pattern ice40_dsp state clock state clock_pol state sigA sigB sigCD sigH sigO sigOused state addAB muxAB match mul select mul->type.in($mul, \SB_MAC16) select GetSize(mul->getPort(\A)) + GetSize(mul->getPort(\B)) > 10 endmatch code sigH if (mul->type == $mul) sigH = mul->getPort(\Y); else if (mul->type == \SB_MAC16) sigH = mul->getPort(\O); else log_abort(); if (GetSize(sigH) <= 10) reject; endcode match ffA select ffA->type.in($dff) filter mul->type != \SB_MAC16 || !param(mul, \A_REG).as_bool() filter !port(mul, \A).remove_const().empty() filter includes(port(ffA, \Q).to_sigbit_set(), port(mul, \A).remove_const().to_sigbit_set()) optional endmatch code sigA clock clock_pol sigA = port(mul, \A); if (ffA) { for (auto b : port(ffA, \Q)) if (b.wire->get_bool_attribute(\keep)) reject; clock = port(ffA, \CLK).as_bit(); clock_pol = param(ffA, \CLK_POLARITY).as_bool(); sigA.replace(port(ffA, \Q), port(ffA, \D)); } endcode match ffB select ffB->type.in($dff) filter mul->type != \SB_MAC16 || !param(mul, \B_REG).as_bool() filter !port(mul, \B).remove_const().empty() filter includes(port(ffB, \Q).to_sigbit_set(), port(mul, \B).remove_const().to_sigbit_set()) optional endmatch code sigB clock clock_pol sigB = port(mul, \B); if (ffB) { for (auto b : port(ffB, \Q)) if (b.wire->get_bool_attribute(\keep)) reject; SigBit c = port(ffB, \CLK).as_bit(); bool cp = param(ffB, \CLK_POLARITY).as_bool(); if (clock != SigBit() && (c != clock || cp != clock_pol)) reject; clock = c; clock_pol = cp; sigB.replace(port(ffB, \Q), port(ffB, \D)); } endcode match ffH select ffH->type.in($dff) select nusers(port(ffH, \D)) == 2 index port(ffH, \D) === sigH // Ensure pipeline register is not already used filter mul->type != \SB_MAC16 || (!param(mul, \TOP_8x8_MULT_REG).as_bool() && !param(mul, \BOT_8x8_MULT_REG).as_bool() && !param(mul, \PIPELINE_16x16_MULT_REG1).as_bool() && !param(mul, \PIPELINE_16x16_MULT_REG2).as_bool()) optional endmatch code sigH sigO clock clock_pol sigO = sigH; if (ffH) { sigH = port(ffH, \Q); for (auto b : sigH) if (b.wire->get_bool_attribute(\keep)) reject; sigO = sigH; SigBit c = port(ffH, \CLK).as_bit(); bool cp = param(ffH, \CLK_POLARITY).as_bool(); if (clock != SigBit() && (c != clock || cp != clock_pol)) reject; clock = c; clock_pol = cp; } endcode match addA select addA->type.in($add) select nusers(port(addA, \A)) == 2 index port(addA, \A) === sigH optional endmatch match addB if !addA select addB->type.in($add, $sub) select nusers(port(addB, \B)) == 2 index port(addB, \B) === sigH optional endmatch code addAB sigCD sigO if (addA) { addAB = addA; sigCD = port(addAB, \B); sigCD.extend_u0(32, param(addAB, \B_SIGNED).as_bool()); } if (addB) { addAB = addB; sigCD = port(addAB, \A); sigCD.extend_u0(32, param(addAB, \A_SIGNED).as_bool()); } if (addAB) { if (mul->type == \SB_MAC16) { // Ensure that adder is not used if (param(mul, \TOPOUTPUT_SELECT).as_int() != 3 || param(mul, \BOTOUTPUT_SELECT).as_int() != 3) reject; } int natural_mul_width = GetSize(sigA) + GetSize(sigB); int actual_mul_width = GetSize(sigH); int actual_acc_width = GetSize(sigO); if ((actual_acc_width > actual_mul_width) && (natural_mul_width > actual_mul_width)) reject; if ((actual_acc_width != actual_mul_width) && (param(mul, \A_SIGNED).as_bool() != param(addAB, \B_SIGNED).as_bool())) reject; sigO = port(addAB, \Y); } endcode match muxA select muxA->type.in($mux) select nusers(port(muxA, \A)) == 2 index port(muxA, \A) === sigO optional endmatch match muxB if !muxA select muxB->type.in($mux) select nusers(port(muxB, \B)) == 2 index port(muxB, \B) === sigO optional endmatch code muxAB if (muxA) muxAB = muxA; else if (muxB) muxAB = muxB; endcode // Extract the bits of P that actually have a consumer // (as opposed to being a dummy) code sigOused for (int i = 0; i < GetSize(sigO); i++) if (!sigO[i].wire || nusers(sigO[i]) == 1) sigOused.append(State::Sx); else sigOused.append(sigO[i]); endcode match ffO_lo select ffO_lo->type.in($dff) filter nusers(sigOused.extract(0,std::min(16,param(ffO_lo, \WIDTH).as_int()))) == 2 filter includes(port(ffO_lo, \D).to_sigbit_set(), sigOused.extract(0,std::min(16,param(ffO_lo, \WIDTH).as_int())).remove_const().to_sigbit_set()) optional endmatch match ffO_hi select ffO_hi->type.in($dff) filter GetSize(sigOused) > 16 filter nusers(sigOused.extract_end(16)) == 2 filter includes(port(ffO_hi, \D).to_sigbit_set(), sigOused.extract_end(16).remove_const().to_sigbit_set()) optional endmatch code clock clock_pol sigO sigCD if (ffO_lo || ffO_hi) { if (mul->type == \SB_MAC16) { // Ensure that register is not already used if (param(mul, \TOPOUTPUT_SELECT).as_int() == 1 || param(mul, \BOTOUTPUT_SELECT).as_int() == 1) reject; // Ensure that OLOADTOP/OLOADBOT is unused or zero if ((mul->hasPort(\OLOADTOP) && !port(mul, \OLOADTOP).is_fully_zero()) || (mul->hasPort(\OLOADBOT) && !port(mul, \OLOADBOT).is_fully_zero())) reject; } if (ffO_lo) { for (auto b : port(ffO_lo, \Q)) if (b.wire->get_bool_attribute(\keep)) reject; SigBit c = port(ffO_lo, \CLK).as_bit(); bool cp = param(ffO_lo, \CLK_POLARITY).as_bool(); if (clock != SigBit() && (c != clock || cp != clock_pol)) reject; clock = c; clock_pol = cp; sigO.replace(port(ffO_lo, \D), port(ffO_lo, \Q)); } if (ffO_hi) { for (auto b : port(ffO_hi, \Q)) if (b.wire->get_bool_attribute(\keep)) reject; SigBit c = port(ffO_hi, \CLK).as_bit(); bool cp = param(ffO_hi, \CLK_POLARITY).as_bool(); if (clock != SigBit() && (c != clock || cp != clock_pol)) reject; clock = c; clock_pol = cp; sigO.replace(port(ffO_hi, \D), port(ffO_hi, \Q)); } // Loading value into output register is not // supported unless using accumulator if (muxAB) { if (sigCD != sigO) reject; if (muxA) sigCD = port(muxAB, \B); else if (muxB) sigCD = port(muxAB, \A); else log_abort(); sigCD.extend_u0(32, addAB && param(addAB, \A_SIGNED).as_bool() && param(addAB, \B_SIGNED).as_bool()); } } endcode