105 SRLC32E #(.INIT(INIT_R[96-1:64]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_2 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T3), .Q(T4), .Q31(T5));
106 \$__XILINX_SHREG_ #(.DEPTH(DEPTH-96), .INIT(INIT[DEPTH-96-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_3 (.C(C), .D(T5), .L(L[4:0]), .E(E), .Q(T6));
107 if (&_TECHMAP_CONSTMSK_L_)
108 assign Q = T6;
109 else begin
110 MUXF7 fpga_mux_0 (.O(T7), .I0(T0), .I1(T2), .S(L[5]));
111 MUXF7 fpga_mux_1 (.O(T8), .I0(T4), .I1(T6), .S(L[5]));
112 MUXF8 fpga_mux_2 (.O(Q), .I0(T7), .I1(T8), .S(L[6]));
113 end
114 end
115 else if (DEPTH == 128) begin
116 wire T0, T1, T2, T3, T4, T5, T6;
117 SRLC32E #(.INIT(INIT_R[ 32-1: 0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D( D), .Q(T0), .Q31(T1));
118 SRLC32E #(.INIT(INIT_R[ 64-1:32]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_1 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T1), .Q(T2), .Q31(T3));
119 SRLC32E #(.INIT(INIT_R[ 96-1:64]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_2 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T3), .Q(T4), .Q31(T5));
120 SRLC32E #(.INIT(INIT_R[128-1:96]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_3 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T5), .Q(T6), .Q31(SO));
121 if (&_TECHMAP_CONSTMSK_L_)
122 assign Q = T6;
123 else begin
124 wire T7, T8;
125 MUXF7 fpga_mux_0 (.O(T7), .I0(T0), .I1(T2), .S(L[5]));
126 MUXF7 fpga_mux_1 (.O(T8), .I0(T4), .I1(T6), .S(L[5]));
127 MUXF8 fpga_mux_2 (.O(Q), .I0(T7), .I1(T8), .S(L[6]));
128 end
129 end
130 else if (DEPTH <= 129 && ~&_TECHMAP_CONSTMSK_L_) begin
131 // Handle cases where fixed-length depth is
132 // just 1 over a convenient value
133 \$__XILINX_SHREG_ #(.DEPTH(DEPTH+1), .INIT({INIT,1'b0}), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) _TECHMAP_REPLACE_ (.C(C), .D(D), .L(L), .E(E), .Q(Q));
134 end
135 else begin
136 localparam lower_clog2 = $clog2((DEPTH+1)/2);
137 localparam lower_depth = 2 ** lower_clog2;
138 wire T0, T1, T2, T3;
139 if (&_TECHMAP_CONSTMSK_L_) begin
140 \$__XILINX_SHREG_ #(.DEPTH(lower_depth), .INIT(INIT[DEPTH-1:DEPTH-lower_depth]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_0 (.C(C), .D(D), .L(lower_depth-1), .E(E), .Q(T0));
141 \$__XILINX_SHREG_ #(.DEPTH(DEPTH-lower_depth), .INIT(INIT[DEPTH-lower_depth-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_1 (.C(C), .D(T0), .L(DEPTH-lower_depth-1), .E(E), .Q(Q), .SO(T3));
142 end
143 else begin
144 \$__XILINX_SHREG_ #(.DEPTH(lower_depth), .INIT(INIT[DEPTH-1:DEPTH-lower_depth]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_0 (.C(C), .D(D), .L(L[lower_clog2-1:0]), .E(E), .Q(T0), .SO(T1));
145 \$__XILINX_SHREG_ #(.DEPTH(DEPTH-lower_depth), .INIT(INIT[DEPTH-lower_depth-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_1 (.C(C), .D(T1), .L(L[lower_clog2-1:0]), .E(E), .Q(T2), .SO(T3));
146 assign Q = L[lower_clog2] ? T2 : T0;
147 end
148 if (DEPTH == 2 * lower_depth)
149 assign SO = T3;
150 end
151 endgenerate
152 endmodule