pa.md (integer_indexed_store splitters): Use mem_shadd_operand.
[gcc.git] / gcc / double-int.c
index ab1975f09a9f21735f449027a80722fa69433941..301622eb442d2fa044427896d63f65af3e88d4f8 100644 (file)
 /* Operations with long integers.
-   Copyright (C) 2006 Free Software Foundation, Inc.
-   
+   Copyright (C) 2006-2015 Free Software Foundation, Inc.
+
 This file is part of GCC.
-   
+
 GCC is free software; you can redistribute it and/or modify it
 under the terms of the GNU General Public License as published by the
-Free Software Foundation; either version 2, or (at your option) any
+Free Software Foundation; either version 3, or (at your option) any
 later version.
-   
+
 GCC is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 for more details.
-   
+
 You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING.  If not, write to the Free
-Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
-02110-1301, USA.  */
+along with GCC; see the file COPYING3.  If not see
+<http://www.gnu.org/licenses/>.  */
 
 #include "config.h"
 #include "system.h"
 #include "coretypes.h"
-#include "tm.h"
+#include "tm.h"                        /* For BITS_PER_UNIT and *_BIG_ENDIAN.  */
+#include "hash-set.h"
+#include "machmode.h"
+#include "vec.h"
+#include "double-int.h"
+#include "input.h"
+#include "alias.h"
+#include "symtab.h"
+#include "wide-int.h"
+#include "inchash.h"
+#include "real.h"
 #include "tree.h"
 
+static int add_double_with_sign (unsigned HOST_WIDE_INT, HOST_WIDE_INT,
+                                unsigned HOST_WIDE_INT, HOST_WIDE_INT,
+                                unsigned HOST_WIDE_INT *, HOST_WIDE_INT *,
+                                bool);
+
+#define add_double(l1,h1,l2,h2,lv,hv) \
+  add_double_with_sign (l1, h1, l2, h2, lv, hv, false)
+
+static int neg_double (unsigned HOST_WIDE_INT, HOST_WIDE_INT,
+                      unsigned HOST_WIDE_INT *, HOST_WIDE_INT *);
+
+static int mul_double_wide_with_sign (unsigned HOST_WIDE_INT, HOST_WIDE_INT,
+                                     unsigned HOST_WIDE_INT, HOST_WIDE_INT,
+                                     unsigned HOST_WIDE_INT *, HOST_WIDE_INT *,
+                                     unsigned HOST_WIDE_INT *, HOST_WIDE_INT *,
+                                     bool);
+
+#define mul_double(l1,h1,l2,h2,lv,hv) \
+  mul_double_wide_with_sign (l1, h1, l2, h2, lv, hv, NULL, NULL, false)
+
+static int div_and_round_double (unsigned, int, unsigned HOST_WIDE_INT,
+                                HOST_WIDE_INT, unsigned HOST_WIDE_INT,
+                                HOST_WIDE_INT, unsigned HOST_WIDE_INT *,
+                                HOST_WIDE_INT *, unsigned HOST_WIDE_INT *,
+                                HOST_WIDE_INT *);
+
+/* We know that A1 + B1 = SUM1, using 2's complement arithmetic and ignoring
+   overflow.  Suppose A, B and SUM have the same respective signs as A1, B1,
+   and SUM1.  Then this yields nonzero if overflow occurred during the
+   addition.
+
+   Overflow occurs if A and B have the same sign, but A and SUM differ in
+   sign.  Use `^' to test whether signs differ, and `< 0' to isolate the
+   sign.  */
+#define OVERFLOW_SUM_SIGN(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0)
+
+/* To do constant folding on INTEGER_CST nodes requires two-word arithmetic.
+   We do that by representing the two-word integer in 4 words, with only
+   HOST_BITS_PER_WIDE_INT / 2 bits stored in each word, as a positive
+   number.  The value of the word is LOWPART + HIGHPART * BASE.  */
+
+#define LOWPART(x) \
+  ((x) & (((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)) - 1))
+#define HIGHPART(x) \
+  ((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT / 2)
+#define BASE ((unsigned HOST_WIDE_INT) 1 << HOST_BITS_PER_WIDE_INT / 2)
+
+/* Unpack a two-word integer into 4 words.
+   LOW and HI are the integer, as two `HOST_WIDE_INT' pieces.
+   WORDS points to the array of HOST_WIDE_INTs.  */
+
+static void
+encode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
+{
+  words[0] = LOWPART (low);
+  words[1] = HIGHPART (low);
+  words[2] = LOWPART (hi);
+  words[3] = HIGHPART (hi);
+}
+
+/* Pack an array of 4 words into a two-word integer.
+   WORDS points to the array of words.
+   The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces.  */
+
+static void
+decode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT *low,
+       HOST_WIDE_INT *hi)
+{
+  *low = words[0] + words[1] * BASE;
+  *hi = words[2] + words[3] * BASE;
+}
+
+/* Add two doubleword integers with doubleword result.
+   Return nonzero if the operation overflows according to UNSIGNED_P.
+   Each argument is given as two `HOST_WIDE_INT' pieces.
+   One argument is L1 and H1; the other, L2 and H2.
+   The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV.  */
+
+static int
+add_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
+                     unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
+                     unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
+                     bool unsigned_p)
+{
+  unsigned HOST_WIDE_INT l;
+  HOST_WIDE_INT h;
+
+  l = l1 + l2;
+  h = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) h1
+                      + (unsigned HOST_WIDE_INT) h2
+                      + (l < l1));
+
+  *lv = l;
+  *hv = h;
+
+  if (unsigned_p)
+    return ((unsigned HOST_WIDE_INT) h < (unsigned HOST_WIDE_INT) h1
+           || (h == h1
+               && l < l1));
+  else
+    return OVERFLOW_SUM_SIGN (h1, h2, h);
+}
+
+/* Negate a doubleword integer with doubleword result.
+   Return nonzero if the operation overflows, assuming it's signed.
+   The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1.
+   The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV.  */
+
+static int
+neg_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
+           unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
+{
+  if (l1 == 0)
+    {
+      *lv = 0;
+      *hv = - (unsigned HOST_WIDE_INT) h1;
+      return (*hv & h1) < 0;
+    }
+  else
+    {
+      *lv = -l1;
+      *hv = ~h1;
+      return 0;
+    }
+}
+
+/* Multiply two doubleword integers with quadword result.
+   Return nonzero if the operation overflows according to UNSIGNED_P.
+   Each argument is given as two `HOST_WIDE_INT' pieces.
+   One argument is L1 and H1; the other, L2 and H2.
+   The value is stored as four `HOST_WIDE_INT' pieces in *LV and *HV,
+   *LW and *HW.
+   If lw is NULL then only the low part and no overflow is computed.  */
+
+static int
+mul_double_wide_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
+                          unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
+                          unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
+                          unsigned HOST_WIDE_INT *lw, HOST_WIDE_INT *hw,
+                          bool unsigned_p)
+{
+  HOST_WIDE_INT arg1[4];
+  HOST_WIDE_INT arg2[4];
+  HOST_WIDE_INT prod[4 * 2];
+  unsigned HOST_WIDE_INT carry;
+  int i, j, k;
+  unsigned HOST_WIDE_INT neglow;
+  HOST_WIDE_INT neghigh;
+
+  encode (arg1, l1, h1);
+  encode (arg2, l2, h2);
+
+  memset (prod, 0, sizeof prod);
+
+  for (i = 0; i < 4; i++)
+    {
+      carry = 0;
+      for (j = 0; j < 4; j++)
+       {
+         k = i + j;
+         /* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000.  */
+         carry += (unsigned HOST_WIDE_INT) arg1[i] * arg2[j];
+         /* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF.  */
+         carry += prod[k];
+         prod[k] = LOWPART (carry);
+         carry = HIGHPART (carry);
+       }
+      prod[i + 4] = carry;
+    }
+
+  decode (prod, lv, hv);
+
+  /* We are not interested in the wide part nor in overflow.  */
+  if (lw == NULL)
+    return 0;
+
+  decode (prod + 4, lw, hw);
+
+  /* Unsigned overflow is immediate.  */
+  if (unsigned_p)
+    return (*lw | *hw) != 0;
+
+  /* Check for signed overflow by calculating the signed representation of the
+     top half of the result; it should agree with the low half's sign bit.  */
+  if (h1 < 0)
+    {
+      neg_double (l2, h2, &neglow, &neghigh);
+      add_double (neglow, neghigh, *lw, *hw, lw, hw);
+    }
+  if (h2 < 0)
+    {
+      neg_double (l1, h1, &neglow, &neghigh);
+      add_double (neglow, neghigh, *lw, *hw, lw, hw);
+    }
+  return (*hv < 0 ? ~(*lw & *hw) : *lw | *hw) != 0;
+}
+
+/* Shift the doubleword integer in L1, H1 right by COUNT places
+   keeping only PREC bits of result.  ARITH nonzero specifies
+   arithmetic shifting; otherwise use logical shift.
+   Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV.  */
+
+static void
+rshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
+              unsigned HOST_WIDE_INT count, unsigned int prec,
+              unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
+              bool arith)
+{
+  unsigned HOST_WIDE_INT signmask;
+
+  signmask = (arith
+             ? -((unsigned HOST_WIDE_INT) h1 >> (HOST_BITS_PER_WIDE_INT - 1))
+             : 0);
+
+  if (count >= HOST_BITS_PER_DOUBLE_INT)
+    {
+      /* Shifting by the host word size is undefined according to the
+        ANSI standard, so we must handle this as a special case.  */
+      *hv = 0;
+      *lv = 0;
+    }
+  else if (count >= HOST_BITS_PER_WIDE_INT)
+    {
+      *hv = 0;
+      *lv = (unsigned HOST_WIDE_INT) h1 >> (count - HOST_BITS_PER_WIDE_INT);
+    }
+  else
+    {
+      *hv = (unsigned HOST_WIDE_INT) h1 >> count;
+      *lv = ((l1 >> count)
+            | ((unsigned HOST_WIDE_INT) h1
+               << (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
+    }
+
+  /* Zero / sign extend all bits that are beyond the precision.  */
+
+  if (count >= prec)
+    {
+      *hv = signmask;
+      *lv = signmask;
+    }
+  else if ((prec - count) >= HOST_BITS_PER_DOUBLE_INT)
+    ;
+  else if ((prec - count) >= HOST_BITS_PER_WIDE_INT)
+    {
+      *hv &= ~(HOST_WIDE_INT_M1U << (prec - count - HOST_BITS_PER_WIDE_INT));
+      *hv |= signmask << (prec - count - HOST_BITS_PER_WIDE_INT);
+    }
+  else
+    {
+      *hv = signmask;
+      *lv &= ~(HOST_WIDE_INT_M1U << (prec - count));
+      *lv |= signmask << (prec - count);
+    }
+}
+
+/* Shift the doubleword integer in L1, H1 left by COUNT places
+   keeping only PREC bits of result.
+   Shift right if COUNT is negative.
+   ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
+   Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV.  */
+
+static void
+lshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
+              unsigned HOST_WIDE_INT count, unsigned int prec,
+              unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
+{
+  unsigned HOST_WIDE_INT signmask;
+
+  if (count >= HOST_BITS_PER_DOUBLE_INT)
+    {
+      /* Shifting by the host word size is undefined according to the
+        ANSI standard, so we must handle this as a special case.  */
+      *hv = 0;
+      *lv = 0;
+    }
+  else if (count >= HOST_BITS_PER_WIDE_INT)
+    {
+      *hv = l1 << (count - HOST_BITS_PER_WIDE_INT);
+      *lv = 0;
+    }
+  else
+    {
+      *hv = (((unsigned HOST_WIDE_INT) h1 << count)
+            | (l1 >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
+      *lv = l1 << count;
+    }
+
+  /* Sign extend all bits that are beyond the precision.  */
+
+  signmask = -((prec > HOST_BITS_PER_WIDE_INT
+               ? ((unsigned HOST_WIDE_INT) *hv
+                  >> (prec - HOST_BITS_PER_WIDE_INT - 1))
+               : (*lv >> (prec - 1))) & 1);
+
+  if (prec >= HOST_BITS_PER_DOUBLE_INT)
+    ;
+  else if (prec >= HOST_BITS_PER_WIDE_INT)
+    {
+      *hv &= ~(HOST_WIDE_INT_M1U << (prec - HOST_BITS_PER_WIDE_INT));
+      *hv |= signmask << (prec - HOST_BITS_PER_WIDE_INT);
+    }
+  else
+    {
+      *hv = signmask;
+      *lv &= ~(HOST_WIDE_INT_M1U << prec);
+      *lv |= signmask << prec;
+    }
+}
+
+/* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN
+   for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM).
+   CODE is a tree code for a kind of division, one of
+   TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR
+   or EXACT_DIV_EXPR
+   It controls how the quotient is rounded to an integer.
+   Return nonzero if the operation overflows.
+   UNS nonzero says do unsigned division.  */
+
+static int
+div_and_round_double (unsigned code, int uns,
+                     /* num == numerator == dividend */
+                     unsigned HOST_WIDE_INT lnum_orig,
+                     HOST_WIDE_INT hnum_orig,
+                     /* den == denominator == divisor */
+                     unsigned HOST_WIDE_INT lden_orig,
+                     HOST_WIDE_INT hden_orig,
+                     unsigned HOST_WIDE_INT *lquo,
+                     HOST_WIDE_INT *hquo, unsigned HOST_WIDE_INT *lrem,
+                     HOST_WIDE_INT *hrem)
+{
+  int quo_neg = 0;
+  HOST_WIDE_INT num[4 + 1];    /* extra element for scaling.  */
+  HOST_WIDE_INT den[4], quo[4];
+  int i, j;
+  unsigned HOST_WIDE_INT work;
+  unsigned HOST_WIDE_INT carry = 0;
+  unsigned HOST_WIDE_INT lnum = lnum_orig;
+  HOST_WIDE_INT hnum = hnum_orig;
+  unsigned HOST_WIDE_INT lden = lden_orig;
+  HOST_WIDE_INT hden = hden_orig;
+  int overflow = 0;
+
+  if (hden == 0 && lden == 0)
+    overflow = 1, lden = 1;
+
+  /* Calculate quotient sign and convert operands to unsigned.  */
+  if (!uns)
+    {
+      if (hnum < 0)
+       {
+         quo_neg = ~ quo_neg;
+         /* (minimum integer) / (-1) is the only overflow case.  */
+         if (neg_double (lnum, hnum, &lnum, &hnum)
+             && ((HOST_WIDE_INT) lden & hden) == -1)
+           overflow = 1;
+       }
+      if (hden < 0)
+       {
+         quo_neg = ~ quo_neg;
+         neg_double (lden, hden, &lden, &hden);
+       }
+    }
+
+  if (hnum == 0 && hden == 0)
+    {                          /* single precision */
+      *hquo = *hrem = 0;
+      /* This unsigned division rounds toward zero.  */
+      *lquo = lnum / lden;
+      goto finish_up;
+    }
+
+  if (hnum == 0)
+    {                          /* trivial case: dividend < divisor */
+      /* hden != 0 already checked.  */
+      *hquo = *lquo = 0;
+      *hrem = hnum;
+      *lrem = lnum;
+      goto finish_up;
+    }
+
+  memset (quo, 0, sizeof quo);
+
+  memset (num, 0, sizeof num); /* to zero 9th element */
+  memset (den, 0, sizeof den);
+
+  encode (num, lnum, hnum);
+  encode (den, lden, hden);
+
+  /* Special code for when the divisor < BASE.  */
+  if (hden == 0 && lden < (unsigned HOST_WIDE_INT) BASE)
+    {
+      /* hnum != 0 already checked.  */
+      for (i = 4 - 1; i >= 0; i--)
+       {
+         work = num[i] + carry * BASE;
+         quo[i] = work / lden;
+         carry = work % lden;
+       }
+    }
+  else
+    {
+      /* Full double precision division,
+        with thanks to Don Knuth's "Seminumerical Algorithms".  */
+      int num_hi_sig, den_hi_sig;
+      unsigned HOST_WIDE_INT quo_est, scale;
+
+      /* Find the highest nonzero divisor digit.  */
+      for (i = 4 - 1;; i--)
+       if (den[i] != 0)
+         {
+           den_hi_sig = i;
+           break;
+         }
+
+      /* Insure that the first digit of the divisor is at least BASE/2.
+        This is required by the quotient digit estimation algorithm.  */
+
+      scale = BASE / (den[den_hi_sig] + 1);
+      if (scale > 1)
+       {               /* scale divisor and dividend */
+         carry = 0;
+         for (i = 0; i <= 4 - 1; i++)
+           {
+             work = (num[i] * scale) + carry;
+             num[i] = LOWPART (work);
+             carry = HIGHPART (work);
+           }
+
+         num[4] = carry;
+         carry = 0;
+         for (i = 0; i <= 4 - 1; i++)
+           {
+             work = (den[i] * scale) + carry;
+             den[i] = LOWPART (work);
+             carry = HIGHPART (work);
+             if (den[i] != 0) den_hi_sig = i;
+           }
+       }
+
+      num_hi_sig = 4;
+
+      /* Main loop */
+      for (i = num_hi_sig - den_hi_sig - 1; i >= 0; i--)
+       {
+         /* Guess the next quotient digit, quo_est, by dividing the first
+            two remaining dividend digits by the high order quotient digit.
+            quo_est is never low and is at most 2 high.  */
+         unsigned HOST_WIDE_INT tmp;
+
+         num_hi_sig = i + den_hi_sig + 1;
+         work = num[num_hi_sig] * BASE + num[num_hi_sig - 1];
+         if (num[num_hi_sig] != den[den_hi_sig])
+           quo_est = work / den[den_hi_sig];
+         else
+           quo_est = BASE - 1;
+
+         /* Refine quo_est so it's usually correct, and at most one high.  */
+         tmp = work - quo_est * den[den_hi_sig];
+         if (tmp < BASE
+             && (den[den_hi_sig - 1] * quo_est
+                 > (tmp * BASE + num[num_hi_sig - 2])))
+           quo_est--;
+
+         /* Try QUO_EST as the quotient digit, by multiplying the
+            divisor by QUO_EST and subtracting from the remaining dividend.
+            Keep in mind that QUO_EST is the I - 1st digit.  */
+
+         carry = 0;
+         for (j = 0; j <= den_hi_sig; j++)
+           {
+             work = quo_est * den[j] + carry;
+             carry = HIGHPART (work);
+             work = num[i + j] - LOWPART (work);
+             num[i + j] = LOWPART (work);
+             carry += HIGHPART (work) != 0;
+           }
+
+         /* If quo_est was high by one, then num[i] went negative and
+            we need to correct things.  */
+         if (num[num_hi_sig] < (HOST_WIDE_INT) carry)
+           {
+             quo_est--;
+             carry = 0;                /* add divisor back in */
+             for (j = 0; j <= den_hi_sig; j++)
+               {
+                 work = num[i + j] + den[j] + carry;
+                 carry = HIGHPART (work);
+                 num[i + j] = LOWPART (work);
+               }
+
+             num [num_hi_sig] += carry;
+           }
+
+         /* Store the quotient digit.  */
+         quo[i] = quo_est;
+       }
+    }
+
+  decode (quo, lquo, hquo);
+
+ finish_up:
+  /* If result is negative, make it so.  */
+  if (quo_neg)
+    neg_double (*lquo, *hquo, lquo, hquo);
+
+  /* Compute trial remainder:  rem = num - (quo * den)  */
+  mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
+  neg_double (*lrem, *hrem, lrem, hrem);
+  add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
+
+  switch (code)
+    {
+    case TRUNC_DIV_EXPR:
+    case TRUNC_MOD_EXPR:       /* round toward zero */
+    case EXACT_DIV_EXPR:       /* for this one, it shouldn't matter */
+      return overflow;
+
+    case FLOOR_DIV_EXPR:
+    case FLOOR_MOD_EXPR:       /* round toward negative infinity */
+      if (quo_neg && (*lrem != 0 || *hrem != 0))   /* ratio < 0 && rem != 0 */
+       {
+         /* quo = quo - 1;  */
+         add_double (*lquo, *hquo, (HOST_WIDE_INT) -1, (HOST_WIDE_INT)  -1,
+                     lquo, hquo);
+       }
+      else
+       return overflow;
+      break;
+
+    case CEIL_DIV_EXPR:
+    case CEIL_MOD_EXPR:                /* round toward positive infinity */
+      if (!quo_neg && (*lrem != 0 || *hrem != 0))  /* ratio > 0 && rem != 0 */
+       {
+         add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
+                     lquo, hquo);
+       }
+      else
+       return overflow;
+      break;
+
+    case ROUND_DIV_EXPR:
+    case ROUND_MOD_EXPR:       /* round to closest integer */
+      {
+       unsigned HOST_WIDE_INT labs_rem = *lrem;
+       HOST_WIDE_INT habs_rem = *hrem;
+       unsigned HOST_WIDE_INT labs_den = lden, lnegabs_rem, ldiff;
+       HOST_WIDE_INT habs_den = hden, hnegabs_rem, hdiff;
+
+       /* Get absolute values.  */
+       if (!uns && *hrem < 0)
+         neg_double (*lrem, *hrem, &labs_rem, &habs_rem);
+       if (!uns && hden < 0)
+         neg_double (lden, hden, &labs_den, &habs_den);
+
+       /* If abs(rem) >= abs(den) - abs(rem), adjust the quotient.  */
+       neg_double (labs_rem, habs_rem, &lnegabs_rem, &hnegabs_rem);
+       add_double (labs_den, habs_den, lnegabs_rem, hnegabs_rem,
+                   &ldiff, &hdiff);
+
+       if (((unsigned HOST_WIDE_INT) habs_rem
+            > (unsigned HOST_WIDE_INT) hdiff)
+           || (habs_rem == hdiff && labs_rem >= ldiff))
+         {
+           if (quo_neg)
+             /* quo = quo - 1;  */
+             add_double (*lquo, *hquo,
+                         (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1, lquo, hquo);
+           else
+             /* quo = quo + 1; */
+             add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
+                         lquo, hquo);
+         }
+       else
+         return overflow;
+      }
+      break;
+
+    default:
+      gcc_unreachable ();
+    }
+
+  /* Compute true remainder:  rem = num - (quo * den)  */
+  mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
+  neg_double (*lrem, *hrem, lrem, hrem);
+  add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
+  return overflow;
+}
+
+
+/* Construct from a buffer of length LEN.  BUFFER will be read according
+   to byte endianess and word endianess.  Only the lower LEN bytes
+   of the result are set; the remaining high bytes are cleared.  */
+
+double_int
+double_int::from_buffer (const unsigned char *buffer, int len)
+{
+  double_int result = double_int_zero;
+  int words = len / UNITS_PER_WORD;
+
+  gcc_assert (len * BITS_PER_UNIT <= HOST_BITS_PER_DOUBLE_INT);
+
+  for (int byte = 0; byte < len; byte++)
+    {
+      int offset;
+      int bitpos = byte * BITS_PER_UNIT;
+      unsigned HOST_WIDE_INT value;
+
+      if (len > UNITS_PER_WORD)
+       {
+         int word = byte / UNITS_PER_WORD;
+
+         if (WORDS_BIG_ENDIAN)
+           word = (words - 1) - word;
+
+         offset = word * UNITS_PER_WORD;
+
+         if (BYTES_BIG_ENDIAN)
+           offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
+         else
+           offset += byte % UNITS_PER_WORD;
+       }
+      else
+       offset = BYTES_BIG_ENDIAN ? (len - 1) - byte : byte;
+
+      value = (unsigned HOST_WIDE_INT) buffer[offset];
+
+      if (bitpos < HOST_BITS_PER_WIDE_INT)
+       result.low |= value << bitpos;
+      else
+       result.high |= value << (bitpos - HOST_BITS_PER_WIDE_INT);
+    }
+
+  return result;
+}
+
+
 /* Returns mask for PREC bits.  */
 
-static inline double_int
-double_int_mask (unsigned prec)
+double_int
+double_int::mask (unsigned prec)
 {
   unsigned HOST_WIDE_INT m;
   double_int mask;
@@ -42,48 +688,70 @@ double_int_mask (unsigned prec)
   else
     {
       mask.high = 0;
-      mask.low = ((unsigned HOST_WIDE_INT) 2 << (prec - 1)) - 1;
+      mask.low = prec ? ((unsigned HOST_WIDE_INT) 2 << (prec - 1)) - 1 : 0;
     }
 
   return mask;
 }
 
+/* Returns a maximum value for signed or unsigned integer
+   of precision PREC.  */
+
+double_int
+double_int::max_value (unsigned int prec, bool uns)
+{
+  return double_int::mask (prec - (uns ? 0 : 1));
+}
+
+/* Returns a minimum value for signed or unsigned integer
+   of precision PREC.  */
+
+double_int
+double_int::min_value (unsigned int prec, bool uns)
+{
+  if (uns)
+    return double_int_zero;
+  return double_int_one.lshift (prec - 1, prec, false);
+}
+
 /* Clears the bits of CST over the precision PREC.  If UNS is false, the bits
    outside of the precision are set to the sign bit (i.e., the PREC-th one),
    otherwise they are set to zero.
+
    This corresponds to returning the value represented by PREC lowermost bits
    of CST, with the given signedness.  */
 
 double_int
-double_int_ext (double_int cst, unsigned prec, bool uns)
+double_int::ext (unsigned prec, bool uns) const
 {
   if (uns)
-    return double_int_zext (cst, prec);
+    return this->zext (prec);
   else
-    return double_int_sext (cst, prec);
+    return this->sext (prec);
 }
 
-/* The same as double_int_ext with UNS = true.  */
+/* The same as double_int::ext with UNS = true.  */
 
 double_int
-double_int_zext (double_int cst, unsigned prec)
+double_int::zext (unsigned prec) const
 {
-  double_int mask = double_int_mask (prec);
+  const double_int &cst = *this;
+  double_int mask = double_int::mask (prec);
   double_int r;
 
-  r.low = cst.low & ~mask.low;
-  r.high = cst.high & ~mask.high;
+  r.low = cst.low & mask.low;
+  r.high = cst.high & mask.high;
 
   return r;
 }
 
-/* The same as double_int_ext with UNS = false.  */
+/* The same as double_int::ext with UNS = false.  */
 
 double_int
-double_int_sext (double_int cst, unsigned prec)
+double_int::sext (unsigned prec) const
 {
-  double_int mask = double_int_mask (prec);
+  const double_int &cst = *this;
+  double_int mask = double_int::mask (prec);
   double_int r;
   unsigned HOST_WIDE_INT snum;
 
@@ -96,43 +764,24 @@ double_int_sext (double_int cst, unsigned prec)
     }
   if (((snum >> (prec - 1)) & 1) == 1)
     {
-      r.low = cst.low | mask.low;
-      r.high = cst.high | mask.high;
+      r.low = cst.low | ~mask.low;
+      r.high = cst.high | ~mask.high;
     }
   else
     {
-      r.low = cst.low & ~mask.low;
-      r.high = cst.high & ~mask.high;
-    } 
+      r.low = cst.low & mask.low;
+      r.high = cst.high & mask.high;
+    }
 
   return r;
 }
 
-/* Constructs long integer from tree CST.  The extra bits over the precision of
-   the number are filled with sign bit if CST is signed, and with zeros if it
-   is unsigned.  */
-
-double_int
-tree_to_double_int (tree cst)
-{
-  /* We do not need to call double_int_restrict here to ensure the semantics as
-     described, as this is the default one for trees.  */
-  return TREE_INT_CST (cst);
-}
-
-/* Returns true if CST fits in unsigned HOST_WIDE_INT.  */
-
-bool
-double_int_fits_in_uhwi_p (double_int cst)
-{
-  return cst.high == 0;
-}
-
 /* Returns true if CST fits in signed HOST_WIDE_INT.  */
 
 bool
-double_int_fits_in_shwi_p (double_int cst)
+double_int::fits_shwi () const
 {
+  const double_int &cst = *this;
   if (cst.high == 0)
     return (HOST_WIDE_INT) cst.low >= 0;
   else if (cst.high == -1)
@@ -145,131 +794,505 @@ double_int_fits_in_shwi_p (double_int cst)
    unsigned HOST_WIDE_INT if UNS is true.  */
 
 bool
-double_int_fits_in_hwi_p (double_int cst, bool uns)
+double_int::fits_hwi (bool uns) const
 {
   if (uns)
-    return double_int_fits_in_uhwi_p (cst);
+    return this->fits_uhwi ();
   else
-    return double_int_fits_in_shwi_p (cst);
+    return this->fits_shwi ();
 }
 
-/* Returns value of CST as a signed number.  CST must satisfy
-   double_int_fits_in_shwi_p.  */
+/* Returns A * B.  */
 
-HOST_WIDE_INT
-double_int_to_shwi (double_int cst)
+double_int
+double_int::operator * (double_int b) const
 {
-  return (HOST_WIDE_INT) cst.low;
+  const double_int &a = *this;
+  double_int ret;
+  mul_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high);
+  return ret;
 }
 
-/* Returns value of CST as an unsigned number.  CST must satisfy
-   double_int_fits_in_uhwi_p.  */
+/* Multiplies *this with B and returns a reference to *this.  */
 
-unsigned HOST_WIDE_INT
-double_int_to_uhwi (double_int cst)
+double_int &
+double_int::operator *= (double_int b)
 {
-  return cst.low;
+  mul_double (low, high, b.low, b.high, &low, &high);
+  return *this;
 }
 
-/* Returns A * B.  */
+/* Returns A * B. If the operation overflows according to UNSIGNED_P,
+   *OVERFLOW is set to nonzero.  */
 
 double_int
-double_int_mul (double_int a, double_int b)
+double_int::mul_with_sign (double_int b, bool unsigned_p, bool *overflow) const
 {
-  double_int ret;
-  mul_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high);
+  const double_int &a = *this;
+  double_int ret, tem;
+  *overflow = mul_double_wide_with_sign (a.low, a.high, b.low, b.high,
+                                        &ret.low, &ret.high,
+                                        &tem.low, &tem.high, unsigned_p);
   return ret;
 }
 
+double_int
+double_int::wide_mul_with_sign (double_int b, bool unsigned_p,
+                               double_int *higher, bool *overflow) const
+
+{
+  double_int lower;
+  *overflow = mul_double_wide_with_sign (low, high, b.low, b.high,
+                                        &lower.low, &lower.high,
+                                        &higher->low, &higher->high,
+                                        unsigned_p);
+  return lower;
+}
+
 /* Returns A + B.  */
 
 double_int
-double_int_add (double_int a, double_int b)
+double_int::operator + (double_int b) const
 {
+  const double_int &a = *this;
   double_int ret;
   add_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high);
   return ret;
 }
 
+/* Adds B to *this and returns a reference to *this.  */
+
+double_int &
+double_int::operator += (double_int b)
+{
+  add_double (low, high, b.low, b.high, &low, &high);
+  return *this;
+}
+
+
+/* Returns A + B. If the operation overflows according to UNSIGNED_P,
+   *OVERFLOW is set to nonzero.  */
+
+double_int
+double_int::add_with_sign (double_int b, bool unsigned_p, bool *overflow) const
+{
+  const double_int &a = *this;
+  double_int ret;
+  *overflow = add_double_with_sign (a.low, a.high, b.low, b.high,
+                                    &ret.low, &ret.high, unsigned_p);
+  return ret;
+}
+
+/* Returns A - B.  */
+
+double_int
+double_int::operator - (double_int b) const
+{
+  const double_int &a = *this;
+  double_int ret;
+  neg_double (b.low, b.high, &b.low, &b.high);
+  add_double (a.low, a.high, b.low, b.high, &ret.low, &ret.high);
+  return ret;
+}
+
+/* Subtracts B from *this and returns a reference to *this.  */
+
+double_int &
+double_int::operator -= (double_int b)
+{
+  neg_double (b.low, b.high, &b.low, &b.high);
+  add_double (low, high, b.low, b.high, &low, &high);
+  return *this;
+}
+
+
+/* Returns A - B. If the operation overflows via inconsistent sign bits,
+   *OVERFLOW is set to nonzero.  */
+
+double_int
+double_int::sub_with_overflow (double_int b, bool *overflow) const
+{
+  double_int ret;
+  neg_double (b.low, b.high, &ret.low, &ret.high);
+  add_double (low, high, ret.low, ret.high, &ret.low, &ret.high);
+  *overflow = OVERFLOW_SUM_SIGN (ret.high, b.high, high);
+  return ret;
+}
+
 /* Returns -A.  */
 
 double_int
-double_int_neg (double_int a)
+double_int::operator - () const
 {
+  const double_int &a = *this;
   double_int ret;
   neg_double (a.low, a.high, &ret.low, &ret.high);
   return ret;
 }
 
+double_int
+double_int::neg_with_overflow (bool *overflow) const
+{
+  double_int ret;
+  *overflow = neg_double (low, high, &ret.low, &ret.high);
+  return ret;
+}
+
 /* Returns A / B (computed as unsigned depending on UNS, and rounded as
    specified by CODE).  CODE is enum tree_code in fact, but double_int.h
-   must be included before tree.h.  */
+   must be included before tree.h.  The remainder after the division is
+   stored to MOD.  */
 
 double_int
-double_int_div (double_int a, double_int b, bool uns, unsigned code)
+double_int::divmod_with_overflow (double_int b, bool uns, unsigned code,
+                                 double_int *mod, bool *overflow) const
 {
-  unsigned HOST_WIDE_INT rem_lo;
-  HOST_WIDE_INT rem_hi;
+  const double_int &a = *this;
   double_int ret;
 
-  div_and_round_double (code, uns, a.low, a.high, b.low, b.high,
-                       &ret.low, &ret.high, &rem_lo, &rem_hi);
+  *overflow = div_and_round_double (code, uns, a.low, a.high,
+                                   b.low, b.high, &ret.low, &ret.high,
+                                   &mod->low, &mod->high);
   return ret;
 }
 
-/* The same as double_int_div with UNS = false.  */
+double_int
+double_int::divmod (double_int b, bool uns, unsigned code,
+                   double_int *mod) const
+{
+  const double_int &a = *this;
+  double_int ret;
+
+  div_and_round_double (code, uns, a.low, a.high,
+                       b.low, b.high, &ret.low, &ret.high,
+                       &mod->low, &mod->high);
+  return ret;
+}
+
+/* The same as double_int::divmod with UNS = false.  */
+
+double_int
+double_int::sdivmod (double_int b, unsigned code, double_int *mod) const
+{
+  return this->divmod (b, false, code, mod);
+}
+
+/* The same as double_int::divmod with UNS = true.  */
 
 double_int
-double_int_sdiv (double_int a, double_int b, unsigned code)
+double_int::udivmod (double_int b, unsigned code, double_int *mod) const
 {
-  return double_int_div (a, b, false, code);
+  return this->divmod (b, true, code, mod);
 }
 
-/* The same as double_int_div with UNS = true.  */
+/* Returns A / B (computed as unsigned depending on UNS, and rounded as
+   specified by CODE).  CODE is enum tree_code in fact, but double_int.h
+   must be included before tree.h.  */
 
 double_int
-double_int_udiv (double_int a, double_int b, unsigned code)
+double_int::div (double_int b, bool uns, unsigned code) const
 {
-  return double_int_div (a, b, true, code);
+  double_int mod;
+
+  return this->divmod (b, uns, code, &mod);
 }
 
-/* Constructs tree in type TYPE from with value given by CST.  */
+/* The same as double_int::div with UNS = false.  */
+
+double_int
+double_int::sdiv (double_int b, unsigned code) const
+{
+  return this->div (b, false, code);
+}
 
-tree
-double_int_to_tree (tree type, double_int cst)
+/* The same as double_int::div with UNS = true.  */
+
+double_int
+double_int::udiv (double_int b, unsigned code) const
+{
+  return this->div (b, true, code);
+}
+
+/* Returns A % B (computed as unsigned depending on UNS, and rounded as
+   specified by CODE).  CODE is enum tree_code in fact, but double_int.h
+   must be included before tree.h.  */
+
+double_int
+double_int::mod (double_int b, bool uns, unsigned code) const
+{
+  double_int mod;
+
+  this->divmod (b, uns, code, &mod);
+  return mod;
+}
+
+/* The same as double_int::mod with UNS = false.  */
+
+double_int
+double_int::smod (double_int b, unsigned code) const
 {
-  cst = double_int_ext (cst, TYPE_PRECISION (type), TYPE_UNSIGNED (type));
+  return this->mod (b, false, code);
+}
+
+/* The same as double_int::mod with UNS = true.  */
 
-  return build_int_cst_wide (type, cst.low, cst.high);
+double_int
+double_int::umod (double_int b, unsigned code) const
+{
+  return this->mod (b, true, code);
 }
 
-/* Returns true if CST is negative.  Of course, CST is considered to
-   be signed.  */
+/* Return TRUE iff PRODUCT is an integral multiple of FACTOR, and return
+   the multiple in *MULTIPLE.  Otherwise return FALSE and leave *MULTIPLE
+   unchanged.  */
 
 bool
-double_int_negative_p (double_int cst)
+double_int::multiple_of (double_int factor,
+                        bool unsigned_p, double_int *multiple) const
+{
+  double_int remainder;
+  double_int quotient = this->divmod (factor, unsigned_p,
+                                          TRUNC_DIV_EXPR, &remainder);
+  if (remainder.is_zero ())
+    {
+      *multiple = quotient;
+      return true;
+    }
+
+  return false;
+}
+
+/* Set BITPOS bit in A.  */
+double_int
+double_int::set_bit (unsigned bitpos) const
 {
-  return cst.high < 0;
+  double_int a = *this;
+  if (bitpos < HOST_BITS_PER_WIDE_INT)
+    a.low |= (unsigned HOST_WIDE_INT) 1 << bitpos;
+  else
+    a.high |= (HOST_WIDE_INT) 1 <<  (bitpos - HOST_BITS_PER_WIDE_INT);
+  return a;
+}
+
+/* Count trailing zeros in A.  */
+int
+double_int::trailing_zeros () const
+{
+  const double_int &a = *this;
+  unsigned HOST_WIDE_INT w = a.low ? a.low : (unsigned HOST_WIDE_INT) a.high;
+  unsigned bits = a.low ? 0 : HOST_BITS_PER_WIDE_INT;
+  if (!w)
+    return HOST_BITS_PER_DOUBLE_INT;
+  bits += ctz_hwi (w);
+  return bits;
+}
+
+/* Shift A left by COUNT places.  */
+
+double_int
+double_int::lshift (HOST_WIDE_INT count) const
+{
+  double_int ret;
+
+  gcc_checking_assert (count >= 0);
+
+  if (count >= HOST_BITS_PER_DOUBLE_INT)
+    {
+      /* Shifting by the host word size is undefined according to the
+        ANSI standard, so we must handle this as a special case.  */
+      ret.high = 0;
+      ret.low = 0;
+    }
+  else if (count >= HOST_BITS_PER_WIDE_INT)
+    {
+      ret.high = low << (count - HOST_BITS_PER_WIDE_INT);
+      ret.low = 0;
+    }
+  else
+    {
+      ret.high = (((unsigned HOST_WIDE_INT) high << count)
+            | (low >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
+      ret.low = low << count;
+    }
+
+  return ret;
+}
+
+/* Shift A right by COUNT places.  */
+
+double_int
+double_int::rshift (HOST_WIDE_INT count) const
+{
+  double_int ret;
+
+  gcc_checking_assert (count >= 0);
+
+  if (count >= HOST_BITS_PER_DOUBLE_INT)
+    {
+      /* Shifting by the host word size is undefined according to the
+        ANSI standard, so we must handle this as a special case.  */
+      ret.high = 0;
+      ret.low = 0;
+    }
+  else if (count >= HOST_BITS_PER_WIDE_INT)
+    {
+      ret.high = 0;
+      ret.low
+       = (unsigned HOST_WIDE_INT) (high >> (count - HOST_BITS_PER_WIDE_INT));
+    }
+  else
+    {
+      ret.high = high >> count;
+      ret.low = ((low >> count)
+                | ((unsigned HOST_WIDE_INT) high
+                   << (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
+    }
+
+  return ret;
+}
+
+/* Shift A left by COUNT places keeping only PREC bits of result.  Shift
+   right if COUNT is negative.  ARITH true specifies arithmetic shifting;
+   otherwise use logical shift.  */
+
+double_int
+double_int::lshift (HOST_WIDE_INT count, unsigned int prec, bool arith) const
+{
+  double_int ret;
+  if (count > 0)
+    lshift_double (low, high, count, prec, &ret.low, &ret.high);
+  else
+    rshift_double (low, high, absu_hwi (count), prec, &ret.low, &ret.high, arith);
+  return ret;
+}
+
+/* Shift A right by COUNT places keeping only PREC bits of result.  Shift
+   left if COUNT is negative.  ARITH true specifies arithmetic shifting;
+   otherwise use logical shift.  */
+
+double_int
+double_int::rshift (HOST_WIDE_INT count, unsigned int prec, bool arith) const
+{
+  double_int ret;
+  if (count > 0)
+    rshift_double (low, high, count, prec, &ret.low, &ret.high, arith);
+  else
+    lshift_double (low, high, absu_hwi (count), prec, &ret.low, &ret.high);
+  return ret;
+}
+
+/* Arithmetic shift A left by COUNT places keeping only PREC bits of result.
+   Shift right if COUNT is negative.  */
+
+double_int
+double_int::alshift (HOST_WIDE_INT count, unsigned int prec) const
+{
+  double_int r;
+  if (count > 0)
+    lshift_double (low, high, count, prec, &r.low, &r.high);
+  else
+    rshift_double (low, high, absu_hwi (count), prec, &r.low, &r.high, true);
+  return r;
+}
+
+/* Arithmetic shift A right by COUNT places keeping only PREC bits of result.
+   Shift left if COUNT is negative.  */
+
+double_int
+double_int::arshift (HOST_WIDE_INT count, unsigned int prec) const
+{
+  double_int r;
+  if (count > 0)
+    rshift_double (low, high, count, prec, &r.low, &r.high, true);
+  else
+    lshift_double (low, high, absu_hwi (count), prec, &r.low, &r.high);
+  return r;
+}
+
+/* Logical shift A left by COUNT places keeping only PREC bits of result.
+   Shift right if COUNT is negative.  */
+
+double_int
+double_int::llshift (HOST_WIDE_INT count, unsigned int prec) const
+{
+  double_int r;
+  if (count > 0)
+    lshift_double (low, high, count, prec, &r.low, &r.high);
+  else
+    rshift_double (low, high, absu_hwi (count), prec, &r.low, &r.high, false);
+  return r;
+}
+
+/* Logical shift A right by COUNT places keeping only PREC bits of result.
+   Shift left if COUNT is negative.  */
+
+double_int
+double_int::lrshift (HOST_WIDE_INT count, unsigned int prec) const
+{
+  double_int r;
+  if (count > 0)
+    rshift_double (low, high, count, prec, &r.low, &r.high, false);
+  else
+    lshift_double (low, high, absu_hwi (count), prec, &r.low, &r.high);
+  return r;
+}
+
+/* Rotate  A left by COUNT places keeping only PREC bits of result.
+   Rotate right if COUNT is negative.  */
+
+double_int
+double_int::lrotate (HOST_WIDE_INT count, unsigned int prec) const
+{
+  double_int t1, t2;
+
+  count %= prec;
+  if (count < 0)
+    count += prec;
+
+  t1 = this->llshift (count, prec);
+  t2 = this->lrshift (prec - count, prec);
+
+  return t1 | t2;
+}
+
+/* Rotate A rigth by COUNT places keeping only PREC bits of result.
+   Rotate right if COUNT is negative.  */
+
+double_int
+double_int::rrotate (HOST_WIDE_INT count, unsigned int prec) const
+{
+  double_int t1, t2;
+
+  count %= prec;
+  if (count < 0)
+    count += prec;
+
+  t1 = this->lrshift (count, prec);
+  t2 = this->llshift (prec - count, prec);
+
+  return t1 | t2;
 }
 
 /* Returns -1 if A < B, 0 if A == B and 1 if A > B.  Signedness of the
    comparison is given by UNS.  */
 
 int
-double_int_cmp (double_int a, double_int b, bool uns)
+double_int::cmp (double_int b, bool uns) const
 {
   if (uns)
-    return double_int_ucmp (a, b);
+    return this->ucmp (b);
   else
-    return double_int_scmp (a, b);
+    return this->scmp (b);
 }
 
 /* Compares two unsigned values A and B.  Returns -1 if A < B, 0 if A == B,
    and 1 if A > B.  */
 
 int
-double_int_ucmp (double_int a, double_int b)
+double_int::ucmp (double_int b) const
 {
+  const double_int &a = *this;
   if ((unsigned HOST_WIDE_INT) a.high < (unsigned HOST_WIDE_INT) b.high)
     return -1;
   if ((unsigned HOST_WIDE_INT) a.high > (unsigned HOST_WIDE_INT) b.high)
@@ -286,20 +1309,156 @@ double_int_ucmp (double_int a, double_int b)
    and 1 if A > B.  */
 
 int
-double_int_scmp (double_int a, double_int b)
+double_int::scmp (double_int b) const
 {
+  const double_int &a = *this;
   if (a.high < b.high)
     return -1;
   if (a.high > b.high)
     return 1;
-  if ((HOST_WIDE_INT) a.low < (HOST_WIDE_INT) b.low)
+  if (a.low < b.low)
     return -1;
-  if ((HOST_WIDE_INT) a.low > (HOST_WIDE_INT) b.low)
+  if (a.low > b.low)
     return 1;
 
   return 0;
 }
 
+/* Compares two unsigned values A and B for less-than.  */
+
+bool
+double_int::ult (double_int b) const
+{
+  if ((unsigned HOST_WIDE_INT) high < (unsigned HOST_WIDE_INT) b.high)
+    return true;
+  if ((unsigned HOST_WIDE_INT) high > (unsigned HOST_WIDE_INT) b.high)
+    return false;
+  if (low < b.low)
+    return true;
+  return false;
+}
+
+/* Compares two unsigned values A and B for less-than or equal-to.  */
+
+bool
+double_int::ule (double_int b) const
+{
+  if ((unsigned HOST_WIDE_INT) high < (unsigned HOST_WIDE_INT) b.high)
+    return true;
+  if ((unsigned HOST_WIDE_INT) high > (unsigned HOST_WIDE_INT) b.high)
+    return false;
+  if (low <= b.low)
+    return true;
+  return false;
+}
+
+/* Compares two unsigned values A and B for greater-than.  */
+
+bool
+double_int::ugt (double_int b) const
+{
+  if ((unsigned HOST_WIDE_INT) high > (unsigned HOST_WIDE_INT) b.high)
+    return true;
+  if ((unsigned HOST_WIDE_INT) high < (unsigned HOST_WIDE_INT) b.high)
+    return false;
+  if (low > b.low)
+    return true;
+  return false;
+}
+
+/* Compares two signed values A and B for less-than.  */
+
+bool
+double_int::slt (double_int b) const
+{
+  if (high < b.high)
+    return true;
+  if (high > b.high)
+    return false;
+  if (low < b.low)
+    return true;
+  return false;
+}
+
+/* Compares two signed values A and B for less-than or equal-to.  */
+
+bool
+double_int::sle (double_int b) const
+{
+  if (high < b.high)
+    return true;
+  if (high > b.high)
+    return false;
+  if (low <= b.low)
+    return true;
+  return false;
+}
+
+/* Compares two signed values A and B for greater-than.  */
+
+bool
+double_int::sgt (double_int b) const
+{
+  if (high > b.high)
+    return true;
+  if (high < b.high)
+    return false;
+  if (low > b.low)
+    return true;
+  return false;
+}
+
+
+/* Compares two values A and B.  Returns max value.  Signedness of the
+   comparison is given by UNS.  */
+
+double_int
+double_int::max (double_int b, bool uns)
+{
+  return (this->cmp (b, uns) == 1) ? *this : b;
+}
+
+/* Compares two signed values A and B.  Returns max value.  */
+
+double_int
+double_int::smax (double_int b)
+{
+  return (this->scmp (b) == 1) ? *this : b;
+}
+
+/* Compares two unsigned values A and B.  Returns max value.  */
+
+double_int
+double_int::umax (double_int b)
+{
+  return (this->ucmp (b) == 1) ? *this : b;
+}
+
+/* Compares two values A and B.  Returns mix value.  Signedness of the
+   comparison is given by UNS.  */
+
+double_int
+double_int::min (double_int b, bool uns)
+{
+  return (this->cmp (b, uns) == -1) ? *this : b;
+}
+
+/* Compares two signed values A and B.  Returns min value.  */
+
+double_int
+double_int::smin (double_int b)
+{
+  return (this->scmp (b) == -1) ? *this : b;
+}
+
+/* Compares two unsigned values A and B.  Returns min value.  */
+
+double_int
+double_int::umin (double_int b)
+{
+  return (this->ucmp (b) == -1) ? *this : b;
+}
+
 /* Splits last digit of *CST (taken as unsigned) in BASE and returns it.  */
 
 static unsigned
@@ -325,20 +1484,98 @@ dump_double_int (FILE *file, double_int cst, bool uns)
   unsigned digits[100], n;
   int i;
 
-  if (double_int_zero_p (cst))
+  if (cst.is_zero ())
     {
       fprintf (file, "0");
       return;
     }
 
-  if (!uns && double_int_negative_p (cst))
+  if (!uns && cst.is_negative ())
     {
       fprintf (file, "-");
-      cst = double_int_neg (cst);
+      cst = -cst;
     }
 
-  for (n = 0; !double_int_zero_p (cst); n++)
+  for (n = 0; !cst.is_zero (); n++)
     digits[n] = double_int_split_digit (&cst, 10);
   for (i = n - 1; i >= 0; i--)
     fprintf (file, "%u", digits[i]);
 }
+
+
+/* Sets RESULT to VAL, taken unsigned if UNS is true and as signed
+   otherwise.  */
+
+void
+mpz_set_double_int (mpz_t result, double_int val, bool uns)
+{
+  bool negate = false;
+  unsigned HOST_WIDE_INT vp[2];
+
+  if (!uns && val.is_negative ())
+    {
+      negate = true;
+      val = -val;
+    }
+
+  vp[0] = val.low;
+  vp[1] = (unsigned HOST_WIDE_INT) val.high;
+  mpz_import (result, 2, -1, sizeof (HOST_WIDE_INT), 0, 0, vp);
+
+  if (negate)
+    mpz_neg (result, result);
+}
+
+/* Returns VAL converted to TYPE.  If WRAP is true, then out-of-range
+   values of VAL will be wrapped; otherwise, they will be set to the
+   appropriate minimum or maximum TYPE bound.  */
+
+double_int
+mpz_get_double_int (const_tree type, mpz_t val, bool wrap)
+{
+  unsigned HOST_WIDE_INT *vp;
+  size_t count, numb;
+  double_int res;
+
+  if (!wrap)
+    {
+      mpz_t min, max;
+
+      mpz_init (min);
+      mpz_init (max);
+      get_type_static_bounds (type, min, max);
+
+      if (mpz_cmp (val, min) < 0)
+       mpz_set (val, min);
+      else if (mpz_cmp (val, max) > 0)
+       mpz_set (val, max);
+
+      mpz_clear (min);
+      mpz_clear (max);
+    }
+
+  /* Determine the number of unsigned HOST_WIDE_INT that are required
+     for representing the value.  The code to calculate count is
+     extracted from the GMP manual, section "Integer Import and Export":
+     http://gmplib.org/manual/Integer-Import-and-Export.html  */
+  numb = 8 * sizeof (HOST_WIDE_INT);
+  count = (mpz_sizeinbase (val, 2) + numb-1) / numb;
+  if (count < 2)
+    count = 2;
+  vp = (unsigned HOST_WIDE_INT *) alloca (count * sizeof (HOST_WIDE_INT));
+
+  vp[0] = 0;
+  vp[1] = 0;
+  mpz_export (vp, &count, -1, sizeof (HOST_WIDE_INT), 0, 0, val);
+
+  gcc_assert (wrap || count <= 2);
+
+  res.low = vp[0];
+  res.high = (HOST_WIDE_INT) vp[1];
+
+  res = res.ext (TYPE_PRECISION (type), TYPE_UNSIGNED (type));
+  if (mpz_sgn (val) < 0)
+    res = -res;
+
+  return res;
+}