Make TraceCPU only compile in non-fullsystem.
[gem5.git] / util / config / m5config.py
1 from __future__ import generators
2
3 import os
4 import re
5 import sys
6
7 #####################################################################
8 #
9 # M5 Python Configuration Utility
10 #
11 # The basic idea is to write simple Python programs that build Python
12 # objects corresponding to M5 SimObjects for the deisred simulation
13 # configuration. For now, the Python emits a .ini file that can be
14 # parsed by M5. In the future, some tighter integration between M5
15 # and the Python interpreter may allow bypassing the .ini file.
16 #
17 # Each SimObject class in M5 is represented by a Python class with the
18 # same name. The Python inheritance tree mirrors the M5 C++ tree
19 # (e.g., SimpleCPU derives from BaseCPU in both cases, and all
20 # SimObjects inherit from a single SimObject base class). To specify
21 # an instance of an M5 SimObject in a configuration, the user simply
22 # instantiates the corresponding Python object. The parameters for
23 # that SimObject are given by assigning to attributes of the Python
24 # object, either using keyword assignment in the constructor or in
25 # separate assignment statements. For example:
26 #
27 # cache = BaseCache('my_cache', root, size=64*K)
28 # cache.hit_latency = 3
29 # cache.assoc = 8
30 #
31 # (The first two constructor arguments specify the name of the created
32 # cache and its parent node in the hierarchy.)
33 #
34 # The magic lies in the mapping of the Python attributes for SimObject
35 # classes to the actual SimObject parameter specifications. This
36 # allows parameter validity checking in the Python code. Continuing
37 # the example above, the statements "cache.blurfl=3" or
38 # "cache.assoc='hello'" would both result in runtime errors in Python,
39 # since the BaseCache object has no 'blurfl' parameter and the 'assoc'
40 # parameter requires an integer, respectively. This magic is done
41 # primarily by overriding the special __setattr__ method that controls
42 # assignment to object attributes.
43 #
44 # The Python module provides another class, ConfigNode, which is a
45 # superclass of SimObject. ConfigNode implements the parent/child
46 # relationship for building the configuration hierarchy tree.
47 # Concrete instances of ConfigNode can be used to group objects in the
48 # hierarchy, but do not correspond to SimObjects themselves (like a
49 # .ini section with "children=" but no "type=".
50 #
51 # Once a set of Python objects have been instantiated in a hierarchy,
52 # calling 'instantiate(obj)' (where obj is the root of the hierarchy)
53 # will generate a .ini file. See simple-4cpu.py for an example
54 # (corresponding to m5-test/simple-4cpu.ini).
55 #
56 #####################################################################
57
58 #####################################################################
59 #
60 # ConfigNode/SimObject classes
61 #
62 # The Python class hierarchy rooted by ConfigNode (which is the base
63 # class of SimObject, which in turn is the base class of all other M5
64 # SimObject classes) has special attribute behavior. In general, an
65 # object in this hierarchy has three categories of attribute-like
66 # things:
67 #
68 # 1. Regular Python methods and variables. These must start with an
69 # underscore to be treated normally.
70 #
71 # 2. SimObject parameters. These values are stored as normal Python
72 # attributes, but all assignments to these attributes are checked
73 # against the pre-defined set of parameters stored in the class's
74 # _param_dict dictionary. Assignments to attributes that do not
75 # correspond to predefined parameters, or that are not of the correct
76 # type, incur runtime errors.
77 #
78 # 3. Hierarchy children. The child nodes of a ConfigNode are stored
79 # in the node's _children dictionary, but can be accessed using the
80 # Python attribute dot-notation (just as they are printed out by the
81 # simulator). Children cannot be created using attribute assigment;
82 # they must be added by specifying the parent node in the child's
83 # constructor or using the '+=' operator.
84
85 # The SimObject parameters are the most complex, for a few reasons.
86 # First, both parameter descriptions and parameter values are
87 # inherited. Thus parameter description lookup must go up the
88 # inheritance chain like normal attribute lookup, but this behavior
89 # must be explicitly coded since the lookup occurs in each class's
90 # _param_dict attribute. Second, because parameter values can be set
91 # on SimObject classes (to implement default values), the parameter
92 # checking behavior must be enforced on class attribute assignments as
93 # well as instance attribute assignments. Finally, because we allow
94 # class specialization via inheritance (e.g., see the L1Cache class in
95 # the simple-4cpu.py example), we must do parameter checking even on
96 # class instantiation. To provide all these features, we use a
97 # metaclass to define most of the SimObject parameter behavior for
98 # this class hierarchy.
99 #
100 #####################################################################
101
102 # The metaclass for ConfigNode (and thus for everything that derives
103 # from ConfigNode, including SimObject). This class controls how new
104 # classes that derive from ConfigNode are instantiated, and provides
105 # inherited class behavior (just like a class controls how instances
106 # of that class are instantiated, and provides inherited instance
107 # behavior).
108 class MetaConfigNode(type):
109
110 # __new__ is called before __init__, and is where the statements
111 # in the body of the class definition get loaded into the class's
112 # __dict__. We intercept this to filter out parameter assignments
113 # and only allow "private" attributes to be passed to the base
114 # __new__ (starting with underscore).
115 def __new__(cls, name, bases, dict):
116 priv_keys = [k for k in dict.iterkeys() if k.startswith('_')]
117 priv_dict = {}
118 for k in priv_keys: priv_dict[k] = dict[k]; del dict[k]
119 # entries left in dict will get passed to __init__, where we'll
120 # deal with them as params.
121 return super(MetaConfigNode, cls).__new__(cls, name, bases, priv_dict)
122
123 # initialization: start out with an empty param dict (makes life
124 # simpler if we can assume _param_dict is always valid). Also
125 # build inheritance list to simplify searching for inherited
126 # params. Finally set parameters specified in class definition
127 # (if any).
128 def __init__(cls, name, bases, dict):
129 super(MetaConfigNode, cls).__init__(cls, name, bases, {})
130 # initialize _param_dict to empty
131 cls._param_dict = {}
132 # __mro__ is the ordered list of classes Python uses for
133 # method resolution. We want to pick out the ones that have a
134 # _param_dict attribute for doing parameter lookups.
135 cls._param_bases = \
136 [c for c in cls.__mro__ if hasattr(c, '_param_dict')]
137 # initialize attributes with values from class definition
138 for (pname, value) in dict.items():
139 try:
140 setattr(cls, pname, value)
141 except Exception, exc:
142 print "Error setting '%s' to '%s' on class '%s'\n" \
143 % (pname, value, cls.__name__), exc
144
145 # set the class's parameter dictionary (called when loading
146 # class descriptions)
147 def set_param_dict(cls, param_dict):
148 # should only be called once (current one should be empty one
149 # from __init__)
150 assert not cls._param_dict
151 cls._param_dict = param_dict
152 # initialize attributes with default values
153 for (pname, param) in param_dict.items():
154 try:
155 setattr(cls, pname, param.default)
156 except Exception, exc:
157 print "Error setting '%s' default on class '%s'\n" \
158 % (pname, cls.__name__), exc
159
160 # Lookup a parameter description by name in the given class. Use
161 # the _param_bases list defined in __init__ to go up the
162 # inheritance hierarchy if necessary.
163 def lookup_param(cls, param_name):
164 for c in cls._param_bases:
165 param = c._param_dict.get(param_name)
166 if param: return param
167 return None
168
169 # Set attribute (called on foo.attr_name = value when foo is an
170 # instance of class cls).
171 def __setattr__(cls, attr_name, value):
172 # normal processing for private attributes
173 if attr_name.startswith('_'):
174 object.__setattr__(cls, attr_name, value)
175 return
176 # no '_': must be SimObject param
177 param = cls.lookup_param(attr_name)
178 if not param:
179 raise AttributeError, \
180 "Class %s has no parameter %s" % (cls.__name__, attr_name)
181 # It's ok: set attribute by delegating to 'object' class.
182 # Note the use of param.make_value() to verify/canonicalize
183 # the assigned value
184 object.__setattr__(cls, attr_name, param.make_value(value))
185
186 # generator that iterates across all parameters for this class and
187 # all classes it inherits from
188 def all_param_names(cls):
189 for c in cls._param_bases:
190 for p in c._param_dict.iterkeys():
191 yield p
192
193 # The ConfigNode class is the root of the special hierarchy. Most of
194 # the code in this class deals with the configuration hierarchy itself
195 # (parent/child node relationships).
196 class ConfigNode(object):
197 # Specify metaclass. Any class inheriting from ConfigNode will
198 # get this metaclass.
199 __metaclass__ = MetaConfigNode
200
201 # Constructor. Since bare ConfigNodes don't have parameters, just
202 # worry about the name and the parent/child stuff.
203 def __init__(self, _name, _parent=None):
204 # Type-check _name
205 if type(_name) != str:
206 if isinstance(_name, ConfigNode):
207 # special case message for common error of trying to
208 # coerce a SimObject to the wrong type
209 raise TypeError, \
210 "Attempt to coerce %s to %s" \
211 % (_name.__class__.__name__, self.__class__.__name__)
212 else:
213 raise TypeError, \
214 "%s name must be string (was %s, %s)" \
215 % (self.__class__.__name__, _name, type(_name))
216 # if specified, parent must be a subclass of ConfigNode
217 if _parent != None and not isinstance(_parent, ConfigNode):
218 raise TypeError, \
219 "%s parent must be ConfigNode subclass (was %s, %s)" \
220 % (self.__class__.__name__, _name, type(_name))
221 self._name = _name
222 self._parent = _parent
223 self._children = {}
224 if (_parent):
225 _parent.__addChild(self)
226 # Set up absolute path from root.
227 if (_parent and _parent._path != 'Universe'):
228 self._path = _parent._path + '.' + self._name
229 else:
230 self._path = self._name
231
232 # When printing (e.g. to .ini file), just give the name.
233 def __str__(self):
234 return self._name
235
236 # Catch attribute accesses that could be requesting children, and
237 # satisfy them. Note that __getattr__ is called only if the
238 # regular attribute lookup fails, so private and parameter lookups
239 # will already be satisfied before we ever get here.
240 def __getattr__(self, name):
241 try:
242 return self._children[name]
243 except KeyError:
244 raise AttributeError, \
245 "Node '%s' has no attribute or child '%s'" \
246 % (self._name, name)
247
248 # Set attribute. All attribute assignments go through here. Must
249 # be private attribute (starts with '_') or valid parameter entry.
250 # Basically identical to MetaConfigClass.__setattr__(), except
251 # this handles instances rather than class attributes.
252 def __setattr__(self, attr_name, value):
253 if attr_name.startswith('_'):
254 object.__setattr__(self, attr_name, value)
255 return
256 # not private; look up as param
257 param = self.__class__.lookup_param(attr_name)
258 if not param:
259 raise AttributeError, \
260 "Class %s has no parameter %s" \
261 % (self.__class__.__name__, attr_name)
262 # It's ok: set attribute by delegating to 'object' class.
263 # Note the use of param.make_value() to verify/canonicalize
264 # the assigned value
265 object.__setattr__(self, attr_name, param.make_value(value))
266
267 # Add a child to this node.
268 def __addChild(self, new_child):
269 # set child's parent before calling this function
270 assert new_child._parent == self
271 if not isinstance(new_child, ConfigNode):
272 raise TypeError, \
273 "ConfigNode child must also be of class ConfigNode"
274 if new_child._name in self._children:
275 raise AttributeError, \
276 "Node '%s' already has a child '%s'" \
277 % (self._name, new_child._name)
278 self._children[new_child._name] = new_child
279
280 # operator overload for '+='. You can say "node += child" to add
281 # a child that was created with parent=None. An early attempt
282 # at playing with syntax; turns out not to be that useful.
283 def __iadd__(self, new_child):
284 if new_child._parent != None:
285 raise AttributeError, \
286 "Node '%s' already has a parent" % new_child._name
287 new_child._parent = self
288 self.__addChild(new_child)
289 return self
290
291 # Print instance info to .ini file.
292 def _instantiate(self):
293 print '[' + self._path + ']' # .ini section header
294 if self._children:
295 # instantiate children in sorted order for backward
296 # compatibility (else we can end up with cpu1 before cpu0).
297 child_names = self._children.keys()
298 child_names.sort()
299 print 'children =',
300 for child_name in child_names:
301 print child_name,
302 print
303 self._instantiateParams()
304 print
305 # recursively dump out children
306 if self._children:
307 for child_name in child_names:
308 self._children[child_name]._instantiate()
309
310 # ConfigNodes have no parameters. Overridden by SimObject.
311 def _instantiateParams(self):
312 pass
313
314 # SimObject is a minimal extension of ConfigNode, implementing a
315 # hierarchy node that corresponds to an M5 SimObject. It prints out a
316 # "type=" line to indicate its SimObject class, prints out the
317 # assigned parameters corresponding to its class, and allows
318 # parameters to be set by keyword in the constructor. Note that most
319 # of the heavy lifting for the SimObject param handling is done in the
320 # MetaConfigNode metaclass.
321
322 class SimObject(ConfigNode):
323 # initialization: like ConfigNode, but handle keyword-based
324 # parameter initializers.
325 def __init__(self, _name, _parent=None, **params):
326 ConfigNode.__init__(self, _name, _parent)
327 for param, value in params.items():
328 setattr(self, param, value)
329
330 # print type and parameter values to .ini file
331 def _instantiateParams(self):
332 print "type =", self.__class__._name
333 for pname in self.__class__.all_param_names():
334 value = getattr(self, pname)
335 if value != None:
336 print pname, '=', value
337
338 def _sim_code(cls):
339 name = cls.__name__
340 param_names = cls._param_dict.keys()
341 param_names.sort()
342 code = "BEGIN_DECLARE_SIM_OBJECT_PARAMS(%s)\n" % name
343 decls = [" " + cls._param_dict[pname].sim_decl(pname) \
344 for pname in param_names]
345 code += "\n".join(decls) + "\n"
346 code += "END_DECLARE_SIM_OBJECT_PARAMS(%s)\n\n" % name
347 code += "BEGIN_INIT_SIM_OBJECT_PARAMS(%s)\n" % name
348 inits = [" " + cls._param_dict[pname].sim_init(pname) \
349 for pname in param_names]
350 code += ",\n".join(inits) + "\n"
351 code += "END_INIT_SIM_OBJECT_PARAMS(%s)\n\n" % name
352 return code
353 _sim_code = classmethod(_sim_code)
354
355 #####################################################################
356 #
357 # Parameter description classes
358 #
359 # The _param_dict dictionary in each class maps parameter names to
360 # either a Param or a VectorParam object. These objects contain the
361 # parameter description string, the parameter type, and the default
362 # value (loaded from the PARAM section of the .odesc files). The
363 # make_value() method on these objects is used to force whatever value
364 # is assigned to the parameter to the appropriate type.
365 #
366 # Note that the default values are loaded into the class's attribute
367 # space when the parameter dictionary is initialized (in
368 # MetaConfigNode.set_param_dict()); after that point they aren't
369 # used.
370 #
371 #####################################################################
372
373 def isNullPointer(value):
374 return isinstance(value, NullSimObject)
375
376 def isSimObjectType(ptype):
377 return issubclass(ptype, SimObject)
378
379 # Regular parameter.
380 class Param(object):
381 # Constructor. E.g., Param(Int, "number of widgets", 5)
382 def __init__(self, ptype, desc, default=None):
383 self.ptype = ptype
384 self.ptype_name = self.ptype.__name__
385 self.desc = desc
386 self.default = default
387
388 # Convert assigned value to appropriate type. Force parameter
389 # value (rhs of '=') to ptype (or None, which means not set).
390 def make_value(self, value):
391 # nothing to do if None or already correct type. Also allow NULL
392 # pointer to be assigned where a SimObject is expected.
393 if value == None or isinstance(value, self.ptype) or \
394 isNullPointer(value) and isSimObjectType(self.ptype):
395 return value
396 # this type conversion will raise an exception if it's illegal
397 return self.ptype(value)
398
399 def sim_decl(self, name):
400 return 'Param<%s> %s;' % (self.ptype_name, name)
401
402 def sim_init(self, name):
403 if self.default == None:
404 return 'INIT_PARAM(%s, "%s")' % (name, self.desc)
405 else:
406 return 'INIT_PARAM_DFLT(%s, "%s", %s)' % \
407 (name, self.desc, str(self.default))
408
409 # The _VectorParamValue class is a wrapper for vector-valued
410 # parameters. The leading underscore indicates that users shouldn't
411 # see this class; it's magically generated by VectorParam. The
412 # parameter values are stored in the 'value' field as a Python list of
413 # whatever type the parameter is supposed to be. The only purpose of
414 # storing these instead of a raw Python list is that we can override
415 # the __str__() method to not print out '[' and ']' in the .ini file.
416 class _VectorParamValue(object):
417 def __init__(self, list):
418 self.value = list
419
420 def __str__(self):
421 return ' '.join(map(str, self.value))
422
423 # Vector-valued parameter description. Just like Param, except that
424 # the value is a vector (list) of the specified type instead of a
425 # single value.
426 class VectorParam(Param):
427
428 # Inherit Param constructor. However, the resulting parameter
429 # will be a list of ptype rather than a single element of ptype.
430 def __init__(self, ptype, desc, default=None):
431 Param.__init__(self, ptype, desc, default)
432
433 # Convert assigned value to appropriate type. If the RHS is not a
434 # list or tuple, it generates a single-element list.
435 def make_value(self, value):
436 if value == None: return value
437 if isinstance(value, list) or isinstance(value, tuple):
438 # list: coerce each element into new list
439 val_list = [Param.make_value(self, v) for v in iter(value)]
440 else:
441 # singleton: coerce & wrap in a list
442 val_list = [Param.make_value(self, value)]
443 # wrap list in _VectorParamValue (see above)
444 return _VectorParamValue(val_list)
445
446 def sim_decl(self, name):
447 return 'VectorParam<%s> %s;' % (self.ptype_name, name)
448
449 # sim_init inherited from Param
450
451 #####################################################################
452 #
453 # Parameter Types
454 #
455 # Though native Python types could be used to specify parameter types
456 # (the 'ptype' field of the Param and VectorParam classes), it's more
457 # flexible to define our own set of types. This gives us more control
458 # over how Python expressions are converted to values (via the
459 # __init__() constructor) and how these values are printed out (via
460 # the __str__() conversion method). Eventually we'll need these types
461 # to correspond to distinct C++ types as well.
462 #
463 #####################################################################
464
465 # Integer parameter type.
466 class Int(object):
467 # Constructor. Value must be Python int or long (long integer).
468 def __init__(self, value):
469 t = type(value)
470 if t == int or t == long:
471 self.value = value
472 else:
473 raise TypeError, "Int param got value %s %s" % (repr(value), t)
474
475 # Use Python string conversion. Note that this puts an 'L' on the
476 # end of long integers; we can strip that off here if it gives us
477 # trouble.
478 def __str__(self):
479 return str(self.value)
480
481 # Counter, Addr, and Tick are just aliases for Int for now.
482 class Counter(Int):
483 pass
484
485 class Addr(Int):
486 pass
487
488 class Tick(Int):
489 pass
490
491 # Boolean parameter type.
492 class Bool(object):
493
494 # Constructor. Typically the value will be one of the Python bool
495 # constants True or False (or the aliases true and false below).
496 # Also need to take integer 0 or 1 values since bool was not a
497 # distinct type in Python 2.2. Parse a bunch of boolean-sounding
498 # strings too just for kicks.
499 def __init__(self, value):
500 t = type(value)
501 if t == bool:
502 self.value = value
503 elif t == int or t == long:
504 if value == 1:
505 self.value = True
506 elif value == 0:
507 self.value = False
508 elif t == str:
509 v = value.lower()
510 if v == "true" or v == "t" or v == "yes" or v == "y":
511 self.value = True
512 elif v == "false" or v == "f" or v == "no" or v == "n":
513 self.value = False
514 # if we didn't set it yet, it must not be something we understand
515 if not hasattr(self, 'value'):
516 raise TypeError, "Bool param got value %s %s" % (repr(value), t)
517
518 # Generate printable string version.
519 def __str__(self):
520 if self.value: return "true"
521 else: return "false"
522
523 # String-valued parameter.
524 class String(object):
525 # Constructor. Value must be Python string.
526 def __init__(self, value):
527 t = type(value)
528 if t == str:
529 self.value = value
530 else:
531 raise TypeError, "String param got value %s %s" % (repr(value), t)
532
533 # Generate printable string version. Not too tricky.
534 def __str__(self):
535 return self.value
536
537 # Special class for NULL pointers. Note the special check in
538 # make_param_value() above that lets these be assigned where a
539 # SimObject is required.
540 class NullSimObject(object):
541 # Constructor. No parameters, nothing to do.
542 def __init__(self):
543 pass
544
545 def __str__(self):
546 return "NULL"
547
548 # The only instance you'll ever need...
549 NULL = NullSimObject()
550
551 # Enumerated types are a little more complex. The user specifies the
552 # type as Enum(foo) where foo is either a list or dictionary of
553 # alternatives (typically strings, but not necessarily so). (In the
554 # long run, the integer value of the parameter will be the list index
555 # or the corresponding dictionary value. For now, since we only check
556 # that the alternative is valid and then spit it into a .ini file,
557 # there's not much point in using the dictionary.)
558
559 # What Enum() must do is generate a new type encapsulating the
560 # provided list/dictionary so that specific values of the parameter
561 # can be instances of that type. We define two hidden internal
562 # classes (_ListEnum and _DictEnum) to serve as base classes, then
563 # derive the new type from the appropriate base class on the fly.
564
565
566 # Base class for list-based Enum types.
567 class _ListEnum(object):
568 # Constructor. Value must be a member of the type's map list.
569 def __init__(self, value):
570 if value in self.map:
571 self.value = value
572 self.index = self.map.index(value)
573 else:
574 raise TypeError, "Enum param got bad value '%s' (not in %s)" \
575 % (value, self.map)
576
577 # Generate printable string version of value.
578 def __str__(self):
579 return str(self.value)
580
581 class _DictEnum(object):
582 # Constructor. Value must be a key in the type's map dictionary.
583 def __init__(self, value):
584 if value in self.map:
585 self.value = value
586 self.index = self.map[value]
587 else:
588 raise TypeError, "Enum param got bad value '%s' (not in %s)" \
589 % (value, self.map.keys())
590
591 # Generate printable string version of value.
592 def __str__(self):
593 return str(self.value)
594
595 # Enum metaclass... calling Enum(foo) generates a new type (class)
596 # that derives from _ListEnum or _DictEnum as appropriate.
597 class Enum(type):
598 # counter to generate unique names for generated classes
599 counter = 1
600
601 def __new__(cls, map):
602 if isinstance(map, dict):
603 base = _DictEnum
604 keys = map.keys()
605 elif isinstance(map, list):
606 base = _ListEnum
607 keys = map
608 else:
609 raise TypeError, "Enum map must be list or dict (got %s)" % map
610 classname = "Enum%04d" % Enum.counter
611 Enum.counter += 1
612 # New class derives from selected base, and gets a 'map'
613 # attribute containing the specified list or dict.
614 return type.__new__(cls, classname, (base,), { 'map': map })
615
616
617 #
618 # "Constants"... handy aliases for various values.
619 #
620
621 # For compatibility with C++ bool constants.
622 false = False
623 true = True
624
625 # Some memory range specifications use this as a default upper bound.
626 MAX_ADDR = 2 ** 63
627
628 # For power-of-two sizing, e.g. 64*K gives an integer value 65536.
629 K = 1024
630 M = K*K
631 G = K*M
632
633 #####################################################################
634 #
635 # Object description loading.
636 #
637 # The final step is to define the classes corresponding to M5 objects
638 # and their parameters. These classes are described in .odesc files
639 # in the source tree. This code walks the tree to find those files
640 # and loads up the descriptions (by evaluating them in pieces as
641 # Python code).
642 #
643 #
644 # Because SimObject classes inherit from other SimObject classes, and
645 # can use arbitrary other SimObject classes as parameter types, we
646 # have to do this in three steps:
647 #
648 # 1. Walk the tree to find all the .odesc files. Note that the base
649 # of the filename *must* match the class name. This step builds a
650 # mapping from class names to file paths.
651 #
652 # 2. Start generating empty class definitions (via def_class()) using
653 # the OBJECT field of the .odesc files to determine inheritance.
654 # def_class() recurses on demand to define needed base classes before
655 # derived classes.
656 #
657 # 3. Now that all of the classes are defined, go through the .odesc
658 # files one more time loading the parameter descriptions.
659 #
660 #####################################################################
661
662 # dictionary: maps object names to file paths
663 odesc_file = {}
664
665 # dictionary: maps object names to boolean flag indicating whether
666 # class definition was loaded yet. Since SimObject is defined in
667 # m5.config.py, count it as loaded.
668 odesc_loaded = { 'SimObject': True }
669
670 # Find odesc files in namelist and initialize odesc_file and
671 # odesc_loaded dictionaries. Called via os.path.walk() (see below).
672 def find_odescs(process, dirpath, namelist):
673 # Prune out SCCS directories so we don't process s.*.odesc files.
674 i = 0
675 while i < len(namelist):
676 if namelist[i] == "SCCS":
677 del namelist[i]
678 else:
679 i = i + 1
680 # Find .odesc files and record them.
681 for name in namelist:
682 if name.endswith('.odesc'):
683 objname = name[:name.rindex('.odesc')]
684 path = os.path.join(dirpath, name)
685 if odesc_file.has_key(objname):
686 print "Warning: duplicate object names:", \
687 odesc_file[objname], path
688 odesc_file[objname] = path
689 odesc_loaded[objname] = False
690
691
692 # Regular expression string for parsing .odesc files.
693 file_re_string = r'''
694 ^OBJECT: \s* (\w+) \s* \( \s* (\w+) \s* \)
695 \s*
696 ^PARAMS: \s*\n ( (\s+.*\n)* )
697 '''
698
699 # Compiled regular expression object.
700 file_re = re.compile(file_re_string, re.MULTILINE | re.VERBOSE)
701
702 # .odesc file parsing function. Takes a filename and returns tuple of
703 # object name, object base, and parameter description section.
704 def parse_file(path):
705 f = open(path, 'r').read()
706 m = file_re.search(f)
707 if not m:
708 print "Can't parse", path
709 sys.exit(1)
710 return (m.group(1), m.group(2), m.group(3))
711
712 # Define SimObject class based on description in specified filename.
713 # Class itself is empty except for _name attribute; parameter
714 # descriptions will be loaded later. Will recurse to define base
715 # classes as needed before defining specified class.
716 def def_class(path):
717 # load & parse file
718 (obj, parent, params) = parse_file(path)
719 # check to see if base class is defined yet; define it if not
720 if not odesc_loaded.has_key(parent):
721 print "No .odesc file found for", parent
722 sys.exit(1)
723 if not odesc_loaded[parent]:
724 def_class(odesc_file[parent])
725 # define the class. The _name attribute of the class lets us
726 # track the actual SimObject class name even when we derive new
727 # subclasses in scripts (to provide new parameter value settings).
728 s = "class %s(%s): _name = '%s'" % (obj, parent, obj)
729 try:
730 # execute in global namespace, so new class will be globally
731 # visible
732 exec s in globals()
733 except Exception, exc:
734 print "Object error in %s:" % path, exc
735 # mark this file as loaded
736 odesc_loaded[obj] = True
737
738 # Munge an arbitrary Python code string to get it to execute (mostly
739 # dealing with indentation). Stolen from isa_parser.py... see
740 # comments there for a more detailed description.
741 def fixPythonIndentation(s):
742 # get rid of blank lines first
743 s = re.sub(r'(?m)^\s*\n', '', s);
744 if (s != '' and re.match(r'[ \t]', s[0])):
745 s = 'if 1:\n' + s
746 return s
747
748 # Load parameter descriptions from .odesc file. Object class must
749 # already be defined.
750 def def_params(path):
751 # load & parse file
752 (obj_name, parent_name, param_code) = parse_file(path)
753 # initialize param dict
754 param_dict = {}
755 # execute parameter descriptions.
756 try:
757 # "in globals(), param_dict" makes exec use the current
758 # globals as the global namespace (so all of the Param
759 # etc. objects are visible) and param_dict as the local
760 # namespace (so the newly defined parameter variables will be
761 # entered into param_dict).
762 exec fixPythonIndentation(param_code) in globals(), param_dict
763 except Exception, exc:
764 print "Param error in %s:" % path, exc
765 return
766 # Convert object name string to Python class object
767 obj = eval(obj_name)
768 # Set the object's parameter description dictionary (see MetaConfigNode).
769 obj.set_param_dict(param_dict)
770
771
772 # Walk directory tree to find .odesc files.
773 # Someday we'll have to make the root path an argument instead of
774 # hard-coding it. For now the assumption is you're running this in
775 # util/config.
776 root = '../..'
777 os.path.walk(root, find_odescs, None)
778
779 # Iterate through file dictionary and define classes.
780 for objname, path in odesc_file.iteritems():
781 if not odesc_loaded[objname]:
782 def_class(path)
783
784 sim_object_list = odesc_loaded.keys()
785 sim_object_list.sort()
786
787 # Iterate through files again and load parameters.
788 for path in odesc_file.itervalues():
789 def_params(path)
790
791 #####################################################################
792
793 # Hook to generate C++ parameter code.
794 def gen_sim_code(file):
795 for objname in sim_object_list:
796 print >> file, eval("%s._sim_code()" % objname)
797
798 # The final hook to generate .ini files. Called from configuration
799 # script once config is built.
800 def instantiate(*objs):
801 for obj in objs:
802 obj._instantiate()
803
804