pattern ice40_dsp state clock state clock_pol state > sigAset sigBset state sigA sigB sigCD sigH sigO sigOused state addAB muxAB match mul select mul->type.in($mul, \SB_MAC16) select GetSize(mul->getPort(\A)) + GetSize(mul->getPort(\B)) > 10 endmatch code sigAset sigBset SigSpec A = port(mul, \A); A.remove_const(); sigAset = A.to_sigbit_set(); SigSpec B = port(mul, \B); B.remove_const(); sigBset = B.to_sigbit_set(); endcode code sigH if (mul->type == $mul) sigH = mul->getPort(\Y); else if (mul->type == \SB_MAC16) sigH = mul->getPort(\O); else log_abort(); if (GetSize(sigH) <= 10) reject; endcode match ffA if mul->type != \SB_MAC16 || !param(mul, \A_REG).as_bool() if !sigAset.empty() select ffA->type.in($dff) optional endmatch code sigA clock clock_pol sigA = port(mul, \A); if (ffA) { auto ffAset = port(ffA, \Q).to_sigbit_set(); if (!std::includes(ffAset.begin(), ffAset.end(), sigAset.begin(), sigAset.end())) reject; for (auto b : port(ffA, \Q)) if (b.wire->get_bool_attribute(\keep)) reject; clock = port(ffA, \CLK).as_bit(); clock_pol = param(ffA, \CLK_POLARITY).as_bool(); sigA.replace(port(ffA, \Q), port(ffA, \D)); } endcode match ffB if mul->type != \SB_MAC16 || !param(mul, \B_REG).as_bool() if !sigBset.empty() select ffB->type.in($dff) optional endmatch code sigB clock clock_pol sigB = port(mul, \B); if (ffB) { auto ffBset = port(ffB, \Q).to_sigbit_set(); if (!std::includes(ffBset.begin(), ffBset.end(), sigBset.begin(), sigBset.end())) reject; for (auto b : port(ffB, \Q)) if (b.wire->get_bool_attribute(\keep)) reject; SigBit c = port(ffB, \CLK).as_bit(); bool cp = param(ffB, \CLK_POLARITY).as_bool(); if (clock != SigBit() && (c != clock || cp != clock_pol)) reject; clock = c; clock_pol = cp; sigB.replace(port(ffB, \Q), port(ffB, \D)); } endcode match ffFJKG // Ensure pipeline register is not already used if mul->type != \SB_MAC16 || (!param(mul, \TOP_8x8_MULT_REG).as_bool() && !param(mul, \BOT_8x8_MULT_REG).as_bool() && !param(mul, \PIPELINE_16x16_MULT_REG1).as_bool() && !param(mul, \PIPELINE_16x16_MULT_REG2).as_bool()) select ffFJKG->type.in($dff) select nusers(port(ffFJKG, \D)) == 2 index port(ffFJKG, \D) === sigH optional endmatch code sigH sigO clock clock_pol if (ffFJKG) { sigH = port(ffFJKG, \Q); for (auto b : sigH) if (b.wire->get_bool_attribute(\keep)) reject; SigBit c = port(ffFJKG, \CLK).as_bit(); bool cp = param(ffFJKG, \CLK_POLARITY).as_bool(); if (clock != SigBit() && (c != clock || cp != clock_pol)) reject; clock = c; clock_pol = cp; } sigO = sigH; endcode match addA select addA->type.in($add) select nusers(port(addA, \A)) == 2 filter param(addA, \A_WIDTH).as_int() <= GetSize(sigH) //index port(addA, \A) === sigH.extract(0, param(addA, \A_WIDTH).as_int()) filter port(addA, \A) == sigH.extract(0, param(addA, \A_WIDTH).as_int()) optional endmatch match addB if !addA select addB->type.in($add, $sub) select nusers(port(addB, \B)) == 2 filter param(addB, \B_WIDTH).as_int() <= GetSize(sigH) //index port(addB, \B) === sigH.extract(0, param(addB, \B_WIDTH).as_int()) filter port(addB, \B) == sigH.extract(0, param(addB, \B_WIDTH).as_int()) optional endmatch code addAB sigCD sigO bool CD_SIGNED = false; if (addA) { addAB = addA; sigCD = port(addAB, \B); CD_SIGNED = param(addAB, \B_SIGNED).as_bool(); } if (addB) { addAB = addB; sigCD = port(addAB, \A); CD_SIGNED = param(addAB, \A_SIGNED).as_bool(); } if (addAB) { if (mul->type == \SB_MAC16) { // Ensure that adder is not used if (param(mul, \TOPOUTPUT_SELECT).as_int() != 3 || param(mul, \BOTOUTPUT_SELECT).as_int() != 3) reject; } int natural_mul_width = GetSize(sigA) + GetSize(sigB); int actual_mul_width = GetSize(sigH); int actual_acc_width = GetSize(sigCD); if ((actual_acc_width > actual_mul_width) && (natural_mul_width > actual_mul_width)) reject; // If accumulator, check adder width and signedness if (sigCD == sigH && (actual_acc_width != actual_mul_width) && (param(mul, \A_SIGNED).as_bool() != param(addAB, \A_SIGNED).as_bool())) reject; sigO = port(addAB, \Y); sigCD.extend_u0(32, CD_SIGNED); } endcode match muxA select muxA->type.in($mux) index nusers(port(muxA, \A)) === 2 index port(muxA, \A) === sigO optional endmatch match muxB if !muxA select muxB->type.in($mux) index nusers(port(muxB, \B)) === 2 index port(muxB, \B) === sigO optional endmatch code muxAB if (muxA) muxAB = muxA; else if (muxB) muxAB = muxB; endcode // Extract the bits of P that actually have a consumer // (as opposed to being a dummy) code sigOused for (int i = 0; i < GetSize(sigO); i++) if (!sigO[i].wire || nusers(sigO[i]) == 1) sigOused.append(State::Sx); else sigOused.append(sigO[i]); endcode match ffO_lo if nusers(sigOused.extract(0,std::min(16,GetSize(sigOused)))) == 2 select ffO_lo->type.in($dff) optional endmatch code if (ffO_lo) { SigSpec O = sigOused.extract(0,std::min(16,param(ffO_lo, \WIDTH).as_int())); O.remove_const(); auto ffO_loSet = port(ffO_lo, \D).to_sigbit_set(); auto Oset = O.to_sigbit_set(); if (!std::includes(ffO_loSet.begin(), ffO_loSet.end(), Oset.begin(), Oset.end())) reject; } endcode match ffO_hi if GetSize(sigOused) > 16 if nusers(sigOused.extract_end(16)) == 2 select ffO_hi->type.in($dff) optional endmatch code if (ffO_hi) { SigSpec O = sigOused.extract_end(16); O.remove_const(); auto ffO_hiSet = port(ffO_hi, \D).to_sigbit_set(); auto Oset = O.to_sigbit_set(); if (!std::includes(ffO_hiSet.begin(), ffO_hiSet.end(), Oset.begin(), Oset.end())) reject; } endcode code clock clock_pol sigO sigCD if (ffO_lo || ffO_hi) { if (mul->type == \SB_MAC16) { // Ensure that register is not already used if (param(mul, \TOPOUTPUT_SELECT).as_int() == 1 || param(mul, \BOTOUTPUT_SELECT).as_int() == 1) reject; // Ensure that OLOADTOP/OLOADBOT is unused or zero if ((mul->hasPort(\OLOADTOP) && !port(mul, \OLOADTOP).is_fully_zero()) || (mul->hasPort(\OLOADBOT) && !port(mul, \OLOADBOT).is_fully_zero())) reject; } if (ffO_lo) { for (auto b : port(ffO_lo, \Q)) if (b.wire->get_bool_attribute(\keep)) reject; SigBit c = port(ffO_lo, \CLK).as_bit(); bool cp = param(ffO_lo, \CLK_POLARITY).as_bool(); if (clock != SigBit() && (c != clock || cp != clock_pol)) reject; clock = c; clock_pol = cp; sigO.replace(port(ffO_lo, \D), port(ffO_lo, \Q)); } if (ffO_hi) { for (auto b : port(ffO_hi, \Q)) if (b.wire->get_bool_attribute(\keep)) reject; SigBit c = port(ffO_hi, \CLK).as_bit(); bool cp = param(ffO_hi, \CLK_POLARITY).as_bool(); if (clock != SigBit() && (c != clock || cp != clock_pol)) reject; clock = c; clock_pol = cp; sigO.replace(port(ffO_hi, \D), port(ffO_hi, \Q)); } // Loading value into output register is not // supported unless using accumulator if (muxAB) { if (sigCD != sigO) reject; if (muxA) sigCD = port(muxAB, \B); else if (muxB) sigCD = port(muxAB, \A); else log_abort(); sigCD.extend_u0(32, addAB && param(addAB, \A_SIGNED).as_bool() && param(addAB, \B_SIGNED).as_bool()); } } accept; endcode