_dnl__ Copyright (c) 1988 1989 1990 1991 Free Software Foundation, Inc. _dnl__ This file is part of the source for the GDB manual. @c M4 FRAGMENT: $Id$ @node Altering, _GDBN__ Files, Symbols, Top @chapter Altering Execution Once you think you have found an error in the program, you might want to find out for certain whether correcting the apparent error would lead to correct results in the rest of the run. You can find the answer by experiment, using the _GDBN__ features for altering execution of the program. For example, you can store new values into variables or memory locations, give the program a signal, restart it at a different address, or even return prematurely from a function to its caller. @menu * Assignment:: Assignment to Variables * Jumping:: Continuing at a Different Address * Signaling:: Giving the Program a Signal * Returning:: Returning from a Function * Calling:: Calling your Program's Functions @end menu @node Assignment, Jumping, Altering, Altering @section Assignment to Variables @cindex assignment @cindex setting variables To alter the value of a variable, evaluate an assignment expression. @xref{Expressions}. For example, @example print x=4 @end example @noindent would store the value 4 into the variable @code{x}, and then print the value of the assignment expression (which is 4). All the assignment operators of C are supported, including the increment operators @samp{++} and @samp{--}, and combining assignments such as @samp{+=} and _0__@samp{<<=}_1__. @kindex set @kindex set variable @cindex variables, setting If you are not interested in seeing the value of the assignment, use the @code{set} command instead of the @code{print} command. @code{set} is really the same as @code{print} except that the expression's value is not printed and is not put in the value history (@pxref{Value History}). The expression is evaluated only for its effects. If the beginning of the argument string of the @code{set} command appears identical to a @code{set} subcommand, use the @code{set variable} command instead of just @code{set}. This command is identical to @code{set} except for its lack of subcommands. For example, a program might well have a variable @code{width}---which leads to an error if we try to set a new value with just @samp{set width=13}, as we might if @code{set width} didn't happen to be a _GDBN__ command: @example (_GDBP__) whatis width type = double (_GDBP__) p width $4 = 13 (_GDBP__) set width=47 Invalid syntax in expression. @end example @noindent The invalid expression, of course, is @samp{=47}. What we can do in order to actually set our program's variable @code{width} is @example (_GDBP__) set var width=47 @end example _GDBN__ allows more implicit conversions in assignments than C does; you can freely store an integer value into a pointer variable or vice versa, and any structure can be converted to any other structure that is the same length or shorter. @comment FIXME: how do structs align/pad in these conversions? @comment /pesch@cygnus.com 18dec1990 To store values into arbitrary places in memory, use the @samp{@{@dots{}@}} construct to generate a value of specified type at a specified address (@pxref{Expressions}). For example, @code{@{int@}0x83040} refers to memory location @code{0x83040} as an integer (which implies a certain size and representation in memory), and @example set @{int@}0x83040 = 4 @end example @noindent stores the value 4 into that memory location. @node Jumping, Signaling, Assignment, Altering @section Continuing at a Different Address Ordinarily, when you continue the program, you do so at the place where it stopped, with the @code{continue} command. You can instead continue at an address of your own choosing, with the following commands: @table @code @item jump @var{linespec} @kindex jump Resume execution at line @var{linespec}. Execution will stop immediately if there is a breakpoint there. @xref{List} for a description of the different forms of @var{linespec}. The @code{jump} command does not change the current stack frame, or the stack pointer, or the contents of any memory location or any register other than the program counter. If line @var{linespec} is in a different function from the one currently executing, the results may be bizarre if the two functions expect different patterns of arguments or of local variables. For this reason, the @code{jump} command requests confirmation if the specified line is not in the function currently executing. However, even bizarre results are predictable if you are well acquainted with the machine-language code of the program. @item jump *@var{address} Resume execution at the instruction at address @var{address}. @end table You can get much the same effect as the @code{jump} command by storing a new value into the register @code{$pc}. The difference is that this does not start the program running; it only changes the address where it @emph{will} run when it is continued. For example, @example set $pc = 0x485 @end example @noindent causes the next @code{continue} command or stepping command to execute at address 0x485, rather than at the address where the program stopped. @xref{Stepping}. The most common occasion to use the @code{jump} command is to back up, perhaps with more breakpoints set, over a portion of a program that has already executed, in order to examine its execution in more detail. @node Signaling, Returning, Jumping, Altering @c @group @section Giving the Program a Signal @table @code @item signal @var{signalnum} @kindex signal Resume execution where the program stopped, but give it immediately the signal number @var{signalnum}. Alternatively, if @var{signalnum} is zero, continue execution without giving a signal. This is useful when the program stopped on account of a signal and would ordinary see the signal when resumed with the @code{continue} command; @samp{signal 0} causes it to resume without a signal. @code{signal} does not repeat when you press @key{RET} a second time after executing the command. @end table @c @end group @node Returning, Calling, Signaling, Altering @section Returning from a Function @table @code @item return @itemx return @var{expression} @cindex returning from a function @kindex return You can cancel execution of a function call with the @code{return} command. If you give an @var{expression} argument, its value is used as the function's return value. @end table When you use @code{return}, _GDBN__ discards the selected stack frame (and all frames within it). You can think of this as making the discarded frame return prematurely. If you wish to specify a value to be returned, give that value as the argument to @code{return}. This pops the selected stack frame (@pxref{Selection}), and any other frames inside of it, leaving its caller as the innermost remaining frame. That frame becomes selected. The specified value is stored in the registers used for returning values of functions. The @code{return} command does not resume execution; it leaves the program stopped in the state that would exist if the function had just returned. In contrast, the @code{finish} command (@pxref{Stepping}) resumes execution until the selected stack frame returns naturally. @node Calling, , Returning, Altering @section Calling your Program's Functions @cindex calling functions @kindex call @table @code @item call @var{expr} Evaluate the expression @var{expr} without displaying @code{void} returned values. @end table You can use this variant of the @code{print} command if you want to execute a function from your program, but without cluttering the output with @code{void} returned values. The result is printed and saved in the value history, if it is not void.