.section #gk104_builtin_code // DIV U32 // // UNR recurrence (q = a / b): // look for z such that 2^32 - b <= b * z < 2^32 // then q - 1 <= (a * z) / 2^32 <= q // // INPUT: $r0: dividend, $r1: divisor // OUTPUT: $r0: result, $r1: modulus // CLOBBER: $r2 - $r3, $p0 - $p1 // SIZE: 22 / 14 * 8 bytes // gk104_div_u32: sched 0x28 0x4 0x28 0x4 0x28 0x28 0x28 bfind u32 $r2 $r1 long xor b32 $r2 $r2 0x1f long mov b32 $r3 0x1 shl b32 $r2 $r3 clamp $r2 long cvt u32 $r1 neg u32 $r1 long mul $r3 u32 $r1 u32 $r2 add $r2 (mul high u32 $r2 u32 $r3) $r2 sched 0x28 0x28 0x28 0x28 0x28 0x28 0x28 mul $r3 u32 $r1 u32 $r2 add $r2 (mul high u32 $r2 u32 $r3) $r2 mul $r3 u32 $r1 u32 $r2 add $r2 (mul high u32 $r2 u32 $r3) $r2 mul $r3 u32 $r1 u32 $r2 add $r2 (mul high u32 $r2 u32 $r3) $r2 mul $r3 u32 $r1 u32 $r2 sched 0x4 0x28 0x4 0x28 0x28 0x2c 0x4 add $r2 (mul high u32 $r2 u32 $r3) $r2 mov b32 $r3 $r0 mul high $r0 u32 $r0 u32 $r2 long cvt u32 $r2 neg u32 $r1 long add $r1 (mul u32 $r1 u32 $r0) $r3 set $p0 0x1 ge u32 $r1 $r2 $p0 sub b32 $r1 $r1 $r2 sched 0x28 0x2c 0x4 0x20 0x2e 0x28 0x20 $p0 add b32 $r0 $r0 0x1 $p0 set $p0 0x1 ge u32 $r1 $r2 $p0 sub b32 $r1 $r1 $r2 $p0 add b32 $r0 $r0 0x1 long ret // DIV S32, like DIV U32 after taking ABS(inputs) // // INPUT: $r0: dividend, $r1: divisor // OUTPUT: $r0: result, $r1: modulus // CLOBBER: $r2 - $r3, $p0 - $p3 // gk104_div_s32: set $p2 0x1 lt s32 $r0 0x0 set $p3 0x1 lt s32 $r1 0x0 xor $p2 sched 0x20 0x28 0x28 0x4 0x28 0x04 0x28 long cvt s32 $r0 abs s32 $r0 long cvt s32 $r1 abs s32 $r1 bfind u32 $r2 $r1 long xor b32 $r2 $r2 0x1f long mov b32 $r3 0x1 shl b32 $r2 $r3 clamp $r2 cvt u32 $r1 neg u32 $r1 sched 0x28 0x28 0x28 0x28 0x28 0x28 0x28 mul $r3 u32 $r1 u32 $r2 add $r2 (mul high u32 $r2 u32 $r3) $r2 mul $r3 u32 $r1 u32 $r2 add $r2 (mul high u32 $r2 u32 $r3) $r2 mul $r3 u32 $r1 u32 $r2 add $r2 (mul high u32 $r2 u32 $r3) $r2 mul $r3 u32 $r1 u32 $r2 sched 0x28 0x28 0x4 0x28 0x04 0x28 0x28 add $r2 (mul high u32 $r2 u32 $r3) $r2 mul $r3 u32 $r1 u32 $r2 add $r2 (mul high u32 $r2 u32 $r3) $r2 mov b32 $r3 $r0 mul high $r0 u32 $r0 u32 $r2 long cvt u32 $r2 neg u32 $r1 long add $r1 (mul u32 $r1 u32 $r0) $r3 sched 0x2c 0x04 0x28 0x2c 0x04 0x28 0x20 set $p0 0x1 ge u32 $r1 $r2 $p0 sub b32 $r1 $r1 $r2 $p0 add b32 $r0 $r0 0x1 $p0 set $p0 0x1 ge u32 $r1 $r2 $p0 sub b32 $r1 $r1 $r2 long $p0 add b32 $r0 $r0 0x1 long $p3 cvt s32 $r0 neg s32 $r0 sched 0x04 0x2e 0x04 0x28 0x04 0x20 0x2c $p2 cvt s32 $r1 neg s32 $r1 long ret // SULDP [for each format] // $r4d: address // $r2: surface info (format) // $p0: access predicate // $p1, $p2: caching predicate (00: cv, 01: ca, 10: cg) // // RGBA32 $p1 suldgb b128 $r0q ca zero u8 g[$r4d] $r2 $p0 set $p1 0x1 $p1 xor not $p2 $p2 suldgb b128 $r0q cg zero u8 g[$r4d] $r2 $p0 $p1 suldgb b128 $r0q cv zero u8 g[$r4d] $r2 $p0 long ret // RGBA16_UNORM sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 $p1 suldgb b128 $r0q ca zero u8 g[$r4d] $r2 $p0 set $p1 0x1 $p1 xor not $p2 $p2 suldgb b128 $r0q cg zero u8 g[$r4d] $r2 $p0 $p1 suldgb b128 $r0q cv zero u8 g[$r4d] $r2 $p0 cvt rn f32 $r3 u16 1 $r1 cvt rn f32 $r2 u16 0 $r1 mul f32 $r3 $r3 0x37800074 sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 cvt rn f32 $r1 u16 1 $r0 mul f32 $r2 $r2 0x37800074 cvt rn f32 $r0 u16 0 $r0 mul f32 $r1 $r1 0x37800074 mul f32 $r0 $r0 0x37800074 long ret // RGBA16_SNORM $p1 suldgb b64 $r0d ca zero u8 g[$r4d] $r2 $p0 sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 set $p1 0x1 $p1 xor not $p2 $p2 suldgb b64 $r0d cg zero u8 g[$r4d] $r2 $p0 $p1 suldgb b64 $r0d cv zero u8 g[$r4d] $r2 $p0 cvt rn f32 $r3 s16 1 $r1 cvt rn f32 $r2 s16 0 $r1 mul f32 $r3 $r3 0x38000187 cvt rn f32 $r1 s16 1 $r0 sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 mul f32 $r2 $r2 0x38000187 cvt rn f32 $r0 s16 0 $r0 mul f32 $r1 $r1 0x38000187 mul f32 $r0 $r0 0x38000187 long ret // RGBA16_SINT $p1 suldgb b64 $r0d ca zero u8 g[$r4d] $r2 $p0 set $p1 0x1 $p1 xor not $p2 sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 $p2 suldgb b64 $r0d cg zero u8 g[$r4d] $r2 $p0 $p1 suldgb b64 $r0d cv zero u8 g[$r4d] $r2 $p0 cvt s32 $r3 s16 1 $r1 cvt s32 $r2 s16 0 $r1 cvt s32 $r1 s16 1 $r0 cvt s32 $r0 s16 0 $r0 long ret // RGBA16_UINT sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 $p1 suldgb b64 $r0d ca zero u8 g[$r4d] $r2 $p0 set $p1 0x1 $p1 xor not $p2 $p2 suldgb b64 $r0d cg zero u8 g[$r4d] $r2 $p0 $p1 suldgb b64 $r0d cv zero u8 g[$r4d] $r2 $p0 cvt u32 $r3 u16 1 $r1 cvt u32 $r2 u16 0 $r1 cvt u32 $r1 u16 1 $r0 sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 cvt u32 $r0 u16 0 $r0 long ret // RGBA16_FLOAT $p1 suldgb b64 $r0d ca zero u8 g[$r4d] $r2 $p0 set $p1 0x1 $p1 xor not $p2 $p2 suldgb b64 $r0d cg zero u8 g[$r4d] $r2 $p0 $p1 suldgb b64 $r0d cv zero u8 g[$r4d] $r2 $p0 cvt f32 $r3 f16 $r1 1 sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 cvt f32 $r2 f16 $r1 0 cvt f32 $r1 f16 $r0 1 cvt f32 $r0 f16 $r0 0 long ret // RG32_FLOAT $p1 suldgb b64 $r0d ca zero u8 g[$r4d] $r2 $p0 set $p1 0x1 $p1 xor not $p2 $p2 suldgb b64 $r0d cg zero u8 g[$r4d] $r2 $p0 sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 $p1 suldgb b64 $r0d cv zero u8 g[$r4d] $r2 $p0 long mov b32 $r2 0x00000000 long mov b32 $r3 0x3f800000 long ret // RG32_xINT $p1 suldgb b64 $r0d ca zero u8 g[$r4d] $r2 $p0 set $p1 0x1 $p1 xor not $p2 $p2 suldgb b64 $r0d cg zero u8 g[$r4d] $r2 $p0 sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 $p1 suldgb b64 $r0d cv zero u8 g[$r4d] $r2 $p0 long mov b32 $r2 0x00000000 long mov b32 $r3 0x00000001 long ret // RGB10A2_UNORM $p1 suldgb b32 $r0 ca zero u8 g[$r4d] $r2 $p0 set $p1 0x1 $p1 xor not $p2 $p2 suldgb b32 $r0 cg zero u8 g[$r4d] $r2 $p0 sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 $p1 suldgb b32 $r0 cv zero u8 g[$r4d] $r2 $p0 ext u32 $r1 $r0 0x0a0a long mov b32 $r3 0x3f800000 ext u32 $r2 $r0 0x0a14 long and b32 $r0 $r0 0x3ff cvt rn f32 $r2 u16 0 $r2 cvt rn f32 $r1 u16 0 $r1 sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 mul f32 $r2 $r2 0x3a802007 cvt rn f32 $r0 u16 0 $r0 mul f32 $r1 $r1 0x3a802007 mul f32 $r0 $r0 0x3a802007 long ret // RGB10A2_UINT $p1 suldgb b32 $r0 ca zero u8 g[$r4d] $r2 $p0 set $p1 0x1 $p1 xor not $p2 sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 $p2 suldgb b32 $r0 cg zero u8 g[$r4d] $r2 $p0 $p1 suldgb b32 $r0 cv zero u8 g[$r4d] $r2 $p0 ext u32 $r1 $r0 0x0a0a long mov b32 $r3 0x00000001 ext u32 $r2 $r0 0x0a14 long and b32 $r0 $r0 0x3ff long ret // RGBA8_UNORM sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 $p1 suldgb b32 $r0 ca zero u8 g[$r4d] $r2 $p0 set $p1 0x1 $p1 xor not $p2 $p2 suldgb b32 $r0 cg zero u8 g[$r4d] $r2 $p0 $p1 suldgb b32 $r0 cv zero u8 g[$r4d] $r2 $p0 cvt rn f32 $r3 u8 3 $r0 cvt rn f32 $r2 u8 2 $r0 mul f32 $r3 $r3 0x3b808081 sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 cvt rn f32 $r1 u8 1 $r0 mul f32 $r2 $r2 0x3b808081 cvt rn f32 $r0 u8 0 $r0 mul f32 $r1 $r1 0x3b808081 mul f32 $r0 $r0 0x3b808081 long ret // RGBA8_SNORM $p1 suldgb b32 $r0 ca zero u8 g[$r4d] $r2 $p0 sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 set $p1 0x1 $p1 xor not $p2 $p2 suldgb b32 $r0 cg zero u8 g[$r4d] $r2 $p0 $p1 suldgb b32 $r0 cv zero u8 g[$r4d] $r2 $p0 cvt rn f32 $r3 s8 3 $r0 cvt rn f32 $r2 s8 2 $r0 mul f32 $r3 $r3 0x3c010204 cvt rn f32 $r1 s8 1 $r0 sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 mul f32 $r2 $r2 0x3c010204 cvt rn f32 $r0 s8 0 $r0 mul f32 $r1 $r1 0x3c010204 mul f32 $r0 $r0 0x3c010204 long ret // RGBA8_SINT $p1 suldgb b32 $r0 ca zero u8 g[$r4d] $r2 $p0 set $p1 0x1 $p1 xor not $p2 sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 $p2 suldgb b32 $r0 cg zero u8 g[$r4d] $r2 $p0 $p1 suldgb b32 $r0 cv zero u8 g[$r4d] $r2 $p0 cvt s32 $r3 s8 3 $r0 cvt s32 $r2 s8 2 $r0 cvt s32 $r1 s8 1 $r0 cvt s32 $r0 s8 0 $r0 long ret // RGBA8_UINT sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 $p1 suldgb b32 $r0 ca zero u8 g[$r4d] $r2 $p0 set $p1 0x1 $p1 xor not $p2 $p2 suldgb b32 $r0 cg zero u8 g[$r4d] $r2 $p0 $p1 suldgb b32 $r0 cv zero u8 g[$r4d] $r2 $p0 cvt u32 $r3 u8 3 $r0 cvt u32 $r2 u8 2 $r0 cvt u32 $r1 u8 1 $r0 sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 cvt u32 $r0 u8 0 $r0 long ret // R5G6B5_UNORM $p1 suldgb u16 $r0 ca zero u8 g[$r4d] $r2 $p0 set $p1 0x1 $p1 xor not $p2 $p2 suldgb u16 $r0 cg zero u8 g[$r4d] $r2 $p0 $p1 suldgb u16 $r0 cv zero u8 g[$r4d] $r2 $p0 ext u32 $r1 $r0 0x0605 sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 long mov b32 $r3 0x3f800000 ext u32 $r2 $r0 0x050b long and b32 $r0 $r0 0x1f cvt rn f32 $r2 u8 0 $r2 cvt rn f32 $r1 u8 0 $r1 mul f32 $r2 $r2 0x3d042108 cvt rn f32 $r0 u8 0 $r0 sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 mul f32 $r1 $r1 0x3c820821 mul f32 $r0 $r0 0x3d042108 long ret // R5G5B5X1_UNORM $p1 suldgb u16 $r0 ca zero u8 g[$r4d] $r2 $p0 set $p1 0x1 $p1 xor not $p2 $p2 suldgb u16 $r0 cg zero u8 g[$r4d] $r2 $p0 $p1 suldgb u16 $r0 cv zero u8 g[$r4d] $r2 $p0 sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 ext u32 $r1 $r0 0x0505 ext u32 $r2 $r0 0x050a long and b32 $r0 $r0 0x1f long mov b32 $r3 0x3f800000 cvt rn f32 $r2 u8 0 $r2 cvt rn f32 $r1 u8 0 $r1 cvt rn f32 $r0 u8 0 $r0 sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 mul f32 $r2 $r2 0x3d042108 mul f32 $r1 $r1 0x3d042108 mul f32 $r0 $r0 0x3d042108 long ret // RG16_UNORM $p1 suldgb b32 $r0 ca zero u8 g[$r4d] $r2 $p0 set $p1 0x1 $p1 xor not $p2 $p2 suldgb b32 $r0 cg zero u8 g[$r4d] $r2 $p0 sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 $p1 suldgb b32 $r0 cv zero u8 g[$r4d] $r2 $p0 cvt rn f32 $r1 u16 1 $r0 cvt rn f32 $r0 u16 0 $r0 mul f32 $r1 $r1 0x37800074 mul f32 $r0 $r0 0x37800074 long mov b32 $r2 0x00000000 long mov b32 $r3 0x3f800000 sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 long ret // RG16_SNORM $p1 suldgb b32 $r0 ca zero u8 g[$r4d] $r2 $p0 set $p1 0x1 $p1 xor not $p2 $p2 suldgb b32 $r0 cg zero u8 g[$r4d] $r2 $p0 $p1 suldgb b32 $r0 cv zero u8 g[$r4d] $r2 $p0 mov b32 $r3 0x3f800000 cvt rn f32 $r1 s16 1 $r0 sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 mov b32 $r2 0x00000000 cvt rn f32 $r0 s16 0 $r0 mul f32 $r1 $r1 0x38000187 mul f32 $r0 $r0 0x38000187 long ret // RG16_SINT $p1 suldgb b32 $r0 ca zero u8 g[$r4d] $r2 $p0 set $p1 0x1 $p1 xor not $p2 sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 $p2 suldgb b32 $r0 cg zero u8 g[$r4d] $r2 $p0 $p1 suldgb b32 $r0 cv zero u8 g[$r4d] $r2 $p0 mov b32 $r3 0x00000001 cvt s32 $r1 s16 1 $r0 mov b32 $r2 0x00000000 cvt s32 $r0 s16 0 $r0 long ret // RG16_UINT sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 $p1 suldgb b32 $r0 ca zero u8 g[$r4d] $r2 $p0 set $p1 0x1 $p1 xor not $p2 $p2 suldgb b32 $r0 cg zero u8 g[$r4d] $r2 $p0 $p1 suldgb b32 $r0 cv zero u8 g[$r4d] $r2 $p0 mov b32 $r3 0x00000001 cvt u32 $r1 u16 1 $r0 mov b32 $r2 0x00000000 sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 cvt u32 $r0 u16 0 $r0 long ret // RG16_FLOAT $p1 suldgb b32 $r0 ca zero u8 g[$r4d] $r2 $p0 set $p1 0x1 $p1 xor not $p2 $p2 suldgb b32 $r0 cg zero u8 g[$r4d] $r2 $p0 $p1 suldgb b32 $r0 cv zero u8 g[$r4d] $r2 $p0 mov b32 $r3 0x3f800000 sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 cvt f32 $r1 f16 $r0 1 mov b32 $r2 0x00000000 cvt f32 $r0 f16 $r0 0 long ret // R32_FLOAT $p1 suldgb b32 $r0 ca zero u8 g[$r4d] $r2 $p0 set $p1 0x1 $p1 xor not $p2 $p2 suldgb b32 $r0 cg zero u8 g[$r4d] $r2 $p0 sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 $p1 suldgb b32 $r0 cv zero u8 g[$r4d] $r2 $p0 long mov b32 $r3 0x3f800000 long mov b32 $r2 0x00000000 long mov b32 $r1 0x00000000 long ret // R32_xINT $p1 suldgb b32 $r0 ca zero u8 g[$r4d] $r2 $p0 set $p1 0x1 $p1 xor not $p2 sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 $p2 suldgb b32 $r0 cg zero u8 g[$r4d] $r2 $p0 $p1 suldgb b32 $r0 cv zero u8 g[$r4d] $r2 $p0 long mov b32 $r3 0x00000001 long mov b32 $r2 0x00000000 long mov b32 $r1 0x00000000 long ret // RG8_UNORM $p1 suldgb u16 $r0 ca zero u8 g[$r4d] $r2 $p0 sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 set $p1 0x1 $p1 xor not $p2 $p2 suldgb u16 $r0 cg zero u8 g[$r4d] $r2 $p0 $p1 suldgb u16 $r0 cv zero u8 g[$r4d] $r2 $p0 mov b32 $r3 0x3f800000 cvt rn f32 $r1 u8 1 $r0 mov b32 $r2 0x00000000 cvt rn f32 $r0 u8 0 $r0 sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 mul f32 $r1 $r1 0x3b808081 mul f32 $r0 $r0 0x3b808081 long ret // RG8_SNORM $p1 suldgb u16 $r0 ca zero u8 g[$r4d] $r2 $p0 set $p1 0x1 $p1 xor not $p2 $p2 suldgb u16 $r0 cg zero u8 g[$r4d] $r2 $p0 $p1 suldgb u16 $r0 cv zero u8 g[$r4d] $r2 $p0 sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 long mov b32 $r3 0x3f800000 cvt rn f32 $r1 s8 1 $r0 long mov b32 $r2 0x00000000 cvt rn f32 $r0 s8 0 $r0 mul f32 $r1 $r1 0x3c010204 mul f32 $r0 $r0 0x3c010204 long ret // RG8_UINT sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 $p1 suldgb u16 $r0 ca zero u8 g[$r4d] $r2 $p0 set $p1 0x1 $p1 xor not $p2 $p2 suldgb u16 $r0 cg zero u8 g[$r4d] $r2 $p0 $p1 suldgb u16 $r0 cv zero u8 g[$r4d] $r2 $p0 long mov b32 $r3 0x00000001 cvt u32 $r1 u8 1 $r0 long mov b32 $r2 0x00000000 sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 cvt u32 $r0 u8 0 $r0 long ret // RG8_SINT $p1 suldgb u16 $r0 ca zero u8 g[$r4d] $r2 $p0 set $p1 0x1 $p1 xor not $p2 $p2 suldgb u16 $r0 cg zero u8 g[$r4d] $r2 $p0 $p1 suldgb u16 $r0 cv zero u8 g[$r4d] $r2 $p0 long mov b32 $r3 0x00000001 sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 cvt s32 $r1 s8 1 $r0 long mov b32 $r2 0x00000000 cvt s32 $r0 s8 0 $r0 long ret // R16_UNORM $p1 suldgb u16 $r0 ca zero u8 g[$r4d] $r2 $p0 set $p1 0x1 $p1 xor not $p2 $p2 suldgb u16 $r0 cg zero u8 g[$r4d] $r2 $p0 sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 $p1 suldgb u16 $r0 cv zero u8 g[$r4d] $r2 $p0 long mov b32 $r3 0x3f800000 cvt rn f32 $r0 u16 0 $r0 long mov b32 $r2 0x00000000 long mov b32 $r1 0x00000000 mul f32 $r0 $r0 0x37800074 long ret // R16_SNORM sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 $p1 suldgb u16 $r0 ca zero u8 g[$r4d] $r2 $p0 set $p1 0x1 $p1 xor not $p2 $p2 suldgb u16 $r0 cg zero u8 g[$r4d] $r2 $p0 $p1 suldgb u16 $r0 cv zero u8 g[$r4d] $r2 $p0 mov b32 $r3 0x3f800000 cvt rn f32 $r0 s16 0 $r0 long mov b32 $r2 0x00000000 sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 long mov b32 $r1 0x00000000 mul f32 $r0 $r0 0x38000187 long ret // R16_SINT $p1 suldgb s16 $r0 ca zero u8 g[$r4d] $r2 $p0 set $p1 0x1 $p1 xor not $p2 $p2 suldgb s16 $r0 cg zero u8 g[$r4d] $r2 $p0 $p1 suldgb s16 $r0 cv zero u8 g[$r4d] $r2 $p0 sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 long mov b32 $r3 0x00000001 long mov b32 $r2 0x00000000 long mov b32 $r1 0x00000000 long ret // R16_UINT $p1 suldgb u16 $r0 ca zero u8 g[$r4d] $r2 $p0 set $p1 0x1 $p1 xor not $p2 $p2 suldgb u16 $r0 cg zero u8 g[$r4d] $r2 $p0 sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 $p1 suldgb u16 $r0 cv zero u8 g[$r4d] $r2 $p0 long mov b32 $r3 0x00000001 long mov b32 $r2 0x00000000 long mov b32 $r1 0x00000000 long ret // R16_FLOAT $p1 suldgb u16 $r0 ca zero u8 g[$r4d] $r2 $p0 set $p1 0x1 $p1 xor not $p2 sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 $p2 suldgb u16 $r0 cg zero u8 g[$r4d] $r2 $p0 $p1 suldgb u16 $r0 cv zero u8 g[$r4d] $r2 $p0 long mov b32 $r3 0x3f800000 long mov b32 $r2 0x00000000 cvt f32 $r0 f16 $r0 0 mov b32 $r1 0x00000000 long ret // R8_UNORM sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 $p1 suldgb u8 $r0 ca zero u8 g[$r4d] $r2 $p0 set $p1 0x1 $p1 xor not $p2 $p2 suldgb u8 $r0 cg zero u8 g[$r4d] $r2 $p0 $p1 suldgb u8 $r0 cv zero u8 g[$r4d] $r2 $p0 mov b32 $r3 0x3f800000 cvt rn f32 $r0 u8 0 $r0 mov b32 $r2 0x00000000 sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 mul f32 $r0 $r0 0x3b808081 mov b32 $r1 0x00000000 long ret // R8_SNORM $p1 suldgb u8 $r0 ca zero u8 g[$r4d] $r2 $p0 set $p1 0x1 $p1 xor not $p2 $p2 suldgb u8 $r0 cg zero u8 g[$r4d] $r2 $p0 $p1 suldgb u8 $r0 cv zero u8 g[$r4d] $r2 $p0 sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 mov b32 $r3 0x3f800000 cvt rn f32 $r0 s8 0 $r0 mov b32 $r2 0x00000000 mul f32 $r0 $r0 0x3c010204 mov b32 $r1 0x00000000 long ret // R8_SINT $p1 suldgb s8 $r0 ca zero u8 g[$r4d] $r2 $p0 sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 set $p1 0x1 $p1 xor not $p2 $p2 suldgb s8 $r0 cg zero u8 g[$r4d] $r2 $p0 $p1 suldgb s8 $r0 cv zero u8 g[$r4d] $r2 $p0 long mov b32 $r3 0x00000001 long mov b32 $r2 0x00000000 long mov b32 $r1 0x00000000 long ret // R8_UINT sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 $p1 suldgb u8 $r0 ca zero u8 g[$r4d] $r2 $p0 set $p1 0x1 $p1 xor not $p2 $p2 suldgb u8 $r0 cg zero u8 g[$r4d] $r2 $p0 $p1 suldgb u8 $r0 cv zero u8 g[$r4d] $r2 $p0 long mov b32 $r3 0x00000001 long mov b32 $r2 0x00000000 long mov b32 $r1 0x00000000 sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 long ret // R11G11B10_FLOAT TODO $p1 suldgb b32 $r3 ca zero u8 g[$r4d] $r2 $p0 set $p1 0x1 $p1 xor not $p2 $p2 suldgb b32 $r3 cg zero u8 g[$r4d] $r2 $p0 $p1 suldgb b32 $r3 cv zero u8 g[$r4d] $r2 $p0 long mov b32 $r3 0x3f800000 long nop sched 0x00 0x00 0x00 0x00 0x00 0x00 0x00 long nop long ret // RCP F64: Newton Raphson reciprocal(x): r_{i+1} = r_i * (2.0 - x * r_i) // // INPUT: $r0d (x) // OUTPUT: $r0d (rcp(x)) // CLOBBER: $r2 - $r7 // SIZE: 9 * 8 bytes // gk104_rcp_f64: // Step 1: classify input according to exponent and value, and calculate // result for 0/inf/nan. $r2 holds the exponent value, which starts at // bit 52 (bit 20 of the upper half) and is 11 bits in length ext u32 $r2 $r1 0xb14 add b32 $r3 $r2 0xffffffff joinat #rcp_rejoin // We want to check whether the exponent is 0 or 0x7ff (i.e. NaN, inf, // denorm, or 0). Do this by substracting 1 from the exponent, which will // mean that it's > 0x7fd in those cases when doing unsigned comparison set $p0 0x1 gt u32 $r3 0x7fd // $r3: 0 for norms, 0x36 for denorms, -1 for others long mov b32 $r3 0x0 sched 0x2f 0x04 0x2d 0x2b 0x2f 0x28 0x28 join (not $p0) nop // Process all special values: NaN, inf, denorm, 0 mov b32 $r3 0xffffffff // A number is NaN if its abs value is greater than or unordered with inf set $p0 0x1 gtu f64 abs $r0d 0x7ff0000000000000 (not $p0) bra #rcp_inf_or_denorm_or_zero // NaN -> NaN, the next line sets the "quiet" bit of the result. This // behavior is both seen on the CPU and the blob join or b32 $r1 $r1 0x80000 rcp_inf_or_denorm_or_zero: and b32 $r4 $r1 0x7ff00000 // Other values with nonzero in exponent field should be inf set $p0 0x1 eq s32 $r4 0x0 sched 0x2b 0x04 0x2f 0x2d 0x2b 0x2f 0x20 $p0 bra #rcp_denorm_or_zero // +/-Inf -> +/-0 xor b32 $r1 $r1 0x7ff00000 join mov b32 $r0 0x0 rcp_denorm_or_zero: set $p0 0x1 gtu f64 abs $r0d 0x0 $p0 bra #rcp_denorm // +/-0 -> +/-Inf join or b32 $r1 $r1 0x7ff00000 rcp_denorm: // non-0 denorms: multiply with 2^54 (the 0x36 in $r3), join with norms mul rn f64 $r0d $r0d 0x4350000000000000 sched 0x2f 0x28 0x2b 0x28 0x28 0x04 0x28 join mov b32 $r3 0x36 rcp_rejoin: // All numbers with -1 in $r3 have their result ready in $r0d, return them // others need further calculation set $p0 0x1 lt s32 $r3 0x0 $p0 bra #rcp_end // Step 2: Before the real calculation goes on, renormalize the values to // range [1, 2) by setting exponent field to 0x3ff (the exponent of 1) // result in $r6d. The exponent will be recovered later. ext u32 $r2 $r1 0xb14 and b32 $r7 $r1 0x800fffff add b32 $r7 $r7 0x3ff00000 long mov b32 $r6 $r0 sched 0x2b 0x04 0x28 0x28 0x2a 0x2b 0x2e // Step 3: Convert new value to float (no overflow will occur due to step // 2), calculate rcp and do newton-raphson step once cvt rz f32 $r5 f64 $r6d long rcp f32 $r4 $r5 mov b32 $r0 0xbf800000 fma rn f32 $r5 $r4 $r5 $r0 fma rn f32 $r0 neg $r4 $r5 $r4 // Step 4: convert result $r0 back to double, do newton-raphson steps cvt f64 $r0d f32 $r0 cvt f64 $r6d neg f64 $r6d sched 0x2e 0x29 0x29 0x29 0x29 0x29 0x29 cvt f64 $r8d f32 0x3f800000 // 4 Newton-Raphson Steps, tmp in $r4d, result in $r0d // The formula used here (and above) is: // RCP_{n + 1} = 2 * RCP_{n} - x * RCP_{n} * RCP_{n} // The following code uses 2 FMAs for each step, and it will basically // looks like: // tmp = -src * RCP_{n} + 1 // RCP_{n + 1} = RCP_{n} * tmp + RCP_{n} fma rn f64 $r4d $r6d $r0d $r8d fma rn f64 $r0d $r0d $r4d $r0d fma rn f64 $r4d $r6d $r0d $r8d fma rn f64 $r0d $r0d $r4d $r0d fma rn f64 $r4d $r6d $r0d $r8d fma rn f64 $r0d $r0d $r4d $r0d sched 0x29 0x20 0x28 0x28 0x28 0x28 0x28 fma rn f64 $r4d $r6d $r0d $r8d fma rn f64 $r0d $r0d $r4d $r0d // Step 5: Exponent recovery and final processing // The exponent is recovered by adding what we added to the exponent. // Suppose we want to calculate rcp(x), but we have rcp(cx), then // rcp(x) = c * rcp(cx) // The delta in exponent comes from two sources: // 1) The renormalization in step 2. The delta is: // 0x3ff - $r2 // 2) (For the denorm input) The 2^54 we multiplied at rcp_denorm, stored // in $r3 // These 2 sources are calculated in the first two lines below, and then // added to the exponent extracted from the result above. // Note that after processing, the new exponent may >= 0x7ff (inf) // or <= 0 (denorm). Those cases will be handled respectively below subr b32 $r2 $r2 0x3ff long add b32 $r4 $r2 $r3 ext u32 $r3 $r1 0xb14 // New exponent in $r3 long add b32 $r3 $r3 $r4 add b32 $r2 $r3 0xffffffff sched 0x28 0x2b 0x28 0x2b 0x28 0x28 0x2b // (exponent-1) < 0x7fe (unsigned) means the result is in norm range // (same logic as in step 1) set $p0 0x1 lt u32 $r2 0x7fe (not $p0) bra #rcp_result_inf_or_denorm // Norms: convert exponents back and return shl b32 $r4 $r4 clamp 0x14 long add b32 $r1 $r4 $r1 bra #rcp_end rcp_result_inf_or_denorm: // New exponent >= 0x7ff means that result is inf set $p0 0x1 ge s32 $r3 0x7ff (not $p0) bra #rcp_result_denorm sched 0x20 0x25 0x28 0x2b 0x23 0x25 0x2f // Infinity and b32 $r1 $r1 0x80000000 long mov b32 $r0 0x0 add b32 $r1 $r1 0x7ff00000 bra #rcp_end rcp_result_denorm: // Denorm result comes from huge input. The greatest possible fp64, i.e. // 0x7fefffffffffffff's rcp is 0x0004000000000000, 1/4 of the smallest // normal value. Other rcp result should be greater than that. If we // set the exponent field to 1, we can recover the result by multiplying // it with 1/2 or 1/4. 1/2 is used if the "exponent" $r3 is 0, otherwise // 1/4 ($r3 should be -1 then). This is quite tricky but greatly simplifies // the logic here. set $p0 0x1 ne u32 $r3 0x0 and b32 $r1 $r1 0x800fffff // 0x3e800000: 1/4 $p0 cvt f64 $r6d f32 0x3e800000 sched 0x2f 0x28 0x2c 0x2e 0x2a 0x20 0x27 // 0x3f000000: 1/2 (not $p0) cvt f64 $r6d f32 0x3f000000 add b32 $r1 $r1 0x00100000 mul rn f64 $r0d $r0d $r6d rcp_end: long ret // RSQ F64: Newton Raphson rsqrt(x): r_{i+1} = r_i * (1.5 - 0.5 * x * r_i * r_i) // // INPUT: $r0d (x) // OUTPUT: $r0d (rsqrt(x)) // CLOBBER: $r2 - $r7 // SIZE: 14 * 8 bytes // gk104_rsq_f64: // Before getting initial result rsqrt64h, two special cases should be // handled first. // 1. NaN: set the highest bit in mantissa so it'll be surely recognized // as NaN in rsqrt64h set $p0 0x1 gtu f64 abs $r0d 0x7ff0000000000000 $p0 or b32 $r1 $r1 0x00080000 and b32 $r2 $r1 0x7fffffff sched 0x27 0x20 0x28 0x2c 0x25 0x28 0x28 // 2. denorms and small normal values: using their original value will // lose precision either at rsqrt64h or the first step in newton-raphson // steps below. Take 2 as a threshold in exponent field, and multiply // with 2^54 if the exponent is smaller or equal. (will multiply 2^27 // to recover in the end) ext u32 $r3 $r1 0xb14 set $p1 0x1 le u32 $r3 0x2 long or b32 $r2 $r0 $r2 $p1 mul rn f64 $r0d $r0d 0x4350000000000000 rsqrt64h $r5 $r1 // rsqrt64h will give correct result for 0/inf/nan, the following logic // checks whether the input is one of those (exponent is 0x7ff or all 0 // except for the sign bit) set b32 $r6 ne u32 $r3 0x7ff long and b32 $r2 $r2 $r6 sched 0x28 0x2b 0x20 0x27 0x28 0x2e 0x28 set $p0 0x1 ne u32 $r2 0x0 $p0 bra #rsq_norm // For 0/inf/nan, make sure the sign bit agrees with input and return and b32 $r1 $r1 0x80000000 long mov b32 $r0 0x0 long or b32 $r1 $r1 $r5 long ret rsq_norm: // For others, do 4 Newton-Raphson steps with the formula: // RSQ_{n + 1} = RSQ_{n} * (1.5 - 0.5 * x * RSQ_{n} * RSQ_{n}) // In the code below, each step is written as: // tmp1 = 0.5 * x * RSQ_{n} // tmp2 = -RSQ_{n} * tmp1 + 0.5 // RSQ_{n + 1} = RSQ_{n} * tmp2 + RSQ_{n} long mov b32 $r4 0x0 sched 0x2f 0x29 0x29 0x29 0x29 0x29 0x29 // 0x3f000000: 1/2 cvt f64 $r8d f32 0x3f000000 mul rn f64 $r2d $r0d $r8d mul rn f64 $r0d $r2d $r4d fma rn f64 $r6d neg $r4d $r0d $r8d fma rn f64 $r4d $r4d $r6d $r4d mul rn f64 $r0d $r2d $r4d fma rn f64 $r6d neg $r4d $r0d $r8d sched 0x29 0x29 0x29 0x29 0x29 0x29 0x29 fma rn f64 $r4d $r4d $r6d $r4d mul rn f64 $r0d $r2d $r4d fma rn f64 $r6d neg $r4d $r0d $r8d fma rn f64 $r4d $r4d $r6d $r4d mul rn f64 $r0d $r2d $r4d fma rn f64 $r6d neg $r4d $r0d $r8d fma rn f64 $r4d $r4d $r6d $r4d sched 0x29 0x20 0x28 0x2e 0x00 0x00 0x00 // Multiply 2^27 to result for small inputs to recover $p1 mul rn f64 $r4d $r4d 0x41a0000000000000 long mov b32 $r1 $r5 long mov b32 $r0 $r4 long ret // // Trap handler. // Requires at least 4 GPRs and 32 bytes of l[] memory to temporarily save GPRs. // Low 32 bytes of l[] memory shouldn't be used if resumeability is required. // // Trap info: // 0x000: mutex // 0x004: PC // 0x008: trapstat // 0x00c: warperr // 0x010: tidx // 0x014: tidy // 0x018: tidz // 0x01c: ctaidx // 0x020: ctaidy // 0x024: ctaidz // 0x030: $r0q // 0x130: $flags // 0x140: s[] // st b128 wb l[0x00] $r0q // check state of the warp and continue if it didn't cause the trap long mov b32 $r1 $trapstat long mov b32 $r3 $warperr mov $r2 $flags mask 0xffff and b32 0 $c $r1 $r3 e $c bra #end_cont // spill control flow stack to l[] long mov b32 $r3 16 spill_cfstack: preret #end_exit sub b32 $r3 $c $r3 0x1 lg $c bra #spill_cfstack // retrieve pointer to trap info mov b32 $r0 c0[0x1900] mov b32 $r1 c0[0x1904] // we only let a single faulting thread store its state mov b32 $r3 0x1 exch b32 $r3 g[$r0d] $r3 joinat #end_exit set $p0 0x1 eq u32 $r3 0x1 join $p0 nop // store $c and $p registers st b32 wb g[$r0d+0x130] $r2 // store $trapstat and $warperr long mov b32 $r2 $trapstat long mov b32 $r3 $warperr st b64 wb g[$r0d+0x8] $r2d // store registers st b128 wb g[$r0d+0x40] $r4q st b128 wb g[$r0d+0x50] $r8q st b128 wb g[$r0d+0x60] $r12q st b128 wb g[$r0d+0x70] $r16q st b128 wb g[$r0d+0x80] $r20q st b128 wb g[$r0d+0x90] $r24q st b128 wb g[$r0d+0xa0] $r28q st b128 wb g[$r0d+0xb0] $r32q st b128 wb g[$r0d+0xc0] $r36q st b128 wb g[$r0d+0xd0] $r40q st b128 wb g[$r0d+0xe0] $r44q st b128 wb g[$r0d+0xf0] $r48q st b128 wb g[$r0d+0x100] $r52q st b128 wb g[$r0d+0x110] $r56q st b128 wb g[$r0d+0x120] $r60q ld b64 $r2d cs l[0x0] st b64 wb g[$r0d+0x30] $r2d ld b64 $r2d cs l[0x8] st b64 wb g[$r0d+0x38] $r2d // store thread id long mov b32 $r2 $tidx long mov b32 $r3 $tidy st b64 wb g[$r0d+0x10] $r2d long mov b32 $r2 $tidz long mov b32 $r3 $ctaidx st b64 wb g[$r0d+0x18] $r2d long mov b32 $r2 $ctaidy long mov b32 $r3 $ctaidz st b64 wb g[$r0d+0x20] $r2d // store shared memory (in reverse order so $r0d is base again at the end) long mov b32 $r3 $smemsz sub b32 $r3 $c $r3 0x4 s $c bra #shared_done add b32 $r0 $c $r0 $r3 add b32 $r1 $r1 0x0 $c shared_loop: long ld b32 $r2 s[$r3] long st b32 wb g[$r0d+0x140] $r2 sub b32 $r0 $c $r0 0x4 sub b32 $r1 $r1 0x0 $c sub b32 $r3 $c $r3 0x4 lg $c bra #shared_loop shared_done: // search the stack for trap entry to retrieve PC mov b32 $r0 c0[0x1908] mov b32 $r1 c0[0x190c] membar sys // invalidate caches so we can read stack entries via g[] cctl ivall 0 l[0] cctl ivall 0 g[$r0d] // get offsets mov b32 $r2 $physid ext u32 $r3 $r2 0x0814 // MP id ext u32 $r2 $r2 0x0608 // warp id mul $r2 u32 $r2 u32 c0[0x1914] // warp offset mul $r3 u32 $r3 u32 c0[0x1910] // MP offset add b32 $r2 $r2 $r3 // MP + warp offset add b32 $r0 $c $r0 $r2 add b32 $r1 $r1 0x0 $c search_cstack: mov b32 $r3 c0[0x1918] // cstack size ld u8 $r2 cv g[$r0d+0x8] set $p0 0x1 eq u32 $r2 0xa $p0 bra #entry_found add b32 $r0 $c $r0 0x10 add b32 $r1 $r1 0x0 $c sub b32 $r3 $c $r3 0x10 lg $c bra #search_cstack bra #end_exit entry_found: // load PC (may be unaligned and spread out) ld b32 $r2 cv g[$r0d] mov b32 $r0 c0[0x1900] mov b32 $r1 c0[0x1904] st b32 wb g[$r0d+0x4] $r2 join nop // invalidate caches and exit end_exit: cctl ivall 0 g[0] bpt pause 0x0 rtt terminate end_cont: bpt pause 0x0 mov $flags $r2 mask 0xffff ld b128 $r0q cs l[0x00] rtt .section #gk104_builtin_offsets .b64 #gk104_div_u32 .b64 #gk104_div_s32 .b64 #gk104_rcp_f64 .b64 #gk104_rsq_f64