[[!tag standards]] # summary minor opcode allocation | 28.30 |31| name | | ------ |--| --------- | | 00 |Rc| ternaryi | | 001 |Rc| ternary | | 010 |Rc| bitmask | | 011 |Rc| gf* | | 101 |1 | ternaryv | | 101 |0 | ternarycr | | 110 |1 | 1/2-op | | 111 |Rc| reserved | 1-op and variants | dest | src1 | subop | op | | ---- | ---- | ----- | -------- | | RT | RA | .. | bmatflip | 2-op and variants | dest | src1 | src2 | subop | op | | ---- | ---- | ---- | ----- | -------- | | RT | RA | RB | or | bmatflip | | RT | RA | RB | xor | bmatflip | | RT | RA | RB | bdep | dep/ext | | RT | RA | RB | bext | dep/ext | | RT | RA | RB | | grev | | RT | RA | RB | | gorc | | RT | RA | RB | shuf | shuffle | | RT | RA | RB | unshuf| shuffle | | RT | RA | RB | width | xperm | | RT | RA | RB | type | minmax | | RT | RA | RB | | | | RT | RA | RB | | | | RT | RA | RB | | | 3 ops * bitmask set/extract * ternary bitops * GF | 0.5|6.10|11.15|16.20|21..25 | 26....30 |31| name | | -- | -- | --- | --- | ----- | -------- |--| ------ | | NN | RT | RA | RB | RC | mode 001 |Rc| ternary | | NN | RT | RA | RB | im0-4 | im5-7 00 |Rc| ternaryi | | NN | RS | RA | RB | deg | 00 011 |Rc| gfmul | | NN | RS | RA | RB | deg | 01 011 |Rc| gfadd | | NN | RT | RA | RB | deg | 10 011 |Rc| gfinv | | NN | RS | RA | RB | deg | 11 011 |Rc| gf rsvd | | 0.5|6.10|11.15| 16.23 |24.27 | 28.30 |31| name | | -- | -- | --- | ----- | ---- | ----- |--| ------ | | NN | RT | RA | imm | mask | 101 |1 | ternaryv | | 0.5|6.8 | 9.11|12.14|15|16.23|24.27 | 28.30|31| name | | -- | -- | --- | --- |- |-----|----- | -----|--| -------| | NN | BA | BB | BC |0 |imm | mask | 101 |0 | ternarycr | ops | 0.5|6.10|11.15|16.20| 21.22 | 23 | 24....30 |31| name | | -- | -- | --- | --- | ----- | -- | -------- |--| ---- | | NN | RA | RB | | | 0 | 0000 110 |Rc| rsvd | | NN | RA | RB | RC | itype | 1 | 0000 110 |Rc| xperm | | NN | RA | RB | RC | itype | 0 | 0100 110 |Rc| minmax | | NN | RA | RB | | | 1 | 0100 110 |Rc| rsvd | | NN | RA | RB | sh | itype | SH | 1000 110 |Rc| bmopsi | | NN | RA | RB | | | | 1100 110 |Rc| rsvd | | NN | RA | RB | | | 0 | 0001 110 |Rc| rsvd | | NN | RA | RB | | | 0 | 0101 110 |Rc| rsvd | | NN | RA | RB | RC | 00 | 0 | 0010 110 |Rc| gorc | | NN | RA | RB | sh | 00 | SH | 1010 110 |Rc| gorci | | NN | RA | RB | RC | 00 | 0 | 0110 110 |Rc| gorcw | | NN | RA | RB | sh | 00 | 0 | 1110 110 |Rc| gorcwi | | NN | RA | RB | RC | 00 | 1 | 1110 110 |Rc| bmator | | NN | RA | RB | RC | 01 | 0 | 0010 110 |Rc| grev | | NN | RA | RB | sh | 01 | SH | 1010 110 |Rc| grevi | | NN | RA | RB | RC | 01 | 0 | 0110 110 |Rc| grevw | | NN | RA | RB | sh | 01 | 0 | 1110 110 |Rc| grevwi | | NN | RA | RB | RC | 01 | 1 | 1110 110 |Rc| bmatxor | | NN | RA | RB | RC | 10 | 0 | 0010 110 |Rc| shfl | | NN | RA | RB | sh | 10 | SH | 1010 110 |Rc| shfli | | NN | RA | RB | RC | 10 | 0 | 0110 110 |Rc| shflw | | NN | RA | RB | RC | 10 | 0 | 1110 110 |Rc| bdep | | NN | RA | RB | RC | 10 | 1 | 1110 110 |Rc| bext | | NN | RA | RB | | 11 | | 1110 110 |Rc| rsvd | | NN | RA | RB | | | | NN11 110 |Rc| rsvd | # bit to byte permute similar to matrix permute in RV bitmanip, which has XOR and OR variants do j = 0 to 7 do k = 0 to 7 b = VSR[VRB+32].dword[i].byte[k].bit[j] VSR[VRT+32].dword[i].byte[j].bit[k] = b # vector bit deposit vpdepd VRT,VRA,VRB, identical to RV bitmamip bdep do while(m < 64) if VSR[VRB+32].dword[i].bit[63-m]=1 then do result = VSR[VRA+32].dword[i].bit[63-k] VSR[VRT+32].dword[i].bit[63-m] = result k = k + 1 m = m + 1 ``` uint_xlen_t bdep(uint_xlen_t RA, uint_xlen_t RB) { uint_xlen_t r = 0; for (int i = 0, j = 0; i < XLEN; i++) if ((RB >> i) & 1) { if ((RA >> j) & 1) r |= uint_xlen_t(1) << i; j++; } return r; } ``` # vector bit extract other way round: identical to RV bext ``` uint_xlen_t bext(uint_xlen_t RA, uint_xlen_t RB) { uint_xlen_t r = 0; for (int i = 0, j = 0; i < XLEN; i++) if ((RB >> i) & 1) { if ((RA >> i) & 1) r |= uint_xlen_t(1) << j; j++; } return r; } ``` # int min/max signed and unsigned min/max for integer. this is sort-of partly synthesiseable in [[sv/svp64]] with pred-result as long as the dest reg is one of the sources, but not both signed and unsigned. when the dest is also one of the srces and the mv fails due to the CR bittest failing this will only overwrite the dest where the src is greater (or less). signed/unsigned min/max gives more flexibility. # ternary bitops Similar to FPGA LUTs: for every bit perform a lookup into a table using an 8bit immediate, or in another register | 0.5|6.10|11.15|16.20| 21..25| 26..30 |31| | -- | -- | --- | --- | ----- | -------- |--| | NN | RT | RA | RB | im0-4 | im5-7 00 |Rc| for i in range(64): idx = RT[i] << 2 | RA[i] << 1 | RB[i] RT[i] = (imm & (1<> shamt); } ``` # grev based on RV bitmanip ``` uint64_t grev64(uint64_t RA, uint64_t RB) { uint64_t x = RA; int shamt = RB & 63; if (shamt & 1) x = ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1); if (shamt & 2) x = ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2); if (shamt & 4) x = ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4); if (shamt & 8) x = ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8); if (shamt & 16) x = ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16); if (shamt & 32) x = ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32); return x; } ``` # shuffle / unshuffle based on RV bitmanip ``` uint32_t shfl32(uint32_t RA, uint32_t RB) { uint32_t x = RA; int shamt = RB & 15; if (shamt & 8) x = shuffle32_stage(x, 0x00ff0000, 0x0000ff00, 8); if (shamt & 4) x = shuffle32_stage(x, 0x0f000f00, 0x00f000f0, 4); if (shamt & 2) x = shuffle32_stage(x, 0x30303030, 0x0c0c0c0c, 2); if (shamt & 1) x = shuffle32_stage(x, 0x44444444, 0x22222222, 1); return x; } uint32_t unshfl32(uint32_t RA, uint32_t RB) { uint32_t x = RA; int shamt = RB & 15; if (shamt & 1) x = shuffle32_stage(x, 0x44444444, 0x22222222, 1); if (shamt & 2) x = shuffle32_stage(x, 0x30303030, 0x0c0c0c0c, 2); if (shamt & 4) x = shuffle32_stage(x, 0x0f000f00, 0x00f000f0, 4); if (shamt & 8) x = shuffle32_stage(x, 0x00ff0000, 0x0000ff00, 8); return x; } uint64_t shuffle64_stage(uint64_t src, uint64_t maskL, uint64_t maskR, int N) { uint64_t x = src & ~(maskL | maskR); x |= ((src << N) & maskL) | ((src >> N) & maskR); return x; } uint64_t shfl64(uint64_t RA, uint64_t RB) { uint64_t x = RA; int shamt = RB & 31; if (shamt & 16) x = shuffle64_stage(x, 0x0000ffff00000000LL, 0x00000000ffff0000LL, 16); if (shamt & 8) x = shuffle64_stage(x, 0x00ff000000ff0000LL, 0x0000ff000000ff00LL, 8); if (shamt & 4) x = shuffle64_stage(x, 0x0f000f000f000f00LL, 0x00f000f000f000f0LL, 4); if (shamt & 2) x = shuffle64_stage(x, 0x3030303030303030LL, 0x0c0c0c0c0c0c0c0cLL, 2); if (shamt & 1) x = shuffle64_stage(x, 0x4444444444444444LL, 0x2222222222222222LL, 1); return x; } uint64_t unshfl64(uint64_t RA, uint64_t RB) { uint64_t x = RA; int shamt = RB & 31; if (shamt & 1) x = shuffle64_stage(x, 0x4444444444444444LL, 0x2222222222222222LL, 1); if (shamt & 2) x = shuffle64_stage(x, 0x3030303030303030LL, 0x0c0c0c0c0c0c0c0cLL, 2); if (shamt & 4) x = shuffle64_stage(x, 0x0f000f000f000f00LL, 0x00f000f000f000f0LL, 4); if (shamt & 8) x = shuffle64_stage(x, 0x00ff000000ff0000LL, 0x0000ff000000ff00LL, 8); if (shamt & 16) x = shuffle64_stage(x, 0x0000ffff00000000LL, 0x00000000ffff0000LL, 16); return x; } ``` # xperm based on RV bitmanip ``` uint_xlen_t xperm(uint_xlen_t RA, uint_xlen_t RB, int sz_log2) { uint_xlen_t r = 0; uint_xlen_t sz = 1LL << sz_log2; uint_xlen_t mask = (1LL << sz) - 1; for (int i = 0; i < XLEN; i += sz) { uint_xlen_t pos = ((RB >> i) & mask) << sz_log2; if (pos < XLEN) r |= ((RA >> pos) & mask) << i; } return r; } uint_xlen_t xperm_n (uint_xlen_t RA, uint_xlen_t RB) { return xperm(RA, RB, 2); } uint_xlen_t xperm_b (uint_xlen_t RA, uint_xlen_t RB) { return xperm(RA, RB, 3); } uint_xlen_t xperm_h (uint_xlen_t RA, uint_xlen_t RB) { return xperm(RA, RB, 4); } uint_xlen_t xperm_w (uint_xlen_t RA, uint_xlen_t RB) { return xperm(RA, RB, 5); } ``` # gorc based on RV bitmanip ``` uint32_t gorc32(uint32_t RA, uint32_t RB) { uint32_t x = RA; int shamt = RB & 31; if (shamt & 1) x |= ((x & 0x55555555) << 1) | ((x & 0xAAAAAAAA) >> 1); if (shamt & 2) x |= ((x & 0x33333333) << 2) | ((x & 0xCCCCCCCC) >> 2); if (shamt & 4) x |= ((x & 0x0F0F0F0F) << 4) | ((x & 0xF0F0F0F0) >> 4); if (shamt & 8) x |= ((x & 0x00FF00FF) << 8) | ((x & 0xFF00FF00) >> 8); if (shamt & 16) x |= ((x & 0x0000FFFF) << 16) | ((x & 0xFFFF0000) >> 16); return x; } uint64_t gorc64(uint64_t RA, uint64_t RB) { uint64_t x = RA; int shamt = RB & 63; if (shamt & 1) x |= ((x & 0x5555555555555555LL) << 1) | ((x & 0xAAAAAAAAAAAAAAAALL) >> 1); if (shamt & 2) x |= ((x & 0x3333333333333333LL) << 2) | ((x & 0xCCCCCCCCCCCCCCCCLL) >> 2); if (shamt & 4) x |= ((x & 0x0F0F0F0F0F0F0F0FLL) << 4) | ((x & 0xF0F0F0F0F0F0F0F0LL) >> 4); if (shamt & 8) x |= ((x & 0x00FF00FF00FF00FFLL) << 8) | ((x & 0xFF00FF00FF00FF00LL) >> 8); if (shamt & 16) x |= ((x & 0x0000FFFF0000FFFFLL) << 16) | ((x & 0xFFFF0000FFFF0000LL) >> 16); if (shamt & 32) x |= ((x & 0x00000000FFFFFFFFLL) << 32) | ((x & 0xFFFFFFFF00000000LL) >> 32); return x; } ``` # cmix based on RV bitmanip, covered by ternary bitops ``` uint_xlen_t cmix(uint_xlen_t RA, uint_xlen_t RB, uint_xlen_t RC) { return (RA & RB) | (RC & ~RB); } ``` # carryless mul based on RV bitmanip see https://en.wikipedia.org/wiki/CLMUL_instruction_set ``` uint_xlen_t clmul(uint_xlen_t RA, uint_xlen_t RB) { uint_xlen_t x = 0; for (int i = 0; i < XLEN; i++) if ((RB >> i) & 1) x ^= RA << i; return x; } uint_xlen_t clmulh(uint_xlen_t RA, uint_xlen_t RB) { uint_xlen_t x = 0; for (int i = 1; i < XLEN; i++) if ((RB >> i) & 1) x ^= RA >> (XLEN-i); return x; } uint_xlen_t clmulr(uint_xlen_t RA, uint_xlen_t RB) { uint_xlen_t x = 0; for (int i = 0; i < XLEN; i++) if ((RB >> i) & 1) x ^= RA >> (XLEN-i-1); return x; } ``` # Galois Field ## Multiply this requires 3 parameters and a "degree" RT = GFMUL(RA, RB, gfdegree, modulo=RC) realistically with the degree also needing to be an immediate it should be brought down to an overwrite version: RS = GFMUL(RS, RA, gfdegree, modulo=RB) | 0.5|6.10|11.15|16.20|21.25| 26..30 |31| | -- | -- | --- | --- | --- | ------- |--| | NN | RS | RA | RB | deg | 00 011 |Rc| where the SimpleV variant may override RS-as-src differently from RS-as-dest ``` from functools import reduce # constants used in the multGF2 function mask1 = mask2 = polyred = None def setGF2(degree, irPoly): """Define parameters of binary finite field GF(2^m)/g(x) - degree: extension degree of binary field - irPoly: coefficients of irreducible polynomial g(x) """ def i2P(sInt): """Convert an integer into a polynomial""" return [(sInt >> i) & 1 for i in reversed(range(sInt.bit_length()))] global mask1, mask2, polyred mask1 = mask2 = 1 << degree mask2 -= 1 polyred = reduce(lambda x, y: (x << 1) + y, i2P(irPoly)[1:]) def multGF2(p1, p2): """Multiply two polynomials in GF(2^m)/g(x)""" p = 0 while p2: if p2 & 1: p ^= p1 p1 <<= 1 if p1 & mask1: p1 ^= polyred p2 >>= 1 return p & mask2 if __name__ == "__main__": # Define binary field GF(2^3)/x^3 + x + 1 setGF2(3, 0b1011) # Evaluate the product (x^2 + x + 1)(x^2 + 1) print("{:02x}".format(multGF2(0b111, 0b101))) # Define binary field GF(2^8)/x^8 + x^4 + x^3 + x + 1 # (used in the Advanced Encryption Standard-AES) setGF2(8, 0b100011011) # Evaluate the product (x^7)(x^7 + x + 1) print("{:02x}".format(multGF2(0b10000000, 0b10000011))) ``` ## GF add RS = GFADD(RS, RA|0, gfdegree, modulo=RB) | 0.5|6.10|11.15|16.20|21.25| 26..30 |31| | -- | -- | --- | --- | --- | ------- |--| | NN | RS | RA | RB | deg | 01 011 |Rc| ## gf invert ``` def gf_degree(a) : res = 0 a >>= 1 while (a != 0) : a >>= 1; res += 1; return res def gf_invert(a, mod=0x1B) : v = mod g1 = 1 g2 = 0 j = gf_degree(a) - 8 while (a != 1) : if (j < 0) : a, v = v, a g1, g2 = g2, g1 j = -j a ^= v << j g1 ^= g2 << j a %= 256 # Emulating 8-bit overflow g1 %= 256 # Emulating 8-bit overflow j = gf_degree(a) - gf_degree(v) return g1 ``` # bitmatrix ``` uint64_t bmatflip(uint64_t RA) { uint64_t x = RA; x = shfl64(x, 31); x = shfl64(x, 31); x = shfl64(x, 31); return x; } uint64_t bmatxor(uint64_t RA, uint64_t RB) { // transpose of RB uint64_t RBt = bmatflip(RB); uint8_t u[8]; // rows of RA uint8_t v[8]; // cols of RB for (int i = 0; i < 8; i++) { u[i] = RA >> (i*8); v[i] = RBt >> (i*8); } uint64_t x = 0; for (int i = 0; i < 64; i++) { if (pcnt(u[i / 8] & v[i % 8]) & 1) x |= 1LL << i; } return x; } uint64_t bmator(uint64_t RA, uint64_t RB) { // transpose of RB uint64_t RBt = bmatflip(RB); uint8_t u[8]; // rows of RA uint8_t v[8]; // cols of RB for (int i = 0; i < 8; i++) { u[i] = RA >> (i*8); v[i] = RBt >> (i*8); } uint64_t x = 0; for (int i = 0; i < 64; i++) { if ((u[i / 8] & v[i % 8]) != 0) x |= 1LL << i; } return x; } ```