Merge branch 'koriakin/xc7nocarrymux' into xaig
[yosys.git] / techlibs / xilinx / cells_map.v
1 /*
2 * yosys -- Yosys Open SYnthesis Suite
3 *
4 * Copyright (C) 2012 Clifford Wolf <clifford@clifford.at>
5 * 2019 Eddie Hung <eddie@fpgeh.com>
6 *
7 * Permission to use, copy, modify, and/or distribute this software for any
8 * purpose with or without fee is hereby granted, provided that the above
9 * copyright notice and this permission notice appear in all copies.
10 *
11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 *
19 */
20
21 // Convert negative-polarity reset to positive-polarity
22 (* techmap_celltype = "$_DFF_NN0_" *)
23 module _90_dff_nn0_to_np0(input D, C, R, output Q); \$_DFF_NP0_ _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R)); endmodule
24 (* techmap_celltype = "$_DFF_PN0_" *)
25 module _90_dff_pn0_to_pp0(input D, C, R, output Q); \$_DFF_PP0_ _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R)); endmodule
26
27 (* techmap_celltype = "$_DFF_NN1_" *)
28 module _90_dff_nn1_to_np1 (input D, C, R, output Q); \$_DFF_NP1 _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R)); endmodule
29 (* techmap_celltype = "$_DFF_PN1_" *)
30 module _90_dff_pn1_to_pp1 (input D, C, R, output Q); \$_DFF_PP1 _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .R(~R)); endmodule
31
32
33 module \$__SHREG_ (input C, input D, input E, output Q);
34 parameter DEPTH = 0;
35 parameter [DEPTH-1:0] INIT = 0;
36 parameter CLKPOL = 1;
37 parameter ENPOL = 2;
38
39 \$__XILINX_SHREG_ #(.DEPTH(DEPTH), .INIT(INIT), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) _TECHMAP_REPLACE_ (.C(C), .D(D), .L(DEPTH-1), .E(E), .Q(Q));
40 endmodule
41
42 module \$__XILINX_SHREG_ (input C, input D, input [31:0] L, input E, output Q, output SO);
43 parameter DEPTH = 0;
44 parameter [DEPTH-1:0] INIT = 0;
45 parameter CLKPOL = 1;
46 parameter ENPOL = 2;
47
48 // shregmap's INIT parameter shifts out LSB first;
49 // however Xilinx expects MSB first
50 function [DEPTH-1:0] brev;
51 input [DEPTH-1:0] din;
52 integer i;
53 begin
54 for (i = 0; i < DEPTH; i=i+1)
55 brev[i] = din[DEPTH-1-i];
56 end
57 endfunction
58 localparam [DEPTH-1:0] INIT_R = brev(INIT);
59
60 parameter _TECHMAP_CONSTMSK_L_ = 0;
61 parameter _TECHMAP_CONSTVAL_L_ = 0;
62
63 wire CE;
64 generate
65 if (ENPOL == 0)
66 assign CE = ~E;
67 else if (ENPOL == 1)
68 assign CE = E;
69 else
70 assign CE = 1'b1;
71 if (DEPTH == 1) begin
72 if (CLKPOL)
73 FDRE #(.INIT(INIT_R)) _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .CE(CE), .R(1'b0));
74 else
75 FDRE_1 #(.INIT(INIT_R)) _TECHMAP_REPLACE_ (.D(D), .Q(Q), .C(C), .CE(CE), .R(1'b0));
76 end else
77 if (DEPTH <= 16) begin
78 SRL16E #(.INIT(INIT_R), .IS_CLK_INVERTED(~CLKPOL[0])) _TECHMAP_REPLACE_ (.A0(L[0]), .A1(L[1]), .A2(L[2]), .A3(L[3]), .CE(CE), .CLK(C), .D(D), .Q(Q));
79 end else
80 if (DEPTH > 17 && DEPTH <= 32) begin
81 SRLC32E #(.INIT(INIT_R), .IS_CLK_INVERTED(~CLKPOL[0])) _TECHMAP_REPLACE_ (.A(L[4:0]), .CE(CE), .CLK(C), .D(D), .Q(Q));
82 end else
83 if (DEPTH > 33 && DEPTH <= 64) begin
84 wire T0, T1, T2;
85 SRLC32E #(.INIT(INIT_R[32-1:0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D(D), .Q(T0), .Q31(T1));
86 \$__XILINX_SHREG_ #(.DEPTH(DEPTH-32), .INIT(INIT[DEPTH-32-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_1 (.C(C), .D(T1), .L(L), .E(E), .Q(T2));
87 if (&_TECHMAP_CONSTMSK_L_)
88 assign Q = T2;
89 else
90 MUXF7 fpga_mux_0 (.O(Q), .I0(T0), .I1(T2), .S(L[5]));
91 end else
92 if (DEPTH > 65 && DEPTH <= 96) begin
93 wire T0, T1, T2, T3, T4, T5, T6;
94 SRLC32E #(.INIT(INIT_R[32-1: 0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D( D), .Q(T0), .Q31(T1));
95 SRLC32E #(.INIT(INIT_R[64-1:32]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_1 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T1), .Q(T2), .Q31(T3));
96 \$__XILINX_SHREG_ #(.DEPTH(DEPTH-64), .INIT(INIT[DEPTH-64-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_2 (.C(C), .D(T3), .L(L[4:0]), .E(E), .Q(T4));
97 if (&_TECHMAP_CONSTMSK_L_)
98 assign Q = T4;
99 else begin
100 MUXF7 fpga_mux_0 (.O(T5), .I0(T0), .I1(T2), .S(L[5]));
101 MUXF7 fpga_mux_1 (.O(T6), .I0(T4), .I1(1'b0 /* unused */), .S(L[5]));
102 MUXF8 fpga_mux_2 (.O(Q), .I0(T5), .I1(T6), .S(L[6]));
103 end
104 end else
105 if (DEPTH > 97 && DEPTH < 128) begin
106 wire T0, T1, T2, T3, T4, T5, T6, T7, T8;
107 SRLC32E #(.INIT(INIT_R[32-1: 0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D( D), .Q(T0), .Q31(T1));
108 SRLC32E #(.INIT(INIT_R[64-1:32]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_1 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T1), .Q(T2), .Q31(T3));
109 SRLC32E #(.INIT(INIT_R[96-1:64]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_2 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T3), .Q(T4), .Q31(T5));
110 \$__XILINX_SHREG_ #(.DEPTH(DEPTH-96), .INIT(INIT[DEPTH-96-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_3 (.C(C), .D(T5), .L(L[4:0]), .E(E), .Q(T6));
111 if (&_TECHMAP_CONSTMSK_L_)
112 assign Q = T6;
113 else begin
114 MUXF7 fpga_mux_0 (.O(T7), .I0(T0), .I1(T2), .S(L[5]));
115 MUXF7 fpga_mux_1 (.O(T8), .I0(T4), .I1(T6), .S(L[5]));
116 MUXF8 fpga_mux_2 (.O(Q), .I0(T7), .I1(T8), .S(L[6]));
117 end
118 end
119 else if (DEPTH == 128) begin
120 wire T0, T1, T2, T3, T4, T5, T6;
121 SRLC32E #(.INIT(INIT_R[ 32-1: 0]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_0 (.A(L[4:0]), .CE(CE), .CLK(C), .D( D), .Q(T0), .Q31(T1));
122 SRLC32E #(.INIT(INIT_R[ 64-1:32]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_1 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T1), .Q(T2), .Q31(T3));
123 SRLC32E #(.INIT(INIT_R[ 96-1:64]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_2 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T3), .Q(T4), .Q31(T5));
124 SRLC32E #(.INIT(INIT_R[128-1:96]), .IS_CLK_INVERTED(~CLKPOL[0])) fpga_srl_3 (.A(L[4:0]), .CE(CE), .CLK(C), .D(T5), .Q(T6), .Q31(SO));
125 if (&_TECHMAP_CONSTMSK_L_)
126 assign Q = T6;
127 else begin
128 wire T7, T8;
129 MUXF7 fpga_mux_0 (.O(T7), .I0(T0), .I1(T2), .S(L[5]));
130 MUXF7 fpga_mux_1 (.O(T8), .I0(T4), .I1(T6), .S(L[5]));
131 MUXF8 fpga_mux_2 (.O(Q), .I0(T7), .I1(T8), .S(L[6]));
132 end
133 end
134 else if (DEPTH <= 129 && ~&_TECHMAP_CONSTMSK_L_) begin
135 // Handle cases where fixed-length depth is
136 // just 1 over a convenient value
137 \$__XILINX_SHREG_ #(.DEPTH(DEPTH+1), .INIT({INIT,1'b0}), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) _TECHMAP_REPLACE_ (.C(C), .D(D), .L(L), .E(E), .Q(Q));
138 end
139 else begin
140 localparam lower_clog2 = $clog2((DEPTH+1)/2);
141 localparam lower_depth = 2 ** lower_clog2;
142 wire T0, T1, T2, T3;
143 if (&_TECHMAP_CONSTMSK_L_) begin
144 \$__XILINX_SHREG_ #(.DEPTH(lower_depth), .INIT(INIT[DEPTH-1:DEPTH-lower_depth]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_0 (.C(C), .D(D), .L(lower_depth-1), .E(E), .Q(T0));
145 \$__XILINX_SHREG_ #(.DEPTH(DEPTH-lower_depth), .INIT(INIT[DEPTH-lower_depth-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_1 (.C(C), .D(T0), .L(DEPTH-lower_depth-1), .E(E), .Q(Q), .SO(T3));
146 end
147 else begin
148 \$__XILINX_SHREG_ #(.DEPTH(lower_depth), .INIT(INIT[DEPTH-1:DEPTH-lower_depth]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_0 (.C(C), .D(D), .L(L[lower_clog2-1:0]), .E(E), .Q(T0), .SO(T1));
149 \$__XILINX_SHREG_ #(.DEPTH(DEPTH-lower_depth), .INIT(INIT[DEPTH-lower_depth-1:0]), .CLKPOL(CLKPOL), .ENPOL(ENPOL)) fpga_srl_1 (.C(C), .D(T1), .L(L[lower_clog2-1:0]), .E(E), .Q(T2), .SO(T3));
150 assign Q = L[lower_clog2] ? T2 : T0;
151 end
152 if (DEPTH == 2 * lower_depth)
153 assign SO = T3;
154 end
155 endgenerate
156 endmodule