machine(Directory, "Directory protocol") : int directory_latency { MessageBuffer forwardFromDir, network="To", virtual_network="2", ordered="false"; MessageBuffer responseFromDir, network="To", virtual_network="1", ordered="false"; MessageBuffer dmaRequestFromDir, network="To", virtual_network="4", ordered="true"; MessageBuffer requestToDir, network="From", virtual_network="0", ordered="true"; MessageBuffer dmaRequestToDir, network="From", virtual_network="5", ordered="true"; // STATES enumeration(State, desc="Directory states", default="Directory_State_I") { // Base states I, desc="Invalid"; M, desc="Modified"; M_DRD, desc="Blocked on an invalidation for a DMA read"; M_DWR, desc="Blocked on an invalidation for a DMA write"; M_DWRI, desc="Intermediate state M_DWR-->I"; M_DRDI, desc="Intermediate state M_DRD-->I"; IM, desc="Intermediate state I-->M"; MI, desc="Intermediate state M-->I"; ID, desc="Intermediate state for DMA_READ when in I"; ID_W, desc="Intermediate state for DMA_WRITE when in I"; } // Events enumeration(Event, desc="Directory events") { // processor requests GETX, desc="A GETX arrives"; GETS, desc="A GETS arrives"; PUTX, desc="A PUTX arrives"; PUTX_NotOwner, desc="A PUTX arrives"; // DMA requests DMA_READ, desc="A DMA Read memory request"; DMA_WRITE, desc="A DMA Write memory request"; // Memory Controller Memory_Data, desc="Fetched data from memory arrives"; Memory_Ack, desc="Writeback Ack from memory arrives"; } // TYPES // DirectoryEntry structure(Entry, desc="...") { State DirectoryState, desc="Directory state"; DataBlock DataBlk, desc="data for the block"; NetDest Sharers, desc="Sharers for this block"; NetDest Owner, desc="Owner of this block"; } external_type(DirectoryMemory) { Entry lookup(Address); bool isPresent(Address); void invalidateBlock(Address); } external_type(MemoryControl, inport="yes", outport="yes") { } // TBE entries for DMA requests structure(TBE, desc="TBE entries for outstanding DMA requests") { Address PhysicalAddress, desc="physical address"; State TBEState, desc="Transient State"; DataBlock DataBlk, desc="Data to be written (DMA write only)"; int Len, desc="..."; MachineID DmaRequestor, desc="DMA requestor"; } external_type(TBETable) { TBE lookup(Address); void allocate(Address); void deallocate(Address); bool isPresent(Address); } // ** OBJECTS ** DirectoryMemory directory, factory='RubySystem::getDirectory(m_cfg["directory"])'; MemoryControl memBuffer, factory='RubySystem::getMemoryControl(m_cfg["memory_control"])'; TBETable TBEs, template_hack=""; State getState(Address addr) { if (TBEs.isPresent(addr)) { return TBEs[addr].TBEState; } else if (directory.isPresent(addr)) { return directory[addr].DirectoryState; } else { return State:I; } } void setState(Address addr, State state) { if (TBEs.isPresent(addr)) { TBEs[addr].TBEState := state; } if (directory.isPresent(addr)) { if (state == State:I) { assert(directory[addr].Owner.count() == 0); assert(directory[addr].Sharers.count() == 0); } else if (state == State:M) { assert(directory[addr].Owner.count() == 1); assert(directory[addr].Sharers.count() == 0); } directory[addr].DirectoryState := state; } } // ** OUT_PORTS ** out_port(forwardNetwork_out, RequestMsg, forwardFromDir); out_port(responseNetwork_out, ResponseMsg, responseFromDir); out_port(requestQueue_out, ResponseMsg, requestToDir); // For recycling requests out_port(dmaResponseNetwork_out, DMAResponseMsg, dmaRequestFromDir); //added by SS out_port(memQueue_out, MemoryMsg, memBuffer); // ** IN_PORTS ** in_port(dmaRequestQueue_in, DMARequestMsg, dmaRequestToDir) { if (dmaRequestQueue_in.isReady()) { peek(dmaRequestQueue_in, DMARequestMsg) { if (in_msg.Type == DMARequestType:READ) { trigger(Event:DMA_READ, in_msg.LineAddress); } else if (in_msg.Type == DMARequestType:WRITE) { trigger(Event:DMA_WRITE, in_msg.LineAddress); } else { error("Invalid message"); } } } } in_port(requestQueue_in, RequestMsg, requestToDir) { if (requestQueue_in.isReady()) { peek(requestQueue_in, RequestMsg) { if (in_msg.Type == CoherenceRequestType:GETS) { trigger(Event:GETS, in_msg.Address); } else if (in_msg.Type == CoherenceRequestType:GETX) { trigger(Event:GETX, in_msg.Address); } else if (in_msg.Type == CoherenceRequestType:PUTX) { if (directory[in_msg.Address].Owner.isElement(in_msg.Requestor)) { trigger(Event:PUTX, in_msg.Address); } else { trigger(Event:PUTX_NotOwner, in_msg.Address); } } else { error("Invalid message"); } } } } //added by SS // off-chip memory request/response is done in_port(memQueue_in, MemoryMsg, memBuffer) { if (memQueue_in.isReady()) { peek(memQueue_in, MemoryMsg) { if (in_msg.Type == MemoryRequestType:MEMORY_READ) { trigger(Event:Memory_Data, in_msg.Address); } else if (in_msg.Type == MemoryRequestType:MEMORY_WB) { trigger(Event:Memory_Ack, in_msg.Address); } else { DEBUG_EXPR(in_msg.Type); error("Invalid message"); } } } } // Actions action(a_sendWriteBackAck, "a", desc="Send writeback ack to requestor") { peek(requestQueue_in, RequestMsg) { enqueue(forwardNetwork_out, RequestMsg, latency=directory_latency) { out_msg.Address := address; out_msg.Type := CoherenceRequestType:WB_ACK; out_msg.Requestor := in_msg.Requestor; out_msg.Destination.add(in_msg.Requestor); out_msg.MessageSize := MessageSizeType:Writeback_Control; } } } action(l_sendWriteBackAck, "la", desc="Send writeback ack to requestor") { peek(memQueue_in, MemoryMsg) { enqueue(forwardNetwork_out, RequestMsg, latency="1") { out_msg.Address := address; out_msg.Type := CoherenceRequestType:WB_ACK; out_msg.Requestor := in_msg.OriginalRequestorMachId; out_msg.Destination.add(in_msg.OriginalRequestorMachId); out_msg.MessageSize := MessageSizeType:Writeback_Control; } } } action(b_sendWriteBackNack, "b", desc="Send writeback nack to requestor") { peek(requestQueue_in, RequestMsg) { enqueue(forwardNetwork_out, RequestMsg, latency=directory_latency) { out_msg.Address := address; out_msg.Type := CoherenceRequestType:WB_NACK; out_msg.Requestor := in_msg.Requestor; out_msg.Destination.add(in_msg.Requestor); out_msg.MessageSize := MessageSizeType:Writeback_Control; } } } action(c_clearOwner, "c", desc="Clear the owner field") { directory[address].Owner.clear(); } action(d_sendData, "d", desc="Send data to requestor") { peek(memQueue_in, MemoryMsg) { enqueue(responseNetwork_out, ResponseMsg, latency="1") { out_msg.Address := address; out_msg.Type := CoherenceResponseType:DATA; out_msg.Sender := machineID; out_msg.Destination.add(in_msg.OriginalRequestorMachId); out_msg.DataBlk := in_msg.DataBlk; out_msg.MessageSize := MessageSizeType:Response_Data; } } } action(dr_sendDMAData, "dr", desc="Send Data to DMA controller from directory") { peek(memQueue_in, MemoryMsg) { enqueue(dmaResponseNetwork_out, DMAResponseMsg, latency="1") { out_msg.PhysicalAddress := address; out_msg.LineAddress := address; out_msg.Type := DMAResponseType:DATA; out_msg.DataBlk := in_msg.DataBlk; // we send the entire data block and rely on the dma controller to split it up if need be out_msg.Destination.add(TBEs[address].DmaRequestor); out_msg.MessageSize := MessageSizeType:Response_Data; } } } action(drp_sendDMAData, "drp", desc="Send Data to DMA controller from incoming PUTX") { peek(requestQueue_in, RequestMsg) { enqueue(dmaResponseNetwork_out, DMAResponseMsg, latency="1") { out_msg.PhysicalAddress := address; out_msg.LineAddress := address; out_msg.Type := DMAResponseType:DATA; out_msg.DataBlk := in_msg.DataBlk; // we send the entire data block and rely on the dma controller to split it up if need be out_msg.Destination.add(TBEs[address].DmaRequestor); out_msg.MessageSize := MessageSizeType:Response_Data; } } } action(da_sendDMAAck, "da", desc="Send Ack to DMA controller") { enqueue(dmaResponseNetwork_out, DMAResponseMsg, latency="1") { out_msg.PhysicalAddress := address; out_msg.LineAddress := address; out_msg.Type := DMAResponseType:ACK; out_msg.Destination.add(TBEs[address].DmaRequestor); out_msg.MessageSize := MessageSizeType:Writeback_Control; } } action(d_deallocateDirectory, "\d", desc="Deallocate Directory Entry") { directory.invalidateBlock(address); } action(e_ownerIsRequestor, "e", desc="The owner is now the requestor") { peek(requestQueue_in, RequestMsg) { directory[address].Owner.clear(); directory[address].Owner.add(in_msg.Requestor); } } action(f_forwardRequest, "f", desc="Forward request to owner") { peek(requestQueue_in, RequestMsg) { APPEND_TRANSITION_COMMENT("Own: "); APPEND_TRANSITION_COMMENT(directory[in_msg.Address].Owner); APPEND_TRANSITION_COMMENT("Req: "); APPEND_TRANSITION_COMMENT(in_msg.Requestor); enqueue(forwardNetwork_out, RequestMsg, latency=directory_latency) { out_msg.Address := address; out_msg.Type := in_msg.Type; out_msg.Requestor := in_msg.Requestor; out_msg.Destination := directory[in_msg.Address].Owner; out_msg.MessageSize := MessageSizeType:Writeback_Control; } } } action(inv_sendCacheInvalidate, "inv", desc="Invalidate a cache block") { peek(dmaRequestQueue_in, DMARequestMsg) { enqueue(forwardNetwork_out, RequestMsg, latency=directory_latency) { out_msg.Address := address; out_msg.Type := CoherenceRequestType:INV; out_msg.Requestor := machineID; out_msg.Destination := directory[in_msg.PhysicalAddress].Owner; out_msg.MessageSize := MessageSizeType:Writeback_Control; } } } action(i_popIncomingRequestQueue, "i", desc="Pop incoming request queue") { requestQueue_in.dequeue(); } action(p_popIncomingDMARequestQueue, "p", desc="Pop incoming DMA queue") { dmaRequestQueue_in.dequeue(); } action(l_writeDataToMemory, "pl", desc="Write PUTX data to memory") { peek(requestQueue_in, RequestMsg) { // assert(in_msg.Dirty); // assert(in_msg.MessageSize == MessageSizeType:Writeback_Data); directory[in_msg.Address].DataBlk := in_msg.DataBlk; //directory[in_msg.Address].DataBlk.copyPartial(in_msg.DataBlk, addressOffset(in_msg.Address), in_msg.Len); } } action(dwt_writeDMADataFromTBE, "dwt", desc="DMA Write data to memory from TBE") { directory[address].DataBlk.copyPartial(TBEs[address].DataBlk, addressOffset(TBEs[address].PhysicalAddress), TBEs[address].Len); } action(v_allocateTBE, "v", desc="Allocate TBE") { peek(dmaRequestQueue_in, DMARequestMsg) { TBEs.allocate(address); TBEs[address].DataBlk := in_msg.DataBlk; TBEs[address].PhysicalAddress := in_msg.PhysicalAddress; TBEs[address].Len := in_msg.Len; TBEs[address].DmaRequestor := in_msg.Requestor; } } action(r_allocateTbeForDmaRead, "\r", desc="Allocate TBE for DMA Read") { peek(dmaRequestQueue_in, DMARequestMsg) { TBEs.allocate(address); TBEs[address].DmaRequestor := in_msg.Requestor; } } action(v_allocateTBEFromRequestNet, "\v", desc="Allocate TBE") { peek(requestQueue_in, RequestMsg) { TBEs.allocate(address); TBEs[address].DataBlk := in_msg.DataBlk; } } action(w_deallocateTBE, "w", desc="Deallocate TBE") { TBEs.deallocate(address); } action(z_recycleRequestQueue, "z", desc="recycle request queue") { requestQueue_in.recycle(); } action(y_recycleDMARequestQueue, "y", desc="recycle dma request queue") { dmaRequestQueue_in.recycle(); } action(qf_queueMemoryFetchRequest, "qf", desc="Queue off-chip fetch request") { peek(requestQueue_in, RequestMsg) { enqueue(memQueue_out, MemoryMsg, latency="1") { out_msg.Address := address; out_msg.Type := MemoryRequestType:MEMORY_READ; out_msg.Sender := machineID; out_msg.OriginalRequestorMachId := in_msg.Requestor; out_msg.MessageSize := in_msg.MessageSize; out_msg.DataBlk := directory[in_msg.Address].DataBlk; DEBUG_EXPR(out_msg); } } } action(qf_queueMemoryFetchRequestDMA, "qfd", desc="Queue off-chip fetch request") { peek(dmaRequestQueue_in, DMARequestMsg) { enqueue(memQueue_out, MemoryMsg, latency="1") { out_msg.Address := address; out_msg.Type := MemoryRequestType:MEMORY_READ; out_msg.Sender := machineID; //out_msg.OriginalRequestorMachId := machineID; out_msg.MessageSize := in_msg.MessageSize; out_msg.DataBlk := directory[address].DataBlk; DEBUG_EXPR(out_msg); } } } action(qw_queueMemoryWBRequest_partial, "qwp", desc="Queue off-chip writeback request") { peek(dmaRequestQueue_in, DMARequestMsg) { enqueue(memQueue_out, MemoryMsg, latency="1") { out_msg.Address := address; out_msg.Type := MemoryRequestType:MEMORY_WB; //out_msg.OriginalRequestorMachId := machineID; //out_msg.DataBlk := in_msg.DataBlk; out_msg.DataBlk.copyPartial(in_msg.DataBlk, addressOffset(in_msg.PhysicalAddress), in_msg.Len); out_msg.MessageSize := in_msg.MessageSize; //out_msg.Prefetch := in_msg.Prefetch; DEBUG_EXPR(out_msg); } } } action(qw_queueMemoryWBRequest_partialTBE, "qwt", desc="Queue off-chip writeback request") { peek(requestQueue_in, RequestMsg) { enqueue(memQueue_out, MemoryMsg, latency="1") { out_msg.Address := address; out_msg.Type := MemoryRequestType:MEMORY_WB; out_msg.OriginalRequestorMachId := in_msg.Requestor; // get incoming data // out_msg.DataBlk := in_msg.DataBlk; out_msg.DataBlk.copyPartial(TBEs[address].DataBlk, addressOffset(TBEs[address].PhysicalAddress), TBEs[address].Len); out_msg.MessageSize := in_msg.MessageSize; //out_msg.Prefetch := in_msg.Prefetch; DEBUG_EXPR(out_msg); } } } action(l_queueMemoryWBRequest, "lq", desc="Write PUTX data to memory") { peek(requestQueue_in, RequestMsg) { enqueue(memQueue_out, MemoryMsg, latency="1") { out_msg.Address := address; out_msg.Type := MemoryRequestType:MEMORY_WB; out_msg.OriginalRequestorMachId := in_msg.Requestor; out_msg.DataBlk := in_msg.DataBlk; out_msg.MessageSize := in_msg.MessageSize; //out_msg.Prefetch := in_msg.Prefetch; DEBUG_EXPR(out_msg); } } } action(l_popMemQueue, "q", desc="Pop off-chip request queue") { memQueue_in.dequeue(); } action(w_writeDataToMemoryFromTBE, "\w", desc="Write date to directory memory from TBE") { //directory[address].DataBlk := TBEs[address].DataBlk; directory[address].DataBlk.copyPartial(TBEs[address].DataBlk, addressOffset(TBEs[address].PhysicalAddress), TBEs[address].Len); } // TRANSITIONS transition({M_DRD, M_DWR, M_DWRI, M_DRDI}, GETX) { z_recycleRequestQueue; } transition({IM, MI, ID, ID_W}, {GETX, GETS, PUTX, PUTX_NotOwner} ) { z_recycleRequestQueue; } transition({IM, MI, ID, ID_W}, {DMA_READ, DMA_WRITE} ) { y_recycleDMARequestQueue; } transition(I, GETX, IM) { //d_sendData; qf_queueMemoryFetchRequest; e_ownerIsRequestor; i_popIncomingRequestQueue; } transition(IM, Memory_Data, M) { d_sendData; //e_ownerIsRequestor; l_popMemQueue; } transition(I, DMA_READ, ID) { //dr_sendDMAData; r_allocateTbeForDmaRead; qf_queueMemoryFetchRequestDMA; p_popIncomingDMARequestQueue; } transition(ID, Memory_Data, I) { dr_sendDMAData; //p_popIncomingDMARequestQueue; w_deallocateTBE; l_popMemQueue; } transition(I, DMA_WRITE, ID_W) { v_allocateTBE; qw_queueMemoryWBRequest_partial; p_popIncomingDMARequestQueue; } transition(ID_W, Memory_Ack, I) { dwt_writeDMADataFromTBE; da_sendDMAAck; w_deallocateTBE; l_popMemQueue; } transition(M, DMA_READ, M_DRD) { v_allocateTBE; inv_sendCacheInvalidate; p_popIncomingDMARequestQueue; } transition(M_DRD, PUTX, M_DRDI) { l_writeDataToMemory; drp_sendDMAData; c_clearOwner; l_queueMemoryWBRequest; i_popIncomingRequestQueue; } transition(M_DRDI, Memory_Ack, I) { l_sendWriteBackAck; w_deallocateTBE; d_deallocateDirectory; l_popMemQueue; } transition(M, DMA_WRITE, M_DWR) { v_allocateTBE; inv_sendCacheInvalidate; p_popIncomingDMARequestQueue; } transition(M_DWR, PUTX, M_DWRI) { l_writeDataToMemory; qw_queueMemoryWBRequest_partialTBE; c_clearOwner; i_popIncomingRequestQueue; } transition(M_DWRI, Memory_Ack, I) { w_writeDataToMemoryFromTBE; l_sendWriteBackAck; da_sendDMAAck; w_deallocateTBE; d_deallocateDirectory; l_popMemQueue; } transition(M, GETX, M) { f_forwardRequest; e_ownerIsRequestor; i_popIncomingRequestQueue; } transition(M, PUTX, MI) { l_writeDataToMemory; c_clearOwner; v_allocateTBEFromRequestNet; l_queueMemoryWBRequest; i_popIncomingRequestQueue; } transition(MI, Memory_Ack, I) { w_writeDataToMemoryFromTBE; l_sendWriteBackAck; w_deallocateTBE; d_deallocateDirectory; l_popMemQueue; } transition(M, PUTX_NotOwner, M) { b_sendWriteBackNack; i_popIncomingRequestQueue; } transition(I, PUTX_NotOwner, I) { b_sendWriteBackNack; i_popIncomingRequestQueue; } }