
	 Peter Hsu

	 16 December 2020

	

Introduction to Cavatools

Background
There is an unfortunate tension that must be dealt with when designing high-performance
computer systems: the desired system is extremely fast, but the simulation means available
to exercise design options, compare, and decide are very, very slow.

A typical example is the gem5 simulator; the following table shows that for a particular 1

configuration of the gem5 simulator running some benchmarks on a host system using 1-8
cores, execution of simulated instructions is less than 200 thousand instructions per
second (KIPS)

Another figure in the same paper shows how fast gem5 runs when doing “fast-forwarding” -
essentially acting as an interpreter to provide quick functional (rather than timing-accurate)
simulation:

 Tuan Ta, Lin Cheng, and Christopher Batten, “Simulating Multi-Core RISC-V Systems in gem5”, 2018, https://1

www.csl.cornell.edu/~cbatten/pdfs/ta-gem5-riscv-carrv2018.pdf

https://www.csl.cornell.edu/~cbatten/pdfs/ta-gem5-riscv-carrv2018.pdf
https://www.csl.cornell.edu/~cbatten/pdfs/ta-gem5-riscv-carrv2018.pdf

The speedup is only around a factor of 2X, so simulation rates don’t exceed 300KIPS or so.
When your target system is a multiprocessor, and each core runs in the gigahertz range, the
performance gap between simulation and reality is extremely large — a few billion
instructions per second is several thousand times faster than 300 KIPS.

This vast performance gulf leads to major problems when we want to exercise our target
design with realistic large programs.

Cavatools is a new approach to system simulation which seeks to offer 100X performance
improvement, in the 100-200 million instructions per second (MIPS) range. It does this
using two main ideas: (1) break problem of modeling a single processor core into a pipeline
of operations that can be simulated in parallel on a host computer with multiple cores, and
(2) take advantage of RISC-V Weak Memory Ordering to model multiple cores as parallel
(pipeline of) processes running on host computer with (more) parallel cores, synchronizing
only when the simulated program performs memory operations that have defined system-
wide ordering, such as LR and SC, atomic memory operations (AMO), and the FENCE
instruction.

The head of the modeling pipeline is an interpreter which produces an execution trace of
program counter (PC) and load/store memory addresses in shared memory. The second
element in the pipeline is a functional simulator which produces another trace in shared
memory. This functional simulator models the processor instruction decode and execution
pipeline, and a minimal subset of the cache hierarchy whose activity can be overlapped
with the processor pipeline on a cycle-by-cycle basis. For in-order processors this typically
includes the instruction buffer and the first level data cache. The functional simulator
outputs a trace containing instruction issue timing and data cache misses.

The next elements in the pipeline consists of one or more cache simulators, terminating in a
main memory simulator (which may be integrated into the last cache simulator). The cache

simulators model the L1 instruction cache, the L2 caches (may be unified or separate
instruction and data caches simulated by two cache simulators), etc.

Cavatools has a universal trace record format allowing any number of cache simulators to
be chained together to model memory hierarchy of L1, L2, L3... There is a funnel operator
for merging multiple cache miss traces to create a composite output trace with correct
timing. The merged trace can be fed into another cache simulator to model, for example, a
shared L2 cache.

A multi-core system is modeled as a tree of cache simulators with a memory controller
model at the root and pipeline simulators at the leaves, each fed by its own copy of the
RISC-V instruction interpreter. All the nodes of this modeling tree are independent Linux
processes and run in parallel on a multi-core host computer; they can be controlled using
standard Linux thread-to-core affinity utilities.

The following not yet operational. When the interpreter encountered a synchronization
instructions (memory operation with defined strong global ordering), it must wait until the
appropriate “global” time to make the store visible. There is concept of a “global clock”
which represents the oldest clock cycle of any functional simulator. The global clock is
advances periodically by whichever is the trailing simulator of the moment as different
functional simulators make forward progress at different rate. There is no set requirement
on how frequently the global clock must be updated—too frequently will cause excessive
synchronization overhead, too infrequently will impede progress of simulated program when
it performs synchronizing (ordered) memory operations.

The simulated multi-core machine correctly models Weak Memory Ordering. Because the
timing of simulated synchronization events is determined by real hardware events
happening on host processor cores which do not have deterministic execution time
(because of cache misses, asynchronous interrupts, thermal throttling, etc.), the simulation
cannot deliver cycle-accurate repeatable results—it is analogous to the behavior of a real
multi-core machine running a parallel program.

The RISC-V version of Cavatools is a further development of the cava toolset developed by
Peter Hsu 1990-2005. Contributions from Pete Wilson and Borja Perez have been
incorporated along with further work by Peter Hsu. At the time of writing all are at the
Barcelona Supercomputing Centre.

Cavatools is open-source software licensed under the Apache license. See file LICENSE.

RISC-V Interpreter
The instruction set interpreter is called caveat.

Usage: caveat [caveat-options] target-program [target-options]

Options: [choice, default (1st) value]

 --out= Create trace file/fifo =name [no trace]

 --trace= synonym for --out

 --buffer= Shared memory buffer size is 2^ =n bytes [12]

 --func= Trace function =name [_start]

 --withregs Include register values in trace

 --after= Start tracing function after =number calls [1]

 --every= Trace only every =number times function is called [1]

 --report= Progress report every =number million instructions [1000]

 --quiet Don't report progress to stderr

 -q short for --quiet

At this time only statically linked binaries are supported. Both libc and newlib binaries,
compiled using toolchains riscv64-unknown-elf-cc and riscv64-unknown-linux-gnu-cc (plus
other languages), respectively, are supported.

Without options caveat simply runs the program—it behaves as a user-mode Linux RISC-V
virtual machine. By default caveat prints performance status periodically to stderr. The
frequency of status reports can be changed to every --report=n instructions, or turned
off using the --quiet flag.

For performance analysis --out=name tells caveat to generates a trace. Currently traces
are dynamic FIFO objects in shared memory, to be consumed by another process on the
same computer. In future other options will be available. The trace FIFO object is created
as /dev/shm/name in the file system and name must be unique for each concurrently
running caveat process. The shared memory buffer size is optionally specified by --
buffer=n to be 2n bytes.

By default the entire program is traced. A specific function or subroutine can be traced
using the --func=name option. For C++ programs with mangled names, only the leading
part of the function name must match.

By default every invocation of the function is traced. The --after=n option skips the first
n calls. The --after=n option traces every n’th time the function is called. These options
can be used together to statistically sample a function in real applications that run for a long
time.

The --withregs option includes register update values to be included in the trace. This
enables an analysis program to recreate the complete execution state of the program. This
feature is useful to verify downstream simulators.

Pipeline Simulator
Cavatools comes with a single-issue in-order pipeline simulator called pipesim.

Usage: pipesim --in=trace [pipesim-options] target-program

Options: [choice, default (1st) value]

 --in= Trace file from caveat =name

 --bdelay= Taken branch delay is =number cycles [2]

 --imiss= L0 instruction buffer refill latency is =number cycles [5]

 --iline= L0 instruction buffer line size is 2^ =n bytes [8]

 --iblksz= L0 instruction buffer block size is 2^ =n bytes [4]

 --dmiss= L1 data cache miss latency is =number cycles [25]

 --write= L1 data cache is write=[back|thru]

 --dline= L1 data cache line size is 2^ =n bytes [6]

 --dways= L1 data cache is =w ways set associativity [4]

 --dsets= L1 data cache has 2^ =n sets per way [6]

 --out= Create output trace file =name [no output trace]

 --timing Include pipeline timing information in trace

 --report= Progress report every =number million instructions [100]

 --quiet Don't report progress to stderr

 -q short for --quiet

In addition to the instruction fetch, decode and execution pipeline, pipesim models a simple
instruction buffer and a first-level data cache. Instruction buffer fetch misses and L1 data
cache misses are counted. If the optionally --out=name parameter is given the instruction
buffer misses and L1 data cache misses are traced for further processing. Instruction
execution timing information can be included in the trace file for further analysis by adding
the --timing option.

The instruction buffer model is precisely characterized as a two-way set-associative, one-
set cache with long sub-blocked cache lines. It consists of two cache lines, a MRU (most
recently used) and a LRU (least recently used) line. The replacement buffer is very simple: if
hit MRU, do nothing. If hit LRU, exchange MRU, LRU status (flip bit). If miss both, MRU
becomes LRU, refill MRU with new line. The cache lines are sub-blocked. The critical sub-
block is filled first, then sequential sub-blocks forward are filled, wrapping around.

The parameter --iline=n specifies the instruction cache line size is 2n bytes. The
parameter --iblksz=n specifies the block size is 2n bytes. The refill latency or miss
penalty is given by --imiss=c cycles. Taken branches flush the pipeline, incurring a delay
of --bdelay=n cycles.7

This simple type of instruction buffer has been used effectively for scientific computers
since the 1950’s. The Cray-1 had a 4-line instruction buffer of this type—in the 1970’s
compilers were less advanced and it was necessary to have two cache lines for DAXPY
(because the subroutine may span cache line boundaries), and two more cache lines for the
enclosing loop that called DAXPY. Nowadays compilers would inline the subroutine, so we
need only two longer cache lines.9

The first level data cache in pipesim can be configured as --write=back or --
write=thru, the default is write-back. The parameter --dline=n specifies the data

cache line size is 2n bytes, --dsets=n specifies 2n sets, --dways=n specifies set-
associativity (1<=n<=4).

The data cache refill latency or miss penalty is --dmiss=c cycles. Pipesim has a non-
blocking data cache miss model: when a load instruction causes a cache miss, the result
register is marked busy and the pipeline stalls only when a subsequent instruction uses the
value in that register. The number of stall cycles depend on how long ago the cache miss
was launched. This allows software to schedule instructions to overlap cache misses.

Cavatools comes with Python script softpipe that create source-level software pipelines of
simple loops to demonstrate cache miss overlapping.

The data cache is virtually indexed and virtually tagged; there is no TLB in pipesim. This
may be adequate for accelerator designs, but may have to be revisited in the future.

Realtime Viewer
It is possible to observe pipesim as it executes a program in realtime using erised. Run the
following in different windows, where interesting is function of interest in test-program.

$ caveat —-out=trace1 —-func=interesting target-program

$ pipesim —-in=trace1 —count=count1 target-program

$ erised —-count=count1 —-func=interesting target-program

The last window will show assembly listing of function as shown in the figure. Use up and
down arrow keys or mouse wheel to scroll through function. If target-program is long
running the display will be in real time. Otherwise it will display the final counts.

The first column is number of times the instruction has executed. The second column is
the average number of cycles that instruction took to issue, the CPI for that instruction.
The rest of the line is disassembly of the instruction: PC, hex of the instruction bits, etc.

If the CPI is very close to 1.0 the counts are displayed dimly. This makes it easy to see
where the stalls are.

Cache Simulator
A generic cache simulator cachesim is included with Cavatools, algorithm provided by
Peter Wilson.

Usage: cachesim --in=trace [cachesim-options]

--out=x can be another cachesim --in=x for multilevel simulation

Options: [choice, default (1st) value]

 --in= Trace file =name (from caveat, pipesim, or cachesim)

 --line= Cache line size is 2^ =n bytes [6]

 --ways= Cache is =w ways set associativity [8]

 --sets= Cache has 2^ =n sets per way [11]

 --sim= Simulate all access =types [iIdD0123rRwW] default all

 --out= Output next-level misses to trace =name [no next level]

 --report= Progress report every =number million instructions [10]

 --quiet Don't report progress to stderr

 -q short for --quiet

The parameter names are similar to pipesim: --line=n for log-base-2 line size in bytes,
--sets=n for log-base-2 number of sets, and --sets=n for number of ways set-
associativity. The usual reporting frequency and quiet options are available. Status is
written to stderr, final statistics is written to stdout.

The --sim=chars character string option specifies the type of cache to simulate. The
cache can be an instruction cache (characters ‘i’ or ‘I’), a data cache (‘d’ or ‘D’), or both
(multiple characters ‘id’ or ‘ID’). It can be a read-only cache (‘r’ or ‘R’), a write-only cache
(i.e. write buffer, ‘w’ or ‘W’), or read-write cache (‘rw’ or ‘RW’). The level in the memory
hierarchy is specified with a digit, ‘0’, ‘1’, ‘2’ or ‘3’. A level-K cache simulates lower-level
references as well, e.g. write through misses. The default is to simulate all memory
references.

The --in=name option is mandatory. The --out=name option tells cachesim to write
cache miss records to a trace for further processing. Incoming trace records that are not

processed (stores, for example, when the cache is configured as read-only) are passed
through to the output trace for further processing (simulating a write-through cache).

The input and output trace formats are identical. Therefore multiple copies of cachesim can
be concatenation to simulate a multilevel cache hierarchy. The trace format is compatible
with both caveat and pipesim. Therefore cachesim can be used as a level-2 cache
simulator for pipesim in a system model, or be driven by caveat directly to do cache miss-
rate analysis without cycle times.

Trace Utility
There is a multipurpose program traceinfo that reads caveat/pipesim/cachesim traces.

Usage: traceinfo --in=trace [traceinfo-options] target-program

- summarize trace, make listing or create derivative traces

Options: [choice, default (1st) value]

 --in= Trace file from any cavatools =name

 --list Print assembly listing (only traces from caveat)

 --range= Only interested in =begin,end addresses (Hex no 0x) [all]

 --paraver= Make Paraver trace of =cycles to stdout

 --cutoff= Ignore pipeline stalls less than =number cycles [1]

 --report= Progress report every =number million instructions [1000]

With no options (and no target-program) traceinfo simply counts trace events and prints a
summary to stdout.

The --list option prints an assembly listing of the execution trace, including memory
reference addresses. The trace must come directly from caveat. If the --withregs option
was given to caveat then the listing will include register update values as well.

The --paraver=n option generates a trace to further processing and viewing using the
BSC Paraver tool. The Paraver trace is limited to n cycles. Paraver events include
instruction issue stalls and all levels of cache misses. Paraver traces can be derived from
the output of pipesim (with --timing option) or after piping through one or more
cachesim.

By default Paraver traces include all events (in the first n cycles). The --
range=begin,end option omit events with program counter values outside of this range
(inclusive). The addresses are given in Hex without leading 0x digits. Note the trace limit is
given in cycles, not number of events.

The --cutoff=n option omit instruction issue stall events less than n cycles. By default all
instruction issue stalls are recorded. Note instructions that issued without stalling are not
recorded.

	Background
	RISC-V Interpreter
	Pipeline Simulator
	Realtime Viewer
	Cache Simulator
	Trace Utility

