Replace builtin_types.h generation with the generated output.
[mesa.git] / ast_to_hir.cpp
index 80489d371980cd6c9244aa8927c503e607f8bd49..7b4a855f57674d20852f0dc3e530322e0cd8e72d 100644 (file)
@@ -73,12 +73,71 @@ _mesa_ast_to_hir(exec_list *instructions, struct _mesa_glsl_parse_state *state)
 }
 
 
+/**
+ * If a conversion is available, convert one operand to a different type
+ *
+ * The \c from \c ir_rvalue is converted "in place".
+ *
+ * \param to     Type that the operand it to be converted to
+ * \param from   Operand that is being converted
+ * \param state  GLSL compiler state
+ *
+ * \return
+ * If a conversion is possible (or unnecessary), \c true is returned.
+ * Otherwise \c false is returned.
+ */
+static bool
+apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
+                         struct _mesa_glsl_parse_state *state)
+{
+   if (to->base_type == from->type->base_type)
+      return true;
+
+   /* This conversion was added in GLSL 1.20.  If the compilation mode is
+    * GLSL 1.10, the conversion is skipped.
+    */
+   if (state->language_version < 120)
+      return false;
+
+   /* From page 27 (page 33 of the PDF) of the GLSL 1.50 spec:
+    *
+    *    "There are no implicit array or structure conversions. For
+    *    example, an array of int cannot be implicitly converted to an
+    *    array of float. There are no implicit conversions between
+    *    signed and unsigned integers."
+    */
+   /* FINISHME: The above comment is partially a lie.  There is int/uint
+    * FINISHME: conversion for immediate constants.
+    */
+   if (!to->is_float() || !from->type->is_numeric())
+      return false;
+
+   switch (from->type->base_type) {
+   case GLSL_TYPE_INT:
+      from = new ir_expression(ir_unop_i2f, to, from, NULL);
+      break;
+   case GLSL_TYPE_UINT:
+      from = new ir_expression(ir_unop_u2f, to, from, NULL);
+      break;
+   case GLSL_TYPE_BOOL:
+      from = new ir_expression(ir_unop_b2f, to, from, NULL);
+      break;
+   default:
+      assert(0);
+   }
+
+   return true;
+}
+
+
 static const struct glsl_type *
-arithmetic_result_type(const struct glsl_type *type_a,
-                      const struct glsl_type *type_b,
+arithmetic_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
                       bool multiply,
-                      struct _mesa_glsl_parse_state *state)
+                      struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
 {
+   const glsl_type *const type_a = value_a->type;
+   const glsl_type *const type_b = value_b->type;
+
    /* From GLSL 1.50 spec, page 56:
     *
     *    "The arithmetic binary operators add (+), subtract (-),
@@ -86,6 +145,8 @@ arithmetic_result_type(const struct glsl_type *type_a,
     *    floating-point scalars, vectors, and matrices."
     */
    if (!type_a->is_numeric() || !type_b->is_numeric()) {
+      _mesa_glsl_error(loc, state,
+                      "Operands to arithmetic operators must be numeric");
       return glsl_type::error_type;
    }
 
@@ -93,16 +154,13 @@ arithmetic_result_type(const struct glsl_type *type_a,
    /*    "If one operand is floating-point based and the other is
     *    not, then the conversions from Section 4.1.10 "Implicit
     *    Conversions" are applied to the non-floating-point-based operand."
-    *
-    * This conversion was added in GLSL 1.20.  If the compilation mode is
-    * GLSL 1.10, the conversion is skipped.
     */
-   if (state->language_version >= 120) {
-      if ((type_a->base_type == GLSL_TYPE_FLOAT)
-         && (type_b->base_type != GLSL_TYPE_FLOAT)) {
-      } else if ((type_a->base_type != GLSL_TYPE_FLOAT)
-                && (type_b->base_type == GLSL_TYPE_FLOAT)) {
-      }
+   if (!apply_implicit_conversion(type_a, value_b, state)
+       && !apply_implicit_conversion(type_b, value_a, state)) {
+      _mesa_glsl_error(loc, state,
+                      "Could not implicitly convert operands to "
+                      "arithmetic operator");
+      return glsl_type::error_type;
    }
       
    /*    "If the operands are integer types, they must both be signed or
@@ -115,6 +173,8 @@ arithmetic_result_type(const struct glsl_type *type_a,
     * equality.
     */
    if (type_a->base_type != type_b->base_type) {
+      _mesa_glsl_error(loc, state,
+                      "base type mismatch for arithmetic operator");
       return glsl_type::error_type;
    }
 
@@ -153,7 +213,13 @@ arithmetic_result_type(const struct glsl_type *type_a,
     *      vector."
     */
    if (type_a->is_vector() && type_b->is_vector()) {
-      return (type_a == type_b) ? type_a : glsl_type::error_type;
+      if (type_a == type_b) {
+        return type_a;
+      } else {
+        _mesa_glsl_error(loc, state,
+                         "vector size mismatch for arithmetic operator");
+        return glsl_type::error_type;
+      }
    }
 
    /* All of the combinations of <scalar, scalar>, <vector, scalar>,
@@ -182,7 +248,8 @@ arithmetic_result_type(const struct glsl_type *type_a,
     *      more detail how vectors and matrices are operated on."
     */
    if (! multiply) {
-      return (type_a == type_b) ? type_a : glsl_type::error_type;
+      if (type_a == type_b)
+        return type_a;
    } else {
       if (type_a->is_matrix() && type_b->is_matrix()) {
         /* Matrix multiply.  The columns of A must match the rows of B.  Given
@@ -196,10 +263,13 @@ arithmetic_result_type(const struct glsl_type *type_a,
             * looking at the size of a vector that makes up a column.  The
             * transpose (size of a row) is done for B.
             */
-           return
+           const glsl_type *const type =
               glsl_type::get_instance(type_a->base_type,
                                       type_a->column_type()->vector_elements,
                                       type_b->row_type()->vector_elements);
+           assert(type != glsl_type::error_type);
+
+           return type;
         }
       } else if (type_a->is_matrix()) {
         /* A is a matrix and B is a column vector.  Columns of A must match
@@ -220,17 +290,22 @@ arithmetic_result_type(const struct glsl_type *type_a,
         if (type_a == type_b->column_type())
            return type_a;
       }
+
+      _mesa_glsl_error(loc, state, "size mismatch for matrix multiplication");
+      return glsl_type::error_type;
    }
 
 
    /*    "All other cases are illegal."
     */
+   _mesa_glsl_error(loc, state, "type mismatch");
    return glsl_type::error_type;
 }
 
 
 static const struct glsl_type *
-unary_arithmetic_result_type(const struct glsl_type *type)
+unary_arithmetic_result_type(const struct glsl_type *type,
+                            struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
 {
    /* From GLSL 1.50 spec, page 57:
     *
@@ -240,8 +315,11 @@ unary_arithmetic_result_type(const struct glsl_type *type)
     *     component-wise on their operands. These result with the same type
     *     they operated on."
     */
-   if (!type->is_numeric())
+   if (!type->is_numeric()) {
+      _mesa_glsl_error(loc, state,
+                      "Operands to arithmetic operators must be numeric");
       return glsl_type::error_type;
+   }
 
    return type;
 }
@@ -249,7 +327,8 @@ unary_arithmetic_result_type(const struct glsl_type *type)
 
 static const struct glsl_type *
 modulus_result_type(const struct glsl_type *type_a,
-                   const struct glsl_type *type_b)
+                   const struct glsl_type *type_b,
+                   struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
 {
    /* From GLSL 1.50 spec, page 56:
     *    "The operator modulus (%) operates on signed or unsigned integers or
@@ -258,6 +337,7 @@ modulus_result_type(const struct glsl_type *type_a,
     */
    if (!type_a->is_integer() || !type_b->is_integer()
        || (type_a->base_type != type_b->base_type)) {
+      _mesa_glsl_error(loc, state, "type mismatch");
       return glsl_type::error_type;
    }
 
@@ -276,15 +356,18 @@ modulus_result_type(const struct glsl_type *type_a,
    /*    "The operator modulus (%) is not defined for any other data types
     *    (non-integer types)."
     */
+   _mesa_glsl_error(loc, state, "type mismatch");
    return glsl_type::error_type;
 }
 
 
 static const struct glsl_type *
-relational_result_type(const struct glsl_type *type_a,
-                      const struct glsl_type *type_b,
-                      struct _mesa_glsl_parse_state *state)
+relational_result_type(ir_rvalue * &value_a, ir_rvalue * &value_b,
+                      struct _mesa_glsl_parse_state *state, YYLTYPE *loc)
 {
+   const glsl_type *const type_a = value_a->type;
+   const glsl_type *const type_b = value_b->type;
+
    /* From GLSL 1.50 spec, page 56:
     *    "The relational operators greater than (>), less than (<), greater
     *    than or equal (>=), and less than or equal (<=) operate only on
@@ -293,28 +376,29 @@ relational_result_type(const struct glsl_type *type_a,
    if (!type_a->is_numeric()
        || !type_b->is_numeric()
        || !type_a->is_scalar()
-       || !type_b->is_scalar())
+       || !type_b->is_scalar()) {
+      _mesa_glsl_error(loc, state,
+                      "Operands to relational operators must be scalar and "
+                      "numeric");
       return glsl_type::error_type;
+   }
 
    /*    "Either the operands' types must match, or the conversions from
     *    Section 4.1.10 "Implicit Conversions" will be applied to the integer
     *    operand, after which the types must match."
-    *
-    * This conversion was added in GLSL 1.20.  If the compilation mode is
-    * GLSL 1.10, the conversion is skipped.
     */
-   if (state->language_version >= 120) {
-      if ((type_a->base_type == GLSL_TYPE_FLOAT)
-         && (type_b->base_type != GLSL_TYPE_FLOAT)) {
-        /* FINISHME: Generate the implicit type conversion. */
-      } else if ((type_a->base_type != GLSL_TYPE_FLOAT)
-                && (type_b->base_type == GLSL_TYPE_FLOAT)) {
-        /* FINISHME: Generate the implicit type conversion. */
-      }
+   if (!apply_implicit_conversion(type_a, value_b, state)
+       && !apply_implicit_conversion(type_b, value_a, state)) {
+      _mesa_glsl_error(loc, state,
+                      "Could not implicitly convert operands to "
+                      "relational operator");
+      return glsl_type::error_type;
    }
 
-   if (type_a->base_type != type_b->base_type)
+   if (type_a->base_type != type_b->base_type) {
+      _mesa_glsl_error(loc, state, "base type mismatch");
       return glsl_type::error_type;
+   }
 
    /*    "The result is scalar Boolean."
     */
@@ -349,13 +433,23 @@ validate_assignment(const glsl_type *lhs_type, ir_rvalue *rhs)
    if (rhs_type->is_error())
       return rhs;
 
-   /* FINISHME: For GLSL 1.10, check that the types are not arrays. */
-
    /* If the types are identical, the assignment can trivially proceed.
     */
    if (rhs_type == lhs_type)
       return rhs;
 
+   /* If the array element types are the same and the size of the LHS is zero,
+    * the assignment is okay.
+    *
+    * Note: Whole-array assignments are not permitted in GLSL 1.10, but this
+    * is handled by ir_dereference::is_lvalue.
+    */
+   if (lhs_type->is_array() && rhs->type->is_array()
+       && (lhs_type->element_type() == rhs->type->element_type())
+       && (lhs_type->array_size() == 0)) {
+      return rhs;
+   }
+
    /* FINISHME: Check for and apply automatic conversions. */
    return NULL;
 }
@@ -380,6 +474,31 @@ do_assignment(exec_list *instructions, struct _mesa_glsl_parse_state *state,
       _mesa_glsl_error(& lhs_loc, state, "type mismatch");
    } else {
       rhs = new_rhs;
+
+      /* If the LHS array was not declared with a size, it takes it size from
+       * the RHS.  If the LHS is an l-value and a whole array, it must be a
+       * dereference of a variable.  Any other case would require that the LHS
+       * is either not an l-value or not a whole array.
+       */
+      if (lhs->type->array_size() == 0) {
+        ir_dereference *const d = lhs->as_dereference();
+
+        assert(d != NULL);
+
+        ir_variable *const var = d->var->as_variable();
+
+        assert(var != NULL);
+
+        if (var->max_array_access >= unsigned(rhs->type->array_size())) {
+           /* FINISHME: This should actually log the location of the RHS. */
+           _mesa_glsl_error(& lhs_loc, state, "array size must be > %u due to "
+                            "previous access",
+                            var->max_array_access);
+        }
+
+        var->type = glsl_type::get_array_instance(lhs->type->element_type(),
+                                                  rhs->type->array_size());
+      }
    }
 
    ir_instruction *tmp = new ir_assignment(lhs, rhs, NULL);
@@ -536,9 +655,9 @@ ast_expression::hir(exec_list *instructions,
    case ast_neg:
       op[0] = this->subexpressions[0]->hir(instructions, state);
 
-      type = unary_arithmetic_result_type(op[0]->type);
+      type = unary_arithmetic_result_type(op[0]->type, state, & loc);
 
-      error_emitted = op[0]->type->is_error();
+      error_emitted = type->is_error();
 
       result = new ir_expression(operations[this->oper], type,
                                 op[0], NULL);
@@ -551,9 +670,10 @@ ast_expression::hir(exec_list *instructions,
       op[0] = this->subexpressions[0]->hir(instructions, state);
       op[1] = this->subexpressions[1]->hir(instructions, state);
 
-      type = arithmetic_result_type(op[0]->type, op[1]->type,
+      type = arithmetic_result_type(op[0], op[1],
                                    (this->oper == ast_mul),
-                                   state);
+                                   state, & loc);
+      error_emitted = type->is_error();
 
       result = new ir_expression(operations[this->oper], type,
                                 op[0], op[1]);
@@ -563,19 +683,19 @@ ast_expression::hir(exec_list *instructions,
       op[0] = this->subexpressions[0]->hir(instructions, state);
       op[1] = this->subexpressions[1]->hir(instructions, state);
 
-      error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
-
-      type = modulus_result_type(op[0]->type, op[1]->type);
+      type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
 
       assert(operations[this->oper] == ir_binop_mod);
 
       result = new ir_expression(operations[this->oper], type,
                                 op[0], op[1]);
+      error_emitted = type->is_error();
       break;
 
    case ast_lshift:
    case ast_rshift:
-      /* FINISHME: Implement bit-shift operators. */
+      _mesa_glsl_error(& loc, state, "FINISHME: implement bit-shift operators");
+      error_emitted = true;
       break;
 
    case ast_less:
@@ -585,9 +705,7 @@ ast_expression::hir(exec_list *instructions,
       op[0] = this->subexpressions[0]->hir(instructions, state);
       op[1] = this->subexpressions[1]->hir(instructions, state);
 
-      error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
-
-      type = relational_result_type(op[0]->type, op[1]->type, state);
+      type = relational_result_type(op[0], op[1], state, & loc);
 
       /* The relational operators must either generate an error or result
        * in a scalar boolean.  See page 57 of the GLSL 1.50 spec.
@@ -598,6 +716,7 @@ ast_expression::hir(exec_list *instructions,
 
       result = new ir_expression(operations[this->oper], type,
                                 op[0], op[1]);
+      error_emitted = type->is_error();
       break;
 
    case ast_nequal:
@@ -614,11 +733,17 @@ ast_expression::hir(exec_list *instructions,
        *    applied to one operand that can make them match, in which
        *    case this conversion is done."
        */
-      /* FINISHME: Apply implicit conversions */
-      if (op[0]->type != op[1]->type) {
+      if ((!apply_implicit_conversion(op[0]->type, op[1], state)
+          && !apply_implicit_conversion(op[1]->type, op[0], state))
+         || (op[0]->type != op[1]->type)) {
         _mesa_glsl_error(& loc, state, "operands of `%s' must have the same "
                          "type", (this->oper == ast_equal) ? "==" : "!=");
         error_emitted = true;
+      } else if ((state->language_version <= 110)
+                && (op[0]->type->is_array() || op[1]->type->is_array())) {
+        _mesa_glsl_error(& loc, state, "array comparisons forbidden in "
+                         "GLSL 1.10");
+        error_emitted = true;
       }
 
       result = new ir_expression(operations[this->oper], glsl_type::bool_type,
@@ -632,14 +757,159 @@ ast_expression::hir(exec_list *instructions,
    case ast_bit_xor:
    case ast_bit_or:
    case ast_bit_not:
-      /* FINISHME: Implement bit-wise operators. */
+      _mesa_glsl_error(& loc, state, "FINISHME: implement bit-wise operators");
+      error_emitted = true;
       break;
 
-   case ast_logic_and:
+   case ast_logic_and: {
+      op[0] = this->subexpressions[0]->hir(instructions, state);
+
+      if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
+        YYLTYPE loc = this->subexpressions[0]->get_location();
+
+        _mesa_glsl_error(& loc, state, "LHS of `%s' must be scalar boolean",
+                         operator_string(this->oper));
+        error_emitted = true;
+      }
+
+      ir_constant *op0_const = op[0]->constant_expression_value();
+      if (op0_const) {
+        if (op0_const->value.b[0]) {
+           op[1] = this->subexpressions[1]->hir(instructions, state);
+
+           if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
+              YYLTYPE loc = this->subexpressions[1]->get_location();
+
+              _mesa_glsl_error(& loc, state,
+                               "RHS of `%s' must be scalar boolean",
+                               operator_string(this->oper));
+              error_emitted = true;
+           }
+           result = op[1];
+        } else {
+           result = op0_const;
+        }
+        type = glsl_type::bool_type;
+      } else {
+        ir_if *const stmt = new ir_if(op[0]);
+        instructions->push_tail(stmt);
+
+        op[1] = this->subexpressions[1]->hir(&stmt->then_instructions, state);
+
+        if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
+           YYLTYPE loc = this->subexpressions[1]->get_location();
+
+           _mesa_glsl_error(& loc, state,
+                            "RHS of `%s' must be scalar boolean",
+                            operator_string(this->oper));
+           error_emitted = true;
+        }
+
+        ir_variable *const tmp = generate_temporary(glsl_type::bool_type,
+                                                    instructions, state);
+
+        ir_dereference *const then_deref = new ir_dereference(tmp);
+        ir_assignment *const then_assign =
+           new ir_assignment(then_deref, op[1], NULL);
+        stmt->then_instructions.push_tail(then_assign);
+
+        ir_dereference *const else_deref = new ir_dereference(tmp);
+        ir_assignment *const else_assign =
+           new ir_assignment(else_deref, new ir_constant(false), NULL);
+        stmt->else_instructions.push_tail(else_assign);
+
+        result = new ir_dereference(tmp);
+        type = tmp->type;
+      }
+      break;
+   }
+
+   case ast_logic_or: {
+      op[0] = this->subexpressions[0]->hir(instructions, state);
+
+      if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
+        YYLTYPE loc = this->subexpressions[0]->get_location();
+
+        _mesa_glsl_error(& loc, state, "LHS of `%s' must be scalar boolean",
+                         operator_string(this->oper));
+        error_emitted = true;
+      }
+
+      ir_constant *op0_const = op[0]->constant_expression_value();
+      if (op0_const) {
+        if (op0_const->value.b[0]) {
+           result = op0_const;
+        } else {
+           op[1] = this->subexpressions[1]->hir(instructions, state);
+
+           if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
+              YYLTYPE loc = this->subexpressions[1]->get_location();
+
+              _mesa_glsl_error(& loc, state,
+                               "RHS of `%s' must be scalar boolean",
+                               operator_string(this->oper));
+              error_emitted = true;
+           }
+           result = op[1];
+        }
+        type = glsl_type::bool_type;
+      } else {
+        ir_if *const stmt = new ir_if(op[0]);
+        instructions->push_tail(stmt);
+
+        ir_variable *const tmp = generate_temporary(glsl_type::bool_type,
+                                                    instructions, state);
+
+        op[1] = this->subexpressions[1]->hir(&stmt->then_instructions, state);
+
+        if (!op[1]->type->is_boolean() || !op[1]->type->is_scalar()) {
+           YYLTYPE loc = this->subexpressions[1]->get_location();
+
+           _mesa_glsl_error(& loc, state, "RHS of `%s' must be scalar boolean",
+                            operator_string(this->oper));
+           error_emitted = true;
+        }
+
+        ir_dereference *const then_deref = new ir_dereference(tmp);
+        ir_assignment *const then_assign =
+           new ir_assignment(then_deref, new ir_constant(true), NULL);
+        stmt->then_instructions.push_tail(then_assign);
+
+        ir_dereference *const else_deref = new ir_dereference(tmp);
+        ir_assignment *const else_assign =
+           new ir_assignment(else_deref, op[1], NULL);
+        stmt->else_instructions.push_tail(else_assign);
+
+        result = new ir_dereference(tmp);
+        type = tmp->type;
+      }
+      break;
+   }
+
    case ast_logic_xor:
-   case ast_logic_or:
+      op[0] = this->subexpressions[0]->hir(instructions, state);
+      op[1] = this->subexpressions[1]->hir(instructions, state);
+
+
+      result = new ir_expression(operations[this->oper], glsl_type::bool_type,
+                                op[0], op[1]);
+      type = glsl_type::bool_type;
+      break;
+
    case ast_logic_not:
-      /* FINISHME: Implement logical operators. */
+      op[0] = this->subexpressions[0]->hir(instructions, state);
+
+      if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
+        YYLTYPE loc = this->subexpressions[0]->get_location();
+
+        _mesa_glsl_error(& loc, state,
+                         "operand of `!' must be scalar boolean");
+        error_emitted = true;
+      }
+
+      result = new ir_expression(operations[this->oper], glsl_type::bool_type,
+                                op[0], NULL);
+      type = glsl_type::bool_type;
       break;
 
    case ast_mul_assign:
@@ -649,9 +919,9 @@ ast_expression::hir(exec_list *instructions,
       op[0] = this->subexpressions[0]->hir(instructions, state);
       op[1] = this->subexpressions[1]->hir(instructions, state);
 
-      type = arithmetic_result_type(op[0]->type, op[1]->type,
+      type = arithmetic_result_type(op[0], op[1],
                                    (this->oper == ast_mul_assign),
-                                   state);
+                                   state, & loc);
 
       ir_rvalue *temp_rhs = new ir_expression(operations[this->oper], type,
                                              op[0], op[1]);
@@ -673,9 +943,7 @@ ast_expression::hir(exec_list *instructions,
       op[0] = this->subexpressions[0]->hir(instructions, state);
       op[1] = this->subexpressions[1]->hir(instructions, state);
 
-      error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
-
-      type = modulus_result_type(op[0]->type, op[1]->type);
+      type = modulus_result_type(op[0]->type, op[1]->type, state, & loc);
 
       assert(operations[this->oper] == ir_binop_mod);
 
@@ -686,21 +954,89 @@ ast_expression::hir(exec_list *instructions,
       result = do_assignment(instructions, state, op[0], temp_rhs,
                             this->subexpressions[0]->get_location());
       type = result->type;
-      error_emitted = op[0]->type->is_error();
+      error_emitted = type->is_error();
       break;
    }
 
    case ast_ls_assign:
    case ast_rs_assign:
+      _mesa_glsl_error(& loc, state,
+                      "FINISHME: implement bit-shift assignment operators");
+      error_emitted = true;
       break;
 
    case ast_and_assign:
    case ast_xor_assign:
    case ast_or_assign:
+      _mesa_glsl_error(& loc, state,
+                      "FINISHME: implement logic assignment operators");
+      error_emitted = true;
       break;
 
-   case ast_conditional:
+   case ast_conditional: {
+      op[0] = this->subexpressions[0]->hir(instructions, state);
+
+      /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
+       *
+       *    "The ternary selection operator (?:). It operates on three
+       *    expressions (exp1 ? exp2 : exp3). This operator evaluates the
+       *    first expression, which must result in a scalar Boolean."
+       */
+      if (!op[0]->type->is_boolean() || !op[0]->type->is_scalar()) {
+        YYLTYPE loc = this->subexpressions[0]->get_location();
+
+        _mesa_glsl_error(& loc, state, "?: condition must be scalar boolean");
+        error_emitted = true;
+      }
+
+      /* The :? operator is implemented by generating an anonymous temporary
+       * followed by an if-statement.  The last instruction in each branch of
+       * the if-statement assigns a value to the anonymous temporary.  This
+       * temporary is the r-value of the expression.
+       */
+      ir_variable *const tmp = generate_temporary(glsl_type::error_type,
+                                                 instructions, state);
+
+      ir_if *const stmt = new ir_if(op[0]);
+      instructions->push_tail(stmt);
+
+      op[1] = this->subexpressions[1]->hir(& stmt->then_instructions, state);
+      ir_dereference *const then_deref = new ir_dereference(tmp);
+      ir_assignment *const then_assign =
+        new ir_assignment(then_deref, op[1], NULL);
+      stmt->then_instructions.push_tail(then_assign);
+
+      op[2] = this->subexpressions[2]->hir(& stmt->else_instructions, state);
+      ir_dereference *const else_deref = new ir_dereference(tmp);
+      ir_assignment *const else_assign =
+        new ir_assignment(else_deref, op[2], NULL);
+      stmt->else_instructions.push_tail(else_assign);
+
+      /* From page 59 (page 65 of the PDF) of the GLSL 1.50 spec:
+       *
+       *     "The second and third expressions can be any type, as
+       *     long their types match, or there is a conversion in
+       *     Section 4.1.10 "Implicit Conversions" that can be applied
+       *     to one of the expressions to make their types match. This
+       *     resulting matching type is the type of the entire
+       *     expression."
+       */
+      if ((!apply_implicit_conversion(op[1]->type, op[2], state)
+          && !apply_implicit_conversion(op[2]->type, op[1], state))
+         || (op[1]->type != op[2]->type)) {
+        YYLTYPE loc = this->subexpressions[1]->get_location();
+
+        _mesa_glsl_error(& loc, state, "Second and third operands of ?: "
+                         "operator must have matching types.");
+        error_emitted = true;
+      } else {
+        tmp->type = op[1]->type;
+      }
+
+      result = new ir_dereference(tmp);
+      type = tmp->type;
       break;
+   }
 
    case ast_pre_inc:
    case ast_pre_dec: {
@@ -710,8 +1046,7 @@ ast_expression::hir(exec_list *instructions,
       else
         op[1] = new ir_constant(1);
 
-      type = arithmetic_result_type(op[0]->type, op[1]->type,
-                                   false, state);
+      type = arithmetic_result_type(op[0], op[1], false, state, & loc);
 
       struct ir_rvalue *temp_rhs;
       temp_rhs = new ir_expression(operations[this->oper], type,
@@ -734,8 +1069,7 @@ ast_expression::hir(exec_list *instructions,
 
       error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
 
-      type = arithmetic_result_type(op[0]->type, op[1]->type,
-                                   false, state);
+      type = arithmetic_result_type(op[0], op[1], false, state, & loc);
 
       struct ir_rvalue *temp_rhs;
       temp_rhs = new ir_expression(operations[this->oper], type,
@@ -760,8 +1094,119 @@ ast_expression::hir(exec_list *instructions,
       type = result->type;
       break;
 
-   case ast_array_index:
+   case ast_array_index: {
+      YYLTYPE index_loc = subexpressions[1]->get_location();
+
+      op[0] = subexpressions[0]->hir(instructions, state);
+      op[1] = subexpressions[1]->hir(instructions, state);
+
+      error_emitted = op[0]->type->is_error() || op[1]->type->is_error();
+
+      ir_dereference *const lhs = op[0]->as_dereference();
+      ir_instruction *array;
+      if ((lhs != NULL)
+         && (lhs->mode == ir_dereference::ir_reference_variable)) {
+        result = new ir_dereference(lhs->var, op[1]);
+
+        delete op[0];
+        array = lhs->var;
+      } else {
+        result = new ir_dereference(op[0], op[1]);
+        array = op[0];
+      }
+
+      /* Do not use op[0] after this point.  Use array.
+       */
+      op[0] = NULL;
+
+
+      if (error_emitted)
+        break;
+
+      if (!array->type->is_array()
+         && !array->type->is_matrix()
+         && !array->type->is_vector()) {
+        _mesa_glsl_error(& index_loc, state,
+                         "cannot dereference non-array / non-matrix / "
+                         "non-vector");
+        error_emitted = true;
+      }
+
+      if (!op[1]->type->is_integer()) {
+        _mesa_glsl_error(& index_loc, state,
+                         "array index must be integer type");
+        error_emitted = true;
+      } else if (!op[1]->type->is_scalar()) {
+        _mesa_glsl_error(& index_loc, state,
+                         "array index must be scalar");
+        error_emitted = true;
+      }
+
+      /* If the array index is a constant expression and the array has a
+       * declared size, ensure that the access is in-bounds.  If the array
+       * index is not a constant expression, ensure that the array has a
+       * declared size.
+       */
+      ir_constant *const const_index = op[1]->constant_expression_value();
+      if (const_index != NULL) {
+        const int idx = const_index->value.i[0];
+        const char *type_name;
+        unsigned bound = 0;
+
+        if (array->type->is_matrix()) {
+           type_name = "matrix";
+        } else if (array->type->is_vector()) {
+           type_name = "vector";
+        } else {
+           type_name = "array";
+        }
+
+        /* From page 24 (page 30 of the PDF) of the GLSL 1.50 spec:
+         *
+         *    "It is illegal to declare an array with a size, and then
+         *    later (in the same shader) index the same array with an
+         *    integral constant expression greater than or equal to the
+         *    declared size. It is also illegal to index an array with a
+         *    negative constant expression."
+         */
+        if (array->type->is_matrix()) {
+           if (array->type->row_type()->vector_elements <= idx) {
+              bound = array->type->row_type()->vector_elements;
+           }
+        } else if (array->type->is_vector()) {
+           if (array->type->vector_elements <= idx) {
+              bound = array->type->vector_elements;
+           }
+        } else {
+           if ((array->type->array_size() > 0)
+               && (array->type->array_size() <= idx)) {
+              bound = array->type->array_size();
+           }
+        }
+
+        if (bound > 0) {
+           _mesa_glsl_error(& loc, state, "%s index must be < %u",
+                            type_name, bound);
+           error_emitted = true;
+        } else if (idx < 0) {
+           _mesa_glsl_error(& loc, state, "%s index must be >= 0",
+                            type_name);
+           error_emitted = true;
+        }
+
+        if (array->type->is_array()) {
+           ir_variable *const v = array->as_variable();
+           if ((v != NULL) && (unsigned(idx) > v->max_array_access))
+              v->max_array_access = idx;
+        }
+      }
+
+      if (error_emitted)
+        result->type = glsl_type::error_type;
+
+      type = result->type;
       break;
+   }
 
    case ast_function_call:
       /* Should *NEVER* get here.  ast_function_call should always be handled
@@ -887,23 +1332,65 @@ ast_compound_statement::hir(exec_list *instructions,
 }
 
 
-static const struct glsl_type *
-type_specifier_to_glsl_type(const struct ast_type_specifier *spec,
-                           const char **name,
-                           struct _mesa_glsl_parse_state *state)
+static const glsl_type *
+process_array_type(const glsl_type *base, ast_node *array_size,
+                  struct _mesa_glsl_parse_state *state)
 {
-   struct glsl_type *type;
+   unsigned length = 0;
+
+   /* FINISHME: Reject delcarations of multidimensional arrays. */
 
-   if (spec->type_specifier == ast_struct) {
+   if (array_size != NULL) {
+      exec_list dummy_instructions;
+      ir_rvalue *const ir = array_size->hir(& dummy_instructions, state);
+      YYLTYPE loc = array_size->get_location();
+
+      /* FINISHME: Verify that the grammar forbids side-effects in array
+       * FINISHME: sizes.   i.e., 'vec4 [x = 12] data'
+       */
+      assert(dummy_instructions.is_empty());
+
+      if (ir != NULL) {
+        if (!ir->type->is_integer()) {
+           _mesa_glsl_error(& loc, state, "array size must be integer type");
+        } else if (!ir->type->is_scalar()) {
+           _mesa_glsl_error(& loc, state, "array size must be scalar type");
+        } else {
+           ir_constant *const size = ir->constant_expression_value();
+
+           if (size == NULL) {
+              _mesa_glsl_error(& loc, state, "array size must be a "
+                               "constant valued expression");
+           } else if (size->value.i[0] <= 0) {
+              _mesa_glsl_error(& loc, state, "array size must be > 0");
+           } else {
+              assert(size->type == ir->type);
+              length = size->value.u[0];
+           }
+        }
+      }
+   }
+
+   return glsl_type::get_array_instance(base, length);
+}
+
+
+const glsl_type *
+ast_type_specifier::glsl_type(const char **name,
+                             struct _mesa_glsl_parse_state *state) const
+{
+   const struct glsl_type *type;
+
+   if (this->type_specifier == ast_struct) {
       /* FINISHME: Handle annonymous structures. */
       type = NULL;
    } else {
-      type = state->symbols->get_type(spec->type_name);
-      *name = spec->type_name;
+      type = state->symbols->get_type(this->type_name);
+      *name = this->type_name;
 
-      /* FINISHME: Handle array declarations.  Note that this requires complete
-       * FINISHME: handling of constant expressions.
-       */
+      if (this->is_array) {
+        type = process_array_type(type, this->array_size, state);
+      }
    }
 
    return type;
@@ -927,11 +1414,24 @@ apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
    if (qual->centroid)
       var->centroid = 1;
 
-   if (qual->attribute && state->target == fragment_shader) {
+   if (qual->attribute && state->target != vertex_shader) {
       var->type = glsl_type::error_type;
       _mesa_glsl_error(loc, state,
                       "`attribute' variables may not be declared in the "
-                      "fragment shader");
+                      "%s shader",
+                      _mesa_glsl_shader_target_name(state->target));
+   }
+
+   /* From page 25 (page 31 of the PDF) of the GLSL 1.10 spec:
+    *
+    *     "The varying qualifier can be used only with the data types
+    *     float, vec2, vec3, vec4, mat2, mat3, and mat4, or arrays of
+    *     these."
+    */
+   if (qual->varying && var->type->base_type != GLSL_TYPE_FLOAT) {
+      var->type = glsl_type::error_type;
+      _mesa_glsl_error(loc, state,
+                      "varying variables must be of base type float");
    }
 
    if (qual->in && qual->out)
@@ -946,12 +1446,25 @@ apply_type_qualifier_to_variable(const struct ast_type_qualifier *qual,
    else
       var->mode = ir_var_auto;
 
+   if (qual->uniform)
+      var->shader_in = true;
+   if (qual->varying) {
+      if (qual->in)
+        var->shader_in = true;
+      if (qual->out)
+        var->shader_out = true;
+   }
+
    if (qual->flat)
       var->interpolation = ir_var_flat;
    else if (qual->noperspective)
       var->interpolation = ir_var_noperspective;
    else
       var->interpolation = ir_var_smooth;
+
+   if (var->type->is_array() && (state->language_version >= 120)) {
+      var->array_lvalue = true;
+   }
 }
 
 
@@ -962,15 +1475,14 @@ ast_declarator_list::hir(exec_list *instructions,
    struct simple_node *ptr;
    const struct glsl_type *decl_type;
    const char *type_name = NULL;
-
+   ir_rvalue *result = NULL;
 
    /* FINISHME: Handle vertex shader "invariant" declarations that do not
     * FINISHME: include a type.  These re-declare built-in variables to be
     * FINISHME: invariant.
     */
 
-   decl_type = type_specifier_to_glsl_type(this->type->specifier,
-                                          & type_name, state);
+   decl_type = this->type->specifier->glsl_type(& type_name, state);
 
    foreach (ptr, &this->declarations) {
       struct ast_declaration *const decl = (struct ast_declaration * )ptr;
@@ -996,39 +1508,183 @@ ast_declarator_list::hir(exec_list *instructions,
       }
 
       if (decl->is_array) {
-        /* FINISHME: Handle array declarations.  Note that this requires
-         * FINISHME: complete handling of constant expressions.
-         */
-        var_type = glsl_type::error_type;
-
-        /* FINISHME: Reject delcarations of multidimensional arrays. */
+        var_type = process_array_type(decl_type, decl->array_size, state);
       } else {
         var_type = decl_type;
       }
 
       var = new ir_variable(var_type, decl->identifier);
 
-      /* FINISHME: Variables that are attribute, uniform, varying, in, or
-       * FINISHME: out varibles must be declared either at global scope or
-       * FINISHME: in a parameter list (in and out only).
+      /* From page 22 (page 28 of the PDF) of the GLSL 1.10 specification;
+       *
+       *     "Global variables can only use the qualifiers const,
+       *     attribute, uni form, or varying. Only one may be
+       *     specified.
+       *
+       *     Local variables can only use the qualifier const."
+       *
+       * This is relaxed in GLSL 1.30.
        */
+      if (state->language_version < 120) {
+        if (this->type->qualifier.out) {
+           _mesa_glsl_error(& loc, state,
+                            "`out' qualifier in declaration of `%s' "
+                            "only valid for function parameters in GLSL 1.10.",
+                            decl->identifier);
+        }
+        if (this->type->qualifier.in) {
+           _mesa_glsl_error(& loc, state,
+                            "`in' qualifier in declaration of `%s' "
+                            "only valid for function parameters in GLSL 1.10.",
+                            decl->identifier);
+        }
+        /* FINISHME: Test for other invalid qualifiers. */
+      }
 
       apply_type_qualifier_to_variable(& this->type->qualifier, var, state,
                                       & loc);
 
       /* Attempt to add the variable to the symbol table.  If this fails, it
-       * means the variable has already been declared at this scope.
+       * means the variable has already been declared at this scope.  Arrays
+       * fudge this rule a little bit.
+       *
+       * From page 24 (page 30 of the PDF) of the GLSL 1.50 spec,
+       *
+       *    "It is legal to declare an array without a size and then
+       *    later re-declare the same name as an array of the same
+       *    type and specify a size."
        */
       if (state->symbols->name_declared_this_scope(decl->identifier)) {
-        YYLTYPE loc = this->get_location();
+        ir_variable *const earlier =
+           state->symbols->get_variable(decl->identifier);
+
+        if ((earlier != NULL)
+            && (earlier->type->array_size() == 0)
+            && var->type->is_array()
+            && (var->type->element_type() == earlier->type->element_type())) {
+           /* FINISHME: This doesn't match the qualifiers on the two
+            * FINISHME: declarations.  It's not 100% clear whether this is
+            * FINISHME: required or not.
+            */
+
+           if (var->type->array_size() <= (int)earlier->max_array_access) {
+              YYLTYPE loc = this->get_location();
+
+              _mesa_glsl_error(& loc, state, "array size must be > %u due to "
+                               "previous access",
+                               earlier->max_array_access);
+           }
+
+           earlier->type = var->type;
+           delete var;
+           var = NULL;
+        } else {
+           YYLTYPE loc = this->get_location();
+
+           _mesa_glsl_error(& loc, state, "`%s' redeclared",
+                            decl->identifier);
+        }
 
-        _mesa_glsl_error(& loc, state, "`%s' redeclared",
-                         decl->identifier);
         continue;
       }
 
+      /* From page 15 (page 21 of the PDF) of the GLSL 1.10 spec,
+       *
+       *   "Identifiers starting with "gl_" are reserved for use by
+       *   OpenGL, and may not be declared in a shader as either a
+       *   variable or a function."
+       */
+      if (strncmp(decl->identifier, "gl_", 3) == 0) {
+        /* FINISHME: This should only trigger if we're not redefining
+         * FINISHME: a builtin (to add a qualifier, for example).
+         */
+        _mesa_glsl_error(& loc, state,
+                         "identifier `%s' uses reserved `gl_' prefix",
+                         decl->identifier);
+      }
+
       instructions->push_tail(var);
 
+      if (state->current_function != NULL) {
+        const char *mode = NULL;
+        const char *extra = "";
+
+        /* There is no need to check for 'inout' here because the parser will
+         * only allow that in function parameter lists.
+         */
+        if (this->type->qualifier.attribute) {
+           mode = "attribute";
+        } else if (this->type->qualifier.uniform) {
+           mode = "uniform";
+        } else if (this->type->qualifier.varying) {
+           mode = "varying";
+        } else if (this->type->qualifier.in) {
+           mode = "in";
+           extra = " or in function parameter list";
+        } else if (this->type->qualifier.out) {
+           mode = "out";
+           extra = " or in function parameter list";
+        }
+
+        if (mode) {
+           _mesa_glsl_error(& loc, state,
+                            "%s variable `%s' must be declared at "
+                            "global scope%s",
+                            mode, var->name, extra);
+        }
+      } else if (var->mode == ir_var_in) {
+        if (state->target == vertex_shader) {
+           bool error_emitted = false;
+
+           /* From page 31 (page 37 of the PDF) of the GLSL 1.50 spec:
+            *
+            *    "Vertex shader inputs can only be float, floating-point
+            *    vectors, matrices, signed and unsigned integers and integer
+            *    vectors. Vertex shader inputs can also form arrays of these
+            *    types, but not structures."
+            *
+            * From page 31 (page 27 of the PDF) of the GLSL 1.30 spec:
+            *
+            *    "Vertex shader inputs can only be float, floating-point
+            *    vectors, matrices, signed and unsigned integers and integer
+            *    vectors. They cannot be arrays or structures."
+            *
+            * From page 23 (page 29 of the PDF) of the GLSL 1.20 spec:
+            *
+            *    "The attribute qualifier can be used only with float,
+            *    floating-point vectors, and matrices. Attribute variables
+            *    cannot be declared as arrays or structures."
+            */
+           const glsl_type *check_type = var->type->is_array()
+              ? var->type->fields.array : var->type;
+
+           switch (check_type->base_type) {
+           case GLSL_TYPE_FLOAT:
+              break;
+           case GLSL_TYPE_UINT:
+           case GLSL_TYPE_INT:
+              if (state->language_version > 120)
+                 break;
+              /* FALLTHROUGH */
+           default:
+              _mesa_glsl_error(& loc, state,
+                               "vertex shader input / attribute cannot have "
+                               "type %s`%s'",
+                               var->type->is_array() ? "array of " : "",
+                               check_type->name);
+              error_emitted = true;
+           }
+
+           if (!error_emitted && (state->language_version <= 130)
+               && var->type->is_array()) {
+              _mesa_glsl_error(& loc, state,
+                               "vertex shader input / attribute cannot have "
+                               "array type");
+              error_emitted = true;
+           }
+        }
+      }
+
       if (decl->initializer != NULL) {
         YYLTYPE initializer_loc = decl->initializer->get_location();
 
@@ -1052,25 +1708,51 @@ ast_declarator_list::hir(exec_list *instructions,
         if ((var->mode == ir_var_in) && (state->current_function == NULL)) {
            _mesa_glsl_error(& initializer_loc, state,
                             "cannot initialize %s shader input / %s",
-                            (state->target == vertex_shader)
-                            ? "vertex" : "fragment",
+                            _mesa_glsl_shader_target_name(state->target),
                             (state->target == vertex_shader)
                             ? "attribute" : "varying");
         }
 
         ir_dereference *const lhs = new ir_dereference(var);
-        ir_rvalue *const rhs = decl->initializer->hir(instructions, state);
+        ir_rvalue *rhs = decl->initializer->hir(instructions, state);
 
-        /* FINISHME: If the declaration is either 'const' or 'uniform', the
-         * FINISHME: initializer (rhs) must be a constant expression.
+        /* Calculate the constant value if this is a const
+         * declaration.
          */
+        if (this->type->qualifier.constant) {
+           ir_constant *constant_value = rhs->constant_expression_value();
+           if (!constant_value) {
+              _mesa_glsl_error(& initializer_loc, state,
+                               "initializer of const variable `%s' must be a "
+                               "constant expression",
+                               decl->identifier);
+           } else {
+              rhs = constant_value;
+              var->constant_value = constant_value;
+           }
+        }
 
-        if (!rhs->type->is_error()) {
-           (void) do_assignment(instructions, state, lhs, rhs,
-                                this->get_location());
+        if (rhs && !rhs->type->is_error()) {
+           bool temp = var->read_only;
+           if (this->type->qualifier.constant)
+              var->read_only = false;
+           result = do_assignment(instructions, state, lhs, rhs,
+                                  this->get_location());
+           var->read_only = temp;
         }
       }
 
+      /* From page 23 (page 29 of the PDF) of the GLSL 1.10 spec:
+       *
+       *     "It is an error to write to a const variable outside of
+       *      its declaration, so they must be initialized when
+       *      declared."
+       */
+      if (this->type->qualifier.constant && decl->initializer == NULL) {
+        _mesa_glsl_error(& loc, state,
+                         "const declaration of `%s' must be initialized");
+      }
+
       /* Add the vairable to the symbol table after processing the initializer.
        * This differs from most C-like languages, but it follows the GLSL
        * specification.  From page 28 (page 34 of the PDF) of the GLSL 1.50
@@ -1085,9 +1767,17 @@ ast_declarator_list::hir(exec_list *instructions,
       assert(added_variable);
    }
 
-   /* Variable declarations do not have r-values.
+
+   /* Generally, variable declarations do not have r-values.  However,
+    * one is used for the declaration in
+    *
+    * while (bool b = some_condition()) {
+    *   ...
+    * }
+    *
+    * so we return the rvalue from the last seen declaration here.
     */
-   return NULL;
+   return result;
 }
 
 
@@ -1099,7 +1789,7 @@ ast_parameter_declarator::hir(exec_list *instructions,
    const char *name = NULL;
    YYLTYPE loc = this->get_location();
 
-   type = type_specifier_to_glsl_type(this->type->specifier, & name, state);
+   type = this->type->specifier->glsl_type(& name, state);
 
    if (type == NULL) {
       if (name != NULL) {
@@ -1115,6 +1805,33 @@ ast_parameter_declarator::hir(exec_list *instructions,
       type = glsl_type::error_type;
    }
 
+   /* From page 62 (page 68 of the PDF) of the GLSL 1.50 spec:
+    *
+    *    "Functions that accept no input arguments need not use void in the
+    *    argument list because prototypes (or definitions) are required and
+    *    therefore there is no ambiguity when an empty argument list "( )" is
+    *    declared. The idiom "(void)" as a parameter list is provided for
+    *    convenience."
+    *
+    * Placing this check here prevents a void parameter being set up
+    * for a function, which avoids tripping up checks for main taking
+    * parameters and lookups of an unnamed symbol.
+    */
+   if (type->is_void()) {
+      if (this->identifier != NULL)
+        _mesa_glsl_error(& loc, state,
+                         "named parameter cannot have type `void'");
+
+      is_void = true;
+      return NULL;
+   }
+
+   if (formal_parameter && (this->identifier == NULL)) {
+      _mesa_glsl_error(& loc, state, "formal parameter lacks a name");
+      return NULL;
+   }
+
+   is_void = false;
    ir_variable *var = new ir_variable(type, this->identifier);
 
    /* FINISHME: Handle array declarations.  Note that this requires
@@ -1136,15 +1853,32 @@ ast_parameter_declarator::hir(exec_list *instructions,
 }
 
 
-static void
-ast_function_parameters_to_hir(struct simple_node *ast_parameters,
-                              exec_list *ir_parameters,
-                              struct _mesa_glsl_parse_state *state)
+void
+ast_parameter_declarator::parameters_to_hir(struct simple_node *ast_parameters,
+                                           bool formal,
+                                           exec_list *ir_parameters,
+                                           _mesa_glsl_parse_state *state)
 {
    struct simple_node *ptr;
+   ast_parameter_declarator *void_param = NULL;
+   unsigned count = 0;
 
    foreach (ptr, ast_parameters) {
-      ((ast_node *)ptr)->hir(ir_parameters, state);
+      ast_parameter_declarator *param = (ast_parameter_declarator *)ptr;
+      param->formal_parameter = formal;
+      param->hir(ir_parameters, state);
+
+      if (param->is_void)
+        void_param = param;
+
+      count++;
+   }
+
+   if ((void_param != NULL) && (count > 1)) {
+      YYLTYPE loc = void_param->get_location();
+
+      _mesa_glsl_error(& loc, state,
+                      "`void' parameter must be only parameter");
    }
 }
 
@@ -1155,49 +1889,50 @@ parameter_lists_match(exec_list *list_a, exec_list *list_b)
    exec_list_iterator iter_a = list_a->iterator();
    exec_list_iterator iter_b = list_b->iterator();
 
-   while (iter_a.has_next()) {
-      /* If all of the parameters from the other parameter list have been
-       * exhausted, the lists have different length and, by definition,
-       * do not match.
-       */
-      if (!iter_b.has_next())
-        return false;
+   while (iter_a.has_next() && iter_b.has_next()) {
+      ir_variable *a = (ir_variable *)iter_a.get();
+      ir_variable *b = (ir_variable *)iter_b.get();
 
       /* If the types of the parameters do not match, the parameters lists
        * are different.
        */
-      /* FINISHME */
-
+      if (a->type != b->type)
+        return false;
 
       iter_a.next();
       iter_b.next();
    }
 
+   /* Unless both lists are exhausted, they differ in length and, by
+    * definition, do not match.
+    */
+   if (iter_a.has_next() != iter_b.has_next())
+      return false;
+
    return true;
 }
 
 
 ir_rvalue *
-ast_function_definition::hir(exec_list *instructions,
-                            struct _mesa_glsl_parse_state *state)
+ast_function::hir(exec_list *instructions,
+                 struct _mesa_glsl_parse_state *state)
 {
-   ir_label *label;
-   ir_function_signature *signature = NULL;
    ir_function *f = NULL;
-   exec_list parameters;
+   ir_function_signature *sig = NULL;
+   exec_list hir_parameters;
 
 
    /* Convert the list of function parameters to HIR now so that they can be
     * used below to compare this function's signature with previously seen
     * signatures for functions with the same name.
     */
-   ast_function_parameters_to_hir(& this->prototype->parameters, & parameters,
-                                 state);
+   ast_parameter_declarator::parameters_to_hir(& this->parameters,
+                                              is_definition,
+                                              & hir_parameters, state);
 
    const char *return_type_name;
    const glsl_type *return_type =
-      type_specifier_to_glsl_type(this->prototype->return_type->specifier,
-                                 & return_type_name, state);
+      this->return_type->specifier->glsl_type(& return_type_name, state);
 
    assert(return_type != NULL);
 
@@ -1205,30 +1940,60 @@ ast_function_definition::hir(exec_list *instructions,
     * seen signature for a function with the same name, or, if a match is found,
     * that the previously seen signature does not have an associated definition.
     */
-   const char *const name = this->prototype->identifier;
+   const char *const name = identifier;
    f = state->symbols->get_function(name);
    if (f != NULL) {
-      foreach_iter(exec_list_iterator, iter, f->signatures) {
-        signature = (struct ir_function_signature *) iter.get();
+      foreach_iter(exec_list_iterator, iter, *f) {
+        sig = (struct ir_function_signature *) iter.get();
 
         /* Compare the parameter list of the function being defined to the
          * existing function.  If the parameter lists match, then the return
          * type must also match and the existing function must not have a
          * definition.
          */
-        if (parameter_lists_match(& parameters, & signature->parameters)) {
-           /* FINISHME: Compare return types. */
+        if (parameter_lists_match(& hir_parameters, & sig->parameters)) {
+           exec_list_iterator iter_a = hir_parameters.iterator();
+           exec_list_iterator iter_b = sig->parameters.iterator();
+
+           /* check that the qualifiers match. */
+           while (iter_a.has_next()) {
+              ir_variable *a = (ir_variable *)iter_a.get();
+              ir_variable *b = (ir_variable *)iter_b.get();
+
+              if (a->read_only != b->read_only ||
+                  a->interpolation != b->interpolation ||
+                  a->centroid != b->centroid) {
+                 YYLTYPE loc = this->get_location();
+
+                 _mesa_glsl_error(& loc, state,
+                                  "function `%s' parameter `%s' qualifiers "
+                                  "don't match prototype",
+                                  name, a->name);
+              }
+
+              iter_a.next();
+              iter_b.next();
+           }
 
-           if (signature->definition != NULL) {
+           if (sig->return_type != return_type) {
+              YYLTYPE loc = this->get_location();
+
+              _mesa_glsl_error(& loc, state,
+                               "function `%s' return type doesn't match "
+                               "prototype",
+                               name);
+           }
+
+           if (is_definition && sig->is_defined) {
               YYLTYPE loc = this->get_location();
 
               _mesa_glsl_error(& loc, state, "function `%s' redefined", name);
-              signature = NULL;
+              sig = NULL;
               break;
            }
         }
 
-        signature = NULL;
+        sig = NULL;
       }
 
    } else if (state->symbols->name_declared_this_scope(name)) {
@@ -1238,32 +2003,41 @@ ast_function_definition::hir(exec_list *instructions,
 
       _mesa_glsl_error(& loc, state, "function name `%s' conflicts with "
                       "non-function", name);
-      signature = NULL;
+      sig = NULL;
    } else {
       f = new ir_function(name);
       state->symbols->add_function(f->name, f);
+
+      /* Emit the new function header */
+      instructions->push_tail(f);
    }
 
    /* Verify the return type of main() */
    if (strcmp(name, "main") == 0) {
-      if (return_type != glsl_type::get_instance(GLSL_TYPE_VOID, 0, 0)) {
+      if (! return_type->is_void()) {
         YYLTYPE loc = this->get_location();
 
         _mesa_glsl_error(& loc, state, "main() must return void");
       }
+
+      if (!hir_parameters.is_empty()) {
+        YYLTYPE loc = this->get_location();
+
+        _mesa_glsl_error(& loc, state, "main() must not take any parameters");
+      }
    }
 
    /* Finish storing the information about this new function in its signature.
     */
-   if (signature == NULL) {
-      signature = new ir_function_signature(return_type);
-      f->signatures.push_tail(signature);
-   } else {
+   if (sig == NULL) {
+      sig = new ir_function_signature(return_type);
+      f->add_signature(sig);
+   } else if (is_definition) {
       /* Destroy all of the previous parameter information.  The previous
        * parameter information comes from the function prototype, and it can
        * either include invalid parameter names or may not have names at all.
        */
-      foreach_iter(exec_list_iterator, iter, signature->parameters) {
+      foreach_iter(exec_list_iterator, iter, sig->parameters) {
         assert(((ir_instruction *) iter.get())->as_variable() != NULL);
 
         iter.remove();
@@ -1271,34 +2045,35 @@ ast_function_definition::hir(exec_list *instructions,
       }
    }
 
+   hir_parameters.move_nodes_to(& sig->parameters);
+   signature = sig;
 
-   assert(state->current_function == NULL);
-   state->current_function = signature;
+   /* Function declarations (prototypes) do not have r-values.
+    */
+   return NULL;
+}
 
-   ast_function_parameters_to_hir(& this->prototype->parameters,
-                                 & signature->parameters,
-                                 state);
-   /* FINISHME: Set signature->return_type */
 
-   label = new ir_label(name);
-   if (signature->definition == NULL) {
-      signature->definition = label;
-   }
-   instructions->push_tail(label);
+ir_rvalue *
+ast_function_definition::hir(exec_list *instructions,
+                            struct _mesa_glsl_parse_state *state)
+{
+   prototype->is_definition = true;
+   prototype->hir(instructions, state);
 
-   /* Add the function parameters to the symbol table.  During this step the
-    * parameter declarations are also moved from the temporary "parameters" list
-    * to the instruction list.  There are other more efficient ways to do this,
-    * but they involve ugly linked-list gymnastics.
+   ir_function_signature *signature = prototype->signature;
+
+   assert(state->current_function == NULL);
+   state->current_function = signature;
+
+   /* Duplicate parameters declared in the prototype as concrete variables.
+    * Add these to the symbol table.
     */
    state->symbols->push_scope();
-   foreach_iter(exec_list_iterator, iter, parameters) {
-      ir_variable *const var = (ir_variable *) iter.get();
+   foreach_iter(exec_list_iterator, iter, signature->parameters) {
+      ir_variable *const var = ((ir_instruction *) iter.get())->as_variable();
 
-      assert(((ir_instruction *) var)->as_variable() != NULL);
-
-      iter.remove();
-      instructions->push_tail(var);
+      assert(var != NULL);
 
       /* The only way a parameter would "exist" is if two parameters have
        * the same name.
@@ -1312,11 +2087,9 @@ ast_function_definition::hir(exec_list *instructions,
       }
    }
 
-   /* Convert the body of the function to HIR, and append the resulting
-    * instructions to the list that currently consists of the function label
-    * and the function parameters.
-    */
-   this->body->hir(instructions, state);
+   /* Convert the body of the function to HIR. */
+   this->body->hir(&signature->body, state);
+   signature->is_defined = true;
 
    state->symbols->pop_scope();
 
@@ -1334,13 +2107,21 @@ ast_jump_statement::hir(exec_list *instructions,
                        struct _mesa_glsl_parse_state *state)
 {
 
-   if (mode == ast_return) {
+   switch (mode) {
+   case ast_return: {
       ir_return *inst;
+      assert(state->current_function);
 
       if (opt_return_value) {
-        /* FINISHME: Make sure the enclosing function has a non-void return
-         * FINISHME: type.
-         */
+        if (state->current_function->return_type->base_type ==
+            GLSL_TYPE_VOID) {
+           YYLTYPE loc = this->get_location();
+
+           _mesa_glsl_error(& loc, state,
+                            "`return` with a value, in function `%s' "
+                            "returning void",
+                            state->current_function->function_name());
+        }
 
         ir_expression *const ret = (ir_expression *)
            opt_return_value->hir(instructions, state);
@@ -1352,12 +2133,61 @@ ast_jump_statement::hir(exec_list *instructions,
 
         inst = new ir_return(ret);
       } else {
-        /* FINISHME: Make sure the enclosing function has a void return type.
-         */
+        if (state->current_function->return_type->base_type !=
+            GLSL_TYPE_VOID) {
+           YYLTYPE loc = this->get_location();
+
+           _mesa_glsl_error(& loc, state,
+                            "`return' with no value, in function %s returning "
+                            "non-void",
+                            state->current_function->function_name());
+        }
         inst = new ir_return;
       }
 
       instructions->push_tail(inst);
+      break;
+   }
+
+   case ast_discard:
+      /* FINISHME: discard support */
+      if (state->target != fragment_shader) {
+        YYLTYPE loc = this->get_location();
+
+        _mesa_glsl_error(& loc, state,
+                         "`discard' may only appear in a fragment shader");
+      }
+      break;
+
+   case ast_break:
+   case ast_continue:
+      /* FINISHME: Handle switch-statements.  They cannot contain 'continue',
+       * FINISHME: and they use a different IR instruction for 'break'.
+       */
+      /* FINISHME: Correctly handle the nesting.  If a switch-statement is
+       * FINISHME: inside a loop, a 'continue' is valid and will bind to the
+       * FINISHME: loop.
+       */
+      if (state->loop_or_switch_nesting == NULL) {
+        YYLTYPE loc = this->get_location();
+
+        _mesa_glsl_error(& loc, state,
+                         "`%s' may only appear in a loop",
+                         (mode == ast_break) ? "break" : "continue");
+      } else {
+        ir_loop *const loop = state->loop_or_switch_nesting->as_loop();
+
+        if (loop != NULL) {
+           ir_loop_jump *const jump =
+              new ir_loop_jump(loop,
+                               (mode == ast_break)
+                               ? ir_loop_jump::jump_break
+                               : ir_loop_jump::jump_continue);
+           instructions->push_tail(jump);
+        }
+      }
+
+      break;
    }
 
    /* Jump instructions do not have r-values.
@@ -1371,7 +2201,6 @@ ast_selection_statement::hir(exec_list *instructions,
                             struct _mesa_glsl_parse_state *state)
 {
    ir_rvalue *const condition = this->condition->hir(instructions, state);
-   struct simple_node *ptr;
 
    /* From page 66 (page 72 of the PDF) of the GLSL 1.50 spec:
     *
@@ -1413,3 +2242,87 @@ ast_selection_statement::hir(exec_list *instructions,
     */
    return NULL;
 }
+
+
+void
+ast_iteration_statement::condition_to_hir(ir_loop *stmt,
+                                         struct _mesa_glsl_parse_state *state)
+{
+   if (condition != NULL) {
+      ir_rvalue *const cond =
+        condition->hir(& stmt->body_instructions, state);
+
+      if ((cond == NULL)
+         || !cond->type->is_boolean() || !cond->type->is_scalar()) {
+        YYLTYPE loc = condition->get_location();
+
+        _mesa_glsl_error(& loc, state,
+                         "loop condition must be scalar boolean");
+      } else {
+        /* As the first code in the loop body, generate a block that looks
+         * like 'if (!condition) break;' as the loop termination condition.
+         */
+        ir_rvalue *const not_cond =
+           new ir_expression(ir_unop_logic_not, glsl_type::bool_type, cond,
+                             NULL);
+
+        ir_if *const if_stmt = new ir_if(not_cond);
+
+        ir_jump *const break_stmt =
+           new ir_loop_jump(stmt, ir_loop_jump::jump_break);
+
+        if_stmt->then_instructions.push_tail(break_stmt);
+        stmt->body_instructions.push_tail(if_stmt);
+      }
+   }
+}
+
+
+ir_rvalue *
+ast_iteration_statement::hir(exec_list *instructions,
+                            struct _mesa_glsl_parse_state *state)
+{
+   /* For-loops and while-loops start a new scope, but do-while loops do not.
+    */
+   if (mode != ast_do_while)
+      state->symbols->push_scope();
+
+   if (init_statement != NULL)
+      init_statement->hir(instructions, state);
+
+   ir_loop *const stmt = new ir_loop();
+   instructions->push_tail(stmt);
+
+   /* Track the current loop and / or switch-statement nesting.
+    */
+   ir_instruction *const nesting = state->loop_or_switch_nesting;
+   state->loop_or_switch_nesting = stmt;
+
+   if (mode != ast_do_while)
+      condition_to_hir(stmt, state);
+
+   if (body != NULL) {
+      ast_node *node = (ast_node *) body;
+      do {
+        node->hir(& stmt->body_instructions, state);
+        node = (ast_node *) node->next;
+      } while (node != body);
+   }
+
+   if (rest_expression != NULL)
+      rest_expression->hir(& stmt->body_instructions, state);
+
+   if (mode == ast_do_while)
+      condition_to_hir(stmt, state);
+
+   if (mode != ast_do_while)
+      state->symbols->pop_scope();
+
+   /* Restore previous nesting before returning.
+    */
+   state->loop_or_switch_nesting = nesting;
+
+   /* Loops do not have r-values.
+    */
+   return NULL;
+}