/**************************************************************************** * Copyright (C) 2017 Intel Corporation. All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. ****************************************************************************/ #if !defined(__SIMD_LIB_AVX_HPP__) #error Do not include this file directly, use "simdlib.hpp" instead. #endif using SIMD128T = SIMD128Impl::AVXImpl; //============================================================================ // SIMD256 AVX (1) implementation //============================================================================ #define SIMD_WRAPPER_1(op) \ static SIMDINLINE Float SIMDCALL op(Float a) \ {\ return _mm256_##op(a);\ } #define SIMD_WRAPPER_2(op) \ static SIMDINLINE Float SIMDCALL op(Float a, Float b) \ {\ return _mm256_##op(a, b);\ } #define SIMD_DWRAPPER_2(op) \ static SIMDINLINE Double SIMDCALL op(Double a, Double b) \ {\ return _mm256_##op(a, b);\ } #define SIMD_WRAPPER_2I(op) \ template\ static SIMDINLINE Float SIMDCALL op(Float a, Float b) \ {\ return _mm256_##op(a, b, ImmT);\ } #define SIMD_DWRAPPER_2I(op) \ template\ static SIMDINLINE Double SIMDCALL op(Double a, Double b) \ {\ return _mm256_##op(a, b, ImmT);\ } #define SIMD_WRAPPER_3(op) \ static SIMDINLINE Float SIMDCALL op(Float a, Float b, Float c) \ {\ return _mm256_##op(a, b, c);\ } #define SIMD_IWRAPPER_1(op) \ static SIMDINLINE Integer SIMDCALL op(Integer a) \ {\ return _mm256_##op(a);\ } #define SIMD_IWRAPPER_2(op) \ static SIMDINLINE Integer SIMDCALL op(Integer a, Integer b) \ {\ return _mm256_##op(a, b);\ } #define SIMD_IFWRAPPER_2(op, intrin) \ static SIMDINLINE Integer SIMDCALL op(Integer a, Integer b) \ {\ return castps_si( intrin(castsi_ps(a), castsi_ps(b)) );\ } #define SIMD_IFWRAPPER_2I(op, intrin) \ template \ static SIMDINLINE Integer SIMDCALL op(Integer a, Integer b) \ {\ return castps_si( intrin(castsi_ps(a), castsi_ps(b), ImmT) );\ } #define SIMD_IWRAPPER_2I_(op, intrin) \ template\ static SIMDINLINE Integer SIMDCALL op(Integer a, Integer b) \ {\ return _mm256_##intrin(a, b, ImmT);\ } #define SIMD_IWRAPPER_2I(op) SIMD_IWRAPPER_2I_(op, op) #define SIMD_IWRAPPER_3(op) \ static SIMDINLINE Integer SIMDCALL op(Integer a, Integer b, Integer c) \ {\ return _mm256_##op(a, b, c);\ } // emulated integer simd #define SIMD_EMU_IWRAPPER_1(op) \ static SIMDINLINE \ Integer SIMDCALL op(Integer a)\ {\ return Integer\ {\ SIMD128T::op(a.v4[0]),\ SIMD128T::op(a.v4[1]),\ };\ } #define SIMD_EMU_IWRAPPER_1L(op, shift) \ static SIMDINLINE \ Integer SIMDCALL op(Integer a)\ {\ return Integer \ {\ SIMD128T::op(a.v4[0]), \ SIMD128T::op(SIMD128T::template srli_si(a.v4[0])), \ };\ }\ static SIMDINLINE \ Integer SIMDCALL op(SIMD128Impl::Integer a)\ {\ return Integer \ {\ SIMD128T::op(a), \ SIMD128T::op(SIMD128T::template srli_si(a)), \ };\ } #define SIMD_EMU_IWRAPPER_1I(op) \ template static SIMDINLINE \ Integer SIMDCALL op(Integer a)\ {\ return Integer\ {\ SIMD128T::template op(a.v4[0]),\ SIMD128T::template op(a.v4[1]),\ };\ } #define SIMD_EMU_IWRAPPER_2(op) \ static SIMDINLINE \ Integer SIMDCALL op(Integer a, Integer b)\ {\ return Integer\ {\ SIMD128T::op(a.v4[0], b.v4[0]),\ SIMD128T::op(a.v4[1], b.v4[1]),\ };\ } #define SIMD_EMU_IWRAPPER_2I(op) \ template static SIMDINLINE \ Integer SIMDCALL op(Integer a, Integer b)\ {\ return Integer\ {\ SIMD128T::template op(a.v4[0], b.v[0]),\ SIMD128T::template op(a.v4[1], b.v[1]),\ };\ } //----------------------------------------------------------------------- // Single precision floating point arithmetic operations //----------------------------------------------------------------------- SIMD_WRAPPER_2(add_ps); // return a + b SIMD_WRAPPER_2(div_ps); // return a / b static SIMDINLINE Float SIMDCALL fmadd_ps(Float a, Float b, Float c) // return (a * b) + c { return add_ps(mul_ps(a, b), c); } static SIMDINLINE Float SIMDCALL fmsub_ps(Float a, Float b, Float c) // return (a * b) - c { return sub_ps(mul_ps(a, b), c); } SIMD_WRAPPER_2(max_ps); // return (a > b) ? a : b SIMD_WRAPPER_2(min_ps); // return (a < b) ? a : b SIMD_WRAPPER_2(mul_ps); // return a * b SIMD_WRAPPER_1(rcp_ps); // return 1.0f / a SIMD_WRAPPER_1(rsqrt_ps); // return 1.0f / sqrt(a) SIMD_WRAPPER_2(sub_ps); // return a - b template static SIMDINLINE Float SIMDCALL round_ps(Float a) { return _mm256_round_ps(a, static_cast(RMT)); } static SIMDINLINE Float SIMDCALL ceil_ps(Float a) { return round_ps(a); } static SIMDINLINE Float SIMDCALL floor_ps(Float a) { return round_ps(a); } //----------------------------------------------------------------------- // Integer (various width) arithmetic operations //----------------------------------------------------------------------- SIMD_EMU_IWRAPPER_1(abs_epi32); // return absolute_value(a) (int32) SIMD_EMU_IWRAPPER_2(add_epi32); // return a + b (int32) SIMD_EMU_IWRAPPER_2(add_epi8); // return a + b (int8) SIMD_EMU_IWRAPPER_2(adds_epu8); // return ((a + b) > 0xff) ? 0xff : (a + b) (uint8) SIMD_EMU_IWRAPPER_2(max_epi32); // return (a > b) ? a : b (int32) SIMD_EMU_IWRAPPER_2(max_epu32); // return (a > b) ? a : b (uint32) SIMD_EMU_IWRAPPER_2(min_epi32); // return (a < b) ? a : b (int32) SIMD_EMU_IWRAPPER_2(min_epu32); // return (a < b) ? a : b (uint32) SIMD_EMU_IWRAPPER_2(mul_epi32); // return a * b (int32) // return (a * b) & 0xFFFFFFFF // // Multiply the packed 32-bit integers in a and b, producing intermediate 64-bit integers, // and store the low 32 bits of the intermediate integers in dst. SIMD_EMU_IWRAPPER_2(mullo_epi32); SIMD_EMU_IWRAPPER_2(sub_epi32); // return a - b (int32) SIMD_EMU_IWRAPPER_2(sub_epi64); // return a - b (int64) SIMD_EMU_IWRAPPER_2(subs_epu8); // return (b > a) ? 0 : (a - b) (uint8) //----------------------------------------------------------------------- // Logical operations //----------------------------------------------------------------------- SIMD_WRAPPER_2(and_ps); // return a & b (float treated as int) SIMD_EMU_IWRAPPER_2(and_si); // return a & b (int) SIMD_WRAPPER_2(andnot_ps); // return (~a) & b (float treated as int) SIMD_EMU_IWRAPPER_2(andnot_si); // return (~a) & b (int) SIMD_WRAPPER_2(or_ps); // return a | b (float treated as int) SIMD_EMU_IWRAPPER_2(or_si); // return a | b (int) SIMD_WRAPPER_2(xor_ps); // return a ^ b (float treated as int) SIMD_EMU_IWRAPPER_2(xor_si); // return a ^ b (int) //----------------------------------------------------------------------- // Shift operations //----------------------------------------------------------------------- SIMD_EMU_IWRAPPER_1I(slli_epi32); // return a << ImmT static SIMDINLINE Integer SIMDCALL sllv_epi32(Integer vA, Integer vCount) // return a << b (uint32) { int32_t aHi, aLow, countHi, countLow; __m128i vAHi = _mm_castps_si128(_mm256_extractf128_ps(_mm256_castsi256_ps(vA), 1)); __m128i vALow = _mm_castps_si128(_mm256_extractf128_ps(_mm256_castsi256_ps(vA), 0)); __m128i vCountHi = _mm_castps_si128(_mm256_extractf128_ps(_mm256_castsi256_ps(vCount), 1)); __m128i vCountLow = _mm_castps_si128(_mm256_extractf128_ps(_mm256_castsi256_ps(vCount), 0)); aHi = _mm_extract_epi32(vAHi, 0); countHi = _mm_extract_epi32(vCountHi, 0); aHi <<= countHi; vAHi = _mm_insert_epi32(vAHi, aHi, 0); aLow = _mm_extract_epi32(vALow, 0); countLow = _mm_extract_epi32(vCountLow, 0); aLow <<= countLow; vALow = _mm_insert_epi32(vALow, aLow, 0); aHi = _mm_extract_epi32(vAHi, 1); countHi = _mm_extract_epi32(vCountHi, 1); aHi <<= countHi; vAHi = _mm_insert_epi32(vAHi, aHi, 1); aLow = _mm_extract_epi32(vALow, 1); countLow = _mm_extract_epi32(vCountLow, 1); aLow <<= countLow; vALow = _mm_insert_epi32(vALow, aLow, 1); aHi = _mm_extract_epi32(vAHi, 2); countHi = _mm_extract_epi32(vCountHi, 2); aHi <<= countHi; vAHi = _mm_insert_epi32(vAHi, aHi, 2); aLow = _mm_extract_epi32(vALow, 2); countLow = _mm_extract_epi32(vCountLow, 2); aLow <<= countLow; vALow = _mm_insert_epi32(vALow, aLow, 2); aHi = _mm_extract_epi32(vAHi, 3); countHi = _mm_extract_epi32(vCountHi, 3); aHi <<= countHi; vAHi = _mm_insert_epi32(vAHi, aHi, 3); aLow = _mm_extract_epi32(vALow, 3); countLow = _mm_extract_epi32(vCountLow, 3); aLow <<= countLow; vALow = _mm_insert_epi32(vALow, aLow, 3); __m256i ret = _mm256_set1_epi32(0); ret = _mm256_insertf128_si256(ret, vAHi, 1); ret = _mm256_insertf128_si256(ret, vALow, 0); return ret; } SIMD_EMU_IWRAPPER_1I(srai_epi32); // return a >> ImmT (int32) SIMD_EMU_IWRAPPER_1I(srli_epi32); // return a >> ImmT (uint32) SIMD_EMU_IWRAPPER_1I(srli_si); // return a >> (ImmT*8) (uint) template // same as srli_si, but with Float cast to int static SIMDINLINE Float SIMDCALL srlisi_ps(Float a) { return castsi_ps(srli_si(castps_si(a))); } static SIMDINLINE Integer SIMDCALL srlv_epi32(Integer vA, Integer vCount) // return a >> b (uint32) { int32_t aHi, aLow, countHi, countLow; __m128i vAHi = _mm_castps_si128(_mm256_extractf128_ps(_mm256_castsi256_ps(vA), 1)); __m128i vALow = _mm_castps_si128(_mm256_extractf128_ps(_mm256_castsi256_ps(vA), 0)); __m128i vCountHi = _mm_castps_si128(_mm256_extractf128_ps(_mm256_castsi256_ps(vCount), 1)); __m128i vCountLow = _mm_castps_si128(_mm256_extractf128_ps(_mm256_castsi256_ps(vCount), 0)); aHi = _mm_extract_epi32(vAHi, 0); countHi = _mm_extract_epi32(vCountHi, 0); aHi >>= countHi; vAHi = _mm_insert_epi32(vAHi, aHi, 0); aLow = _mm_extract_epi32(vALow, 0); countLow = _mm_extract_epi32(vCountLow, 0); aLow >>= countLow; vALow = _mm_insert_epi32(vALow, aLow, 0); aHi = _mm_extract_epi32(vAHi, 1); countHi = _mm_extract_epi32(vCountHi, 1); aHi >>= countHi; vAHi = _mm_insert_epi32(vAHi, aHi, 1); aLow = _mm_extract_epi32(vALow, 1); countLow = _mm_extract_epi32(vCountLow, 1); aLow >>= countLow; vALow = _mm_insert_epi32(vALow, aLow, 1); aHi = _mm_extract_epi32(vAHi, 2); countHi = _mm_extract_epi32(vCountHi, 2); aHi >>= countHi; vAHi = _mm_insert_epi32(vAHi, aHi, 2); aLow = _mm_extract_epi32(vALow, 2); countLow = _mm_extract_epi32(vCountLow, 2); aLow >>= countLow; vALow = _mm_insert_epi32(vALow, aLow, 2); aHi = _mm_extract_epi32(vAHi, 3); countHi = _mm_extract_epi32(vCountHi, 3); aHi >>= countHi; vAHi = _mm_insert_epi32(vAHi, aHi, 3); aLow = _mm_extract_epi32(vALow, 3); countLow = _mm_extract_epi32(vCountLow, 3); aLow >>= countLow; vALow = _mm_insert_epi32(vALow, aLow, 3); __m256i ret = _mm256_set1_epi32(0); ret = _mm256_insertf128_si256(ret, vAHi, 1); ret = _mm256_insertf128_si256(ret, vALow, 0); return ret; } //----------------------------------------------------------------------- // Conversion operations //----------------------------------------------------------------------- static SIMDINLINE Float SIMDCALL castpd_ps(Double a) // return *(Float*)(&a) { return _mm256_castpd_ps(a); } static SIMDINLINE Integer SIMDCALL castps_si(Float a) // return *(Integer*)(&a) { return _mm256_castps_si256(a); } static SIMDINLINE Double SIMDCALL castsi_pd(Integer a) // return *(Double*)(&a) { return _mm256_castsi256_pd(a); } static SIMDINLINE Double SIMDCALL castps_pd(Float a) // return *(Double*)(&a) { return _mm256_castps_pd(a); } static SIMDINLINE Integer SIMDCALL castpd_si(Double a) // return *(Integer*)(&a) { return _mm256_castpd_si256(a); } static SIMDINLINE Float SIMDCALL castsi_ps(Integer a) // return *(Float*)(&a) { return _mm256_castsi256_ps(a); } static SIMDINLINE Float SIMDCALL cvtepi32_ps(Integer a) // return (float)a (int32 --> float) { return _mm256_cvtepi32_ps(a); } SIMD_EMU_IWRAPPER_1L(cvtepu8_epi16, 8); // return (int16)a (uint8 --> int16) SIMD_EMU_IWRAPPER_1L(cvtepu8_epi32, 4); // return (int32)a (uint8 --> int32) SIMD_EMU_IWRAPPER_1L(cvtepu16_epi32, 8); // return (int32)a (uint16 --> int32) SIMD_EMU_IWRAPPER_1L(cvtepu16_epi64, 4); // return (int64)a (uint16 --> int64) SIMD_EMU_IWRAPPER_1L(cvtepu32_epi64, 8); // return (int64)a (uint32 --> int64) static SIMDINLINE Integer SIMDCALL cvtps_epi32(Float a) // return (int32)a (float --> int32) { return _mm256_cvtps_epi32(a); } static SIMDINLINE Integer SIMDCALL cvttps_epi32(Float a) // return (int32)a (rnd_to_zero(float) --> int32) { return _mm256_cvttps_epi32(a); } //----------------------------------------------------------------------- // Comparison operations //----------------------------------------------------------------------- template static SIMDINLINE Float SIMDCALL cmp_ps(Float a, Float b) // return a (CmpTypeT) b { return _mm256_cmp_ps(a, b, static_cast(CmpTypeT)); } static SIMDINLINE Float SIMDCALL cmplt_ps(Float a, Float b) { return cmp_ps(a, b); } static SIMDINLINE Float SIMDCALL cmpgt_ps(Float a, Float b) { return cmp_ps(a, b); } static SIMDINLINE Float SIMDCALL cmpneq_ps(Float a, Float b) { return cmp_ps(a, b); } static SIMDINLINE Float SIMDCALL cmpeq_ps(Float a, Float b) { return cmp_ps(a, b); } static SIMDINLINE Float SIMDCALL cmpge_ps(Float a, Float b) { return cmp_ps(a, b); } static SIMDINLINE Float SIMDCALL cmple_ps(Float a, Float b) { return cmp_ps(a, b); } SIMD_EMU_IWRAPPER_2(cmpeq_epi8); // return a == b (int8) SIMD_EMU_IWRAPPER_2(cmpeq_epi16); // return a == b (int16) SIMD_EMU_IWRAPPER_2(cmpeq_epi32); // return a == b (int32) SIMD_EMU_IWRAPPER_2(cmpeq_epi64); // return a == b (int64) SIMD_EMU_IWRAPPER_2(cmpgt_epi8); // return a > b (int8) SIMD_EMU_IWRAPPER_2(cmpgt_epi16); // return a > b (int16) SIMD_EMU_IWRAPPER_2(cmpgt_epi32); // return a > b (int32) SIMD_EMU_IWRAPPER_2(cmpgt_epi64); // return a > b (int64) SIMD_EMU_IWRAPPER_2(cmplt_epi32); // return a < b (int32) static SIMDINLINE bool SIMDCALL testz_ps(Float a, Float b) // return all_lanes_zero(a & b) ? 1 : 0 (float) { return 0 != _mm256_testz_ps(a, b); } static SIMDINLINE bool SIMDCALL testz_si(Integer a, Integer b) // return all_lanes_zero(a & b) ? 1 : 0 (int) { return 0 != _mm256_testz_si256(a, b); } //----------------------------------------------------------------------- // Blend / shuffle / permute operations //----------------------------------------------------------------------- SIMD_WRAPPER_2I(blend_ps); // return ImmT ? b : a (float) SIMD_IFWRAPPER_2I(blend_epi32, _mm256_blend_ps); // return ImmT ? b : a (int32) SIMD_WRAPPER_3(blendv_ps); // return mask ? b : a (float) static SIMDINLINE Integer SIMDCALL blendv_epi32(Integer a, Integer b, Float mask) // return mask ? b : a (int) { return castps_si(blendv_ps(castsi_ps(a), castsi_ps(b), mask)); } static SIMDINLINE Integer SIMDCALL blendv_epi32(Integer a, Integer b, Integer mask) // return mask ? b : a (int) { return castps_si(blendv_ps(castsi_ps(a), castsi_ps(b), castsi_ps(mask))); } static SIMDINLINE Float SIMDCALL broadcast_ss(float const *p) // return *p (all elements in vector get same value) { return _mm256_broadcast_ss(p); } SIMD_EMU_IWRAPPER_2(packs_epi16); // See documentation for _mm256_packs_epi16 and _mm512_packs_epi16 SIMD_EMU_IWRAPPER_2(packs_epi32); // See documentation for _mm256_packs_epi32 and _mm512_packs_epi32 SIMD_EMU_IWRAPPER_2(packus_epi16); // See documentation for _mm256_packus_epi16 and _mm512_packus_epi16 SIMD_EMU_IWRAPPER_2(packus_epi32); // See documentation for _mm256_packus_epi32 and _mm512_packus_epi32 static SIMDINLINE Integer SIMDCALL permute_epi32(Integer a, Integer swiz) // return a[swiz[i]] for each 32-bit lane i (int32) { Integer result; // Ugly slow implementation uint32_t const *pA = reinterpret_cast(&a); uint32_t const *pSwiz = reinterpret_cast(&swiz); uint32_t *pResult = reinterpret_cast(&result); for (uint32_t i = 0; i < SIMD_WIDTH; ++i) { pResult[i] = pA[0xF & pSwiz[i]]; } return result; } static SIMDINLINE Float SIMDCALL permute_ps(Float a, Integer swiz) // return a[swiz[i]] for each 32-bit lane i (float) { Float result; // Ugly slow implementation float const *pA = reinterpret_cast(&a); uint32_t const *pSwiz = reinterpret_cast(&swiz); float *pResult = reinterpret_cast(&result); for (uint32_t i = 0; i < SIMD_WIDTH; ++i) { pResult[i] = pA[0xF & pSwiz[i]]; } return result; } SIMD_WRAPPER_2I(permute2f128_ps); SIMD_DWRAPPER_2I(permute2f128_pd); SIMD_IWRAPPER_2I_(permute2f128_si, permute2f128_si256); SIMD_EMU_IWRAPPER_1I(shuffle_epi32); template static SIMDINLINE Integer SIMDCALL shuffle_epi64(Integer a, Integer b) { return castpd_si(shuffle_pd(castsi_pd(a), castsi_pd(b))); } SIMD_EMU_IWRAPPER_2(shuffle_epi8); SIMD_DWRAPPER_2I(shuffle_pd); SIMD_WRAPPER_2I(shuffle_ps); SIMD_EMU_IWRAPPER_2(unpackhi_epi16); SIMD_IFWRAPPER_2(unpackhi_epi32, _mm256_unpackhi_ps); SIMD_EMU_IWRAPPER_2(unpackhi_epi64); SIMD_EMU_IWRAPPER_2(unpackhi_epi8); SIMD_DWRAPPER_2(unpackhi_pd); SIMD_WRAPPER_2(unpackhi_ps); SIMD_EMU_IWRAPPER_2(unpacklo_epi16); SIMD_IFWRAPPER_2(unpacklo_epi32, _mm256_unpacklo_ps); SIMD_EMU_IWRAPPER_2(unpacklo_epi64); SIMD_EMU_IWRAPPER_2(unpacklo_epi8); SIMD_DWRAPPER_2(unpacklo_pd); SIMD_WRAPPER_2(unpacklo_ps); //----------------------------------------------------------------------- // Load / store operations //----------------------------------------------------------------------- template static SIMDINLINE Float SIMDCALL i32gather_ps(float const* p, Integer idx) // return *(float*)(((int8*)p) + (idx * ScaleT)) { uint32_t *pOffsets = (uint32_t*)&idx; Float vResult; float* pResult = (float*)&vResult; for (uint32_t i = 0; i < SIMD_WIDTH; ++i) { uint32_t offset = pOffsets[i]; offset = offset * static_cast(ScaleT); pResult[i] = *(float const*)(((uint8_t const*)p + offset)); } return vResult; } static SIMDINLINE Float SIMDCALL load1_ps(float const *p) // return *p (broadcast 1 value to all elements) { return broadcast_ss(p); } static SIMDINLINE Float SIMDCALL load_ps(float const *p) // return *p (loads SIMD width elements from memory) { return _mm256_load_ps(p); } static SIMDINLINE Integer SIMDCALL load_si(Integer const *p) // return *p { return _mm256_load_si256(&p->v); } static SIMDINLINE Float SIMDCALL loadu_ps(float const *p) // return *p (same as load_ps but allows for unaligned mem) { return _mm256_loadu_ps(p); } static SIMDINLINE Integer SIMDCALL loadu_si(Integer const *p) // return *p (same as load_si but allows for unaligned mem) { return _mm256_lddqu_si256(&p->v); } // for each element: (mask & (1 << 31)) ? (i32gather_ps(p, idx), mask = 0) : old template static SIMDINLINE Float SIMDCALL mask_i32gather_ps(Float old, float const* p, Integer idx, Float mask) { uint32_t *pOffsets = (uint32_t*)&idx; Float vResult = old; float* pResult = (float*)&vResult; DWORD index; uint32_t umask = movemask_ps(mask); while (_BitScanForward(&index, umask)) { umask &= ~(1 << index); uint32_t offset = pOffsets[index]; offset = offset * static_cast(ScaleT); pResult[index] = *(float const *)(((uint8_t const *)p + offset)); } return vResult; } static SIMDINLINE void SIMDCALL maskstore_ps(float *p, Integer mask, Float src) { _mm256_maskstore_ps(p, mask, src); } static SIMDINLINE uint32_t SIMDCALL movemask_epi8(Integer a) { return SIMD128T::movemask_epi8(a.v4[0]) | (SIMD128T::movemask_epi8(a.v4[1]) << 16); } static SIMDINLINE uint32_t SIMDCALL movemask_pd(Double a) { return static_cast(_mm256_movemask_pd(a)); } static SIMDINLINE uint32_t SIMDCALL movemask_ps(Float a) { return static_cast(_mm256_movemask_ps(a)); } static SIMDINLINE Integer SIMDCALL set1_epi32(int i) // return i (all elements are same value) { return _mm256_set1_epi32(i); } static SIMDINLINE Integer SIMDCALL set1_epi8(char i) // return i (all elements are same value) { return _mm256_set1_epi8(i); } static SIMDINLINE Float SIMDCALL set1_ps(float f) // return f (all elements are same value) { return _mm256_set1_ps(f); } static SIMDINLINE Float SIMDCALL setzero_ps() // return 0 (float) { return _mm256_setzero_ps(); } static SIMDINLINE Integer SIMDCALL setzero_si() // return 0 (integer) { return _mm256_setzero_si256(); } static SIMDINLINE void SIMDCALL store_ps(float *p, Float a) // *p = a (stores all elements contiguously in memory) { _mm256_store_ps(p, a); } static SIMDINLINE void SIMDCALL store_si(Integer *p, Integer a) // *p = a { _mm256_store_si256(&p->v, a); } static SIMDINLINE void SIMDCALL stream_ps(float *p, Float a) // *p = a (same as store_ps, but doesn't keep memory in cache) { _mm256_stream_ps(p, a); } //======================================================================= // Legacy interface (available only in SIMD256 width) //======================================================================= static SIMDINLINE Float SIMDCALL broadcast_ps(SIMD128Impl::Float const *p) { return _mm256_broadcast_ps(&p->v); } template static SIMDINLINE SIMD128Impl::Double SIMDCALL extractf128_pd(Double a) { return _mm256_extractf128_pd(a, ImmT); } template static SIMDINLINE SIMD128Impl::Float SIMDCALL extractf128_ps(Float a) { return _mm256_extractf128_ps(a, ImmT); } template static SIMDINLINE SIMD128Impl::Integer SIMDCALL extractf128_si(Integer a) { return _mm256_extractf128_si256(a, ImmT); } template static SIMDINLINE Double SIMDCALL insertf128_pd(Double a, SIMD128Impl::Double b) { return _mm256_insertf128_pd(a, b, ImmT); } template static SIMDINLINE Float SIMDCALL insertf128_ps(Float a, SIMD128Impl::Float b) { return _mm256_insertf128_ps(a, b, ImmT); } template static SIMDINLINE Integer SIMDCALL insertf128_si(Integer a, SIMD128Impl::Integer b) { return _mm256_insertf128_si256(a, b, ImmT); } #ifndef _mm256_set_m128i #define _mm256_set_m128i(/* SIMD128Impl::Integer */ hi, /* SIMD128Impl::Integer */ lo) \ _mm256_insertf128_si256(_mm256_castsi128_si256(lo), (hi), 0x1) #endif #ifndef _mm256_loadu2_m128i #define _mm256_loadu2_m128i(/* SIMD128Impl::Integer const* */ hiaddr, \ /* SIMD128Impl::Integer const* */ loaddr) \ _mm256_set_m128i(_mm_loadu_si128(hiaddr), _mm_loadu_si128(loaddr)) #endif static SIMDINLINE Integer SIMDCALL loadu2_si(SIMD128Impl::Integer const* phi, SIMD128Impl::Integer const* plo) { return _mm256_loadu2_m128i(&phi->v, &plo->v); } static SIMDINLINE Integer SIMDCALL set_epi32(int i7, int i6, int i5, int i4, int i3, int i2, int i1, int i0) { return _mm256_set_epi32(i7, i6, i5, i4, i3, i2, i1, i0); } static SIMDINLINE Float SIMDCALL set_ps(float i7, float i6, float i5, float i4, float i3, float i2, float i1, float i0) { return _mm256_set_ps(i7, i6, i5, i4, i3, i2, i1, i0); } static SIMDINLINE void SIMDCALL storeu2_si(SIMD128Impl::Integer *phi, SIMD128Impl::Integer *plo, Integer src) { _mm256_storeu2_m128i(&phi->v, &plo->v, src); } static SIMDINLINE Float SIMDCALL vmask_ps(int32_t mask) { Integer vec = set1_epi32(mask); const Integer bit = set_epi32( 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01); vec = and_si(vec, bit); vec = cmplt_epi32(setzero_si(), vec); return castsi_ps(vec); } #undef SIMD_WRAPPER_1 #undef SIMD_WRAPPER_2 #undef SIMD_DWRAPPER_2 #undef SIMD_DWRAPPER_2I #undef SIMD_WRAPPER_2I #undef SIMD_WRAPPER_3 #undef SIMD_IWRAPPER_1 #undef SIMD_IWRAPPER_2 #undef SIMD_IFWRAPPER_2 #undef SIMD_IFWRAPPER_2I #undef SIMD_IWRAPPER_2I #undef SIMD_IWRAPPER_2I_ #undef SIMD_IWRAPPER_2_ #undef SIMD_IWRAPPER_3 #undef SIMD_EMU_IWRAPPER_1 #undef SIMD_EMU_IWRAPPER_1I #undef SIMD_EMU_IWRAPPER_2 #undef SIMD_EMU_IWRAPPER_2I