// Copyright 2014 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package runtime import ( "internal/cpu" "runtime/internal/atomic" "runtime/internal/sys" "unsafe" ) // Functions called by C code. //go:linkname main //go:linkname goparkunlock //go:linkname newextram //go:linkname acquirep //go:linkname releasep //go:linkname incidlelocked //go:linkname ginit //go:linkname schedinit //go:linkname ready //go:linkname stopm //go:linkname handoffp //go:linkname wakep //go:linkname stoplockedm //go:linkname schedule //go:linkname execute //go:linkname goexit1 //go:linkname reentersyscall //go:linkname reentersyscallblock //go:linkname exitsyscall //go:linkname gfget //go:linkname kickoff //go:linkname mstart1 //go:linkname mexit //go:linkname globrunqput //go:linkname pidleget // Exported for test (see runtime/testdata/testprogcgo/dropm_stub.go). //go:linkname getm // Function called by misc/cgo/test. //go:linkname lockedOSThread // C functions for thread and context management. func newosproc(*m) //go:noescape func malg(bool, bool, *unsafe.Pointer, *uintptr) *g //go:noescape func resetNewG(*g, *unsafe.Pointer, *uintptr) func gogo(*g) func setGContext() func makeGContext(*g, unsafe.Pointer, uintptr) func getTraceback(me, gp *g) func gtraceback(*g) func _cgo_notify_runtime_init_done() func alreadyInCallers() bool func stackfree(*g) // Functions created by the compiler. //extern __go_init_main func main_init() //extern main.main func main_main() var buildVersion = sys.TheVersion // set using cmd/go/internal/modload.ModInfoProg var modinfo string // Goroutine scheduler // The scheduler's job is to distribute ready-to-run goroutines over worker threads. // // The main concepts are: // G - goroutine. // M - worker thread, or machine. // P - processor, a resource that is required to execute Go code. // M must have an associated P to execute Go code, however it can be // blocked or in a syscall w/o an associated P. // // Design doc at https://golang.org/s/go11sched. // Worker thread parking/unparking. // We need to balance between keeping enough running worker threads to utilize // available hardware parallelism and parking excessive running worker threads // to conserve CPU resources and power. This is not simple for two reasons: // (1) scheduler state is intentionally distributed (in particular, per-P work // queues), so it is not possible to compute global predicates on fast paths; // (2) for optimal thread management we would need to know the future (don't park // a worker thread when a new goroutine will be readied in near future). // // Three rejected approaches that would work badly: // 1. Centralize all scheduler state (would inhibit scalability). // 2. Direct goroutine handoff. That is, when we ready a new goroutine and there // is a spare P, unpark a thread and handoff it the thread and the goroutine. // This would lead to thread state thrashing, as the thread that readied the // goroutine can be out of work the very next moment, we will need to park it. // Also, it would destroy locality of computation as we want to preserve // dependent goroutines on the same thread; and introduce additional latency. // 3. Unpark an additional thread whenever we ready a goroutine and there is an // idle P, but don't do handoff. This would lead to excessive thread parking/ // unparking as the additional threads will instantly park without discovering // any work to do. // // The current approach: // We unpark an additional thread when we ready a goroutine if (1) there is an // idle P and there are no "spinning" worker threads. A worker thread is considered // spinning if it is out of local work and did not find work in global run queue/ // netpoller; the spinning state is denoted in m.spinning and in sched.nmspinning. // Threads unparked this way are also considered spinning; we don't do goroutine // handoff so such threads are out of work initially. Spinning threads do some // spinning looking for work in per-P run queues before parking. If a spinning // thread finds work it takes itself out of the spinning state and proceeds to // execution. If it does not find work it takes itself out of the spinning state // and then parks. // If there is at least one spinning thread (sched.nmspinning>1), we don't unpark // new threads when readying goroutines. To compensate for that, if the last spinning // thread finds work and stops spinning, it must unpark a new spinning thread. // This approach smooths out unjustified spikes of thread unparking, // but at the same time guarantees eventual maximal CPU parallelism utilization. // // The main implementation complication is that we need to be very careful during // spinning->non-spinning thread transition. This transition can race with submission // of a new goroutine, and either one part or another needs to unpark another worker // thread. If they both fail to do that, we can end up with semi-persistent CPU // underutilization. The general pattern for goroutine readying is: submit a goroutine // to local work queue, #StoreLoad-style memory barrier, check sched.nmspinning. // The general pattern for spinning->non-spinning transition is: decrement nmspinning, // #StoreLoad-style memory barrier, check all per-P work queues for new work. // Note that all this complexity does not apply to global run queue as we are not // sloppy about thread unparking when submitting to global queue. Also see comments // for nmspinning manipulation. var ( m0 m g0 g mcache0 *mcache raceprocctx0 uintptr ) // main_init_done is a signal used by cgocallbackg that initialization // has been completed. It is made before _cgo_notify_runtime_init_done, // so all cgo calls can rely on it existing. When main_init is complete, // it is closed, meaning cgocallbackg can reliably receive from it. var main_init_done chan bool // mainStarted indicates that the main M has started. var mainStarted bool // runtimeInitTime is the nanotime() at which the runtime started. var runtimeInitTime int64 // Value to use for signal mask for newly created M's. var initSigmask sigset // The main goroutine. func main(unsafe.Pointer) { g := getg() // Max stack size is 1 GB on 64-bit, 250 MB on 32-bit. // Using decimal instead of binary GB and MB because // they look nicer in the stack overflow failure message. if sys.PtrSize == 8 { maxstacksize = 1000000000 } else { maxstacksize = 250000000 } // An upper limit for max stack size. Used to avoid random crashes // after calling SetMaxStack and trying to allocate a stack that is too big, // since stackalloc works with 32-bit sizes. // Not used by gofrontend. // maxstackceiling = 2 * maxstacksize // Allow newproc to start new Ms. mainStarted = true if GOARCH != "wasm" { // no threads on wasm yet, so no sysmon // For runtime_syscall_doAllThreadsSyscall, we // register sysmon is not ready for the world to be // stopped. atomic.Store(&sched.sysmonStarting, 1) systemstack(func() { newm(sysmon, nil, -1) }) } // Lock the main goroutine onto this, the main OS thread, // during initialization. Most programs won't care, but a few // do require certain calls to be made by the main thread. // Those can arrange for main.main to run in the main thread // by calling runtime.LockOSThread during initialization // to preserve the lock. lockOSThread() if g.m != &m0 { throw("runtime.main not on m0") } m0.doesPark = true // Record when the world started. // Must be before doInit for tracing init. runtimeInitTime = nanotime() if runtimeInitTime == 0 { throw("nanotime returning zero") } if debug.inittrace != 0 { inittrace.id = getg().goid inittrace.active = true } // doInit(&runtime_inittask) // Must be before defer. // Defer unlock so that runtime.Goexit during init does the unlock too. needUnlock := true defer func() { if needUnlock { unlockOSThread() } }() main_init_done = make(chan bool) if iscgo { // Start the template thread in case we enter Go from // a C-created thread and need to create a new thread. startTemplateThread() _cgo_notify_runtime_init_done() } fn := main_init // make an indirect call, as the linker doesn't know the address of the main package when laying down the runtime fn() createGcRootsIndex() // For gccgo we have to wait until after main is initialized // to enable GC, because initializing main registers the GC roots. gcenable() // Disable init tracing after main init done to avoid overhead // of collecting statistics in malloc and newproc inittrace.active = false close(main_init_done) needUnlock = false unlockOSThread() if isarchive || islibrary { // A program compiled with -buildmode=c-archive or c-shared // has a main, but it is not executed. return } fn = main_main // make an indirect call, as the linker doesn't know the address of the main package when laying down the runtime fn() if raceenabled { racefini() } // Make racy client program work: if panicking on // another goroutine at the same time as main returns, // let the other goroutine finish printing the panic trace. // Once it does, it will exit. See issues 3934 and 20018. if atomic.Load(&runningPanicDefers) != 0 { // Running deferred functions should not take long. for c := 0; c < 1000; c++ { if atomic.Load(&runningPanicDefers) == 0 { break } Gosched() } } if atomic.Load(&panicking) != 0 { gopark(nil, nil, waitReasonPanicWait, traceEvGoStop, 1) } exit(0) for { var x *int32 *x = 0 } } // os_beforeExit is called from os.Exit(0). //go:linkname os_beforeExit os.runtime__beforeExit func os_beforeExit() { if raceenabled { racefini() } } // start forcegc helper goroutine func init() { expectSystemGoroutine() go forcegchelper() } func forcegchelper() { setSystemGoroutine() forcegc.g = getg() lockInit(&forcegc.lock, lockRankForcegc) for { lock(&forcegc.lock) if forcegc.idle != 0 { throw("forcegc: phase error") } atomic.Store(&forcegc.idle, 1) goparkunlock(&forcegc.lock, waitReasonForceGCIdle, traceEvGoBlock, 1) // this goroutine is explicitly resumed by sysmon if debug.gctrace > 0 { println("GC forced") } // Time-triggered, fully concurrent. gcStart(gcTrigger{kind: gcTriggerTime, now: nanotime()}) } } //go:nosplit // Gosched yields the processor, allowing other goroutines to run. It does not // suspend the current goroutine, so execution resumes automatically. func Gosched() { checkTimeouts() mcall(gosched_m) } // goschedguarded yields the processor like gosched, but also checks // for forbidden states and opts out of the yield in those cases. //go:nosplit func goschedguarded() { mcall(goschedguarded_m) } // Puts the current goroutine into a waiting state and calls unlockf on the // system stack. // // If unlockf returns false, the goroutine is resumed. // // unlockf must not access this G's stack, as it may be moved between // the call to gopark and the call to unlockf. // // Note that because unlockf is called after putting the G into a waiting // state, the G may have already been readied by the time unlockf is called // unless there is external synchronization preventing the G from being // readied. If unlockf returns false, it must guarantee that the G cannot be // externally readied. // // Reason explains why the goroutine has been parked. It is displayed in stack // traces and heap dumps. Reasons should be unique and descriptive. Do not // re-use reasons, add new ones. func gopark(unlockf func(*g, unsafe.Pointer) bool, lock unsafe.Pointer, reason waitReason, traceEv byte, traceskip int) { if reason != waitReasonSleep { checkTimeouts() // timeouts may expire while two goroutines keep the scheduler busy } mp := acquirem() gp := mp.curg status := readgstatus(gp) if status != _Grunning && status != _Gscanrunning { throw("gopark: bad g status") } mp.waitlock = lock mp.waitunlockf = unlockf gp.waitreason = reason mp.waittraceev = traceEv mp.waittraceskip = traceskip releasem(mp) // can't do anything that might move the G between Ms here. mcall(park_m) } // Puts the current goroutine into a waiting state and unlocks the lock. // The goroutine can be made runnable again by calling goready(gp). func goparkunlock(lock *mutex, reason waitReason, traceEv byte, traceskip int) { gopark(parkunlock_c, unsafe.Pointer(lock), reason, traceEv, traceskip) } func goready(gp *g, traceskip int) { systemstack(func() { ready(gp, traceskip, true) }) } //go:nosplit func acquireSudog() *sudog { // Delicate dance: the semaphore implementation calls // acquireSudog, acquireSudog calls new(sudog), // new calls malloc, malloc can call the garbage collector, // and the garbage collector calls the semaphore implementation // in stopTheWorld. // Break the cycle by doing acquirem/releasem around new(sudog). // The acquirem/releasem increments m.locks during new(sudog), // which keeps the garbage collector from being invoked. mp := acquirem() pp := mp.p.ptr() if len(pp.sudogcache) == 0 { lock(&sched.sudoglock) // First, try to grab a batch from central cache. for len(pp.sudogcache) < cap(pp.sudogcache)/2 && sched.sudogcache != nil { s := sched.sudogcache sched.sudogcache = s.next s.next = nil pp.sudogcache = append(pp.sudogcache, s) } unlock(&sched.sudoglock) // If the central cache is empty, allocate a new one. if len(pp.sudogcache) == 0 { pp.sudogcache = append(pp.sudogcache, new(sudog)) } } n := len(pp.sudogcache) s := pp.sudogcache[n-1] pp.sudogcache[n-1] = nil pp.sudogcache = pp.sudogcache[:n-1] if s.elem != nil { throw("acquireSudog: found s.elem != nil in cache") } releasem(mp) return s } //go:nosplit func releaseSudog(s *sudog) { if s.elem != nil { throw("runtime: sudog with non-nil elem") } if s.isSelect { throw("runtime: sudog with non-false isSelect") } if s.next != nil { throw("runtime: sudog with non-nil next") } if s.prev != nil { throw("runtime: sudog with non-nil prev") } if s.waitlink != nil { throw("runtime: sudog with non-nil waitlink") } if s.c != nil { throw("runtime: sudog with non-nil c") } gp := getg() if gp.param != nil { throw("runtime: releaseSudog with non-nil gp.param") } mp := acquirem() // avoid rescheduling to another P pp := mp.p.ptr() if len(pp.sudogcache) == cap(pp.sudogcache) { // Transfer half of local cache to the central cache. var first, last *sudog for len(pp.sudogcache) > cap(pp.sudogcache)/2 { n := len(pp.sudogcache) p := pp.sudogcache[n-1] pp.sudogcache[n-1] = nil pp.sudogcache = pp.sudogcache[:n-1] if first == nil { first = p } else { last.next = p } last = p } lock(&sched.sudoglock) last.next = sched.sudogcache sched.sudogcache = first unlock(&sched.sudoglock) } pp.sudogcache = append(pp.sudogcache, s) releasem(mp) } // funcPC returns the entry PC of the function f. // It assumes that f is a func value. Otherwise the behavior is undefined. // CAREFUL: In programs with plugins, funcPC can return different values // for the same function (because there are actually multiple copies of // the same function in the address space). To be safe, don't use the // results of this function in any == expression. It is only safe to // use the result as an address at which to start executing code. // // For gccgo note that this differs from the gc implementation; the gc // implementation adds sys.PtrSize to the address of the interface // value, but GCC's alias analysis decides that that can not be a // reference to the second field of the interface, and in some cases // it drops the initialization of the second field as a dead store. //go:nosplit func funcPC(f interface{}) uintptr { i := (*iface)(unsafe.Pointer(&f)) r := *(*uintptr)(i.data) if cpu.FunctionDescriptors { // With PPC64 ELF ABI v1 function descriptors the // function address is a pointer to a struct whose // first field is the actual PC. r = *(*uintptr)(unsafe.Pointer(r)) } return r } func lockedOSThread() bool { gp := getg() return gp.lockedm != 0 && gp.m.lockedg != 0 } var ( allgs []*g allglock mutex ) func allgadd(gp *g) { if readgstatus(gp) == _Gidle { throw("allgadd: bad status Gidle") } lock(&allglock) allgs = append(allgs, gp) allglen = uintptr(len(allgs)) unlock(&allglock) } const ( // Number of goroutine ids to grab from sched.goidgen to local per-P cache at once. // 16 seems to provide enough amortization, but other than that it's mostly arbitrary number. _GoidCacheBatch = 16 ) // cpuinit extracts the environment variable GODEBUG from the environment on // Unix-like operating systems and calls internal/cpu.Initialize. func cpuinit() { const prefix = "GODEBUG=" var env string switch GOOS { case "aix", "darwin", "ios", "dragonfly", "freebsd", "netbsd", "openbsd", "illumos", "solaris", "linux": cpu.DebugOptions = true // Similar to goenv_unix but extracts the environment value for // GODEBUG directly. // TODO(moehrmann): remove when general goenvs() can be called before cpuinit() n := int32(0) for argv_index(argv, argc+1+n) != nil { n++ } for i := int32(0); i < n; i++ { p := argv_index(argv, argc+1+i) s := *(*string)(unsafe.Pointer(&stringStruct{unsafe.Pointer(p), findnull(p)})) if hasPrefix(s, prefix) { env = gostring(p)[len(prefix):] break } } } cpu.Initialize(env) } func ginit() { _m_ := &m0 _g_ := &g0 _m_.g0 = _g_ _m_.curg = _g_ _g_.m = _m_ setg(_g_) } // The bootstrap sequence is: // // call osinit // call schedinit // make & queue new G // call runtime·mstart // // The new G calls runtime·main. func schedinit() { lockInit(&sched.lock, lockRankSched) lockInit(&sched.sysmonlock, lockRankSysmon) lockInit(&sched.deferlock, lockRankDefer) lockInit(&sched.sudoglock, lockRankSudog) lockInit(&deadlock, lockRankDeadlock) lockInit(&paniclk, lockRankPanic) lockInit(&allglock, lockRankAllg) lockInit(&allpLock, lockRankAllp) // lockInit(&reflectOffs.lock, lockRankReflectOffs) lockInit(&finlock, lockRankFin) lockInit(&trace.bufLock, lockRankTraceBuf) lockInit(&trace.stringsLock, lockRankTraceStrings) lockInit(&trace.lock, lockRankTrace) lockInit(&cpuprof.lock, lockRankCpuprof) lockInit(&trace.stackTab.lock, lockRankTraceStackTab) // Enforce that this lock is always a leaf lock. // All of this lock's critical sections should be // extremely short. lockInit(&memstats.heapStats.noPLock, lockRankLeafRank) _g_ := getg() sched.maxmcount = 10000 usestackmaps = probestackmaps() // The world starts stopped. worldStopped() mallocinit() fastrandinit() // must run before mcommoninit mcommoninit(_g_.m, -1) cpuinit() // must run before alginit alginit() // maps must not be used before this call sigsave(&_g_.m.sigmask) initSigmask = _g_.m.sigmask goargs() goenvs() parsedebugvars() gcinit() lock(&sched.lock) sched.lastpoll = uint64(nanotime()) procs := ncpu // In 32-bit mode, we can burn a lot of memory on thread stacks. // Try to avoid this by limiting the number of threads we run // by default. if sys.PtrSize == 4 && procs > 32 { procs = 32 } if n, ok := atoi32(gogetenv("GOMAXPROCS")); ok && n > 0 { procs = n } if procresize(procs) != nil { throw("unknown runnable goroutine during bootstrap") } unlock(&sched.lock) // World is effectively started now, as P's can run. worldStarted() // For cgocheck > 1, we turn on the write barrier at all times // and check all pointer writes. We can't do this until after // procresize because the write barrier needs a P. if debug.cgocheck > 1 { writeBarrier.cgo = true writeBarrier.enabled = true for _, p := range allp { p.wbBuf.reset() } } if buildVersion == "" { // Condition should never trigger. This code just serves // to ensure runtime·buildVersion is kept in the resulting binary. buildVersion = "unknown" } if len(modinfo) == 1 { // Condition should never trigger. This code just serves // to ensure runtime·modinfo is kept in the resulting binary. modinfo = "" } } func dumpgstatus(gp *g) { _g_ := getg() print("runtime: gp: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n") print("runtime: g: g=", _g_, ", goid=", _g_.goid, ", g->atomicstatus=", readgstatus(_g_), "\n") } // sched.lock must be held. func checkmcount() { assertLockHeld(&sched.lock) if mcount() > sched.maxmcount { print("runtime: program exceeds ", sched.maxmcount, "-thread limit\n") throw("thread exhaustion") } } // mReserveID returns the next ID to use for a new m. This new m is immediately // considered 'running' by checkdead. // // sched.lock must be held. func mReserveID() int64 { assertLockHeld(&sched.lock) if sched.mnext+1 < sched.mnext { throw("runtime: thread ID overflow") } id := sched.mnext sched.mnext++ checkmcount() return id } // Pre-allocated ID may be passed as 'id', or omitted by passing -1. func mcommoninit(mp *m, id int64) { _g_ := getg() // g0 stack won't make sense for user (and is not necessary unwindable). if _g_ != _g_.m.g0 { callers(1, mp.createstack[:]) } lock(&sched.lock) if id >= 0 { mp.id = id } else { mp.id = mReserveID() } mp.fastrand[0] = uint32(int64Hash(uint64(mp.id), fastrandseed)) mp.fastrand[1] = uint32(int64Hash(uint64(cputicks()), ^fastrandseed)) if mp.fastrand[0]|mp.fastrand[1] == 0 { mp.fastrand[1] = 1 } mpreinit(mp) // Add to allm so garbage collector doesn't free g->m // when it is just in a register or thread-local storage. mp.alllink = allm // NumCgoCall() iterates over allm w/o schedlock, // so we need to publish it safely. atomicstorep(unsafe.Pointer(&allm), unsafe.Pointer(mp)) unlock(&sched.lock) } var fastrandseed uintptr func fastrandinit() { s := (*[unsafe.Sizeof(fastrandseed)]byte)(unsafe.Pointer(&fastrandseed))[:] getRandomData(s) } // Mark gp ready to run. func ready(gp *g, traceskip int, next bool) { if trace.enabled { traceGoUnpark(gp, traceskip) } status := readgstatus(gp) // Mark runnable. _g_ := getg() mp := acquirem() // disable preemption because it can be holding p in a local var if status&^_Gscan != _Gwaiting { dumpgstatus(gp) throw("bad g->status in ready") } // status is Gwaiting or Gscanwaiting, make Grunnable and put on runq casgstatus(gp, _Gwaiting, _Grunnable) runqput(_g_.m.p.ptr(), gp, next) wakep() releasem(mp) } // freezeStopWait is a large value that freezetheworld sets // sched.stopwait to in order to request that all Gs permanently stop. const freezeStopWait = 0x7fffffff // freezing is set to non-zero if the runtime is trying to freeze the // world. var freezing uint32 // Similar to stopTheWorld but best-effort and can be called several times. // There is no reverse operation, used during crashing. // This function must not lock any mutexes. func freezetheworld() { atomic.Store(&freezing, 1) // stopwait and preemption requests can be lost // due to races with concurrently executing threads, // so try several times for i := 0; i < 5; i++ { // this should tell the scheduler to not start any new goroutines sched.stopwait = freezeStopWait atomic.Store(&sched.gcwaiting, 1) // this should stop running goroutines if !preemptall() { break // no running goroutines } usleep(1000) } // to be sure usleep(1000) preemptall() usleep(1000) } // All reads and writes of g's status go through readgstatus, casgstatus // castogscanstatus, casfrom_Gscanstatus. //go:nosplit func readgstatus(gp *g) uint32 { return atomic.Load(&gp.atomicstatus) } // The Gscanstatuses are acting like locks and this releases them. // If it proves to be a performance hit we should be able to make these // simple atomic stores but for now we are going to throw if // we see an inconsistent state. func casfrom_Gscanstatus(gp *g, oldval, newval uint32) { success := false // Check that transition is valid. switch oldval { default: print("runtime: casfrom_Gscanstatus bad oldval gp=", gp, ", oldval=", hex(oldval), ", newval=", hex(newval), "\n") dumpgstatus(gp) throw("casfrom_Gscanstatus:top gp->status is not in scan state") case _Gscanrunnable, _Gscanwaiting, _Gscanrunning, _Gscansyscall, _Gscanpreempted: if newval == oldval&^_Gscan { success = atomic.Cas(&gp.atomicstatus, oldval, newval) } } if !success { print("runtime: casfrom_Gscanstatus failed gp=", gp, ", oldval=", hex(oldval), ", newval=", hex(newval), "\n") dumpgstatus(gp) throw("casfrom_Gscanstatus: gp->status is not in scan state") } releaseLockRank(lockRankGscan) } // This will return false if the gp is not in the expected status and the cas fails. // This acts like a lock acquire while the casfromgstatus acts like a lock release. func castogscanstatus(gp *g, oldval, newval uint32) bool { switch oldval { case _Grunnable, _Grunning, _Gwaiting, _Gsyscall: if newval == oldval|_Gscan { r := atomic.Cas(&gp.atomicstatus, oldval, newval) if r { acquireLockRank(lockRankGscan) } return r } } print("runtime: castogscanstatus oldval=", hex(oldval), " newval=", hex(newval), "\n") throw("castogscanstatus") panic("not reached") } // If asked to move to or from a Gscanstatus this will throw. Use the castogscanstatus // and casfrom_Gscanstatus instead. // casgstatus will loop if the g->atomicstatus is in a Gscan status until the routine that // put it in the Gscan state is finished. //go:nosplit func casgstatus(gp *g, oldval, newval uint32) { if (oldval&_Gscan != 0) || (newval&_Gscan != 0) || oldval == newval { systemstack(func() { print("runtime: casgstatus: oldval=", hex(oldval), " newval=", hex(newval), "\n") throw("casgstatus: bad incoming values") }) } acquireLockRank(lockRankGscan) releaseLockRank(lockRankGscan) // See https://golang.org/cl/21503 for justification of the yield delay. const yieldDelay = 5 * 1000 var nextYield int64 // loop if gp->atomicstatus is in a scan state giving // GC time to finish and change the state to oldval. for i := 0; !atomic.Cas(&gp.atomicstatus, oldval, newval); i++ { if oldval == _Gwaiting && gp.atomicstatus == _Grunnable { throw("casgstatus: waiting for Gwaiting but is Grunnable") } if i == 0 { nextYield = nanotime() + yieldDelay } if nanotime() < nextYield { for x := 0; x < 10 && gp.atomicstatus != oldval; x++ { procyield(1) } } else { osyield() nextYield = nanotime() + yieldDelay/2 } } } // casGToPreemptScan transitions gp from _Grunning to _Gscan|_Gpreempted. // // TODO(austin): This is the only status operation that both changes // the status and locks the _Gscan bit. Rethink this. func casGToPreemptScan(gp *g, old, new uint32) { if old != _Grunning || new != _Gscan|_Gpreempted { throw("bad g transition") } acquireLockRank(lockRankGscan) for !atomic.Cas(&gp.atomicstatus, _Grunning, _Gscan|_Gpreempted) { } } // casGFromPreempted attempts to transition gp from _Gpreempted to // _Gwaiting. If successful, the caller is responsible for // re-scheduling gp. func casGFromPreempted(gp *g, old, new uint32) bool { if old != _Gpreempted || new != _Gwaiting { throw("bad g transition") } return atomic.Cas(&gp.atomicstatus, _Gpreempted, _Gwaiting) } // stopTheWorld stops all P's from executing goroutines, interrupting // all goroutines at GC safe points and records reason as the reason // for the stop. On return, only the current goroutine's P is running. // stopTheWorld must not be called from a system stack and the caller // must not hold worldsema. The caller must call startTheWorld when // other P's should resume execution. // // stopTheWorld is safe for multiple goroutines to call at the // same time. Each will execute its own stop, and the stops will // be serialized. // // This is also used by routines that do stack dumps. If the system is // in panic or being exited, this may not reliably stop all // goroutines. func stopTheWorld(reason string) { semacquire(&worldsema) gp := getg() gp.m.preemptoff = reason systemstack(func() { // Mark the goroutine which called stopTheWorld preemptible so its // stack may be scanned. // This lets a mark worker scan us while we try to stop the world // since otherwise we could get in a mutual preemption deadlock. // We must not modify anything on the G stack because a stack shrink // may occur. A stack shrink is otherwise OK though because in order // to return from this function (and to leave the system stack) we // must have preempted all goroutines, including any attempting // to scan our stack, in which case, any stack shrinking will // have already completed by the time we exit. casgstatus(gp, _Grunning, _Gwaiting) stopTheWorldWithSema() casgstatus(gp, _Gwaiting, _Grunning) }) } // startTheWorld undoes the effects of stopTheWorld. func startTheWorld() { systemstack(func() { startTheWorldWithSema(false) }) // worldsema must be held over startTheWorldWithSema to ensure // gomaxprocs cannot change while worldsema is held. // // Release worldsema with direct handoff to the next waiter, but // acquirem so that semrelease1 doesn't try to yield our time. // // Otherwise if e.g. ReadMemStats is being called in a loop, // it might stomp on other attempts to stop the world, such as // for starting or ending GC. The operation this blocks is // so heavy-weight that we should just try to be as fair as // possible here. // // We don't want to just allow us to get preempted between now // and releasing the semaphore because then we keep everyone // (including, for example, GCs) waiting longer. mp := acquirem() mp.preemptoff = "" semrelease1(&worldsema, true, 0) releasem(mp) } // stopTheWorldGC has the same effect as stopTheWorld, but blocks // until the GC is not running. It also blocks a GC from starting // until startTheWorldGC is called. func stopTheWorldGC(reason string) { semacquire(&gcsema) stopTheWorld(reason) } // startTheWorldGC undoes the effects of stopTheWorldGC. func startTheWorldGC() { startTheWorld() semrelease(&gcsema) } // Holding worldsema grants an M the right to try to stop the world. var worldsema uint32 = 1 // Holding gcsema grants the M the right to block a GC, and blocks // until the current GC is done. In particular, it prevents gomaxprocs // from changing concurrently. // // TODO(mknyszek): Once gomaxprocs and the execution tracer can handle // being changed/enabled during a GC, remove this. var gcsema uint32 = 1 // stopTheWorldWithSema is the core implementation of stopTheWorld. // The caller is responsible for acquiring worldsema and disabling // preemption first and then should stopTheWorldWithSema on the system // stack: // // semacquire(&worldsema, 0) // m.preemptoff = "reason" // systemstack(stopTheWorldWithSema) // // When finished, the caller must either call startTheWorld or undo // these three operations separately: // // m.preemptoff = "" // systemstack(startTheWorldWithSema) // semrelease(&worldsema) // // It is allowed to acquire worldsema once and then execute multiple // startTheWorldWithSema/stopTheWorldWithSema pairs. // Other P's are able to execute between successive calls to // startTheWorldWithSema and stopTheWorldWithSema. // Holding worldsema causes any other goroutines invoking // stopTheWorld to block. func stopTheWorldWithSema() { _g_ := getg() // If we hold a lock, then we won't be able to stop another M // that is blocked trying to acquire the lock. if _g_.m.locks > 0 { throw("stopTheWorld: holding locks") } lock(&sched.lock) sched.stopwait = gomaxprocs atomic.Store(&sched.gcwaiting, 1) preemptall() // stop current P _g_.m.p.ptr().status = _Pgcstop // Pgcstop is only diagnostic. sched.stopwait-- // try to retake all P's in Psyscall status for _, p := range allp { s := p.status if s == _Psyscall && atomic.Cas(&p.status, s, _Pgcstop) { if trace.enabled { traceGoSysBlock(p) traceProcStop(p) } p.syscalltick++ sched.stopwait-- } } // stop idle P's for { p := pidleget() if p == nil { break } p.status = _Pgcstop sched.stopwait-- } wait := sched.stopwait > 0 unlock(&sched.lock) // wait for remaining P's to stop voluntarily if wait { for { // wait for 100us, then try to re-preempt in case of any races if notetsleep(&sched.stopnote, 100*1000) { noteclear(&sched.stopnote) break } preemptall() } } // sanity checks bad := "" if sched.stopwait != 0 { bad = "stopTheWorld: not stopped (stopwait != 0)" } else { for _, p := range allp { if p.status != _Pgcstop { bad = "stopTheWorld: not stopped (status != _Pgcstop)" } } } if atomic.Load(&freezing) != 0 { // Some other thread is panicking. This can cause the // sanity checks above to fail if the panic happens in // the signal handler on a stopped thread. Either way, // we should halt this thread. lock(&deadlock) lock(&deadlock) } if bad != "" { throw(bad) } worldStopped() } func startTheWorldWithSema(emitTraceEvent bool) int64 { assertWorldStopped() mp := acquirem() // disable preemption because it can be holding p in a local var if netpollinited() { list := netpoll(0) // non-blocking injectglist(&list) } lock(&sched.lock) procs := gomaxprocs if newprocs != 0 { procs = newprocs newprocs = 0 } p1 := procresize(procs) sched.gcwaiting = 0 if sched.sysmonwait != 0 { sched.sysmonwait = 0 notewakeup(&sched.sysmonnote) } unlock(&sched.lock) worldStarted() for p1 != nil { p := p1 p1 = p1.link.ptr() if p.m != 0 { mp := p.m.ptr() p.m = 0 if mp.nextp != 0 { throw("startTheWorld: inconsistent mp->nextp") } mp.nextp.set(p) notewakeup(&mp.park) } else { // Start M to run P. Do not start another M below. newm(nil, p, -1) } } // Capture start-the-world time before doing clean-up tasks. startTime := nanotime() if emitTraceEvent { traceGCSTWDone() } // Wakeup an additional proc in case we have excessive runnable goroutines // in local queues or in the global queue. If we don't, the proc will park itself. // If we have lots of excessive work, resetspinning will unpark additional procs as necessary. wakep() releasem(mp) return startTime } // First function run by a new goroutine. // This is passed to makecontext. func kickoff() { gp := getg() if gp.traceback != 0 { gtraceback(gp) } fv := gp.entry param := gp.param // When running on the g0 stack we can wind up here without a p, // for example from mcall(exitsyscall0) in exitsyscall, in // which case we can not run a write barrier. // It is also possible for us to get here from the systemstack // call in wbBufFlush, at which point the write barrier buffer // is full and we can not run a write barrier. // Setting gp.entry = nil or gp.param = nil will try to run a // write barrier, so if we are on the g0 stack due to mcall // (systemstack calls mcall) then clear the field using uintptr. // This is OK when gp.param is gp.m.curg, as curg will be kept // alive elsewhere, and gp.entry always points into g, or // to a statically allocated value, or (in the case of mcall) // to the stack. if gp == gp.m.g0 && gp.param == unsafe.Pointer(gp.m.curg) { *(*uintptr)(unsafe.Pointer(&gp.entry)) = 0 *(*uintptr)(unsafe.Pointer(&gp.param)) = 0 } else if gp.m.p == 0 { throw("no p in kickoff") } else { gp.entry = nil gp.param = nil } // Record the entry SP to help stack scan. gp.entrysp = getsp() fv(param) goexit1() } func mstart1() { _g_ := getg() if _g_ != _g_.m.g0 { throw("bad runtime·mstart") } asminit() // Install signal handlers; after minit so that minit can // prepare the thread to be able to handle the signals. // For gccgo minit was called by C code. if _g_.m == &m0 { mstartm0() } if fn := _g_.m.mstartfn; fn != nil { fn() } if _g_.m != &m0 { acquirep(_g_.m.nextp.ptr()) _g_.m.nextp = 0 } schedule() } // mstartm0 implements part of mstart1 that only runs on the m0. // // Write barriers are allowed here because we know the GC can't be // running yet, so they'll be no-ops. // //go:yeswritebarrierrec func mstartm0() { // Create an extra M for callbacks on threads not created by Go. // An extra M is also needed on Windows for callbacks created by // syscall.NewCallback. See issue #6751 for details. if (iscgo || GOOS == "windows") && !cgoHasExtraM { cgoHasExtraM = true newextram() } initsig(false) } // mPark causes a thread to park itself - temporarily waking for // fixups but otherwise waiting to be fully woken. This is the // only way that m's should park themselves. //go:nosplit func mPark() { g := getg() for { notesleep(&g.m.park) noteclear(&g.m.park) if !mDoFixup() { return } } } // mexit tears down and exits the current thread. // // Don't call this directly to exit the thread, since it must run at // the top of the thread stack. Instead, use gogo(&_g_.m.g0.sched) to // unwind the stack to the point that exits the thread. // // It is entered with m.p != nil, so write barriers are allowed. It // will release the P before exiting. // //go:yeswritebarrierrec func mexit(osStack bool) { g := getg() m := g.m if m == &m0 { // This is the main thread. Just wedge it. // // On Linux, exiting the main thread puts the process // into a non-waitable zombie state. On Plan 9, // exiting the main thread unblocks wait even though // other threads are still running. On Solaris we can // neither exitThread nor return from mstart. Other // bad things probably happen on other platforms. // // We could try to clean up this M more before wedging // it, but that complicates signal handling. handoffp(releasep()) lock(&sched.lock) sched.nmfreed++ checkdead() unlock(&sched.lock) mPark() throw("locked m0 woke up") } sigblock() unminit() // Free the gsignal stack. if m.gsignal != nil { stackfree(m.gsignal) // On some platforms, when calling into VDSO (e.g. nanotime) // we store our g on the gsignal stack, if there is one. // Now the stack is freed, unlink it from the m, so we // won't write to it when calling VDSO code. m.gsignal = nil } // Remove m from allm. lock(&sched.lock) for pprev := &allm; *pprev != nil; pprev = &(*pprev).alllink { if *pprev == m { *pprev = m.alllink goto found } } throw("m not found in allm") found: if !osStack { // Delay reaping m until it's done with the stack. // // If this is using an OS stack, the OS will free it // so there's no need for reaping. atomic.Store(&m.freeWait, 1) // Put m on the free list, though it will not be reaped until // freeWait is 0. Note that the free list must not be linked // through alllink because some functions walk allm without // locking, so may be using alllink. m.freelink = sched.freem sched.freem = m } unlock(&sched.lock) // Release the P. handoffp(releasep()) // After this point we must not have write barriers. // Invoke the deadlock detector. This must happen after // handoffp because it may have started a new M to take our // P's work. lock(&sched.lock) sched.nmfreed++ checkdead() unlock(&sched.lock) if GOOS == "darwin" || GOOS == "ios" { // Make sure pendingPreemptSignals is correct when an M exits. // For #41702. if atomic.Load(&m.signalPending) != 0 { atomic.Xadd(&pendingPreemptSignals, -1) } } if osStack { // Return from mstart and let the system thread // library free the g0 stack and terminate the thread. return } // mstart is the thread's entry point, so there's nothing to // return to. Exit the thread directly. exitThread will clear // m.freeWait when it's done with the stack and the m can be // reaped. exitThread(&m.freeWait) } // forEachP calls fn(p) for every P p when p reaches a GC safe point. // If a P is currently executing code, this will bring the P to a GC // safe point and execute fn on that P. If the P is not executing code // (it is idle or in a syscall), this will call fn(p) directly while // preventing the P from exiting its state. This does not ensure that // fn will run on every CPU executing Go code, but it acts as a global // memory barrier. GC uses this as a "ragged barrier." // // The caller must hold worldsema. // //go:systemstack func forEachP(fn func(*p)) { mp := acquirem() _p_ := getg().m.p.ptr() lock(&sched.lock) if sched.safePointWait != 0 { throw("forEachP: sched.safePointWait != 0") } sched.safePointWait = gomaxprocs - 1 sched.safePointFn = fn // Ask all Ps to run the safe point function. for _, p := range allp { if p != _p_ { atomic.Store(&p.runSafePointFn, 1) } } preemptall() // Any P entering _Pidle or _Psyscall from now on will observe // p.runSafePointFn == 1 and will call runSafePointFn when // changing its status to _Pidle/_Psyscall. // Run safe point function for all idle Ps. sched.pidle will // not change because we hold sched.lock. for p := sched.pidle.ptr(); p != nil; p = p.link.ptr() { if atomic.Cas(&p.runSafePointFn, 1, 0) { fn(p) sched.safePointWait-- } } wait := sched.safePointWait > 0 unlock(&sched.lock) // Run fn for the current P. fn(_p_) // Force Ps currently in _Psyscall into _Pidle and hand them // off to induce safe point function execution. for _, p := range allp { s := p.status if s == _Psyscall && p.runSafePointFn == 1 && atomic.Cas(&p.status, s, _Pidle) { if trace.enabled { traceGoSysBlock(p) traceProcStop(p) } p.syscalltick++ handoffp(p) } } // Wait for remaining Ps to run fn. if wait { for { // Wait for 100us, then try to re-preempt in // case of any races. // // Requires system stack. if notetsleep(&sched.safePointNote, 100*1000) { noteclear(&sched.safePointNote) break } preemptall() } } if sched.safePointWait != 0 { throw("forEachP: not done") } for _, p := range allp { if p.runSafePointFn != 0 { throw("forEachP: P did not run fn") } } lock(&sched.lock) sched.safePointFn = nil unlock(&sched.lock) releasem(mp) } // runSafePointFn runs the safe point function, if any, for this P. // This should be called like // // if getg().m.p.runSafePointFn != 0 { // runSafePointFn() // } // // runSafePointFn must be checked on any transition in to _Pidle or // _Psyscall to avoid a race where forEachP sees that the P is running // just before the P goes into _Pidle/_Psyscall and neither forEachP // nor the P run the safe-point function. func runSafePointFn() { p := getg().m.p.ptr() // Resolve the race between forEachP running the safe-point // function on this P's behalf and this P running the // safe-point function directly. if !atomic.Cas(&p.runSafePointFn, 1, 0) { return } sched.safePointFn(p) lock(&sched.lock) sched.safePointWait-- if sched.safePointWait == 0 { notewakeup(&sched.safePointNote) } unlock(&sched.lock) } // Allocate a new m unassociated with any thread. // Can use p for allocation context if needed. // fn is recorded as the new m's m.mstartfn. // id is optional pre-allocated m ID. Omit by passing -1. // // This function is allowed to have write barriers even if the caller // isn't because it borrows _p_. // //go:yeswritebarrierrec func allocm(_p_ *p, fn func(), id int64, allocatestack bool) (mp *m, g0Stack unsafe.Pointer, g0StackSize uintptr) { _g_ := getg() acquirem() // disable GC because it can be called from sysmon if _g_.m.p == 0 { acquirep(_p_) // temporarily borrow p for mallocs in this function } // Release the free M list. We need to do this somewhere and // this may free up a stack we can use. if sched.freem != nil { lock(&sched.lock) var newList *m for freem := sched.freem; freem != nil; { if freem.freeWait != 0 { next := freem.freelink freem.freelink = newList newList = freem freem = next continue } // stackfree must be on the system stack, but allocm is // reachable off the system stack transitively from // startm. systemstack(func() { stackfree(freem.g0) }) freem = freem.freelink } sched.freem = newList unlock(&sched.lock) } mp = new(m) mp.mstartfn = fn mcommoninit(mp, id) mp.g0 = malg(allocatestack, false, &g0Stack, &g0StackSize) mp.g0.m = mp if _p_ == _g_.m.p.ptr() { releasep() } releasem(_g_.m) return mp, g0Stack, g0StackSize } // needm is called when a cgo callback happens on a // thread without an m (a thread not created by Go). // In this case, needm is expected to find an m to use // and return with m, g initialized correctly. // Since m and g are not set now (likely nil, but see below) // needm is limited in what routines it can call. In particular // it can only call nosplit functions (textflag 7) and cannot // do any scheduling that requires an m. // // In order to avoid needing heavy lifting here, we adopt // the following strategy: there is a stack of available m's // that can be stolen. Using compare-and-swap // to pop from the stack has ABA races, so we simulate // a lock by doing an exchange (via Casuintptr) to steal the stack // head and replace the top pointer with MLOCKED (1). // This serves as a simple spin lock that we can use even // without an m. The thread that locks the stack in this way // unlocks the stack by storing a valid stack head pointer. // // In order to make sure that there is always an m structure // available to be stolen, we maintain the invariant that there // is always one more than needed. At the beginning of the // program (if cgo is in use) the list is seeded with a single m. // If needm finds that it has taken the last m off the list, its job // is - once it has installed its own m so that it can do things like // allocate memory - to create a spare m and put it on the list. // // Each of these extra m's also has a g0 and a curg that are // pressed into service as the scheduling stack and current // goroutine for the duration of the cgo callback. // // When the callback is done with the m, it calls dropm to // put the m back on the list. //go:nosplit func needm() { if (iscgo || GOOS == "windows") && !cgoHasExtraM { // Can happen if C/C++ code calls Go from a global ctor. // Can also happen on Windows if a global ctor uses a // callback created by syscall.NewCallback. See issue #6751 // for details. // // Can not throw, because scheduler is not initialized yet. write(2, unsafe.Pointer(&earlycgocallback[0]), int32(len(earlycgocallback))) exit(1) } // Save and block signals before getting an M. // The signal handler may call needm itself, // and we must avoid a deadlock. Also, once g is installed, // any incoming signals will try to execute, // but we won't have the sigaltstack settings and other data // set up appropriately until the end of minit, which will // unblock the signals. This is the same dance as when // starting a new m to run Go code via newosproc. var sigmask sigset sigsave(&sigmask) sigblock() // Lock extra list, take head, unlock popped list. // nilokay=false is safe here because of the invariant above, // that the extra list always contains or will soon contain // at least one m. mp := lockextra(false) // Set needextram when we've just emptied the list, // so that the eventual call into cgocallbackg will // allocate a new m for the extra list. We delay the // allocation until then so that it can be done // after exitsyscall makes sure it is okay to be // running at all (that is, there's no garbage collection // running right now). mp.needextram = mp.schedlink == 0 extraMCount-- unlockextra(mp.schedlink.ptr()) // Store the original signal mask for use by minit. mp.sigmask = sigmask // Install g (= m->curg). setg(mp.curg) // Initialize this thread to use the m. asminit() minit() setGContext() // mp.curg is now a real goroutine. casgstatus(mp.curg, _Gdead, _Gsyscall) atomic.Xadd(&sched.ngsys, -1) } var earlycgocallback = []byte("fatal error: cgo callback before cgo call\n") // newextram allocates m's and puts them on the extra list. // It is called with a working local m, so that it can do things // like call schedlock and allocate. func newextram() { c := atomic.Xchg(&extraMWaiters, 0) if c > 0 { for i := uint32(0); i < c; i++ { oneNewExtraM() } } else { // Make sure there is at least one extra M. mp := lockextra(true) unlockextra(mp) if mp == nil { oneNewExtraM() } } } // oneNewExtraM allocates an m and puts it on the extra list. func oneNewExtraM() { // Create extra goroutine locked to extra m. // The goroutine is the context in which the cgo callback will run. // The sched.pc will never be returned to, but setting it to // goexit makes clear to the traceback routines where // the goroutine stack ends. mp, g0SP, g0SPSize := allocm(nil, nil, -1, true) gp := malg(true, false, nil, nil) // malg returns status as _Gidle. Change to _Gdead before // adding to allg where GC can see it. We use _Gdead to hide // this from tracebacks and stack scans since it isn't a // "real" goroutine until needm grabs it. casgstatus(gp, _Gidle, _Gdead) gp.m = mp mp.curg = gp mp.lockedInt++ mp.lockedg.set(gp) gp.lockedm.set(mp) gp.goid = int64(atomic.Xadd64(&sched.goidgen, 1)) // put on allg for garbage collector allgadd(gp) // The context for gp will be set up in needm. // Here we need to set the context for g0. makeGContext(mp.g0, g0SP, g0SPSize) // gp is now on the allg list, but we don't want it to be // counted by gcount. It would be more "proper" to increment // sched.ngfree, but that requires locking. Incrementing ngsys // has the same effect. atomic.Xadd(&sched.ngsys, +1) // Add m to the extra list. mnext := lockextra(true) mp.schedlink.set(mnext) extraMCount++ unlockextra(mp) } // dropm is called when a cgo callback has called needm but is now // done with the callback and returning back into the non-Go thread. // It puts the current m back onto the extra list. // // The main expense here is the call to signalstack to release the // m's signal stack, and then the call to needm on the next callback // from this thread. It is tempting to try to save the m for next time, // which would eliminate both these costs, but there might not be // a next time: the current thread (which Go does not control) might exit. // If we saved the m for that thread, there would be an m leak each time // such a thread exited. Instead, we acquire and release an m on each // call. These should typically not be scheduling operations, just a few // atomics, so the cost should be small. // // TODO(rsc): An alternative would be to allocate a dummy pthread per-thread // variable using pthread_key_create. Unlike the pthread keys we already use // on OS X, this dummy key would never be read by Go code. It would exist // only so that we could register at thread-exit-time destructor. // That destructor would put the m back onto the extra list. // This is purely a performance optimization. The current version, // in which dropm happens on each cgo call, is still correct too. // We may have to keep the current version on systems with cgo // but without pthreads, like Windows. // // CgocallBackDone calls this after releasing p, so no write barriers. //go:nowritebarrierrec func dropm() { // Clear m and g, and return m to the extra list. // After the call to setg we can only call nosplit functions // with no pointer manipulation. mp := getg().m // Return mp.curg to dead state. casgstatus(mp.curg, _Gsyscall, _Gdead) mp.curg.preemptStop = false atomic.Xadd(&sched.ngsys, +1) // Block signals before unminit. // Unminit unregisters the signal handling stack (but needs g on some systems). // Setg(nil) clears g, which is the signal handler's cue not to run Go handlers. // It's important not to try to handle a signal between those two steps. sigmask := mp.sigmask sigblock() unminit() // gccgo sets the stack to Gdead here, because the splitstack // context is not initialized. atomic.Store(&mp.curg.atomicstatus, _Gdead) mp.curg.gcstack = 0 mp.curg.gcnextsp = 0 mnext := lockextra(true) extraMCount++ mp.schedlink.set(mnext) setg(nil) // Commit the release of mp. unlockextra(mp) msigrestore(sigmask) } // A helper function for EnsureDropM. func getm() uintptr { return uintptr(unsafe.Pointer(getg().m)) } var extram uintptr var extraMCount uint32 // Protected by lockextra var extraMWaiters uint32 // lockextra locks the extra list and returns the list head. // The caller must unlock the list by storing a new list head // to extram. If nilokay is true, then lockextra will // return a nil list head if that's what it finds. If nilokay is false, // lockextra will keep waiting until the list head is no longer nil. //go:nosplit //go:nowritebarrierrec func lockextra(nilokay bool) *m { const locked = 1 incr := false for { old := atomic.Loaduintptr(&extram) if old == locked { osyield() continue } if old == 0 && !nilokay { if !incr { // Add 1 to the number of threads // waiting for an M. // This is cleared by newextram. atomic.Xadd(&extraMWaiters, 1) incr = true } usleep(1) continue } if atomic.Casuintptr(&extram, old, locked) { return (*m)(unsafe.Pointer(old)) } osyield() continue } } //go:nosplit //go:nowritebarrierrec func unlockextra(mp *m) { atomic.Storeuintptr(&extram, uintptr(unsafe.Pointer(mp))) } // execLock serializes exec and clone to avoid bugs or unspecified behaviour // around exec'ing while creating/destroying threads. See issue #19546. var execLock rwmutex // newmHandoff contains a list of m structures that need new OS threads. // This is used by newm in situations where newm itself can't safely // start an OS thread. var newmHandoff struct { lock mutex // newm points to a list of M structures that need new OS // threads. The list is linked through m.schedlink. newm muintptr // waiting indicates that wake needs to be notified when an m // is put on the list. waiting bool wake note // haveTemplateThread indicates that the templateThread has // been started. This is not protected by lock. Use cas to set // to 1. haveTemplateThread uint32 } // Create a new m. It will start off with a call to fn, or else the scheduler. // fn needs to be static and not a heap allocated closure. // May run with m.p==nil, so write barriers are not allowed. // // id is optional pre-allocated m ID. Omit by passing -1. //go:nowritebarrierrec func newm(fn func(), _p_ *p, id int64) { mp, _, _ := allocm(_p_, fn, id, false) mp.doesPark = (_p_ != nil) mp.nextp.set(_p_) mp.sigmask = initSigmask if gp := getg(); gp != nil && gp.m != nil && (gp.m.lockedExt != 0 || gp.m.incgo) && GOOS != "plan9" { // We're on a locked M or a thread that may have been // started by C. The kernel state of this thread may // be strange (the user may have locked it for that // purpose). We don't want to clone that into another // thread. Instead, ask a known-good thread to create // the thread for us. // // This is disabled on Plan 9. See golang.org/issue/22227. // // TODO: This may be unnecessary on Windows, which // doesn't model thread creation off fork. lock(&newmHandoff.lock) if newmHandoff.haveTemplateThread == 0 { throw("on a locked thread with no template thread") } mp.schedlink = newmHandoff.newm newmHandoff.newm.set(mp) if newmHandoff.waiting { newmHandoff.waiting = false notewakeup(&newmHandoff.wake) } unlock(&newmHandoff.lock) return } newm1(mp) } func newm1(mp *m) { execLock.rlock() // Prevent process clone. newosproc(mp) execLock.runlock() } // startTemplateThread starts the template thread if it is not already // running. // // The calling thread must itself be in a known-good state. func startTemplateThread() { if GOARCH == "wasm" { // no threads on wasm yet return } // Disable preemption to guarantee that the template thread will be // created before a park once haveTemplateThread is set. mp := acquirem() if !atomic.Cas(&newmHandoff.haveTemplateThread, 0, 1) { releasem(mp) return } newm(templateThread, nil, -1) releasem(mp) } // mFixupRace is used to temporarily borrow the race context from the // coordinating m during a syscall_runtime_doAllThreadsSyscall and // loan it out to each of the m's of the runtime so they can execute a // mFixup.fn in that context. var mFixupRace struct { lock mutex ctx uintptr } // mDoFixup runs any outstanding fixup function for the running m. // Returns true if a fixup was outstanding and actually executed. // //go:nosplit func mDoFixup() bool { _g_ := getg() lock(&_g_.m.mFixup.lock) fn := _g_.m.mFixup.fn if fn != nil { if gcphase != _GCoff { // We can't have a write barrier in this // context since we may not have a P, but we // clear fn to signal that we've executed the // fixup. As long as fn is kept alive // elsewhere, technically we should have no // issues with the GC, but fn is likely // generated in a different package altogether // that may change independently. Just assert // the GC is off so this lack of write barrier // is more obviously safe. throw("GC must be disabled to protect validity of fn value") } *(*uintptr)(unsafe.Pointer(&_g_.m.mFixup.fn)) = 0 fn(false) } unlock(&_g_.m.mFixup.lock) return fn != nil } // templateThread is a thread in a known-good state that exists solely // to start new threads in known-good states when the calling thread // may not be in a good state. // // Many programs never need this, so templateThread is started lazily // when we first enter a state that might lead to running on a thread // in an unknown state. // // templateThread runs on an M without a P, so it must not have write // barriers. // //go:nowritebarrierrec func templateThread() { lock(&sched.lock) sched.nmsys++ checkdead() unlock(&sched.lock) for { lock(&newmHandoff.lock) for newmHandoff.newm != 0 { newm := newmHandoff.newm.ptr() newmHandoff.newm = 0 unlock(&newmHandoff.lock) for newm != nil { next := newm.schedlink.ptr() newm.schedlink = 0 newm1(newm) newm = next } lock(&newmHandoff.lock) } newmHandoff.waiting = true noteclear(&newmHandoff.wake) unlock(&newmHandoff.lock) notesleep(&newmHandoff.wake) mDoFixup() } } // Stops execution of the current m until new work is available. // Returns with acquired P. func stopm() { _g_ := getg() if _g_.m.locks != 0 { throw("stopm holding locks") } if _g_.m.p != 0 { throw("stopm holding p") } if _g_.m.spinning { throw("stopm spinning") } lock(&sched.lock) mput(_g_.m) unlock(&sched.lock) mPark() acquirep(_g_.m.nextp.ptr()) _g_.m.nextp = 0 } func mspinning() { // startm's caller incremented nmspinning. Set the new M's spinning. getg().m.spinning = true } // Schedules some M to run the p (creates an M if necessary). // If p==nil, tries to get an idle P, if no idle P's does nothing. // May run with m.p==nil, so write barriers are not allowed. // If spinning is set, the caller has incremented nmspinning and startm will // either decrement nmspinning or set m.spinning in the newly started M. // // Callers passing a non-nil P must call from a non-preemptible context. See // comment on acquirem below. // // Must not have write barriers because this may be called without a P. //go:nowritebarrierrec func startm(_p_ *p, spinning bool) { // Disable preemption. // // Every owned P must have an owner that will eventually stop it in the // event of a GC stop request. startm takes transient ownership of a P // (either from argument or pidleget below) and transfers ownership to // a started M, which will be responsible for performing the stop. // // Preemption must be disabled during this transient ownership, // otherwise the P this is running on may enter GC stop while still // holding the transient P, leaving that P in limbo and deadlocking the // STW. // // Callers passing a non-nil P must already be in non-preemptible // context, otherwise such preemption could occur on function entry to // startm. Callers passing a nil P may be preemptible, so we must // disable preemption before acquiring a P from pidleget below. mp := acquirem() lock(&sched.lock) if _p_ == nil { _p_ = pidleget() if _p_ == nil { unlock(&sched.lock) if spinning { // The caller incremented nmspinning, but there are no idle Ps, // so it's okay to just undo the increment and give up. if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 { throw("startm: negative nmspinning") } } releasem(mp) return } } nmp := mget() if nmp == nil { // No M is available, we must drop sched.lock and call newm. // However, we already own a P to assign to the M. // // Once sched.lock is released, another G (e.g., in a syscall), // could find no idle P while checkdead finds a runnable G but // no running M's because this new M hasn't started yet, thus // throwing in an apparent deadlock. // // Avoid this situation by pre-allocating the ID for the new M, // thus marking it as 'running' before we drop sched.lock. This // new M will eventually run the scheduler to execute any // queued G's. id := mReserveID() unlock(&sched.lock) var fn func() if spinning { // The caller incremented nmspinning, so set m.spinning in the new M. fn = mspinning } newm(fn, _p_, id) // Ownership transfer of _p_ committed by start in newm. // Preemption is now safe. releasem(mp) return } unlock(&sched.lock) if nmp.spinning { throw("startm: m is spinning") } if nmp.nextp != 0 { throw("startm: m has p") } if spinning && !runqempty(_p_) { throw("startm: p has runnable gs") } // The caller incremented nmspinning, so set m.spinning in the new M. nmp.spinning = spinning nmp.nextp.set(_p_) notewakeup(&nmp.park) // Ownership transfer of _p_ committed by wakeup. Preemption is now // safe. releasem(mp) } // Hands off P from syscall or locked M. // Always runs without a P, so write barriers are not allowed. //go:nowritebarrierrec func handoffp(_p_ *p) { // handoffp must start an M in any situation where // findrunnable would return a G to run on _p_. // if it has local work, start it straight away if !runqempty(_p_) || sched.runqsize != 0 { startm(_p_, false) return } // if it has GC work, start it straight away if gcBlackenEnabled != 0 && gcMarkWorkAvailable(_p_) { startm(_p_, false) return } // no local work, check that there are no spinning/idle M's, // otherwise our help is not required if atomic.Load(&sched.nmspinning)+atomic.Load(&sched.npidle) == 0 && atomic.Cas(&sched.nmspinning, 0, 1) { // TODO: fast atomic startm(_p_, true) return } lock(&sched.lock) if sched.gcwaiting != 0 { _p_.status = _Pgcstop sched.stopwait-- if sched.stopwait == 0 { notewakeup(&sched.stopnote) } unlock(&sched.lock) return } if _p_.runSafePointFn != 0 && atomic.Cas(&_p_.runSafePointFn, 1, 0) { sched.safePointFn(_p_) sched.safePointWait-- if sched.safePointWait == 0 { notewakeup(&sched.safePointNote) } } if sched.runqsize != 0 { unlock(&sched.lock) startm(_p_, false) return } // If this is the last running P and nobody is polling network, // need to wakeup another M to poll network. if sched.npidle == uint32(gomaxprocs-1) && atomic.Load64(&sched.lastpoll) != 0 { unlock(&sched.lock) startm(_p_, false) return } // The scheduler lock cannot be held when calling wakeNetPoller below // because wakeNetPoller may call wakep which may call startm. when := nobarrierWakeTime(_p_) pidleput(_p_) unlock(&sched.lock) if when != 0 { wakeNetPoller(when) } } // Tries to add one more P to execute G's. // Called when a G is made runnable (newproc, ready). func wakep() { if atomic.Load(&sched.npidle) == 0 { return } // be conservative about spinning threads if atomic.Load(&sched.nmspinning) != 0 || !atomic.Cas(&sched.nmspinning, 0, 1) { return } startm(nil, true) } // Stops execution of the current m that is locked to a g until the g is runnable again. // Returns with acquired P. func stoplockedm() { _g_ := getg() if _g_.m.lockedg == 0 || _g_.m.lockedg.ptr().lockedm.ptr() != _g_.m { throw("stoplockedm: inconsistent locking") } if _g_.m.p != 0 { // Schedule another M to run this p. _p_ := releasep() handoffp(_p_) } incidlelocked(1) // Wait until another thread schedules lockedg again. mPark() status := readgstatus(_g_.m.lockedg.ptr()) if status&^_Gscan != _Grunnable { print("runtime:stoplockedm: lockedg (atomicstatus=", status, ") is not Grunnable or Gscanrunnable\n") dumpgstatus(_g_.m.lockedg.ptr()) throw("stoplockedm: not runnable") } acquirep(_g_.m.nextp.ptr()) _g_.m.nextp = 0 } // Schedules the locked m to run the locked gp. // May run during STW, so write barriers are not allowed. //go:nowritebarrierrec func startlockedm(gp *g) { _g_ := getg() mp := gp.lockedm.ptr() if mp == _g_.m { throw("startlockedm: locked to me") } if mp.nextp != 0 { throw("startlockedm: m has p") } // directly handoff current P to the locked m incidlelocked(-1) _p_ := releasep() mp.nextp.set(_p_) notewakeup(&mp.park) stopm() } // Stops the current m for stopTheWorld. // Returns when the world is restarted. func gcstopm() { _g_ := getg() if sched.gcwaiting == 0 { throw("gcstopm: not waiting for gc") } if _g_.m.spinning { _g_.m.spinning = false // OK to just drop nmspinning here, // startTheWorld will unpark threads as necessary. if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 { throw("gcstopm: negative nmspinning") } } _p_ := releasep() lock(&sched.lock) _p_.status = _Pgcstop sched.stopwait-- if sched.stopwait == 0 { notewakeup(&sched.stopnote) } unlock(&sched.lock) stopm() } // Schedules gp to run on the current M. // If inheritTime is true, gp inherits the remaining time in the // current time slice. Otherwise, it starts a new time slice. // Never returns. // // Write barriers are allowed because this is called immediately after // acquiring a P in several places. // //go:yeswritebarrierrec func execute(gp *g, inheritTime bool) { _g_ := getg() // Assign gp.m before entering _Grunning so running Gs have an // M. _g_.m.curg = gp gp.m = _g_.m casgstatus(gp, _Grunnable, _Grunning) gp.waitsince = 0 gp.preempt = false if !inheritTime { _g_.m.p.ptr().schedtick++ } // Check whether the profiler needs to be turned on or off. hz := sched.profilehz if _g_.m.profilehz != hz { setThreadCPUProfiler(hz) } if trace.enabled { // GoSysExit has to happen when we have a P, but before GoStart. // So we emit it here. if gp.syscallsp != 0 && gp.sysblocktraced { traceGoSysExit(gp.sysexitticks) } traceGoStart() } gogo(gp) } // Finds a runnable goroutine to execute. // Tries to steal from other P's, get g from local or global queue, poll network. func findrunnable() (gp *g, inheritTime bool) { _g_ := getg() // The conditions here and in handoffp must agree: if // findrunnable would return a G to run, handoffp must start // an M. top: _p_ := _g_.m.p.ptr() if sched.gcwaiting != 0 { gcstopm() goto top } if _p_.runSafePointFn != 0 { runSafePointFn() } now, pollUntil, _ := checkTimers(_p_, 0) if fingwait && fingwake { if gp := wakefing(); gp != nil { ready(gp, 0, true) } } if *cgo_yield != nil { asmcgocall(*cgo_yield, nil) } // local runq if gp, inheritTime := runqget(_p_); gp != nil { return gp, inheritTime } // global runq if sched.runqsize != 0 { lock(&sched.lock) gp := globrunqget(_p_, 0) unlock(&sched.lock) if gp != nil { return gp, false } } // Poll network. // This netpoll is only an optimization before we resort to stealing. // We can safely skip it if there are no waiters or a thread is blocked // in netpoll already. If there is any kind of logical race with that // blocked thread (e.g. it has already returned from netpoll, but does // not set lastpoll yet), this thread will do blocking netpoll below // anyway. if netpollinited() && atomic.Load(&netpollWaiters) > 0 && atomic.Load64(&sched.lastpoll) != 0 { if list := netpoll(0); !list.empty() { // non-blocking gp := list.pop() injectglist(&list) casgstatus(gp, _Gwaiting, _Grunnable) if trace.enabled { traceGoUnpark(gp, 0) } return gp, false } } // Steal work from other P's. procs := uint32(gomaxprocs) ranTimer := false // If number of spinning M's >= number of busy P's, block. // This is necessary to prevent excessive CPU consumption // when GOMAXPROCS>>1 but the program parallelism is low. if !_g_.m.spinning && 2*atomic.Load(&sched.nmspinning) >= procs-atomic.Load(&sched.npidle) { goto stop } if !_g_.m.spinning { _g_.m.spinning = true atomic.Xadd(&sched.nmspinning, 1) } const stealTries = 4 for i := 0; i < stealTries; i++ { stealTimersOrRunNextG := i == stealTries-1 for enum := stealOrder.start(fastrand()); !enum.done(); enum.next() { if sched.gcwaiting != 0 { goto top } p2 := allp[enum.position()] if _p_ == p2 { continue } // Steal timers from p2. This call to checkTimers is the only place // where we might hold a lock on a different P's timers. We do this // once on the last pass before checking runnext because stealing // from the other P's runnext should be the last resort, so if there // are timers to steal do that first. // // We only check timers on one of the stealing iterations because // the time stored in now doesn't change in this loop and checking // the timers for each P more than once with the same value of now // is probably a waste of time. // // timerpMask tells us whether the P may have timers at all. If it // can't, no need to check at all. if stealTimersOrRunNextG && timerpMask.read(enum.position()) { tnow, w, ran := checkTimers(p2, now) now = tnow if w != 0 && (pollUntil == 0 || w < pollUntil) { pollUntil = w } if ran { // Running the timers may have // made an arbitrary number of G's // ready and added them to this P's // local run queue. That invalidates // the assumption of runqsteal // that is always has room to add // stolen G's. So check now if there // is a local G to run. if gp, inheritTime := runqget(_p_); gp != nil { return gp, inheritTime } ranTimer = true } } // Don't bother to attempt to steal if p2 is idle. if !idlepMask.read(enum.position()) { if gp := runqsteal(_p_, p2, stealTimersOrRunNextG); gp != nil { return gp, false } } } } if ranTimer { // Running a timer may have made some goroutine ready. goto top } stop: // We have nothing to do. If we're in the GC mark phase, can // safely scan and blacken objects, and have work to do, run // idle-time marking rather than give up the P. if gcBlackenEnabled != 0 && gcMarkWorkAvailable(_p_) { node := (*gcBgMarkWorkerNode)(gcBgMarkWorkerPool.pop()) if node != nil { _p_.gcMarkWorkerMode = gcMarkWorkerIdleMode gp := node.gp.ptr() casgstatus(gp, _Gwaiting, _Grunnable) if trace.enabled { traceGoUnpark(gp, 0) } return gp, false } } delta := int64(-1) if pollUntil != 0 { // checkTimers ensures that polluntil > now. delta = pollUntil - now } // wasm only: // If a callback returned and no other goroutine is awake, // then wake event handler goroutine which pauses execution // until a callback was triggered. gp, otherReady := beforeIdle(delta) if gp != nil { casgstatus(gp, _Gwaiting, _Grunnable) if trace.enabled { traceGoUnpark(gp, 0) } return gp, false } if otherReady { goto top } // Before we drop our P, make a snapshot of the allp slice, // which can change underfoot once we no longer block // safe-points. We don't need to snapshot the contents because // everything up to cap(allp) is immutable. allpSnapshot := allp // Also snapshot masks. Value changes are OK, but we can't allow // len to change out from under us. idlepMaskSnapshot := idlepMask timerpMaskSnapshot := timerpMask // return P and block lock(&sched.lock) if sched.gcwaiting != 0 || _p_.runSafePointFn != 0 { unlock(&sched.lock) goto top } if sched.runqsize != 0 { gp := globrunqget(_p_, 0) unlock(&sched.lock) return gp, false } if releasep() != _p_ { throw("findrunnable: wrong p") } pidleput(_p_) unlock(&sched.lock) // Delicate dance: thread transitions from spinning to non-spinning state, // potentially concurrently with submission of new goroutines. We must // drop nmspinning first and then check all per-P queues again (with // #StoreLoad memory barrier in between). If we do it the other way around, // another thread can submit a goroutine after we've checked all run queues // but before we drop nmspinning; as a result nobody will unpark a thread // to run the goroutine. // If we discover new work below, we need to restore m.spinning as a signal // for resetspinning to unpark a new worker thread (because there can be more // than one starving goroutine). However, if after discovering new work // we also observe no idle Ps, it is OK to just park the current thread: // the system is fully loaded so no spinning threads are required. // Also see "Worker thread parking/unparking" comment at the top of the file. wasSpinning := _g_.m.spinning if _g_.m.spinning { _g_.m.spinning = false if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 { throw("findrunnable: negative nmspinning") } } // check all runqueues once again for id, _p_ := range allpSnapshot { if !idlepMaskSnapshot.read(uint32(id)) && !runqempty(_p_) { lock(&sched.lock) _p_ = pidleget() unlock(&sched.lock) if _p_ != nil { acquirep(_p_) if wasSpinning { _g_.m.spinning = true atomic.Xadd(&sched.nmspinning, 1) } goto top } break } } // Similar to above, check for timer creation or expiry concurrently with // transitioning from spinning to non-spinning. Note that we cannot use // checkTimers here because it calls adjusttimers which may need to allocate // memory, and that isn't allowed when we don't have an active P. for id, _p_ := range allpSnapshot { if timerpMaskSnapshot.read(uint32(id)) { w := nobarrierWakeTime(_p_) if w != 0 && (pollUntil == 0 || w < pollUntil) { pollUntil = w } } } if pollUntil != 0 { if now == 0 { now = nanotime() } delta = pollUntil - now if delta < 0 { delta = 0 } } // Check for idle-priority GC work again. // // N.B. Since we have no P, gcBlackenEnabled may change at any time; we // must check again after acquiring a P. if atomic.Load(&gcBlackenEnabled) != 0 && gcMarkWorkAvailable(nil) { // Work is available; we can start an idle GC worker only if // there is an available P and available worker G. // // We can attempt to acquire these in either order. Workers are // almost always available (see comment in findRunnableGCWorker // for the one case there may be none). Since we're slightly // less likely to find a P, check for that first. lock(&sched.lock) var node *gcBgMarkWorkerNode _p_ = pidleget() if _p_ != nil { // Now that we own a P, gcBlackenEnabled can't change // (as it requires STW). if gcBlackenEnabled != 0 { node = (*gcBgMarkWorkerNode)(gcBgMarkWorkerPool.pop()) if node == nil { pidleput(_p_) _p_ = nil } } else { pidleput(_p_) _p_ = nil } } unlock(&sched.lock) if _p_ != nil { acquirep(_p_) if wasSpinning { _g_.m.spinning = true atomic.Xadd(&sched.nmspinning, 1) } // Run the idle worker. _p_.gcMarkWorkerMode = gcMarkWorkerIdleMode gp := node.gp.ptr() casgstatus(gp, _Gwaiting, _Grunnable) if trace.enabled { traceGoUnpark(gp, 0) } return gp, false } } // poll network if netpollinited() && (atomic.Load(&netpollWaiters) > 0 || pollUntil != 0) && atomic.Xchg64(&sched.lastpoll, 0) != 0 { atomic.Store64(&sched.pollUntil, uint64(pollUntil)) if _g_.m.p != 0 { throw("findrunnable: netpoll with p") } if _g_.m.spinning { throw("findrunnable: netpoll with spinning") } if faketime != 0 { // When using fake time, just poll. delta = 0 } list := netpoll(delta) // block until new work is available atomic.Store64(&sched.pollUntil, 0) atomic.Store64(&sched.lastpoll, uint64(nanotime())) if faketime != 0 && list.empty() { // Using fake time and nothing is ready; stop M. // When all M's stop, checkdead will call timejump. stopm() goto top } lock(&sched.lock) _p_ = pidleget() unlock(&sched.lock) if _p_ == nil { injectglist(&list) } else { acquirep(_p_) if !list.empty() { gp := list.pop() injectglist(&list) casgstatus(gp, _Gwaiting, _Grunnable) if trace.enabled { traceGoUnpark(gp, 0) } return gp, false } if wasSpinning { _g_.m.spinning = true atomic.Xadd(&sched.nmspinning, 1) } goto top } } else if pollUntil != 0 && netpollinited() { pollerPollUntil := int64(atomic.Load64(&sched.pollUntil)) if pollerPollUntil == 0 || pollerPollUntil > pollUntil { netpollBreak() } } stopm() goto top } // pollWork reports whether there is non-background work this P could // be doing. This is a fairly lightweight check to be used for // background work loops, like idle GC. It checks a subset of the // conditions checked by the actual scheduler. func pollWork() bool { if sched.runqsize != 0 { return true } p := getg().m.p.ptr() if !runqempty(p) { return true } if netpollinited() && atomic.Load(&netpollWaiters) > 0 && sched.lastpoll != 0 { if list := netpoll(0); !list.empty() { injectglist(&list) return true } } return false } // wakeNetPoller wakes up the thread sleeping in the network poller if it isn't // going to wake up before the when argument; or it wakes an idle P to service // timers and the network poller if there isn't one already. func wakeNetPoller(when int64) { if atomic.Load64(&sched.lastpoll) == 0 { // In findrunnable we ensure that when polling the pollUntil // field is either zero or the time to which the current // poll is expected to run. This can have a spurious wakeup // but should never miss a wakeup. pollerPollUntil := int64(atomic.Load64(&sched.pollUntil)) if pollerPollUntil == 0 || pollerPollUntil > when { netpollBreak() } } else { // There are no threads in the network poller, try to get // one there so it can handle new timers. wakep() } } func resetspinning() { _g_ := getg() if !_g_.m.spinning { throw("resetspinning: not a spinning m") } _g_.m.spinning = false nmspinning := atomic.Xadd(&sched.nmspinning, -1) if int32(nmspinning) < 0 { throw("findrunnable: negative nmspinning") } // M wakeup policy is deliberately somewhat conservative, so check if we // need to wakeup another P here. See "Worker thread parking/unparking" // comment at the top of the file for details. wakep() } // injectglist adds each runnable G on the list to some run queue, // and clears glist. If there is no current P, they are added to the // global queue, and up to npidle M's are started to run them. // Otherwise, for each idle P, this adds a G to the global queue // and starts an M. Any remaining G's are added to the current P's // local run queue. // This may temporarily acquire sched.lock. // Can run concurrently with GC. func injectglist(glist *gList) { if glist.empty() { return } if trace.enabled { for gp := glist.head.ptr(); gp != nil; gp = gp.schedlink.ptr() { traceGoUnpark(gp, 0) } } // Mark all the goroutines as runnable before we put them // on the run queues. head := glist.head.ptr() var tail *g qsize := 0 for gp := head; gp != nil; gp = gp.schedlink.ptr() { tail = gp qsize++ casgstatus(gp, _Gwaiting, _Grunnable) } // Turn the gList into a gQueue. var q gQueue q.head.set(head) q.tail.set(tail) *glist = gList{} startIdle := func(n int) { for ; n != 0 && sched.npidle != 0; n-- { startm(nil, false) } } pp := getg().m.p.ptr() if pp == nil { lock(&sched.lock) globrunqputbatch(&q, int32(qsize)) unlock(&sched.lock) startIdle(qsize) return } npidle := int(atomic.Load(&sched.npidle)) var globq gQueue var n int for n = 0; n < npidle && !q.empty(); n++ { g := q.pop() globq.pushBack(g) } if n > 0 { lock(&sched.lock) globrunqputbatch(&globq, int32(n)) unlock(&sched.lock) startIdle(n) qsize -= n } if !q.empty() { runqputbatch(pp, &q, qsize) } } // One round of scheduler: find a runnable goroutine and execute it. // Never returns. func schedule() { _g_ := getg() if _g_.m.locks != 0 { throw("schedule: holding locks") } if _g_.m.lockedg != 0 { stoplockedm() execute(_g_.m.lockedg.ptr(), false) // Never returns. } // We should not schedule away from a g that is executing a cgo call, // since the cgo call is using the m's g0 stack. if _g_.m.incgo { throw("schedule: in cgo") } top: pp := _g_.m.p.ptr() pp.preempt = false if sched.gcwaiting != 0 { gcstopm() goto top } if pp.runSafePointFn != 0 { runSafePointFn() } // Sanity check: if we are spinning, the run queue should be empty. // Check this before calling checkTimers, as that might call // goready to put a ready goroutine on the local run queue. if _g_.m.spinning && (pp.runnext != 0 || pp.runqhead != pp.runqtail) { throw("schedule: spinning with local work") } checkTimers(pp, 0) var gp *g var inheritTime bool // Normal goroutines will check for need to wakeP in ready, // but GCworkers and tracereaders will not, so the check must // be done here instead. tryWakeP := false if trace.enabled || trace.shutdown { gp = traceReader() if gp != nil { casgstatus(gp, _Gwaiting, _Grunnable) traceGoUnpark(gp, 0) tryWakeP = true } } if gp == nil && gcBlackenEnabled != 0 { gp = gcController.findRunnableGCWorker(_g_.m.p.ptr()) tryWakeP = tryWakeP || gp != nil } if gp == nil { // Check the global runnable queue once in a while to ensure fairness. // Otherwise two goroutines can completely occupy the local runqueue // by constantly respawning each other. if _g_.m.p.ptr().schedtick%61 == 0 && sched.runqsize > 0 { lock(&sched.lock) gp = globrunqget(_g_.m.p.ptr(), 1) unlock(&sched.lock) } } if gp == nil { gp, inheritTime = runqget(_g_.m.p.ptr()) // We can see gp != nil here even if the M is spinning, // if checkTimers added a local goroutine via goready. // Because gccgo does not implement preemption as a stack check, // we need to check for preemption here for fairness. // Otherwise goroutines on the local queue may starve // goroutines on the global queue. // Since we preempt by storing the goroutine on the global // queue, this is the only place we need to check preempt. // This does not call checkPreempt because gp is not running. if gp != nil && gp.preempt { gp.preempt = false lock(&sched.lock) globrunqput(gp) unlock(&sched.lock) goto top } } if gp == nil { gp, inheritTime = findrunnable() // blocks until work is available } // This thread is going to run a goroutine and is not spinning anymore, // so if it was marked as spinning we need to reset it now and potentially // start a new spinning M. if _g_.m.spinning { resetspinning() } if sched.disable.user && !schedEnabled(gp) { // Scheduling of this goroutine is disabled. Put it on // the list of pending runnable goroutines for when we // re-enable user scheduling and look again. lock(&sched.lock) if schedEnabled(gp) { // Something re-enabled scheduling while we // were acquiring the lock. unlock(&sched.lock) } else { sched.disable.runnable.pushBack(gp) sched.disable.n++ unlock(&sched.lock) goto top } } // If about to schedule a not-normal goroutine (a GCworker or tracereader), // wake a P if there is one. if tryWakeP { wakep() } if gp.lockedm != 0 { // Hands off own p to the locked m, // then blocks waiting for a new p. startlockedm(gp) goto top } execute(gp, inheritTime) } // dropg removes the association between m and the current goroutine m->curg (gp for short). // Typically a caller sets gp's status away from Grunning and then // immediately calls dropg to finish the job. The caller is also responsible // for arranging that gp will be restarted using ready at an // appropriate time. After calling dropg and arranging for gp to be // readied later, the caller can do other work but eventually should // call schedule to restart the scheduling of goroutines on this m. func dropg() { _g_ := getg() setMNoWB(&_g_.m.curg.m, nil) setGNoWB(&_g_.m.curg, nil) } // checkTimers runs any timers for the P that are ready. // If now is not 0 it is the current time. // It returns the current time or 0 if it is not known, // and the time when the next timer should run or 0 if there is no next timer, // and reports whether it ran any timers. // If the time when the next timer should run is not 0, // it is always larger than the returned time. // We pass now in and out to avoid extra calls of nanotime. //go:yeswritebarrierrec func checkTimers(pp *p, now int64) (rnow, pollUntil int64, ran bool) { // If it's not yet time for the first timer, or the first adjusted // timer, then there is nothing to do. next := int64(atomic.Load64(&pp.timer0When)) nextAdj := int64(atomic.Load64(&pp.timerModifiedEarliest)) if next == 0 || (nextAdj != 0 && nextAdj < next) { next = nextAdj } if next == 0 { // No timers to run or adjust. return now, 0, false } if now == 0 { now = nanotime() } if now < next { // Next timer is not ready to run, but keep going // if we would clear deleted timers. // This corresponds to the condition below where // we decide whether to call clearDeletedTimers. if pp != getg().m.p.ptr() || int(atomic.Load(&pp.deletedTimers)) <= int(atomic.Load(&pp.numTimers)/4) { return now, next, false } } lock(&pp.timersLock) if len(pp.timers) > 0 { adjusttimers(pp, now) for len(pp.timers) > 0 { // Note that runtimer may temporarily unlock // pp.timersLock. if tw := runtimer(pp, now); tw != 0 { if tw > 0 { pollUntil = tw } break } ran = true } } // If this is the local P, and there are a lot of deleted timers, // clear them out. We only do this for the local P to reduce // lock contention on timersLock. if pp == getg().m.p.ptr() && int(atomic.Load(&pp.deletedTimers)) > len(pp.timers)/4 { clearDeletedTimers(pp) } unlock(&pp.timersLock) return now, pollUntil, ran } func parkunlock_c(gp *g, lock unsafe.Pointer) bool { unlock((*mutex)(lock)) return true } // park continuation on g0. func park_m(gp *g) { _g_ := getg() if trace.enabled { traceGoPark(_g_.m.waittraceev, _g_.m.waittraceskip) } casgstatus(gp, _Grunning, _Gwaiting) dropg() if fn := _g_.m.waitunlockf; fn != nil { ok := fn(gp, _g_.m.waitlock) _g_.m.waitunlockf = nil _g_.m.waitlock = nil if !ok { if trace.enabled { traceGoUnpark(gp, 2) } casgstatus(gp, _Gwaiting, _Grunnable) execute(gp, true) // Schedule it back, never returns. } } schedule() } func goschedImpl(gp *g) { status := readgstatus(gp) if status&^_Gscan != _Grunning { dumpgstatus(gp) throw("bad g status") } casgstatus(gp, _Grunning, _Grunnable) dropg() lock(&sched.lock) globrunqput(gp) unlock(&sched.lock) schedule() } // Gosched continuation on g0. func gosched_m(gp *g) { if trace.enabled { traceGoSched() } goschedImpl(gp) } // goschedguarded is a forbidden-states-avoided version of gosched_m func goschedguarded_m(gp *g) { if !canPreemptM(gp.m) { gogo(gp) // never return } if trace.enabled { traceGoSched() } goschedImpl(gp) } func gopreempt_m(gp *g) { if trace.enabled { traceGoPreempt() } goschedImpl(gp) } // preemptPark parks gp and puts it in _Gpreempted. // //go:systemstack func preemptPark(gp *g) { if trace.enabled { traceGoPark(traceEvGoBlock, 0) } status := readgstatus(gp) if status&^_Gscan != _Grunning { dumpgstatus(gp) throw("bad g status") } gp.waitreason = waitReasonPreempted // Transition from _Grunning to _Gscan|_Gpreempted. We can't // be in _Grunning when we dropg because then we'd be running // without an M, but the moment we're in _Gpreempted, // something could claim this G before we've fully cleaned it // up. Hence, we set the scan bit to lock down further // transitions until we can dropg. casGToPreemptScan(gp, _Grunning, _Gscan|_Gpreempted) dropg() casfrom_Gscanstatus(gp, _Gscan|_Gpreempted, _Gpreempted) schedule() } // goyield is like Gosched, but it: // - emits a GoPreempt trace event instead of a GoSched trace event // - puts the current G on the runq of the current P instead of the globrunq func goyield() { checkTimeouts() mcall(goyield_m) } func goyield_m(gp *g) { if trace.enabled { traceGoPreempt() } pp := gp.m.p.ptr() casgstatus(gp, _Grunning, _Grunnable) dropg() runqput(pp, gp, false) schedule() } // Finishes execution of the current goroutine. func goexit1() { if trace.enabled { traceGoEnd() } mcall(goexit0) } // goexit continuation on g0. func goexit0(gp *g) { _g_ := getg() casgstatus(gp, _Grunning, _Gdead) if isSystemGoroutine(gp, false) { atomic.Xadd(&sched.ngsys, -1) gp.isSystemGoroutine = false } gp.m = nil locked := gp.lockedm != 0 gp.lockedm = 0 _g_.m.lockedg = 0 gp.entry = nil gp.preemptStop = false gp.paniconfault = false gp._defer = nil // should be true already but just in case. gp._panic = nil // non-nil for Goexit during panic. points at stack-allocated data. gp.writebuf = nil gp.waitreason = 0 gp.param = nil gp.labels = nil gp.timer = nil if gcBlackenEnabled != 0 && gp.gcAssistBytes > 0 { // Flush assist credit to the global pool. This gives // better information to pacing if the application is // rapidly creating an exiting goroutines. assistWorkPerByte := float64frombits(atomic.Load64(&gcController.assistWorkPerByte)) scanCredit := int64(assistWorkPerByte * float64(gp.gcAssistBytes)) atomic.Xaddint64(&gcController.bgScanCredit, scanCredit) gp.gcAssistBytes = 0 } dropg() if GOARCH == "wasm" { // no threads yet on wasm gfput(_g_.m.p.ptr(), gp) schedule() // never returns } if _g_.m.lockedInt != 0 { print("invalid m->lockedInt = ", _g_.m.lockedInt, "\n") throw("internal lockOSThread error") } gfput(_g_.m.p.ptr(), gp) if locked { // The goroutine may have locked this thread because // it put it in an unusual kernel state. Kill it // rather than returning it to the thread pool. // Return to mstart, which will release the P and exit // the thread. if GOOS != "plan9" { // See golang.org/issue/22227. _g_.m.exiting = true gogo(_g_.m.g0) } else { // Clear lockedExt on plan9 since we may end up re-using // this thread. _g_.m.lockedExt = 0 } } schedule() } // The goroutine g is about to enter a system call. // Record that it's not using the cpu anymore. // This is called only from the go syscall library and cgocall, // not from the low-level system calls used by the runtime. // // The entersyscall function is written in C, so that it can save the // current register context so that the GC will see them. // It calls reentersyscall. // // Syscall tracing: // At the start of a syscall we emit traceGoSysCall to capture the stack trace. // If the syscall does not block, that is it, we do not emit any other events. // If the syscall blocks (that is, P is retaken), retaker emits traceGoSysBlock; // when syscall returns we emit traceGoSysExit and when the goroutine starts running // (potentially instantly, if exitsyscallfast returns true) we emit traceGoStart. // To ensure that traceGoSysExit is emitted strictly after traceGoSysBlock, // we remember current value of syscalltick in m (_g_.m.syscalltick = _g_.m.p.ptr().syscalltick), // whoever emits traceGoSysBlock increments p.syscalltick afterwards; // and we wait for the increment before emitting traceGoSysExit. // Note that the increment is done even if tracing is not enabled, // because tracing can be enabled in the middle of syscall. We don't want the wait to hang. // //go:nosplit //go:noinline func reentersyscall(pc, sp uintptr) { _g_ := getg() // Disable preemption because during this function g is in Gsyscall status, // but can have inconsistent g->sched, do not let GC observe it. _g_.m.locks++ _g_.syscallsp = sp _g_.syscallpc = pc casgstatus(_g_, _Grunning, _Gsyscall) if trace.enabled { systemstack(traceGoSysCall) } if atomic.Load(&sched.sysmonwait) != 0 { systemstack(entersyscall_sysmon) } if _g_.m.p.ptr().runSafePointFn != 0 { // runSafePointFn may stack split if run on this stack systemstack(runSafePointFn) } _g_.m.syscalltick = _g_.m.p.ptr().syscalltick _g_.sysblocktraced = true pp := _g_.m.p.ptr() pp.m = 0 _g_.m.oldp.set(pp) _g_.m.p = 0 atomic.Store(&pp.status, _Psyscall) if sched.gcwaiting != 0 { systemstack(entersyscall_gcwait) } _g_.m.locks-- } func entersyscall_sysmon() { lock(&sched.lock) if atomic.Load(&sched.sysmonwait) != 0 { atomic.Store(&sched.sysmonwait, 0) notewakeup(&sched.sysmonnote) } unlock(&sched.lock) } func entersyscall_gcwait() { _g_ := getg() _p_ := _g_.m.oldp.ptr() lock(&sched.lock) if sched.stopwait > 0 && atomic.Cas(&_p_.status, _Psyscall, _Pgcstop) { if trace.enabled { traceGoSysBlock(_p_) traceProcStop(_p_) } _p_.syscalltick++ if sched.stopwait--; sched.stopwait == 0 { notewakeup(&sched.stopnote) } } unlock(&sched.lock) } func reentersyscallblock(pc, sp uintptr) { _g_ := getg() _g_.m.locks++ // see comment in entersyscall _g_.throwsplit = true _g_.m.syscalltick = _g_.m.p.ptr().syscalltick _g_.sysblocktraced = true _g_.m.p.ptr().syscalltick++ // Leave SP around for GC and traceback. _g_.syscallsp = sp _g_.syscallpc = pc casgstatus(_g_, _Grunning, _Gsyscall) systemstack(entersyscallblock_handoff) _g_.m.locks-- } func entersyscallblock_handoff() { if trace.enabled { traceGoSysCall() traceGoSysBlock(getg().m.p.ptr()) } handoffp(releasep()) } // The goroutine g exited its system call. // Arrange for it to run on a cpu again. // This is called only from the go syscall library, not // from the low-level system calls used by the runtime. // // Write barriers are not allowed because our P may have been stolen. // //go:nosplit //go:nowritebarrierrec func exitsyscall() { _g_ := getg() _g_.m.locks++ // see comment in entersyscall _g_.waitsince = 0 oldp := _g_.m.oldp.ptr() _g_.m.oldp = 0 if exitsyscallfast(oldp) { if trace.enabled { if oldp != _g_.m.p.ptr() || _g_.m.syscalltick != _g_.m.p.ptr().syscalltick { systemstack(traceGoStart) } } // There's a cpu for us, so we can run. _g_.m.p.ptr().syscalltick++ // We need to cas the status and scan before resuming... casgstatus(_g_, _Gsyscall, _Grunning) exitsyscallclear(_g_) _g_.m.locks-- _g_.throwsplit = false // Check preemption, since unlike gc we don't check on // every call. if getg().preempt { checkPreempt() } _g_.throwsplit = false if sched.disable.user && !schedEnabled(_g_) { // Scheduling of this goroutine is disabled. Gosched() } return } _g_.sysexitticks = 0 if trace.enabled { // Wait till traceGoSysBlock event is emitted. // This ensures consistency of the trace (the goroutine is started after it is blocked). for oldp != nil && oldp.syscalltick == _g_.m.syscalltick { osyield() } // We can't trace syscall exit right now because we don't have a P. // Tracing code can invoke write barriers that cannot run without a P. // So instead we remember the syscall exit time and emit the event // in execute when we have a P. _g_.sysexitticks = cputicks() } _g_.m.locks-- // Call the scheduler. mcall(exitsyscall0) // Scheduler returned, so we're allowed to run now. // Delete the syscallsp information that we left for // the garbage collector during the system call. // Must wait until now because until gosched returns // we don't know for sure that the garbage collector // is not running. exitsyscallclear(_g_) _g_.m.p.ptr().syscalltick++ _g_.throwsplit = false } //go:nosplit func exitsyscallfast(oldp *p) bool { _g_ := getg() // Freezetheworld sets stopwait but does not retake P's. if sched.stopwait == freezeStopWait { return false } // Try to re-acquire the last P. if oldp != nil && oldp.status == _Psyscall && atomic.Cas(&oldp.status, _Psyscall, _Pidle) { // There's a cpu for us, so we can run. wirep(oldp) exitsyscallfast_reacquired() return true } // Try to get any other idle P. if sched.pidle != 0 { var ok bool systemstack(func() { ok = exitsyscallfast_pidle() if ok && trace.enabled { if oldp != nil { // Wait till traceGoSysBlock event is emitted. // This ensures consistency of the trace (the goroutine is started after it is blocked). for oldp.syscalltick == _g_.m.syscalltick { osyield() } } traceGoSysExit(0) } }) if ok { return true } } return false } // exitsyscallfast_reacquired is the exitsyscall path on which this G // has successfully reacquired the P it was running on before the // syscall. // //go:nosplit func exitsyscallfast_reacquired() { _g_ := getg() if _g_.m.syscalltick != _g_.m.p.ptr().syscalltick { if trace.enabled { // The p was retaken and then enter into syscall again (since _g_.m.syscalltick has changed). // traceGoSysBlock for this syscall was already emitted, // but here we effectively retake the p from the new syscall running on the same p. systemstack(func() { // Denote blocking of the new syscall. traceGoSysBlock(_g_.m.p.ptr()) // Denote completion of the current syscall. traceGoSysExit(0) }) } _g_.m.p.ptr().syscalltick++ } } func exitsyscallfast_pidle() bool { lock(&sched.lock) _p_ := pidleget() if _p_ != nil && atomic.Load(&sched.sysmonwait) != 0 { atomic.Store(&sched.sysmonwait, 0) notewakeup(&sched.sysmonnote) } unlock(&sched.lock) if _p_ != nil { acquirep(_p_) return true } return false } // exitsyscall slow path on g0. // Failed to acquire P, enqueue gp as runnable. // //go:nowritebarrierrec func exitsyscall0(gp *g) { _g_ := getg() casgstatus(gp, _Gsyscall, _Gexitingsyscall) dropg() casgstatus(gp, _Gexitingsyscall, _Grunnable) lock(&sched.lock) var _p_ *p if schedEnabled(_g_) { _p_ = pidleget() } if _p_ == nil { globrunqput(gp) } else if atomic.Load(&sched.sysmonwait) != 0 { atomic.Store(&sched.sysmonwait, 0) notewakeup(&sched.sysmonnote) } unlock(&sched.lock) if _p_ != nil { acquirep(_p_) execute(gp, false) // Never returns. } if _g_.m.lockedg != 0 { // Wait until another thread schedules gp and so m again. stoplockedm() execute(gp, false) // Never returns. } stopm() schedule() // Never returns. } // exitsyscallclear clears GC-related information that we only track // during a syscall. func exitsyscallclear(gp *g) { // Garbage collector isn't running (since we are), so okay to // clear syscallsp. gp.syscallsp = 0 gp.gcstack = 0 gp.gcnextsp = 0 memclrNoHeapPointers(unsafe.Pointer(&gp.gcregs), unsafe.Sizeof(gp.gcregs)) } // Code generated by cgo, and some library code, calls syscall.Entersyscall // and syscall.Exitsyscall. //go:linkname syscall_entersyscall syscall.Entersyscall //go:nosplit func syscall_entersyscall() { entersyscall() } //go:linkname syscall_exitsyscall syscall.Exitsyscall //go:nosplit func syscall_exitsyscall() { exitsyscall() } func beforefork() { gp := getg().m.curg // Block signals during a fork, so that the child does not run // a signal handler before exec if a signal is sent to the process // group. See issue #18600. gp.m.locks++ sigsave(&gp.m.sigmask) sigblock() } // Called from syscall package before fork. //go:linkname syscall_runtime_BeforeFork syscall.runtime__BeforeFork //go:nosplit func syscall_runtime_BeforeFork() { systemstack(beforefork) } func afterfork() { gp := getg().m.curg msigrestore(gp.m.sigmask) gp.m.locks-- } // Called from syscall package after fork in parent. //go:linkname syscall_runtime_AfterFork syscall.runtime__AfterFork //go:nosplit func syscall_runtime_AfterFork() { systemstack(afterfork) } // inForkedChild is true while manipulating signals in the child process. // This is used to avoid calling libc functions in case we are using vfork. var inForkedChild bool // Called from syscall package after fork in child. // It resets non-sigignored signals to the default handler, and // restores the signal mask in preparation for the exec. // // Because this might be called during a vfork, and therefore may be // temporarily sharing address space with the parent process, this must // not change any global variables or calling into C code that may do so. // //go:linkname syscall_runtime_AfterForkInChild syscall.runtime__AfterForkInChild //go:nosplit //go:nowritebarrierrec func syscall_runtime_AfterForkInChild() { // It's OK to change the global variable inForkedChild here // because we are going to change it back. There is no race here, // because if we are sharing address space with the parent process, // then the parent process can not be running concurrently. inForkedChild = true clearSignalHandlers() // When we are the child we are the only thread running, // so we know that nothing else has changed gp.m.sigmask. msigrestore(getg().m.sigmask) inForkedChild = false } // pendingPreemptSignals is the number of preemption signals // that have been sent but not received. This is only used on Darwin. // For #41702. var pendingPreemptSignals uint32 // Called from syscall package before Exec. //go:linkname syscall_runtime_BeforeExec syscall.runtime__BeforeExec func syscall_runtime_BeforeExec() { // Prevent thread creation during exec. execLock.lock() // On Darwin, wait for all pending preemption signals to // be received. See issue #41702. if GOOS == "darwin" || GOOS == "ios" { for int32(atomic.Load(&pendingPreemptSignals)) > 0 { osyield() } } } // Called from syscall package after Exec. //go:linkname syscall_runtime_AfterExec syscall.runtime__AfterExec func syscall_runtime_AfterExec() { execLock.unlock() } // panicgonil is used for gccgo as we need to use a compiler check for // a nil func, in case we have to build a thunk. //go:linkname panicgonil func panicgonil() { getg().m.throwing = -1 // do not dump full stacks throw("go of nil func value") } // Create a new g running fn passing arg as the single argument. // Put it on the queue of g's waiting to run. // The compiler turns a go statement into a call to this. //go:linkname newproc __go_go func newproc(fn uintptr, arg unsafe.Pointer) *g { _g_ := getg() if fn == 0 { _g_.m.throwing = -1 // do not dump full stacks throw("go of nil func value") } acquirem() // disable preemption because it can be holding p in a local var _p_ := _g_.m.p.ptr() newg := gfget(_p_) var ( sp unsafe.Pointer spsize uintptr ) if newg == nil { newg = malg(true, false, &sp, &spsize) casgstatus(newg, _Gidle, _Gdead) allgadd(newg) // publishes with a g->status of Gdead so GC scanner doesn't look at uninitialized stack. } else { resetNewG(newg, &sp, &spsize) } newg.traceback = 0 if readgstatus(newg) != _Gdead { throw("newproc1: new g is not Gdead") } // Store the C function pointer into entryfn, take the address // of entryfn, convert it to a Go function value, and store // that in entry. newg.entryfn = fn var entry func(unsafe.Pointer) *(*unsafe.Pointer)(unsafe.Pointer(&entry)) = unsafe.Pointer(&newg.entryfn) newg.entry = entry newg.param = arg newg.gopc = getcallerpc() newg.ancestors = saveAncestors(_g_) newg.startpc = fn if _g_.m.curg != nil { newg.labels = _g_.m.curg.labels } if isSystemGoroutine(newg, false) { atomic.Xadd(&sched.ngsys, +1) } casgstatus(newg, _Gdead, _Grunnable) if _p_.goidcache == _p_.goidcacheend { // Sched.goidgen is the last allocated id, // this batch must be [sched.goidgen+1, sched.goidgen+GoidCacheBatch]. // At startup sched.goidgen=0, so main goroutine receives goid=1. _p_.goidcache = atomic.Xadd64(&sched.goidgen, _GoidCacheBatch) _p_.goidcache -= _GoidCacheBatch - 1 _p_.goidcacheend = _p_.goidcache + _GoidCacheBatch } newg.goid = int64(_p_.goidcache) _p_.goidcache++ if trace.enabled { traceGoCreate(newg, newg.startpc) } makeGContext(newg, sp, spsize) releasem(_g_.m) runqput(_p_, newg, true) if mainStarted { wakep() } return newg } // expectedSystemGoroutines counts the number of goroutines expected // to mark themselves as system goroutines. After they mark themselves // by calling setSystemGoroutine, this is decremented. NumGoroutines // uses this to wait for all system goroutines to mark themselves // before it counts them. var expectedSystemGoroutines uint32 // expectSystemGoroutine is called when starting a goroutine that will // call setSystemGoroutine. It increments expectedSystemGoroutines. func expectSystemGoroutine() { atomic.Xadd(&expectedSystemGoroutines, +1) } // waitForSystemGoroutines waits for all currently expected system // goroutines to register themselves. func waitForSystemGoroutines() { for atomic.Load(&expectedSystemGoroutines) > 0 { Gosched() osyield() } } // setSystemGoroutine marks this goroutine as a "system goroutine". // In the gc toolchain this is done by comparing startpc to a list of // saved special PCs. In gccgo that approach does not work as startpc // is often a thunk that invokes the real function with arguments, // so the thunk address never matches the saved special PCs. Instead, // since there are only a limited number of "system goroutines", // we force each one to mark itself as special. func setSystemGoroutine() { getg().isSystemGoroutine = true atomic.Xadd(&sched.ngsys, +1) atomic.Xadd(&expectedSystemGoroutines, -1) } // saveAncestors copies previous ancestors of the given caller g and // includes infor for the current caller into a new set of tracebacks for // a g being created. func saveAncestors(callergp *g) *[]ancestorInfo { // Copy all prior info, except for the root goroutine (goid 0). if debug.tracebackancestors <= 0 || callergp.goid == 0 { return nil } var callerAncestors []ancestorInfo if callergp.ancestors != nil { callerAncestors = *callergp.ancestors } n := int32(len(callerAncestors)) + 1 if n > debug.tracebackancestors { n = debug.tracebackancestors } ancestors := make([]ancestorInfo, n) copy(ancestors[1:], callerAncestors) var pcs [_TracebackMaxFrames]uintptr // FIXME: This should get a traceback of callergp. // npcs := gcallers(callergp, 0, pcs[:]) npcs := 0 ipcs := make([]uintptr, npcs) copy(ipcs, pcs[:]) ancestors[0] = ancestorInfo{ pcs: ipcs, goid: callergp.goid, gopc: callergp.gopc, } ancestorsp := new([]ancestorInfo) *ancestorsp = ancestors return ancestorsp } // Put on gfree list. // If local list is too long, transfer a batch to the global list. func gfput(_p_ *p, gp *g) { if readgstatus(gp) != _Gdead { throw("gfput: bad status (not Gdead)") } _p_.gFree.push(gp) _p_.gFree.n++ if _p_.gFree.n >= 64 { lock(&sched.gFree.lock) for _p_.gFree.n >= 32 { _p_.gFree.n-- gp = _p_.gFree.pop() sched.gFree.list.push(gp) sched.gFree.n++ } unlock(&sched.gFree.lock) } } // Get from gfree list. // If local list is empty, grab a batch from global list. func gfget(_p_ *p) *g { retry: if _p_.gFree.empty() && !sched.gFree.list.empty() { lock(&sched.gFree.lock) // Move a batch of free Gs to the P. for _p_.gFree.n < 32 { gp := sched.gFree.list.pop() if gp == nil { break } sched.gFree.n-- _p_.gFree.push(gp) _p_.gFree.n++ } unlock(&sched.gFree.lock) goto retry } gp := _p_.gFree.pop() if gp == nil { return nil } _p_.gFree.n-- return gp } // Purge all cached G's from gfree list to the global list. func gfpurge(_p_ *p) { lock(&sched.gFree.lock) for !_p_.gFree.empty() { gp := _p_.gFree.pop() _p_.gFree.n-- sched.gFree.list.push(gp) sched.gFree.n++ } unlock(&sched.gFree.lock) } // Breakpoint executes a breakpoint trap. func Breakpoint() { breakpoint() } // dolockOSThread is called by LockOSThread and lockOSThread below // after they modify m.locked. Do not allow preemption during this call, // or else the m might be different in this function than in the caller. //go:nosplit func dolockOSThread() { if GOARCH == "wasm" { return // no threads on wasm yet } _g_ := getg() _g_.m.lockedg.set(_g_) _g_.lockedm.set(_g_.m) } //go:nosplit // LockOSThread wires the calling goroutine to its current operating system thread. // The calling goroutine will always execute in that thread, // and no other goroutine will execute in it, // until the calling goroutine has made as many calls to // UnlockOSThread as to LockOSThread. // If the calling goroutine exits without unlocking the thread, // the thread will be terminated. // // All init functions are run on the startup thread. Calling LockOSThread // from an init function will cause the main function to be invoked on // that thread. // // A goroutine should call LockOSThread before calling OS services or // non-Go library functions that depend on per-thread state. func LockOSThread() { if atomic.Load(&newmHandoff.haveTemplateThread) == 0 && GOOS != "plan9" { // If we need to start a new thread from the locked // thread, we need the template thread. Start it now // while we're in a known-good state. startTemplateThread() } _g_ := getg() _g_.m.lockedExt++ if _g_.m.lockedExt == 0 { _g_.m.lockedExt-- panic("LockOSThread nesting overflow") } dolockOSThread() } //go:nosplit func lockOSThread() { getg().m.lockedInt++ dolockOSThread() } // dounlockOSThread is called by UnlockOSThread and unlockOSThread below // after they update m->locked. Do not allow preemption during this call, // or else the m might be in different in this function than in the caller. //go:nosplit func dounlockOSThread() { if GOARCH == "wasm" { return // no threads on wasm yet } _g_ := getg() if _g_.m.lockedInt != 0 || _g_.m.lockedExt != 0 { return } _g_.m.lockedg = 0 _g_.lockedm = 0 } //go:nosplit // UnlockOSThread undoes an earlier call to LockOSThread. // If this drops the number of active LockOSThread calls on the // calling goroutine to zero, it unwires the calling goroutine from // its fixed operating system thread. // If there are no active LockOSThread calls, this is a no-op. // // Before calling UnlockOSThread, the caller must ensure that the OS // thread is suitable for running other goroutines. If the caller made // any permanent changes to the state of the thread that would affect // other goroutines, it should not call this function and thus leave // the goroutine locked to the OS thread until the goroutine (and // hence the thread) exits. func UnlockOSThread() { _g_ := getg() if _g_.m.lockedExt == 0 { return } _g_.m.lockedExt-- dounlockOSThread() } //go:nosplit func unlockOSThread() { _g_ := getg() if _g_.m.lockedInt == 0 { systemstack(badunlockosthread) } _g_.m.lockedInt-- dounlockOSThread() } func badunlockosthread() { throw("runtime: internal error: misuse of lockOSThread/unlockOSThread") } func gcount() int32 { n := int32(allglen) - sched.gFree.n - int32(atomic.Load(&sched.ngsys)) for _, _p_ := range allp { n -= _p_.gFree.n } // All these variables can be changed concurrently, so the result can be inconsistent. // But at least the current goroutine is running. if n < 1 { n = 1 } return n } func mcount() int32 { return int32(sched.mnext - sched.nmfreed) } var prof struct { signalLock uint32 hz int32 } func _System() { _System() } func _ExternalCode() { _ExternalCode() } func _LostExternalCode() { _LostExternalCode() } func _GC() { _GC() } func _LostSIGPROFDuringAtomic64() { _LostSIGPROFDuringAtomic64() } func _VDSO() { _VDSO() } var _SystemPC = funcPC(_System) var _ExternalCodePC = funcPC(_ExternalCode) var _LostExternalCodePC = funcPC(_LostExternalCode) var _GCPC = funcPC(_GC) var _LostSIGPROFDuringAtomic64PC = funcPC(_LostSIGPROFDuringAtomic64) // Called if we receive a SIGPROF signal. // Called by the signal handler, may run during STW. //go:nowritebarrierrec func sigprof(pc uintptr, gp *g, mp *m) { if prof.hz == 0 { return } // If mp.profilehz is 0, then profiling is not enabled for this thread. // We must check this to avoid a deadlock between setcpuprofilerate // and the call to cpuprof.add, below. if mp != nil && mp.profilehz == 0 { return } // Profiling runs concurrently with GC, so it must not allocate. // Set a trap in case the code does allocate. // Note that on windows, one thread takes profiles of all the // other threads, so mp is usually not getg().m. // In fact mp may not even be stopped. // See golang.org/issue/17165. getg().m.mallocing++ // Define that a "user g" is a user-created goroutine, and a "system g" // is one that is m->g0 or m->gsignal. // // We might be interrupted for profiling halfway through a // goroutine switch. The switch involves updating three (or four) values: // g, PC, SP, and (on arm) LR. The PC must be the last to be updated, // because once it gets updated the new g is running. // // When switching from a user g to a system g, LR is not considered live, // so the update only affects g, SP, and PC. Since PC must be last, there // the possible partial transitions in ordinary execution are (1) g alone is updated, // (2) both g and SP are updated, and (3) SP alone is updated. // If SP or g alone is updated, we can detect the partial transition by checking // whether the SP is within g's stack bounds. (We could also require that SP // be changed only after g, but the stack bounds check is needed by other // cases, so there is no need to impose an additional requirement.) // // There is one exceptional transition to a system g, not in ordinary execution. // When a signal arrives, the operating system starts the signal handler running // with an updated PC and SP. The g is updated last, at the beginning of the // handler. There are two reasons this is okay. First, until g is updated the // g and SP do not match, so the stack bounds check detects the partial transition. // Second, signal handlers currently run with signals disabled, so a profiling // signal cannot arrive during the handler. // // When switching from a system g to a user g, there are three possibilities. // // First, it may be that the g switch has no PC update, because the SP // either corresponds to a user g throughout (as in asmcgocall) // or because it has been arranged to look like a user g frame // (as in cgocallback). In this case, since the entire // transition is a g+SP update, a partial transition updating just one of // those will be detected by the stack bounds check. // // Second, when returning from a signal handler, the PC and SP updates // are performed by the operating system in an atomic update, so the g // update must be done before them. The stack bounds check detects // the partial transition here, and (again) signal handlers run with signals // disabled, so a profiling signal cannot arrive then anyway. // // Third, the common case: it may be that the switch updates g, SP, and PC // separately. If the PC is within any of the functions that does this, // we don't ask for a traceback. C.F. the function setsSP for more about this. // // There is another apparently viable approach, recorded here in case // the "PC within setsSP function" check turns out not to be usable. // It would be possible to delay the update of either g or SP until immediately // before the PC update instruction. Then, because of the stack bounds check, // the only problematic interrupt point is just before that PC update instruction, // and the sigprof handler can detect that instruction and simulate stepping past // it in order to reach a consistent state. On ARM, the update of g must be made // in two places (in R10 and also in a TLS slot), so the delayed update would // need to be the SP update. The sigprof handler must read the instruction at // the current PC and if it was the known instruction (for example, JMP BX or // MOV R2, PC), use that other register in place of the PC value. // The biggest drawback to this solution is that it requires that we can tell // whether it's safe to read from the memory pointed at by PC. // In a correct program, we can test PC == nil and otherwise read, // but if a profiling signal happens at the instant that a program executes // a bad jump (before the program manages to handle the resulting fault) // the profiling handler could fault trying to read nonexistent memory. // // To recap, there are no constraints on the assembly being used for the // transition. We simply require that g and SP match and that the PC is not // in gogo. traceback := true // If SIGPROF arrived while already fetching runtime callers // we can have trouble on older systems because the unwind // library calls dl_iterate_phdr which was not reentrant in // the past. alreadyInCallers checks for that. if gp == nil || alreadyInCallers() { traceback = false } var stk [maxCPUProfStack]uintptr n := 0 if traceback { var stklocs [maxCPUProfStack]location n = callers(0, stklocs[:]) // Issue 26595: the stack trace we've just collected is going // to include frames that we don't want to report in the CPU // profile, including signal handler frames. Here is what we // might typically see at the point of "callers" above for a // signal delivered to the application routine "interesting" // called by "main". // // 0: runtime.sigprof // 1: runtime.sighandler // 2: runtime.sigtrampgo // 3: runtime.sigtramp // 4: // 5: main.interesting_routine // 6: main.main // // To ensure a sane profile, walk through the frames in // "stklocs" until we find the "runtime.sigtramp" frame, then // report only those frames below the frame one down from // that. On systems that don't split stack, "sigtramp" can // do a sibling call to "sigtrampgo", so use "sigtrampgo" // if we don't find "sigtramp". If for some reason // neither "runtime.sigtramp" nor "runtime.sigtrampgo" is // present, don't make any changes. framesToDiscard := 0 for i := 0; i < n; i++ { if stklocs[i].function == "runtime.sigtrampgo" && i+2 < n { framesToDiscard = i + 2 } if stklocs[i].function == "runtime.sigtramp" && i+2 < n { framesToDiscard = i + 2 break } } n -= framesToDiscard for i := 0; i < n; i++ { stk[i] = stklocs[i+framesToDiscard].pc } } if n <= 0 { // Normal traceback is impossible or has failed. // Account it against abstract "System" or "GC". n = 2 stk[0] = pc if mp.preemptoff != "" { stk[1] = _GCPC + sys.PCQuantum } else { stk[1] = _SystemPC + sys.PCQuantum } } if prof.hz != 0 { cpuprof.add(gp, stk[:n]) } getg().m.mallocing-- } // Use global arrays rather than using up lots of stack space in the // signal handler. This is safe since while we are executing a SIGPROF // signal other SIGPROF signals are blocked. var nonprofGoStklocs [maxCPUProfStack]location var nonprofGoStk [maxCPUProfStack]uintptr // sigprofNonGo is called if we receive a SIGPROF signal on a non-Go thread, // and the signal handler collected a stack trace in sigprofCallers. // When this is called, sigprofCallersUse will be non-zero. // g is nil, and what we can do is very limited. //go:nosplit //go:nowritebarrierrec func sigprofNonGo(pc uintptr) { if prof.hz != 0 { n := callers(0, nonprofGoStklocs[:]) for i := 0; i < n; i++ { nonprofGoStk[i] = nonprofGoStklocs[i].pc } if n <= 0 { n = 2 nonprofGoStk[0] = pc nonprofGoStk[1] = _ExternalCodePC + sys.PCQuantum } cpuprof.addNonGo(nonprofGoStk[:n]) } } // sigprofNonGoPC is called when a profiling signal arrived on a // non-Go thread and we have a single PC value, not a stack trace. // g is nil, and what we can do is very limited. //go:nosplit //go:nowritebarrierrec func sigprofNonGoPC(pc uintptr) { if prof.hz != 0 { stk := []uintptr{ pc, _ExternalCodePC + sys.PCQuantum, } cpuprof.addNonGo(stk) } } // setcpuprofilerate sets the CPU profiling rate to hz times per second. // If hz <= 0, setcpuprofilerate turns off CPU profiling. func setcpuprofilerate(hz int32) { // Force sane arguments. if hz < 0 { hz = 0 } // Disable preemption, otherwise we can be rescheduled to another thread // that has profiling enabled. _g_ := getg() _g_.m.locks++ // Stop profiler on this thread so that it is safe to lock prof. // if a profiling signal came in while we had prof locked, // it would deadlock. setThreadCPUProfiler(0) for !atomic.Cas(&prof.signalLock, 0, 1) { osyield() } if prof.hz != hz { setProcessCPUProfiler(hz) prof.hz = hz } atomic.Store(&prof.signalLock, 0) lock(&sched.lock) sched.profilehz = hz unlock(&sched.lock) if hz != 0 { setThreadCPUProfiler(hz) } _g_.m.locks-- } // init initializes pp, which may be a freshly allocated p or a // previously destroyed p, and transitions it to status _Pgcstop. func (pp *p) init(id int32) { pp.id = id pp.status = _Pgcstop pp.sudogcache = pp.sudogbuf[:0] pp.deferpool = pp.deferpoolbuf[:0] pp.wbBuf.reset() if pp.mcache == nil { if id == 0 { if mcache0 == nil { throw("missing mcache?") } // Use the bootstrap mcache0. Only one P will get // mcache0: the one with ID 0. pp.mcache = mcache0 } else { pp.mcache = allocmcache() } } if raceenabled && pp.raceprocctx == 0 { if id == 0 { pp.raceprocctx = raceprocctx0 raceprocctx0 = 0 // bootstrap } else { pp.raceprocctx = raceproccreate() } } lockInit(&pp.timersLock, lockRankTimers) // This P may get timers when it starts running. Set the mask here // since the P may not go through pidleget (notably P 0 on startup). timerpMask.set(id) // Similarly, we may not go through pidleget before this P starts // running if it is P 0 on startup. idlepMask.clear(id) } // destroy releases all of the resources associated with pp and // transitions it to status _Pdead. // // sched.lock must be held and the world must be stopped. func (pp *p) destroy() { assertLockHeld(&sched.lock) assertWorldStopped() // Move all runnable goroutines to the global queue for pp.runqhead != pp.runqtail { // Pop from tail of local queue pp.runqtail-- gp := pp.runq[pp.runqtail%uint32(len(pp.runq))].ptr() // Push onto head of global queue globrunqputhead(gp) } if pp.runnext != 0 { globrunqputhead(pp.runnext.ptr()) pp.runnext = 0 } if len(pp.timers) > 0 { plocal := getg().m.p.ptr() // The world is stopped, but we acquire timersLock to // protect against sysmon calling timeSleepUntil. // This is the only case where we hold the timersLock of // more than one P, so there are no deadlock concerns. lock(&plocal.timersLock) lock(&pp.timersLock) moveTimers(plocal, pp.timers) pp.timers = nil pp.numTimers = 0 pp.adjustTimers = 0 pp.deletedTimers = 0 atomic.Store64(&pp.timer0When, 0) unlock(&pp.timersLock) unlock(&plocal.timersLock) } // Flush p's write barrier buffer. if gcphase != _GCoff { wbBufFlush1(pp) pp.gcw.dispose() } for i := range pp.sudogbuf { pp.sudogbuf[i] = nil } pp.sudogcache = pp.sudogbuf[:0] for i := range pp.deferpoolbuf { pp.deferpoolbuf[i] = nil } pp.deferpool = pp.deferpoolbuf[:0] systemstack(func() { for i := 0; i < pp.mspancache.len; i++ { // Safe to call since the world is stopped. mheap_.spanalloc.free(unsafe.Pointer(pp.mspancache.buf[i])) } pp.mspancache.len = 0 lock(&mheap_.lock) pp.pcache.flush(&mheap_.pages) unlock(&mheap_.lock) }) freemcache(pp.mcache) pp.mcache = nil gfpurge(pp) traceProcFree(pp) pp.gcAssistTime = 0 pp.status = _Pdead } // Change number of processors. // // sched.lock must be held, and the world must be stopped. // // gcworkbufs must not be being modified by either the GC or the write barrier // code, so the GC must not be running if the number of Ps actually changes. // // Returns list of Ps with local work, they need to be scheduled by the caller. func procresize(nprocs int32) *p { assertLockHeld(&sched.lock) assertWorldStopped() old := gomaxprocs if old < 0 || nprocs <= 0 { throw("procresize: invalid arg") } if trace.enabled { traceGomaxprocs(nprocs) } // update statistics now := nanotime() if sched.procresizetime != 0 { sched.totaltime += int64(old) * (now - sched.procresizetime) } sched.procresizetime = now maskWords := (nprocs + 31) / 32 // Grow allp if necessary. if nprocs > int32(len(allp)) { // Synchronize with retake, which could be running // concurrently since it doesn't run on a P. lock(&allpLock) if nprocs <= int32(cap(allp)) { allp = allp[:nprocs] } else { nallp := make([]*p, nprocs) // Copy everything up to allp's cap so we // never lose old allocated Ps. copy(nallp, allp[:cap(allp)]) allp = nallp } if maskWords <= int32(cap(idlepMask)) { idlepMask = idlepMask[:maskWords] timerpMask = timerpMask[:maskWords] } else { nidlepMask := make([]uint32, maskWords) // No need to copy beyond len, old Ps are irrelevant. copy(nidlepMask, idlepMask) idlepMask = nidlepMask ntimerpMask := make([]uint32, maskWords) copy(ntimerpMask, timerpMask) timerpMask = ntimerpMask } unlock(&allpLock) } // initialize new P's for i := old; i < nprocs; i++ { pp := allp[i] if pp == nil { pp = new(p) } pp.init(i) atomicstorep(unsafe.Pointer(&allp[i]), unsafe.Pointer(pp)) } _g_ := getg() if _g_.m.p != 0 && _g_.m.p.ptr().id < nprocs { // continue to use the current P _g_.m.p.ptr().status = _Prunning _g_.m.p.ptr().mcache.prepareForSweep() } else { // release the current P and acquire allp[0]. // // We must do this before destroying our current P // because p.destroy itself has write barriers, so we // need to do that from a valid P. if _g_.m.p != 0 { if trace.enabled { // Pretend that we were descheduled // and then scheduled again to keep // the trace sane. traceGoSched() traceProcStop(_g_.m.p.ptr()) } _g_.m.p.ptr().m = 0 } _g_.m.p = 0 p := allp[0] p.m = 0 p.status = _Pidle acquirep(p) if trace.enabled { traceGoStart() } } // g.m.p is now set, so we no longer need mcache0 for bootstrapping. mcache0 = nil // release resources from unused P's for i := nprocs; i < old; i++ { p := allp[i] p.destroy() // can't free P itself because it can be referenced by an M in syscall } // Trim allp. if int32(len(allp)) != nprocs { lock(&allpLock) allp = allp[:nprocs] idlepMask = idlepMask[:maskWords] timerpMask = timerpMask[:maskWords] unlock(&allpLock) } var runnablePs *p for i := nprocs - 1; i >= 0; i-- { p := allp[i] if _g_.m.p.ptr() == p { continue } p.status = _Pidle if runqempty(p) { pidleput(p) } else { p.m.set(mget()) p.link.set(runnablePs) runnablePs = p } } stealOrder.reset(uint32(nprocs)) var int32p *int32 = &gomaxprocs // make compiler check that gomaxprocs is an int32 atomic.Store((*uint32)(unsafe.Pointer(int32p)), uint32(nprocs)) return runnablePs } // Associate p and the current m. // // This function is allowed to have write barriers even if the caller // isn't because it immediately acquires _p_. // //go:yeswritebarrierrec func acquirep(_p_ *p) { // Do the part that isn't allowed to have write barriers. wirep(_p_) // Have p; write barriers now allowed. // Perform deferred mcache flush before this P can allocate // from a potentially stale mcache. _p_.mcache.prepareForSweep() if trace.enabled { traceProcStart() } } // wirep is the first step of acquirep, which actually associates the // current M to _p_. This is broken out so we can disallow write // barriers for this part, since we don't yet have a P. // //go:nowritebarrierrec //go:nosplit func wirep(_p_ *p) { _g_ := getg() if _g_.m.p != 0 { throw("wirep: already in go") } if _p_.m != 0 || _p_.status != _Pidle { id := int64(0) if _p_.m != 0 { id = _p_.m.ptr().id } print("wirep: p->m=", _p_.m, "(", id, ") p->status=", _p_.status, "\n") throw("wirep: invalid p state") } _g_.m.p.set(_p_) _p_.m.set(_g_.m) _p_.status = _Prunning } // Disassociate p and the current m. func releasep() *p { _g_ := getg() if _g_.m.p == 0 { throw("releasep: invalid arg") } _p_ := _g_.m.p.ptr() if _p_.m.ptr() != _g_.m || _p_.status != _Prunning { print("releasep: m=", _g_.m, " m->p=", _g_.m.p.ptr(), " p->m=", hex(_p_.m), " p->status=", _p_.status, "\n") throw("releasep: invalid p state") } if trace.enabled { traceProcStop(_g_.m.p.ptr()) } _g_.m.p = 0 _p_.m = 0 _p_.status = _Pidle return _p_ } func incidlelocked(v int32) { lock(&sched.lock) sched.nmidlelocked += v if v > 0 { checkdead() } unlock(&sched.lock) } // Check for deadlock situation. // The check is based on number of running M's, if 0 -> deadlock. // sched.lock must be held. func checkdead() { assertLockHeld(&sched.lock) // For -buildmode=c-shared or -buildmode=c-archive it's OK if // there are no running goroutines. The calling program is // assumed to be running. if islibrary || isarchive { return } // If we are dying because of a signal caught on an already idle thread, // freezetheworld will cause all running threads to block. // And runtime will essentially enter into deadlock state, // except that there is a thread that will call exit soon. if panicking > 0 { return } // If we are not running under cgo, but we have an extra M then account // for it. (It is possible to have an extra M on Windows without cgo to // accommodate callbacks created by syscall.NewCallback. See issue #6751 // for details.) var run0 int32 if !iscgo && cgoHasExtraM { mp := lockextra(true) haveExtraM := extraMCount > 0 unlockextra(mp) if haveExtraM { run0 = 1 } } run := mcount() - sched.nmidle - sched.nmidlelocked - sched.nmsys if run > run0 { return } if run < 0 { print("runtime: checkdead: nmidle=", sched.nmidle, " nmidlelocked=", sched.nmidlelocked, " mcount=", mcount(), " nmsys=", sched.nmsys, "\n") throw("checkdead: inconsistent counts") } grunning := 0 lock(&allglock) for i := 0; i < len(allgs); i++ { gp := allgs[i] if isSystemGoroutine(gp, false) { continue } s := readgstatus(gp) switch s &^ _Gscan { case _Gwaiting, _Gpreempted: grunning++ case _Grunnable, _Grunning, _Gsyscall: unlock(&allglock) print("runtime: checkdead: find g ", gp.goid, " in status ", s, "\n") throw("checkdead: runnable g") } } unlock(&allglock) if grunning == 0 { // possible if main goroutine calls runtime·Goexit() unlock(&sched.lock) // unlock so that GODEBUG=scheddetail=1 doesn't hang throw("no goroutines (main called runtime.Goexit) - deadlock!") } // Maybe jump time forward for playground. if faketime != 0 { when, _p_ := timeSleepUntil() if _p_ != nil { faketime = when for pp := &sched.pidle; *pp != 0; pp = &(*pp).ptr().link { if (*pp).ptr() == _p_ { *pp = _p_.link break } } mp := mget() if mp == nil { // There should always be a free M since // nothing is running. throw("checkdead: no m for timer") } mp.nextp.set(_p_) notewakeup(&mp.park) return } } // There are no goroutines running, so we can look at the P's. for _, _p_ := range allp { if len(_p_.timers) > 0 { return } } getg().m.throwing = -1 // do not dump full stacks unlock(&sched.lock) // unlock so that GODEBUG=scheddetail=1 doesn't hang throw("all goroutines are asleep - deadlock!") } // forcegcperiod is the maximum time in nanoseconds between garbage // collections. If we go this long without a garbage collection, one // is forced to run. // // This is a variable for testing purposes. It normally doesn't change. var forcegcperiod int64 = 2 * 60 * 1e9 // Always runs without a P, so write barriers are not allowed. // //go:nowritebarrierrec func sysmon() { lock(&sched.lock) sched.nmsys++ checkdead() unlock(&sched.lock) // For syscall_runtime_doAllThreadsSyscall, sysmon is // sufficiently up to participate in fixups. atomic.Store(&sched.sysmonStarting, 0) lasttrace := int64(0) idle := 0 // how many cycles in succession we had not wokeup somebody delay := uint32(0) for { if idle == 0 { // start with 20us sleep... delay = 20 } else if idle > 50 { // start doubling the sleep after 1ms... delay *= 2 } if delay > 10*1000 { // up to 10ms delay = 10 * 1000 } usleep(delay) mDoFixup() // sysmon should not enter deep sleep if schedtrace is enabled so that // it can print that information at the right time. // // It should also not enter deep sleep if there are any active P's so // that it can retake P's from syscalls, preempt long running G's, and // poll the network if all P's are busy for long stretches. // // It should wakeup from deep sleep if any P's become active either due // to exiting a syscall or waking up due to a timer expiring so that it // can resume performing those duties. If it wakes from a syscall it // resets idle and delay as a bet that since it had retaken a P from a // syscall before, it may need to do it again shortly after the // application starts work again. It does not reset idle when waking // from a timer to avoid adding system load to applications that spend // most of their time sleeping. now := nanotime() if debug.schedtrace <= 0 && (sched.gcwaiting != 0 || atomic.Load(&sched.npidle) == uint32(gomaxprocs)) { lock(&sched.lock) if atomic.Load(&sched.gcwaiting) != 0 || atomic.Load(&sched.npidle) == uint32(gomaxprocs) { syscallWake := false next, _ := timeSleepUntil() if next > now { atomic.Store(&sched.sysmonwait, 1) unlock(&sched.lock) // Make wake-up period small enough // for the sampling to be correct. sleep := forcegcperiod / 2 if next-now < sleep { sleep = next - now } shouldRelax := sleep >= osRelaxMinNS if shouldRelax { osRelax(true) } syscallWake = notetsleep(&sched.sysmonnote, sleep) mDoFixup() if shouldRelax { osRelax(false) } lock(&sched.lock) atomic.Store(&sched.sysmonwait, 0) noteclear(&sched.sysmonnote) } if syscallWake { idle = 0 delay = 20 } } unlock(&sched.lock) } lock(&sched.sysmonlock) // Update now in case we blocked on sysmonnote or spent a long time // blocked on schedlock or sysmonlock above. now = nanotime() // trigger libc interceptors if needed if *cgo_yield != nil { asmcgocall(*cgo_yield, nil) } // poll network if not polled for more than 10ms lastpoll := int64(atomic.Load64(&sched.lastpoll)) if netpollinited() && lastpoll != 0 && lastpoll+10*1000*1000 < now { atomic.Cas64(&sched.lastpoll, uint64(lastpoll), uint64(now)) list := netpoll(0) // non-blocking - returns list of goroutines if !list.empty() { // Need to decrement number of idle locked M's // (pretending that one more is running) before injectglist. // Otherwise it can lead to the following situation: // injectglist grabs all P's but before it starts M's to run the P's, // another M returns from syscall, finishes running its G, // observes that there is no work to do and no other running M's // and reports deadlock. incidlelocked(-1) injectglist(&list) incidlelocked(1) } } mDoFixup() if atomic.Load(&scavenge.sysmonWake) != 0 { // Kick the scavenger awake if someone requested it. wakeScavenger() } // retake P's blocked in syscalls // and preempt long running G's if retake(now) != 0 { idle = 0 } else { idle++ } // check if we need to force a GC if t := (gcTrigger{kind: gcTriggerTime, now: now}); t.test() && atomic.Load(&forcegc.idle) != 0 { lock(&forcegc.lock) forcegc.idle = 0 var list gList list.push(forcegc.g) injectglist(&list) unlock(&forcegc.lock) } if debug.schedtrace > 0 && lasttrace+int64(debug.schedtrace)*1000000 <= now { lasttrace = now schedtrace(debug.scheddetail > 0) } unlock(&sched.sysmonlock) } } type sysmontick struct { schedtick uint32 schedwhen int64 syscalltick uint32 syscallwhen int64 } // forcePreemptNS is the time slice given to a G before it is // preempted. const forcePreemptNS = 10 * 1000 * 1000 // 10ms func retake(now int64) uint32 { n := 0 // Prevent allp slice changes. This lock will be completely // uncontended unless we're already stopping the world. lock(&allpLock) // We can't use a range loop over allp because we may // temporarily drop the allpLock. Hence, we need to re-fetch // allp each time around the loop. for i := 0; i < len(allp); i++ { _p_ := allp[i] if _p_ == nil { // This can happen if procresize has grown // allp but not yet created new Ps. continue } pd := &_p_.sysmontick s := _p_.status sysretake := false if s == _Prunning || s == _Psyscall { // Preempt G if it's running for too long. t := int64(_p_.schedtick) if int64(pd.schedtick) != t { pd.schedtick = uint32(t) pd.schedwhen = now } else if pd.schedwhen+forcePreemptNS <= now { preemptone(_p_) // In case of syscall, preemptone() doesn't // work, because there is no M wired to P. sysretake = true } } if s == _Psyscall { // Retake P from syscall if it's there for more than 1 sysmon tick (at least 20us). t := int64(_p_.syscalltick) if !sysretake && int64(pd.syscalltick) != t { pd.syscalltick = uint32(t) pd.syscallwhen = now continue } // On the one hand we don't want to retake Ps if there is no other work to do, // but on the other hand we want to retake them eventually // because they can prevent the sysmon thread from deep sleep. if runqempty(_p_) && atomic.Load(&sched.nmspinning)+atomic.Load(&sched.npidle) > 0 && pd.syscallwhen+10*1000*1000 > now { continue } // Drop allpLock so we can take sched.lock. unlock(&allpLock) // Need to decrement number of idle locked M's // (pretending that one more is running) before the CAS. // Otherwise the M from which we retake can exit the syscall, // increment nmidle and report deadlock. incidlelocked(-1) if atomic.Cas(&_p_.status, s, _Pidle) { if trace.enabled { traceGoSysBlock(_p_) traceProcStop(_p_) } n++ _p_.syscalltick++ handoffp(_p_) } incidlelocked(1) lock(&allpLock) } } unlock(&allpLock) return uint32(n) } // Tell all goroutines that they have been preempted and they should stop. // This function is purely best-effort. It can fail to inform a goroutine if a // processor just started running it. // No locks need to be held. // Returns true if preemption request was issued to at least one goroutine. func preemptall() bool { res := false for _, _p_ := range allp { if _p_.status != _Prunning { continue } if preemptone(_p_) { res = true } } return res } // Tell the goroutine running on processor P to stop. // This function is purely best-effort. It can incorrectly fail to inform the // goroutine. It can send inform the wrong goroutine. Even if it informs the // correct goroutine, that goroutine might ignore the request if it is // simultaneously executing newstack. // No lock needs to be held. // Returns true if preemption request was issued. // The actual preemption will happen at some point in the future // and will be indicated by the gp->status no longer being // Grunning func preemptone(_p_ *p) bool { mp := _p_.m.ptr() if mp == nil || mp == getg().m { return false } gp := mp.curg if gp == nil || gp == mp.g0 { return false } gp.preempt = true // At this point the gc implementation sets gp.stackguard0 to // a value that causes the goroutine to suspend itself. // gccgo has no support for this, and it's hard to support. // The split stack code reads a value from its TCB. // We have no way to set a value in the TCB of a different thread. // And, of course, not all systems support split stack anyhow. // Checking the field in the g is expensive, since it requires // loading the g from TLS. The best mechanism is likely to be // setting a global variable and figuring out a way to efficiently // check that global variable. // // For now we check gp.preempt in schedule, mallocgc, selectgo, // and a few other places, which is at least better than doing // nothing at all. // Request an async preemption of this P. if preemptMSupported && debug.asyncpreemptoff == 0 { _p_.preempt = true preemptM(mp) } return true } var starttime int64 func schedtrace(detailed bool) { now := nanotime() if starttime == 0 { starttime = now } lock(&sched.lock) print("SCHED ", (now-starttime)/1e6, "ms: gomaxprocs=", gomaxprocs, " idleprocs=", sched.npidle, " threads=", mcount(), " spinningthreads=", sched.nmspinning, " idlethreads=", sched.nmidle, " runqueue=", sched.runqsize) if detailed { print(" gcwaiting=", sched.gcwaiting, " nmidlelocked=", sched.nmidlelocked, " stopwait=", sched.stopwait, " sysmonwait=", sched.sysmonwait, "\n") } // We must be careful while reading data from P's, M's and G's. // Even if we hold schedlock, most data can be changed concurrently. // E.g. (p->m ? p->m->id : -1) can crash if p->m changes from non-nil to nil. for i, _p_ := range allp { mp := _p_.m.ptr() h := atomic.Load(&_p_.runqhead) t := atomic.Load(&_p_.runqtail) if detailed { id := int64(-1) if mp != nil { id = mp.id } print(" P", i, ": status=", _p_.status, " schedtick=", _p_.schedtick, " syscalltick=", _p_.syscalltick, " m=", id, " runqsize=", t-h, " gfreecnt=", _p_.gFree.n, " timerslen=", len(_p_.timers), "\n") } else { // In non-detailed mode format lengths of per-P run queues as: // [len1 len2 len3 len4] print(" ") if i == 0 { print("[") } print(t - h) if i == len(allp)-1 { print("]\n") } } } if !detailed { unlock(&sched.lock) return } for mp := allm; mp != nil; mp = mp.alllink { _p_ := mp.p.ptr() gp := mp.curg lockedg := mp.lockedg.ptr() id1 := int32(-1) if _p_ != nil { id1 = _p_.id } id2 := int64(-1) if gp != nil { id2 = gp.goid } id3 := int64(-1) if lockedg != nil { id3 = lockedg.goid } print(" M", mp.id, ": p=", id1, " curg=", id2, " mallocing=", mp.mallocing, " throwing=", mp.throwing, " preemptoff=", mp.preemptoff, ""+" locks=", mp.locks, " dying=", mp.dying, " spinning=", mp.spinning, " blocked=", mp.blocked, " lockedg=", id3, "\n") } lock(&allglock) for gi := 0; gi < len(allgs); gi++ { gp := allgs[gi] mp := gp.m lockedm := gp.lockedm.ptr() id1 := int64(-1) if mp != nil { id1 = mp.id } id2 := int64(-1) if lockedm != nil { id2 = lockedm.id } print(" G", gp.goid, ": status=", readgstatus(gp), "(", gp.waitreason.String(), ") m=", id1, " lockedm=", id2, "\n") } unlock(&allglock) unlock(&sched.lock) } // schedEnableUser enables or disables the scheduling of user // goroutines. // // This does not stop already running user goroutines, so the caller // should first stop the world when disabling user goroutines. func schedEnableUser(enable bool) { lock(&sched.lock) if sched.disable.user == !enable { unlock(&sched.lock) return } sched.disable.user = !enable if enable { n := sched.disable.n sched.disable.n = 0 globrunqputbatch(&sched.disable.runnable, n) unlock(&sched.lock) for ; n != 0 && sched.npidle != 0; n-- { startm(nil, false) } } else { unlock(&sched.lock) } } // schedEnabled reports whether gp should be scheduled. It returns // false is scheduling of gp is disabled. // // sched.lock must be held. func schedEnabled(gp *g) bool { assertLockHeld(&sched.lock) if sched.disable.user { return isSystemGoroutine(gp, true) } return true } // Put mp on midle list. // sched.lock must be held. // May run during STW, so write barriers are not allowed. //go:nowritebarrierrec func mput(mp *m) { assertLockHeld(&sched.lock) mp.schedlink = sched.midle sched.midle.set(mp) sched.nmidle++ checkdead() } // Try to get an m from midle list. // sched.lock must be held. // May run during STW, so write barriers are not allowed. //go:nowritebarrierrec func mget() *m { assertLockHeld(&sched.lock) mp := sched.midle.ptr() if mp != nil { sched.midle = mp.schedlink sched.nmidle-- } return mp } // Put gp on the global runnable queue. // sched.lock must be held. // May run during STW, so write barriers are not allowed. //go:nowritebarrierrec func globrunqput(gp *g) { assertLockHeld(&sched.lock) sched.runq.pushBack(gp) sched.runqsize++ } // Put gp at the head of the global runnable queue. // sched.lock must be held. // May run during STW, so write barriers are not allowed. //go:nowritebarrierrec func globrunqputhead(gp *g) { assertLockHeld(&sched.lock) sched.runq.push(gp) sched.runqsize++ } // Put a batch of runnable goroutines on the global runnable queue. // This clears *batch. // sched.lock must be held. func globrunqputbatch(batch *gQueue, n int32) { assertLockHeld(&sched.lock) sched.runq.pushBackAll(*batch) sched.runqsize += n *batch = gQueue{} } // Try get a batch of G's from the global runnable queue. // sched.lock must be held. func globrunqget(_p_ *p, max int32) *g { assertLockHeld(&sched.lock) if sched.runqsize == 0 { return nil } n := sched.runqsize/gomaxprocs + 1 if n > sched.runqsize { n = sched.runqsize } if max > 0 && n > max { n = max } if n > int32(len(_p_.runq))/2 { n = int32(len(_p_.runq)) / 2 } sched.runqsize -= n gp := sched.runq.pop() n-- for ; n > 0; n-- { gp1 := sched.runq.pop() runqput(_p_, gp1, false) } return gp } // pMask is an atomic bitstring with one bit per P. type pMask []uint32 // read returns true if P id's bit is set. func (p pMask) read(id uint32) bool { word := id / 32 mask := uint32(1) << (id % 32) return (atomic.Load(&p[word]) & mask) != 0 } // set sets P id's bit. func (p pMask) set(id int32) { word := id / 32 mask := uint32(1) << (id % 32) atomic.Or(&p[word], mask) } // clear clears P id's bit. func (p pMask) clear(id int32) { word := id / 32 mask := uint32(1) << (id % 32) atomic.And(&p[word], ^mask) } // updateTimerPMask clears pp's timer mask if it has no timers on its heap. // // Ideally, the timer mask would be kept immediately consistent on any timer // operations. Unfortunately, updating a shared global data structure in the // timer hot path adds too much overhead in applications frequently switching // between no timers and some timers. // // As a compromise, the timer mask is updated only on pidleget / pidleput. A // running P (returned by pidleget) may add a timer at any time, so its mask // must be set. An idle P (passed to pidleput) cannot add new timers while // idle, so if it has no timers at that time, its mask may be cleared. // // Thus, we get the following effects on timer-stealing in findrunnable: // // * Idle Ps with no timers when they go idle are never checked in findrunnable // (for work- or timer-stealing; this is the ideal case). // * Running Ps must always be checked. // * Idle Ps whose timers are stolen must continue to be checked until they run // again, even after timer expiration. // // When the P starts running again, the mask should be set, as a timer may be // added at any time. // // TODO(prattmic): Additional targeted updates may improve the above cases. // e.g., updating the mask when stealing a timer. func updateTimerPMask(pp *p) { if atomic.Load(&pp.numTimers) > 0 { return } // Looks like there are no timers, however another P may transiently // decrement numTimers when handling a timerModified timer in // checkTimers. We must take timersLock to serialize with these changes. lock(&pp.timersLock) if atomic.Load(&pp.numTimers) == 0 { timerpMask.clear(pp.id) } unlock(&pp.timersLock) } // pidleput puts p to on the _Pidle list. // // This releases ownership of p. Once sched.lock is released it is no longer // safe to use p. // // sched.lock must be held. // // May run during STW, so write barriers are not allowed. //go:nowritebarrierrec func pidleput(_p_ *p) { assertLockHeld(&sched.lock) if !runqempty(_p_) { throw("pidleput: P has non-empty run queue") } updateTimerPMask(_p_) // clear if there are no timers. idlepMask.set(_p_.id) _p_.link = sched.pidle sched.pidle.set(_p_) atomic.Xadd(&sched.npidle, 1) // TODO: fast atomic } // pidleget tries to get a p from the _Pidle list, acquiring ownership. // // sched.lock must be held. // // May run during STW, so write barriers are not allowed. //go:nowritebarrierrec func pidleget() *p { assertLockHeld(&sched.lock) _p_ := sched.pidle.ptr() if _p_ != nil { // Timer may get added at any time now. timerpMask.set(_p_.id) idlepMask.clear(_p_.id) sched.pidle = _p_.link atomic.Xadd(&sched.npidle, -1) // TODO: fast atomic } return _p_ } // runqempty reports whether _p_ has no Gs on its local run queue. // It never returns true spuriously. func runqempty(_p_ *p) bool { // Defend against a race where 1) _p_ has G1 in runqnext but runqhead == runqtail, // 2) runqput on _p_ kicks G1 to the runq, 3) runqget on _p_ empties runqnext. // Simply observing that runqhead == runqtail and then observing that runqnext == nil // does not mean the queue is empty. for { head := atomic.Load(&_p_.runqhead) tail := atomic.Load(&_p_.runqtail) runnext := atomic.Loaduintptr((*uintptr)(unsafe.Pointer(&_p_.runnext))) if tail == atomic.Load(&_p_.runqtail) { return head == tail && runnext == 0 } } } // To shake out latent assumptions about scheduling order, // we introduce some randomness into scheduling decisions // when running with the race detector. // The need for this was made obvious by changing the // (deterministic) scheduling order in Go 1.5 and breaking // many poorly-written tests. // With the randomness here, as long as the tests pass // consistently with -race, they shouldn't have latent scheduling // assumptions. const randomizeScheduler = raceenabled // runqput tries to put g on the local runnable queue. // If next is false, runqput adds g to the tail of the runnable queue. // If next is true, runqput puts g in the _p_.runnext slot. // If the run queue is full, runnext puts g on the global queue. // Executed only by the owner P. func runqput(_p_ *p, gp *g, next bool) { if randomizeScheduler && next && fastrand()%2 == 0 { next = false } if next { retryNext: oldnext := _p_.runnext if !_p_.runnext.cas(oldnext, guintptr(unsafe.Pointer(gp))) { goto retryNext } if oldnext == 0 { return } // Kick the old runnext out to the regular run queue. gp = oldnext.ptr() } retry: h := atomic.LoadAcq(&_p_.runqhead) // load-acquire, synchronize with consumers t := _p_.runqtail if t-h < uint32(len(_p_.runq)) { _p_.runq[t%uint32(len(_p_.runq))].set(gp) atomic.StoreRel(&_p_.runqtail, t+1) // store-release, makes the item available for consumption return } if runqputslow(_p_, gp, h, t) { return } // the queue is not full, now the put above must succeed goto retry } // Put g and a batch of work from local runnable queue on global queue. // Executed only by the owner P. func runqputslow(_p_ *p, gp *g, h, t uint32) bool { var batch [len(_p_.runq)/2 + 1]*g // First, grab a batch from local queue. n := t - h n = n / 2 if n != uint32(len(_p_.runq)/2) { throw("runqputslow: queue is not full") } for i := uint32(0); i < n; i++ { batch[i] = _p_.runq[(h+i)%uint32(len(_p_.runq))].ptr() } if !atomic.CasRel(&_p_.runqhead, h, h+n) { // cas-release, commits consume return false } batch[n] = gp if randomizeScheduler { for i := uint32(1); i <= n; i++ { j := fastrandn(i + 1) batch[i], batch[j] = batch[j], batch[i] } } // Link the goroutines. for i := uint32(0); i < n; i++ { batch[i].schedlink.set(batch[i+1]) } var q gQueue q.head.set(batch[0]) q.tail.set(batch[n]) // Now put the batch on global queue. lock(&sched.lock) globrunqputbatch(&q, int32(n+1)) unlock(&sched.lock) return true } // runqputbatch tries to put all the G's on q on the local runnable queue. // If the queue is full, they are put on the global queue; in that case // this will temporarily acquire the scheduler lock. // Executed only by the owner P. func runqputbatch(pp *p, q *gQueue, qsize int) { h := atomic.LoadAcq(&pp.runqhead) t := pp.runqtail n := uint32(0) for !q.empty() && t-h < uint32(len(pp.runq)) { gp := q.pop() pp.runq[t%uint32(len(pp.runq))].set(gp) t++ n++ } qsize -= int(n) if randomizeScheduler { off := func(o uint32) uint32 { return (pp.runqtail + o) % uint32(len(pp.runq)) } for i := uint32(1); i < n; i++ { j := fastrandn(i + 1) pp.runq[off(i)], pp.runq[off(j)] = pp.runq[off(j)], pp.runq[off(i)] } } atomic.StoreRel(&pp.runqtail, t) if !q.empty() { lock(&sched.lock) globrunqputbatch(q, int32(qsize)) unlock(&sched.lock) } } // Get g from local runnable queue. // If inheritTime is true, gp should inherit the remaining time in the // current time slice. Otherwise, it should start a new time slice. // Executed only by the owner P. func runqget(_p_ *p) (gp *g, inheritTime bool) { // If there's a runnext, it's the next G to run. for { next := _p_.runnext if next == 0 { break } if _p_.runnext.cas(next, 0) { return next.ptr(), true } } for { h := atomic.LoadAcq(&_p_.runqhead) // load-acquire, synchronize with other consumers t := _p_.runqtail if t == h { return nil, false } gp := _p_.runq[h%uint32(len(_p_.runq))].ptr() if atomic.CasRel(&_p_.runqhead, h, h+1) { // cas-release, commits consume return gp, false } } } // Grabs a batch of goroutines from _p_'s runnable queue into batch. // Batch is a ring buffer starting at batchHead. // Returns number of grabbed goroutines. // Can be executed by any P. func runqgrab(_p_ *p, batch *[256]guintptr, batchHead uint32, stealRunNextG bool) uint32 { for { h := atomic.LoadAcq(&_p_.runqhead) // load-acquire, synchronize with other consumers t := atomic.LoadAcq(&_p_.runqtail) // load-acquire, synchronize with the producer n := t - h n = n - n/2 if n == 0 { if stealRunNextG { // Try to steal from _p_.runnext. if next := _p_.runnext; next != 0 { if _p_.status == _Prunning { // Sleep to ensure that _p_ isn't about to run the g // we are about to steal. // The important use case here is when the g running // on _p_ ready()s another g and then almost // immediately blocks. Instead of stealing runnext // in this window, back off to give _p_ a chance to // schedule runnext. This will avoid thrashing gs // between different Ps. // A sync chan send/recv takes ~50ns as of time of // writing, so 3us gives ~50x overshoot. if GOOS != "windows" { usleep(3) } else { // On windows system timer granularity is // 1-15ms, which is way too much for this // optimization. So just yield. osyield() } } if !_p_.runnext.cas(next, 0) { continue } batch[batchHead%uint32(len(batch))] = next return 1 } } return 0 } if n > uint32(len(_p_.runq)/2) { // read inconsistent h and t continue } for i := uint32(0); i < n; i++ { g := _p_.runq[(h+i)%uint32(len(_p_.runq))] batch[(batchHead+i)%uint32(len(batch))] = g } if atomic.CasRel(&_p_.runqhead, h, h+n) { // cas-release, commits consume return n } } } // Steal half of elements from local runnable queue of p2 // and put onto local runnable queue of p. // Returns one of the stolen elements (or nil if failed). func runqsteal(_p_, p2 *p, stealRunNextG bool) *g { t := _p_.runqtail n := runqgrab(p2, &_p_.runq, t, stealRunNextG) if n == 0 { return nil } n-- gp := _p_.runq[(t+n)%uint32(len(_p_.runq))].ptr() if n == 0 { return gp } h := atomic.LoadAcq(&_p_.runqhead) // load-acquire, synchronize with consumers if t-h+n >= uint32(len(_p_.runq)) { throw("runqsteal: runq overflow") } atomic.StoreRel(&_p_.runqtail, t+n) // store-release, makes the item available for consumption return gp } // A gQueue is a dequeue of Gs linked through g.schedlink. A G can only // be on one gQueue or gList at a time. type gQueue struct { head guintptr tail guintptr } // empty reports whether q is empty. func (q *gQueue) empty() bool { return q.head == 0 } // push adds gp to the head of q. func (q *gQueue) push(gp *g) { gp.schedlink = q.head q.head.set(gp) if q.tail == 0 { q.tail.set(gp) } } // pushBack adds gp to the tail of q. func (q *gQueue) pushBack(gp *g) { gp.schedlink = 0 if q.tail != 0 { q.tail.ptr().schedlink.set(gp) } else { q.head.set(gp) } q.tail.set(gp) } // pushBackAll adds all Gs in l2 to the tail of q. After this q2 must // not be used. func (q *gQueue) pushBackAll(q2 gQueue) { if q2.tail == 0 { return } q2.tail.ptr().schedlink = 0 if q.tail != 0 { q.tail.ptr().schedlink = q2.head } else { q.head = q2.head } q.tail = q2.tail } // pop removes and returns the head of queue q. It returns nil if // q is empty. func (q *gQueue) pop() *g { gp := q.head.ptr() if gp != nil { q.head = gp.schedlink if q.head == 0 { q.tail = 0 } } return gp } // popList takes all Gs in q and returns them as a gList. func (q *gQueue) popList() gList { stack := gList{q.head} *q = gQueue{} return stack } // A gList is a list of Gs linked through g.schedlink. A G can only be // on one gQueue or gList at a time. type gList struct { head guintptr } // empty reports whether l is empty. func (l *gList) empty() bool { return l.head == 0 } // push adds gp to the head of l. func (l *gList) push(gp *g) { gp.schedlink = l.head l.head.set(gp) } // pushAll prepends all Gs in q to l. func (l *gList) pushAll(q gQueue) { if !q.empty() { q.tail.ptr().schedlink = l.head l.head = q.head } } // pop removes and returns the head of l. If l is empty, it returns nil. func (l *gList) pop() *g { gp := l.head.ptr() if gp != nil { l.head = gp.schedlink } return gp } //go:linkname setMaxThreads runtime_1debug.setMaxThreads func setMaxThreads(in int) (out int) { lock(&sched.lock) out = int(sched.maxmcount) if in > 0x7fffffff { // MaxInt32 sched.maxmcount = 0x7fffffff } else { sched.maxmcount = int32(in) } checkmcount() unlock(&sched.lock) return } func haveexperiment(name string) bool { // The gofrontend does not support experiments. return false } //go:nosplit func procPin() int { _g_ := getg() mp := _g_.m mp.locks++ return int(mp.p.ptr().id) } //go:nosplit func procUnpin() { _g_ := getg() _g_.m.locks-- } //go:linkname sync_runtime_procPin sync.runtime__procPin //go:nosplit func sync_runtime_procPin() int { return procPin() } //go:linkname sync_runtime_procUnpin sync.runtime__procUnpin //go:nosplit func sync_runtime_procUnpin() { procUnpin() } //go:linkname sync_atomic_runtime_procPin sync_1atomic.runtime__procPin //go:nosplit func sync_atomic_runtime_procPin() int { return procPin() } //go:linkname sync_atomic_runtime_procUnpin sync_1atomic.runtime__procUnpin //go:nosplit func sync_atomic_runtime_procUnpin() { procUnpin() } // Active spinning for sync.Mutex. //go:linkname sync_runtime_canSpin sync.runtime__canSpin //go:nosplit func sync_runtime_canSpin(i int) bool { // sync.Mutex is cooperative, so we are conservative with spinning. // Spin only few times and only if running on a multicore machine and // GOMAXPROCS>1 and there is at least one other running P and local runq is empty. // As opposed to runtime mutex we don't do passive spinning here, // because there can be work on global runq or on other Ps. if i >= active_spin || ncpu <= 1 || gomaxprocs <= int32(sched.npidle+sched.nmspinning)+1 { return false } if p := getg().m.p.ptr(); !runqempty(p) { return false } return true } //go:linkname sync_runtime_doSpin sync.runtime__doSpin //go:nosplit func sync_runtime_doSpin() { procyield(active_spin_cnt) } var stealOrder randomOrder // randomOrder/randomEnum are helper types for randomized work stealing. // They allow to enumerate all Ps in different pseudo-random orders without repetitions. // The algorithm is based on the fact that if we have X such that X and GOMAXPROCS // are coprime, then a sequences of (i + X) % GOMAXPROCS gives the required enumeration. type randomOrder struct { count uint32 coprimes []uint32 } type randomEnum struct { i uint32 count uint32 pos uint32 inc uint32 } func (ord *randomOrder) reset(count uint32) { ord.count = count ord.coprimes = ord.coprimes[:0] for i := uint32(1); i <= count; i++ { if gcd(i, count) == 1 { ord.coprimes = append(ord.coprimes, i) } } } func (ord *randomOrder) start(i uint32) randomEnum { return randomEnum{ count: ord.count, pos: i % ord.count, inc: ord.coprimes[i%uint32(len(ord.coprimes))], } } func (enum *randomEnum) done() bool { return enum.i == enum.count } func (enum *randomEnum) next() { enum.i++ enum.pos = (enum.pos + enum.inc) % enum.count } func (enum *randomEnum) position() uint32 { return enum.pos } func gcd(a, b uint32) uint32 { for b != 0 { a, b = b, a%b } return a } // inittrace stores statistics for init functions which are // updated by malloc and newproc when active is true. var inittrace tracestat type tracestat struct { active bool // init tracing activation status id int64 // init go routine id allocs uint64 // heap allocations bytes uint64 // heap allocated bytes }