ipa/97673 - fix input_location leak
[gcc.git] / gcc / rtlanal.c
index e6483679903cda7049b9489918374d320259198b..d1240b0b7c5a8ffcc0e505c4ccc078270175bf53 100644 (file)
@@ -1,5 +1,5 @@
 /* Analyze RTL for GNU compiler.
-   Copyright (C) 1987-2017 Free Software Foundation, Inc.
+   Copyright (C) 1987-2021 Free Software Foundation, Inc.
 
 This file is part of GCC.
 
@@ -24,6 +24,7 @@ along with GCC; see the file COPYING3.  If not see
 #include "backend.h"
 #include "target.h"
 #include "rtl.h"
+#include "rtlanal.h"
 #include "tree.h"
 #include "predict.h"
 #include "df.h"
@@ -35,6 +36,8 @@ along with GCC; see the file COPYING3.  If not see
 #include "recog.h"
 #include "addresses.h"
 #include "rtl-iter.h"
+#include "hard-reg-set.h"
+#include "function-abi.h"
 
 /* Forward declarations */
 static void set_of_1 (rtx, const_rtx, void *);
@@ -95,7 +98,7 @@ generic_subrtx_iterator <T>::add_single_to_queue (array_type &array,
       /* A previous iteration might also have moved from the stack to the
         heap, in which case the heap array will already be big enough.  */
       if (vec_safe_length (array.heap) <= i)
-       vec_safe_grow (array.heap, i + 1);
+       vec_safe_grow (array.heap, i + 1, true);
       base = array.heap->address ();
       memcpy (base, array.stack, sizeof (array.stack));
       base[LOCAL_ELEMS] = x;
@@ -344,7 +347,7 @@ rtx_varies_p (const_rtx x, bool for_alias)
    FROM and TO for the current function, as it was at the start
    of the routine.  */
 
-static HOST_WIDE_INT
+static poly_int64
 get_initial_register_offset (int from, int to)
 {
   static const struct elim_table_t
@@ -352,16 +355,16 @@ get_initial_register_offset (int from, int to)
     const int from;
     const int to;
   } table[] = ELIMINABLE_REGS;
-  HOST_WIDE_INT offset1, offset2;
+  poly_int64 offset1, offset2;
   unsigned int i, j;
 
   if (to == from)
     return 0;
 
-  /* It is not safe to call INITIAL_ELIMINATION_OFFSET
-     before the reload pass.  We need to give at least
-     an estimation for the resulting frame size.  */
-  if (! reload_completed)
+  /* It is not safe to call INITIAL_ELIMINATION_OFFSET before the epilogue
+     is completed, but we need to give at least an estimate for the stack
+     pointer based on the frame size.  */
+  if (!epilogue_completed)
     {
       offset1 = crtl->outgoing_args_size + get_frame_size ();
 #if !STACK_GROWS_DOWNWARD
@@ -457,16 +460,18 @@ get_initial_register_offset (int from, int to)
    references on strict alignment machines.  */
 
 static int
-rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
+rtx_addr_can_trap_p_1 (const_rtx x, poly_int64 offset, poly_int64 size,
                       machine_mode mode, bool unaligned_mems)
 {
   enum rtx_code code = GET_CODE (x);
+  gcc_checking_assert (mode == BLKmode || known_size_p (size));
+  poly_int64 const_x1;
 
   /* The offset must be a multiple of the mode size if we are considering
      unaligned memory references on strict alignment machines.  */
-  if (STRICT_ALIGNMENT && unaligned_mems && GET_MODE_SIZE (mode) != 0)
+  if (STRICT_ALIGNMENT && unaligned_mems && mode != BLKmode)
     {
-      HOST_WIDE_INT actual_offset = offset;
+      poly_int64 actual_offset = offset;
 
 #ifdef SPARC_STACK_BOUNDARY_HACK
       /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
@@ -477,7 +482,7 @@ rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
        actual_offset -= STACK_POINTER_OFFSET;
 #endif
 
-      if (actual_offset % GET_MODE_SIZE (mode) != 0)
+      if (!multiple_p (actual_offset, GET_MODE_SIZE (mode)))
        return 1;
     }
 
@@ -489,14 +494,12 @@ rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
       if (!CONSTANT_POOL_ADDRESS_P (x) && !SYMBOL_REF_FUNCTION_P (x))
        {
          tree decl;
-         HOST_WIDE_INT decl_size;
+         poly_int64 decl_size;
 
-         if (offset < 0)
+         if (maybe_lt (offset, 0))
            return 1;
-         if (size == 0)
-           size = GET_MODE_SIZE (mode);
-         if (size == 0)
-           return offset != 0;
+         if (!known_size_p (size))
+           return maybe_ne (offset, 0);
 
          /* If the size of the access or of the symbol is unknown,
             assume the worst.  */
@@ -507,9 +510,10 @@ rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
          if (!decl)
            decl_size = -1;
          else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
-           decl_size = (tree_fits_shwi_p (DECL_SIZE_UNIT (decl))
-                        ? tree_to_shwi (DECL_SIZE_UNIT (decl))
-                        : -1);
+           {
+             if (!poly_int_tree_p (DECL_SIZE_UNIT (decl), &decl_size))
+               decl_size = -1;
+           }
          else if (TREE_CODE (decl) == STRING_CST)
            decl_size = TREE_STRING_LENGTH (decl);
          else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
@@ -517,7 +521,9 @@ rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
          else
            decl_size = -1;
 
-         return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
+         return (!known_size_p (decl_size) || known_eq (decl_size, 0)
+                 ? maybe_ne (offset, 0)
+                 : !known_subrange_p (offset, size, 0, decl_size));
         }
 
       return 0;
@@ -534,38 +540,35 @@ rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
         || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
        {
 #ifdef RED_ZONE_SIZE
-         HOST_WIDE_INT red_zone_size = RED_ZONE_SIZE;
+         poly_int64 red_zone_size = RED_ZONE_SIZE;
 #else
-         HOST_WIDE_INT red_zone_size = 0;
+         poly_int64 red_zone_size = 0;
 #endif
-         HOST_WIDE_INT stack_boundary = PREFERRED_STACK_BOUNDARY
-                                        / BITS_PER_UNIT;
-         HOST_WIDE_INT low_bound, high_bound;
+         poly_int64 stack_boundary = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
+         poly_int64 low_bound, high_bound;
 
-         if (size == 0)
-           size = GET_MODE_SIZE (mode);
-         if (size == 0)
+         if (!known_size_p (size))
            return 1;
 
          if (x == frame_pointer_rtx)
            {
              if (FRAME_GROWS_DOWNWARD)
                {
-                 high_bound = STARTING_FRAME_OFFSET;
+                 high_bound = targetm.starting_frame_offset ();
                  low_bound  = high_bound - get_frame_size ();
                }
              else
                {
-                 low_bound  = STARTING_FRAME_OFFSET;
+                 low_bound  = targetm.starting_frame_offset ();
                  high_bound = low_bound + get_frame_size ();
                }
            }
          else if (x == hard_frame_pointer_rtx)
            {
-             HOST_WIDE_INT sp_offset
+             poly_int64 sp_offset
                = get_initial_register_offset (STACK_POINTER_REGNUM,
                                               HARD_FRAME_POINTER_REGNUM);
-             HOST_WIDE_INT ap_offset
+             poly_int64 ap_offset
                = get_initial_register_offset (ARG_POINTER_REGNUM,
                                               HARD_FRAME_POINTER_REGNUM);
 
@@ -589,7 +592,7 @@ rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
            }
          else if (x == stack_pointer_rtx)
            {
-             HOST_WIDE_INT ap_offset
+             poly_int64 ap_offset
                = get_initial_register_offset (ARG_POINTER_REGNUM,
                                               STACK_POINTER_REGNUM);
 
@@ -629,7 +632,8 @@ rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
 #endif
            }
 
-         if (offset >= low_bound && offset <= high_bound - size)
+         if (known_ge (offset, low_bound)
+             && known_le (offset, high_bound - size))
            return 0;
          return 1;
        }
@@ -649,12 +653,12 @@ rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
       if (XEXP (x, 0) == pic_offset_table_rtx
          && GET_CODE (XEXP (x, 1)) == CONST
          && GET_CODE (XEXP (XEXP (x, 1), 0)) == UNSPEC
-         && offset == 0)
+         && known_eq (offset, 0))
        return 0;
 
       /* - or it is an address that can't trap plus a constant integer.  */
-      if (CONST_INT_P (XEXP (x, 1))
-         && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
+      if (poly_int_rtx_p (XEXP (x, 1), &const_x1)
+         && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + const_x1,
                                     size, mode, unaligned_mems))
        return 0;
 
@@ -686,7 +690,7 @@ rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
 int
 rtx_addr_can_trap_p (const_rtx x)
 {
-  return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
+  return rtx_addr_can_trap_p_1 (x, 0, -1, BLKmode, false);
 }
 
 /* Return true if X contains a MEM subrtx.  */
@@ -809,10 +813,9 @@ rtx_addr_varies_p (const_rtx x, bool for_alias)
 /* Return the CALL in X if there is one.  */
 
 rtx
-get_call_rtx_from (rtx x)
+get_call_rtx_from (const rtx_insn *insn)
 {
-  if (INSN_P (x))
-    x = PATTERN (x);
+  rtx x = PATTERN (insn);
   if (GET_CODE (x) == PARALLEL)
     x = XVECEXP (x, 0, 0);
   if (GET_CODE (x) == SET)
@@ -821,6 +824,24 @@ get_call_rtx_from (rtx x)
     return x;
   return NULL_RTX;
 }
+
+/* Get the declaration of the function called by INSN.  */
+
+tree
+get_call_fndecl (const rtx_insn *insn)
+{
+  rtx note, datum;
+
+  note = find_reg_note (insn, REG_CALL_DECL, NULL_RTX);
+  if (note == NULL_RTX)
+    return NULL_TREE;
+
+  datum = XEXP (note, 0);
+  if (datum != NULL_RTX)
+    return SYMBOL_REF_DECL (datum);
+
+  return NULL_TREE;
+}
 \f
 /* Return the value of the integer term in X, if one is apparent;
    otherwise return 0.
@@ -915,6 +936,37 @@ split_const (rtx x, rtx *base_out, rtx *offset_out)
   *base_out = x;
   *offset_out = const0_rtx;
 }
+
+/* Express integer value X as some value Y plus a polynomial offset,
+   where Y is either const0_rtx, X or something within X (as opposed
+   to a new rtx).  Return the Y and store the offset in *OFFSET_OUT.  */
+
+rtx
+strip_offset (rtx x, poly_int64_pod *offset_out)
+{
+  rtx base = const0_rtx;
+  rtx test = x;
+  if (GET_CODE (test) == CONST)
+    test = XEXP (test, 0);
+  if (GET_CODE (test) == PLUS)
+    {
+      base = XEXP (test, 0);
+      test = XEXP (test, 1);
+    }
+  if (poly_int_rtx_p (test, offset_out))
+    return base;
+  *offset_out = 0;
+  return x;
+}
+
+/* Return the argument size in REG_ARGS_SIZE note X.  */
+
+poly_int64
+get_args_size (const_rtx x)
+{
+  gcc_checking_assert (REG_NOTE_KIND (x) == REG_ARGS_SIZE);
+  return rtx_to_poly_int64 (XEXP (x, 0));
+}
 \f
 /* Return the number of places FIND appears within X.  If COUNT_DEST is
    zero, we do not count occurrences inside the destination of a SET.  */
@@ -1124,10 +1176,7 @@ reg_referenced_p (const_rtx x, const_rtx body)
          && !REG_P (SET_DEST (body))
          && ! (GET_CODE (SET_DEST (body)) == SUBREG
                && REG_P (SUBREG_REG (SET_DEST (body)))
-               && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
-                     + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
-                   == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
-                        + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
+               && !read_modify_subreg_p (SET_DEST (body)))
          && reg_overlap_mentioned_p (x, SET_DEST (body)))
        return 1;
       return 0;
@@ -1219,8 +1268,8 @@ reg_set_p (const_rtx reg, const_rtx insn)
          || (CALL_P (insn)
              && ((REG_P (reg)
                   && REGNO (reg) < FIRST_PSEUDO_REGISTER
-                  && overlaps_hard_reg_set_p (regs_invalidated_by_call,
-                                              GET_MODE (reg), REGNO (reg)))
+                  && (insn_callee_abi (as_a<const rtx_insn *> (insn))
+                      .clobbers_reg_p (GET_MODE (reg), REGNO (reg))))
                  || MEM_P (reg)
                  || find_reg_fusage (insn, CLOBBER, reg)))))
     return true;
@@ -1358,6 +1407,25 @@ modified_in_p (const_rtx x, const_rtx insn)
 
   return 0;
 }
+
+/* Return true if X is a SUBREG and if storing a value to X would
+   preserve some of its SUBREG_REG.  For example, on a normal 32-bit
+   target, using a SUBREG to store to one half of a DImode REG would
+   preserve the other half.  */
+
+bool
+read_modify_subreg_p (const_rtx x)
+{
+  if (GET_CODE (x) != SUBREG)
+    return false;
+  poly_uint64 isize = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
+  poly_uint64 osize = GET_MODE_SIZE (GET_MODE (x));
+  poly_uint64 regsize = REGMODE_NATURAL_SIZE (GET_MODE (SUBREG_REG (x)));
+  /* The inner and outer modes of a subreg must be ordered, so that we
+     can tell whether they're paradoxical or partial.  */
+  gcc_checking_assert (ordered_p (isize, osize));
+  return (maybe_gt (isize, osize) && maybe_gt (isize, regsize));
+}
 \f
 /* Helper function for set_of.  */
 struct set_of_data
@@ -1383,10 +1451,45 @@ set_of (const_rtx pat, const_rtx insn)
   struct set_of_data data;
   data.found = NULL_RTX;
   data.pat = pat;
-  note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
+  note_pattern_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
   return data.found;
 }
 
+/* Check whether instruction pattern PAT contains a SET with the following
+   properties:
+
+   - the SET is executed unconditionally; and
+   - either:
+     - the destination of the SET is a REG that contains REGNO; or
+     - both:
+       - the destination of the SET is a SUBREG of such a REG; and
+       - writing to the subreg clobbers all of the SUBREG_REG
+        (in other words, read_modify_subreg_p is false).
+
+   If PAT does have a SET like that, return the set, otherwise return null.
+
+   This is intended to be an alternative to single_set for passes that
+   can handle patterns with multiple_sets.  */
+rtx
+simple_regno_set (rtx pat, unsigned int regno)
+{
+  if (GET_CODE (pat) == PARALLEL)
+    {
+      int last = XVECLEN (pat, 0) - 1;
+      for (int i = 0; i < last; ++i)
+       if (rtx set = simple_regno_set (XVECEXP (pat, 0, i), regno))
+         return set;
+
+      pat = XVECEXP (pat, 0, last);
+    }
+
+  if (GET_CODE (pat) == SET
+      && covers_regno_no_parallel_p (SET_DEST (pat), regno))
+    return pat;
+
+  return nullptr;
+}
+
 /* Add all hard register in X to *PSET.  */
 void
 find_all_hard_regs (const_rtx x, HARD_REG_SET *pset)
@@ -1412,22 +1515,20 @@ record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
 }
 
 /* Examine INSN, and compute the set of hard registers written by it.
-   Store it in *PSET.  Should only be called after reload.  */
+   Store it in *PSET.  Should only be called after reload.
+
+   IMPLICIT is true if we should include registers that are fully-clobbered
+   by calls.  This should be used with caution, since it doesn't include
+   partially-clobbered registers.  */
 void
 find_all_hard_reg_sets (const rtx_insn *insn, HARD_REG_SET *pset, bool implicit)
 {
   rtx link;
 
   CLEAR_HARD_REG_SET (*pset);
-  note_stores (PATTERN (insn), record_hard_reg_sets, pset);
-  if (CALL_P (insn))
-    {
-      if (implicit)
-       IOR_HARD_REG_SET (*pset, call_used_reg_set);
-
-      for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
-       record_hard_reg_sets (XEXP (link, 0), NULL, pset);
-    }
+  note_stores (insn, record_hard_reg_sets, pset);
+  if (CALL_P (insn) && implicit)
+    *pset |= insn_callee_abi (insn).full_reg_clobbers ();
   for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
     if (REG_NOTE_KIND (link) == REG_INC)
       record_hard_reg_sets (XEXP (link, 0), NULL, pset);
@@ -1550,10 +1651,14 @@ set_noop_p (const_rtx set)
 
   if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
     {
-      if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
+      if (maybe_ne (SUBREG_BYTE (src), SUBREG_BYTE (dst)))
        return 0;
       src = SUBREG_REG (src);
       dst = SUBREG_REG (dst);
+      if (GET_MODE (src) != GET_MODE (dst))
+       /* It is hard to tell whether subregs refer to the same bits, so act
+          conservatively and return 0.  */
+       return 0;
     }
 
   /* It is a NOOP if destination overlaps with selected src vector
@@ -1566,15 +1671,22 @@ set_noop_p (const_rtx set)
       int i;
       rtx par = XEXP (src, 1);
       rtx src0 = XEXP (src, 0);
-      int c0 = INTVAL (XVECEXP (par, 0, 0));
-      HOST_WIDE_INT offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
+      poly_int64 c0;
+      if (!poly_int_rtx_p (XVECEXP (par, 0, 0), &c0))
+       return 0;
+      poly_int64 offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
 
       for (i = 1; i < XVECLEN (par, 0); i++)
-       if (INTVAL (XVECEXP (par, 0, i)) != c0 + i)
-         return 0;
+       {
+         poly_int64 c0i;
+         if (!poly_int_rtx_p (XVECEXP (par, 0, i), &c0i)
+             || maybe_ne (c0i, c0 + i))
+           return 0;
+       }
       return
-       simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
-                              offset, GET_MODE (dst)) == (int) REGNO (dst);
+       REG_CAN_CHANGE_MODE_P (REGNO (dst), GET_MODE (src0), GET_MODE (dst))
+       && simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
+                                 offset, GET_MODE (dst)) == (int) REGNO (dst);
     }
 
   return (REG_P (src) && REG_P (dst)
@@ -1592,10 +1704,6 @@ noop_move_p (const rtx_insn *insn)
   if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
     return 1;
 
-  /* Insns carrying these notes are useful later on.  */
-  if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
-    return 0;
-
   /* Check the code to be executed for COND_EXEC.  */
   if (GET_CODE (pat) == COND_EXEC)
     pat = COND_EXEC_CODE (pat);
@@ -1612,8 +1720,7 @@ noop_move_p (const rtx_insn *insn)
        {
          rtx tem = XVECEXP (pat, 0, i);
 
-         if (GET_CODE (tem) == USE
-             || GET_CODE (tem) == CLOBBER)
+         if (GET_CODE (tem) == USE || GET_CODE (tem) == CLOBBER)
            continue;
 
          if (GET_CODE (tem) != SET || ! set_noop_p (tem))
@@ -1746,7 +1853,7 @@ reg_overlap_mentioned_p (const_rtx x, const_rtx in)
 {
   unsigned int regno, endregno;
 
-  /* If either argument is a constant, then modifying X can not
+  /* If either argument is a constant, then modifying X cannot
      affect IN.  Here we look at IN, we can profitably combine
      CONSTANT_P (x) with the switch statement below.  */
   if (CONSTANT_P (in))
@@ -1755,6 +1862,7 @@ reg_overlap_mentioned_p (const_rtx x, const_rtx in)
  recurse:
   switch (GET_CODE (x))
     {
+    case CLOBBER:
     case STRICT_LOW_PART:
     case ZERO_EXTRACT:
     case SIGN_EXTRACT:
@@ -1838,7 +1946,8 @@ reg_overlap_mentioned_p (const_rtx x, const_rtx in)
   the SUBREG will be passed.  */
 
 void
-note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
+note_pattern_stores (const_rtx x,
+                    void (*fun) (rtx, const_rtx, void *), void *data)
 {
   int i;
 
@@ -1870,7 +1979,22 @@ note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
 
   else if (GET_CODE (x) == PARALLEL)
     for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
-      note_stores (XVECEXP (x, 0, i), fun, data);
+      note_pattern_stores (XVECEXP (x, 0, i), fun, data);
+}
+
+/* Same, but for an instruction.  If the instruction is a call, include
+   any CLOBBERs in its CALL_INSN_FUNCTION_USAGE.  */
+
+void
+note_stores (const rtx_insn *insn,
+            void (*fun) (rtx, const_rtx, void *), void *data)
+{
+  if (CALL_P (insn))
+    for (rtx link = CALL_INSN_FUNCTION_USAGE (insn);
+        link; link = XEXP (link, 1))
+      if (GET_CODE (XEXP (link, 0)) == CLOBBER)
+       note_pattern_stores (XEXP (link, 0), fun, data);
+  note_pattern_stores (PATTERN (insn), fun, data);
 }
 \f
 /* Like notes_stores, but call FUN for each expression that is being
@@ -1961,6 +2085,287 @@ note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
       return;
     }
 }
+
+/* Try to add a description of REG X to this object, stopping once
+   the REF_END limit has been reached.  FLAGS is a bitmask of
+   rtx_obj_reference flags that describe the context.  */
+
+void
+rtx_properties::try_to_add_reg (const_rtx x, unsigned int flags)
+{
+  if (REG_NREGS (x) != 1)
+    flags |= rtx_obj_flags::IS_MULTIREG;
+  machine_mode mode = GET_MODE (x);
+  unsigned int start_regno = REGNO (x);
+  unsigned int end_regno = END_REGNO (x);
+  for (unsigned int regno = start_regno; regno < end_regno; ++regno)
+    if (ref_iter != ref_end)
+      *ref_iter++ = rtx_obj_reference (regno, flags, mode,
+                                      regno - start_regno);
+}
+
+/* Add a description of destination X to this object.  FLAGS is a bitmask
+   of rtx_obj_reference flags that describe the context.
+
+   This routine accepts all rtxes that can legitimately appear in a
+   SET_DEST.  */
+
+void
+rtx_properties::try_to_add_dest (const_rtx x, unsigned int flags)
+{
+  /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
+     each of whose first operand is a register.  */
+  if (__builtin_expect (GET_CODE (x) == PARALLEL, 0))
+    {
+      for (int i = XVECLEN (x, 0) - 1; i >= 0; --i)
+       if (rtx dest = XEXP (XVECEXP (x, 0, i), 0))
+         try_to_add_dest (dest, flags);
+      return;
+    }
+
+  unsigned int base_flags = flags & rtx_obj_flags::STICKY_FLAGS;
+  flags |= rtx_obj_flags::IS_WRITE;
+  for (;;)
+    if (GET_CODE (x) == ZERO_EXTRACT)
+      {
+       try_to_add_src (XEXP (x, 1), base_flags);
+       try_to_add_src (XEXP (x, 2), base_flags);
+       flags |= rtx_obj_flags::IS_READ;
+       x = XEXP (x, 0);
+      }
+    else if (GET_CODE (x) == STRICT_LOW_PART)
+      {
+       flags |= rtx_obj_flags::IS_READ;
+       x = XEXP (x, 0);
+      }
+    else if (GET_CODE (x) == SUBREG)
+      {
+       flags |= rtx_obj_flags::IN_SUBREG;
+       if (read_modify_subreg_p (x))
+         flags |= rtx_obj_flags::IS_READ;
+       x = SUBREG_REG (x);
+      }
+    else
+      break;
+
+  if (MEM_P (x))
+    {
+      if (ref_iter != ref_end)
+       *ref_iter++ = rtx_obj_reference (MEM_REGNO, flags, GET_MODE (x));
+
+      unsigned int addr_flags = base_flags | rtx_obj_flags::IN_MEM_STORE;
+      if (flags & rtx_obj_flags::IS_READ)
+       addr_flags |= rtx_obj_flags::IN_MEM_LOAD;
+      try_to_add_src (XEXP (x, 0), addr_flags);
+      return;
+    }
+
+  if (__builtin_expect (REG_P (x), 1))
+    {
+      /* We want to keep sp alive everywhere -  by making all
+        writes to sp also use sp. */
+      if (REGNO (x) == STACK_POINTER_REGNUM)
+       flags |= rtx_obj_flags::IS_READ;
+      try_to_add_reg (x, flags);
+      return;
+    }
+}
+
+/* Try to add a description of source X to this object, stopping once
+   the REF_END limit has been reached.  FLAGS is a bitmask of
+   rtx_obj_reference flags that describe the context.
+
+   This routine accepts all rtxes that can legitimately appear in a SET_SRC.  */
+
+void
+rtx_properties::try_to_add_src (const_rtx x, unsigned int flags)
+{
+  unsigned int base_flags = flags & rtx_obj_flags::STICKY_FLAGS;
+  subrtx_iterator::array_type array;
+  FOR_EACH_SUBRTX (iter, array, x, NONCONST)
+    {
+      const_rtx x = *iter;
+      rtx_code code = GET_CODE (x);
+      if (code == REG)
+       try_to_add_reg (x, flags | rtx_obj_flags::IS_READ);
+      else if (code == MEM)
+       {
+         if (MEM_VOLATILE_P (x))
+           has_volatile_refs = true;
+
+         if (!MEM_READONLY_P (x) && ref_iter != ref_end)
+           {
+             auto mem_flags = flags | rtx_obj_flags::IS_READ;
+             *ref_iter++ = rtx_obj_reference (MEM_REGNO, mem_flags,
+                                              GET_MODE (x));
+           }
+
+         try_to_add_src (XEXP (x, 0),
+                         base_flags | rtx_obj_flags::IN_MEM_LOAD);
+         iter.skip_subrtxes ();
+       }
+      else if (code == SUBREG)
+       {
+         try_to_add_src (SUBREG_REG (x), flags | rtx_obj_flags::IN_SUBREG);
+         iter.skip_subrtxes ();
+       }
+      else if (code == UNSPEC_VOLATILE)
+       has_volatile_refs = true;
+      else if (code == ASM_INPUT || code == ASM_OPERANDS)
+       {
+         has_asm = true;
+         if (MEM_VOLATILE_P (x))
+           has_volatile_refs = true;
+       }
+      else if (code == PRE_INC
+              || code == PRE_DEC
+              || code == POST_INC
+              || code == POST_DEC
+              || code == PRE_MODIFY
+              || code == POST_MODIFY)
+       {
+         has_pre_post_modify = true;
+
+         unsigned int addr_flags = (base_flags
+                                    | rtx_obj_flags::IS_PRE_POST_MODIFY
+                                    | rtx_obj_flags::IS_READ);
+         try_to_add_dest (XEXP (x, 0), addr_flags);
+         if (code == PRE_MODIFY || code == POST_MODIFY)
+           iter.substitute (XEXP (XEXP (x, 1), 1));
+         else
+           iter.skip_subrtxes ();
+       }
+      else if (code == CALL)
+       has_call = true;
+    }
+}
+
+/* Try to add a description of instruction pattern PAT to this object,
+   stopping once the REF_END limit has been reached.  */
+
+void
+rtx_properties::try_to_add_pattern (const_rtx pat)
+{
+  switch (GET_CODE (pat))
+    {
+    case COND_EXEC:
+      try_to_add_src (COND_EXEC_TEST (pat));
+      try_to_add_pattern (COND_EXEC_CODE (pat));
+      break;
+
+    case PARALLEL:
+      {
+       int last = XVECLEN (pat, 0) - 1;
+       for (int i = 0; i < last; ++i)
+         try_to_add_pattern (XVECEXP (pat, 0, i));
+       try_to_add_pattern (XVECEXP (pat, 0, last));
+       break;
+      }
+
+    case ASM_OPERANDS:
+      for (int i = 0, len = ASM_OPERANDS_INPUT_LENGTH (pat); i < len; ++i)
+       try_to_add_src (ASM_OPERANDS_INPUT (pat, i));
+      break;
+
+    case CLOBBER:
+      try_to_add_dest (XEXP (pat, 0), rtx_obj_flags::IS_CLOBBER);
+      break;
+
+    case SET:
+      try_to_add_dest (SET_DEST (pat));
+      try_to_add_src (SET_SRC (pat));
+      break;
+
+    default:
+      /* All the other possibilities never store and can use a normal
+        rtx walk.  This includes:
+
+        - USE
+        - TRAP_IF
+        - PREFETCH
+        - UNSPEC
+        - UNSPEC_VOLATILE.  */
+      try_to_add_src (pat);
+      break;
+    }
+}
+
+/* Try to add a description of INSN to this object, stopping once
+   the REF_END limit has been reached.  INCLUDE_NOTES is true if the
+   description should include REG_EQUAL and REG_EQUIV notes; all such
+   references will then be marked with rtx_obj_flags::IN_NOTE.
+
+   For calls, this description includes all accesses in
+   CALL_INSN_FUNCTION_USAGE.  It also include all implicit accesses
+   to global registers by the target function.  However, it does not
+   include clobbers performed by the target function; callers that want
+   this information should instead use the function_abi interface.  */
+
+void
+rtx_properties::try_to_add_insn (const rtx_insn *insn, bool include_notes)
+{
+  if (CALL_P (insn))
+    {
+      /* Adding the global registers first removes a situation in which
+        a fixed-form clobber of register R could come before a real set
+        of register R.  */
+      if (!hard_reg_set_empty_p (global_reg_set))
+       {
+         unsigned int flags = (rtx_obj_flags::IS_READ
+                               | rtx_obj_flags::IS_WRITE);
+         for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER; ++regno)
+           if (global_regs[regno] && ref_iter != ref_end)
+             *ref_iter++ = rtx_obj_reference (regno, flags,
+                                              reg_raw_mode[regno], 0);
+       }
+      if (ref_iter != ref_end && !RTL_CONST_CALL_P (insn))
+       {
+         auto mem_flags = rtx_obj_flags::IS_READ;
+         if (!RTL_PURE_CALL_P (insn))
+           mem_flags |= rtx_obj_flags::IS_WRITE;
+         *ref_iter++ = rtx_obj_reference (MEM_REGNO, mem_flags, BLKmode);
+       }
+      try_to_add_pattern (PATTERN (insn));
+      for (rtx link = CALL_INSN_FUNCTION_USAGE (insn); link;
+          link = XEXP (link, 1))
+       {
+         rtx x = XEXP (link, 0);
+         if (GET_CODE (x) == CLOBBER)
+           try_to_add_dest (XEXP (x, 0), rtx_obj_flags::IS_CLOBBER);
+         else if (GET_CODE (x) == USE)
+           try_to_add_src (XEXP (x, 0));
+       }
+    }
+  else
+    try_to_add_pattern (PATTERN (insn));
+
+  if (include_notes)
+    for (rtx note = REG_NOTES (insn); note; note = XEXP (note, 1))
+      if (REG_NOTE_KIND (note) == REG_EQUAL
+         || REG_NOTE_KIND (note) == REG_EQUIV)
+       try_to_add_note (XEXP (note, 0));
+}
+
+/* Grow the storage by a bit while keeping the contents of the first
+   START elements.  */
+
+void
+vec_rtx_properties_base::grow (ptrdiff_t start)
+{
+  /* The same heuristic that vec uses.  */
+  ptrdiff_t new_elems = (ref_end - ref_begin) * 3 / 2;
+  if (ref_begin == m_storage)
+    {
+      ref_begin = XNEWVEC (rtx_obj_reference, new_elems);
+      if (start)
+       memcpy (ref_begin, m_storage, start * sizeof (rtx_obj_reference));
+    }
+  else
+    ref_begin = reinterpret_cast<rtx_obj_reference *>
+      (xrealloc (ref_begin, new_elems * sizeof (rtx_obj_reference)));
+  ref_iter = ref_begin + start;
+  ref_end = ref_begin + new_elems;
+}
 \f
 /* Return nonzero if X's old contents don't survive after INSN.
    This will be true if X is (cc0) or if X is a register and
@@ -2000,20 +2405,16 @@ dead_or_set_p (const rtx_insn *insn, const_rtx x)
   return 1;
 }
 
-/* Return TRUE iff DEST is a register or subreg of a register and
-   doesn't change the number of words of the inner register, and any
-   part of the register is TEST_REGNO.  */
+/* Return TRUE iff DEST is a register or subreg of a register, is a
+   complete rather than read-modify-write destination, and contains
+   register TEST_REGNO.  */
 
 static bool
 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
 {
   unsigned int regno, endregno;
 
-  if (GET_CODE (dest) == SUBREG
-      && (((GET_MODE_SIZE (GET_MODE (dest))
-           + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
-         == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
-              + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
+  if (GET_CODE (dest) == SUBREG && !read_modify_subreg_p (dest))
     dest = SUBREG_REG (dest);
 
   if (!REG_P (dest))
@@ -2072,7 +2473,7 @@ dead_or_set_regno_p (const rtx_insn *insn, unsigned int test_regno)
   if (GET_CODE (pattern) == COND_EXEC)
     return 0;
 
-  if (GET_CODE (pattern) == SET)
+  if (GET_CODE (pattern) == SET || GET_CODE (pattern) == CLOBBER)
     return covers_regno_p (SET_DEST (pattern), test_regno);
   else if (GET_CODE (pattern) == PARALLEL)
     {
@@ -2330,6 +2731,15 @@ add_int_reg_note (rtx_insn *insn, enum reg_note kind, int datum)
                                       datum, REG_NOTES (insn));
 }
 
+/* Add a REG_ARGS_SIZE note to INSN with value VALUE.  */
+
+void
+add_args_size_note (rtx_insn *insn, poly_int64 value)
+{
+  gcc_checking_assert (!find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX));
+  add_reg_note (insn, REG_ARGS_SIZE, gen_int_mode (value, Pmode));
+}
+
 /* Add a register note like NOTE to INSN.  */
 
 void
@@ -2387,10 +2797,11 @@ remove_note (rtx_insn *insn, const_rtx note)
 }
 
 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes.
-   Return true if any note has been removed.  */
+   If NO_RESCAN is false and any notes were removed, call
+   df_notes_rescan.  Return true if any note has been removed.  */
 
 bool
-remove_reg_equal_equiv_notes (rtx_insn *insn)
+remove_reg_equal_equiv_notes (rtx_insn *insn, bool no_rescan)
 {
   rtx *loc;
   bool ret = false;
@@ -2407,6 +2818,8 @@ remove_reg_equal_equiv_notes (rtx_insn *insn)
       else
        loc = &XEXP (*loc, 1);
     }
+  if (ret && !no_rescan)
+    df_notes_rescan (insn);
   return ret;
 }
 
@@ -2764,7 +3177,7 @@ may_trap_p_1 (const_rtx x, unsigned flags)
          code_changed
          || !MEM_NOTRAP_P (x))
        {
-         HOST_WIDE_INT size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : 0;
+         poly_int64 size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : -1;
          return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
                                        GET_MODE (x), code_changed);
        }
@@ -2778,10 +3191,28 @@ may_trap_p_1 (const_rtx x, unsigned flags)
     case UMOD:
       if (HONOR_SNANS (x))
        return 1;
-      if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
+      if (FLOAT_MODE_P (GET_MODE (x)))
        return flag_trapping_math;
       if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
        return 1;
+      if (GET_CODE (XEXP (x, 1)) == CONST_VECTOR)
+       {
+         /* For CONST_VECTOR, return 1 if any element is or might be zero.  */
+         unsigned int n_elts;
+         rtx op = XEXP (x, 1);
+         if (!GET_MODE_NUNITS (GET_MODE (op)).is_constant (&n_elts))
+           {
+             if (!CONST_VECTOR_DUPLICATE_P (op))
+               return 1;
+             for (unsigned i = 0; i < (unsigned int) XVECLEN (op, 0); i++)
+               if (CONST_VECTOR_ENCODED_ELT (op, i) == const0_rtx)
+                 return 1;
+           }
+         else
+           for (unsigned i = 0; i < n_elts; i++)
+             if (CONST_VECTOR_ELT (op, i) == const0_rtx)
+               return 1;
+       }
       break;
 
     case EXPR_LIST:
@@ -2830,12 +3261,16 @@ may_trap_p_1 (const_rtx x, unsigned flags)
     case NEG:
     case ABS:
     case SUBREG:
+    case VEC_MERGE:
+    case VEC_SELECT:
+    case VEC_CONCAT:
+    case VEC_DUPLICATE:
       /* These operations don't trap even with floating point.  */
       break;
 
     default:
       /* Any floating arithmetic may trap.  */
-      if (SCALAR_FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
+      if (FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
        return 1;
     }
 
@@ -2912,64 +3347,6 @@ may_trap_or_fault_p (const_rtx x)
   return may_trap_p_1 (x, 1);
 }
 \f
-/* Return nonzero if X contains a comparison that is not either EQ or NE,
-   i.e., an inequality.  */
-
-int
-inequality_comparisons_p (const_rtx x)
-{
-  const char *fmt;
-  int len, i;
-  const enum rtx_code code = GET_CODE (x);
-
-  switch (code)
-    {
-    case REG:
-    case SCRATCH:
-    case PC:
-    case CC0:
-    CASE_CONST_ANY:
-    case CONST:
-    case LABEL_REF:
-    case SYMBOL_REF:
-      return 0;
-
-    case LT:
-    case LTU:
-    case GT:
-    case GTU:
-    case LE:
-    case LEU:
-    case GE:
-    case GEU:
-      return 1;
-
-    default:
-      break;
-    }
-
-  len = GET_RTX_LENGTH (code);
-  fmt = GET_RTX_FORMAT (code);
-
-  for (i = 0; i < len; i++)
-    {
-      if (fmt[i] == 'e')
-       {
-         if (inequality_comparisons_p (XEXP (x, i)))
-           return 1;
-       }
-      else if (fmt[i] == 'E')
-       {
-         int j;
-         for (j = XVECLEN (x, i) - 1; j >= 0; j--)
-           if (inequality_comparisons_p (XVECEXP (x, i, j)))
-             return 1;
-       }
-    }
-
-  return 0;
-}
-\f
 /* Replace any occurrence of FROM in X with TO.  The function does
    not enter into CONST_DOUBLE for the replace.
 
@@ -3182,6 +3559,23 @@ tablejump_p (const rtx_insn *insn, rtx_insn **labelp,
   return true;
 }
 
+/* For INSN known to satisfy tablejump_p, determine if it actually is a
+   CASESI.  Return the insn pattern if so, NULL_RTX otherwise.  */
+
+rtx
+tablejump_casesi_pattern (const rtx_insn *insn)
+{
+  rtx tmp;
+
+  if ((tmp = single_set (insn)) != NULL
+      && SET_DEST (tmp) == pc_rtx
+      && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
+      && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF)
+    return tmp;
+
+  return NULL_RTX;
+}
+
 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
    constant that is not in the constant pool and not in the condition
    of an IF_THEN_ELSE.  */
@@ -3294,7 +3688,7 @@ for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data)
     case PRE_INC:
     case POST_INC:
       {
-       int size = GET_MODE_SIZE (GET_MODE (mem));
+       poly_int64 size = GET_MODE_SIZE (GET_MODE (mem));
        rtx r1 = XEXP (x, 0);
        rtx c = gen_int_mode (size, GET_MODE (r1));
        return fn (mem, x, r1, r1, c, data);
@@ -3303,7 +3697,7 @@ for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data)
     case PRE_DEC:
     case POST_DEC:
       {
-       int size = GET_MODE_SIZE (GET_MODE (mem));
+       poly_int64 size = GET_MODE_SIZE (GET_MODE (mem));
        rtx r1 = XEXP (x, 0);
        rtx c = gen_int_mode (-size, GET_MODE (r1));
        return fn (mem, x, r1, r1, c, data);
@@ -3396,13 +3790,15 @@ commutative_operand_precedence (rtx op)
 
   /* Constants always become the second operand.  Prefer "nice" constants.  */
   if (code == CONST_INT)
-    return -8;
+    return -10;
   if (code == CONST_WIDE_INT)
-    return -7;
+    return -9;
+  if (code == CONST_POLY_INT)
+    return -8;
   if (code == CONST_DOUBLE)
-    return -7;
+    return -8;
   if (code == CONST_FIXED)
-    return -7;
+    return -8;
   op = avoid_constant_pool_reference (op);
   code = GET_CODE (op);
 
@@ -3410,13 +3806,15 @@ commutative_operand_precedence (rtx op)
     {
     case RTX_CONST_OBJ:
       if (code == CONST_INT)
-        return -6;
+       return -7;
       if (code == CONST_WIDE_INT)
-        return -6;
+       return -6;
+      if (code == CONST_POLY_INT)
+       return -5;
       if (code == CONST_DOUBLE)
-        return -5;
+       return -5;
       if (code == CONST_FIXED)
-        return -5;
+       return -5;
       return -4;
 
     case RTX_EXTRA:
@@ -3517,52 +3915,62 @@ loc_mentioned_in_p (rtx *loc, const_rtx in)
   return 0;
 }
 
-/* Helper function for subreg_lsb.  Given a subreg's OUTER_MODE, INNER_MODE,
-   and SUBREG_BYTE, return the bit offset where the subreg begins
-   (counting from the least significant bit of the operand).  */
+/* Reinterpret a subreg as a bit extraction from an integer and return
+   the position of the least significant bit of the extracted value.
+   In other words, if the extraction were performed as a shift right
+   and mask, return the number of bits to shift right.
 
-unsigned int
-subreg_lsb_1 (machine_mode outer_mode,
-             machine_mode inner_mode,
-             unsigned int subreg_byte)
+   The outer value of the subreg has OUTER_BYTES bytes and starts at
+   byte offset SUBREG_BYTE within an inner value of INNER_BYTES bytes.  */
+
+poly_uint64
+subreg_size_lsb (poly_uint64 outer_bytes,
+                poly_uint64 inner_bytes,
+                poly_uint64 subreg_byte)
 {
-  unsigned int bitpos;
-  unsigned int byte;
-  unsigned int word;
+  poly_uint64 subreg_end, trailing_bytes, byte_pos;
 
   /* A paradoxical subreg begins at bit position 0.  */
-  if (paradoxical_subreg_p (outer_mode, inner_mode))
-    return 0;
-
-  if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
-    /* If the subreg crosses a word boundary ensure that
-       it also begins and ends on a word boundary.  */
-    gcc_assert (!((subreg_byte % UNITS_PER_WORD
-                 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
-                 && (subreg_byte % UNITS_PER_WORD
-                     || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
-
-  if (WORDS_BIG_ENDIAN)
-    word = (GET_MODE_SIZE (inner_mode)
-           - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
-  else
-    word = subreg_byte / UNITS_PER_WORD;
-  bitpos = word * BITS_PER_WORD;
+  gcc_checking_assert (ordered_p (outer_bytes, inner_bytes));
+  if (maybe_gt (outer_bytes, inner_bytes))
+    {
+      gcc_checking_assert (known_eq (subreg_byte, 0U));
+      return 0;
+    }
 
-  if (BYTES_BIG_ENDIAN)
-    byte = (GET_MODE_SIZE (inner_mode)
-           - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
+  subreg_end = subreg_byte + outer_bytes;
+  trailing_bytes = inner_bytes - subreg_end;
+  if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
+    byte_pos = trailing_bytes;
+  else if (!WORDS_BIG_ENDIAN && !BYTES_BIG_ENDIAN)
+    byte_pos = subreg_byte;
   else
-    byte = subreg_byte % UNITS_PER_WORD;
-  bitpos += byte * BITS_PER_UNIT;
+    {
+      /* When bytes and words have opposite endianness, we must be able
+        to split offsets into words and bytes at compile time.  */
+      poly_uint64 leading_word_part
+       = force_align_down (subreg_byte, UNITS_PER_WORD);
+      poly_uint64 trailing_word_part
+       = force_align_down (trailing_bytes, UNITS_PER_WORD);
+      /* If the subreg crosses a word boundary ensure that
+        it also begins and ends on a word boundary.  */
+      gcc_assert (known_le (subreg_end - leading_word_part,
+                           (unsigned int) UNITS_PER_WORD)
+                 || (known_eq (leading_word_part, subreg_byte)
+                     && known_eq (trailing_word_part, trailing_bytes)));
+      if (WORDS_BIG_ENDIAN)
+       byte_pos = trailing_word_part + (subreg_byte - leading_word_part);
+      else
+       byte_pos = leading_word_part + (trailing_bytes - trailing_word_part);
+    }
 
-  return bitpos;
+  return byte_pos * BITS_PER_UNIT;
 }
 
 /* Given a subreg X, return the bit offset where the subreg begins
    (counting from the least significant bit of the reg).  */
 
-unsigned int
+poly_uint64
 subreg_lsb (const_rtx x)
 {
   return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
@@ -3575,29 +3983,32 @@ subreg_lsb (const_rtx x)
    lsb of the inner value.  This is the inverse of the calculation
    performed by subreg_lsb_1 (which converts byte offsets to bit shifts).  */
 
-unsigned int
-subreg_size_offset_from_lsb (unsigned int outer_bytes,
-                            unsigned int inner_bytes,
-                            unsigned int lsb_shift)
+poly_uint64
+subreg_size_offset_from_lsb (poly_uint64 outer_bytes, poly_uint64 inner_bytes,
+                            poly_uint64 lsb_shift)
 {
   /* A paradoxical subreg begins at bit position 0.  */
-  if (outer_bytes > inner_bytes)
+  gcc_checking_assert (ordered_p (outer_bytes, inner_bytes));
+  if (maybe_gt (outer_bytes, inner_bytes))
     {
-      gcc_checking_assert (lsb_shift == 0);
+      gcc_checking_assert (known_eq (lsb_shift, 0U));
       return 0;
     }
 
-  gcc_assert (lsb_shift % BITS_PER_UNIT == 0);
-  unsigned int lower_bytes = lsb_shift / BITS_PER_UNIT;
-  unsigned int upper_bytes = inner_bytes - (lower_bytes + outer_bytes);
+  poly_uint64 lower_bytes = exact_div (lsb_shift, BITS_PER_UNIT);
+  poly_uint64 upper_bytes = inner_bytes - (lower_bytes + outer_bytes);
   if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
     return upper_bytes;
   else if (!WORDS_BIG_ENDIAN && !BYTES_BIG_ENDIAN)
     return lower_bytes;
   else
     {
-      unsigned int lower_word_part = lower_bytes & -UNITS_PER_WORD;
-      unsigned int upper_word_part = upper_bytes & -UNITS_PER_WORD;
+      /* When bytes and words have opposite endianness, we must be able
+        to split offsets into words and bytes at compile time.  */
+      poly_uint64 lower_word_part = force_align_down (lower_bytes,
+                                                     UNITS_PER_WORD);
+      poly_uint64 upper_word_part = force_align_down (upper_bytes,
+                                                     UNITS_PER_WORD);
       if (WORDS_BIG_ENDIAN)
        return upper_word_part + (lower_bytes - lower_word_part);
       else
@@ -3618,23 +4029,24 @@ subreg_size_offset_from_lsb (unsigned int outer_bytes,
    function does not check whether adding INFO->offset to XREGNO gives
    a valid hard register; even if INFO->offset + XREGNO is out of range,
    there might be another register of the same type that is in range.
-   Likewise it doesn't check whether HARD_REGNO_MODE_OK accepts the new
-   register, since that can depend on things like whether the final
+   Likewise it doesn't check whether targetm.hard_regno_mode_ok accepts
+   the new register, since that can depend on things like whether the final
    register number is even or odd.  Callers that want to check whether
    this particular subreg can be replaced by a simple (reg ...) should
    use simplify_subreg_regno.  */
 
 void
 subreg_get_info (unsigned int xregno, machine_mode xmode,
-                unsigned int offset, machine_mode ymode,
+                poly_uint64 offset, machine_mode ymode,
                 struct subreg_info *info)
 {
   unsigned int nregs_xmode, nregs_ymode;
 
   gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
 
-  unsigned int xsize = GET_MODE_SIZE (xmode);
-  unsigned int ysize = GET_MODE_SIZE (ymode);
+  poly_uint64 xsize = GET_MODE_SIZE (xmode);
+  poly_uint64 ysize = GET_MODE_SIZE (ymode);
+
   bool rknown = false;
 
   /* If the register representation of a non-scalar mode has holes in it,
@@ -3643,15 +4055,19 @@ subreg_get_info (unsigned int xregno, machine_mode xmode,
      at least one register.  */
   if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
     {
+      /* As a consequence, we must be dealing with a constant number of
+        scalars, and thus a constant offset and number of units.  */
+      HOST_WIDE_INT coffset = offset.to_constant ();
+      HOST_WIDE_INT cysize = ysize.to_constant ();
       nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
-      unsigned int nunits = GET_MODE_NUNITS (xmode);
+      unsigned int nunits = GET_MODE_NUNITS (xmode).to_constant ();
       scalar_mode xmode_unit = GET_MODE_INNER (xmode);
       gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
       gcc_assert (nregs_xmode
                  == (nunits
                      * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
-      gcc_assert (hard_regno_nregs[xregno][xmode]
-                 == hard_regno_nregs[xregno][xmode_unit] * nunits);
+      gcc_assert (hard_regno_nregs (xregno, xmode)
+                 == hard_regno_nregs (xregno, xmode_unit) * nunits);
 
       /* You can only ask for a SUBREG of a value with holes in the middle
         if you don't cross the holes.  (Such a SUBREG should be done by
@@ -3661,21 +4077,25 @@ subreg_get_info (unsigned int xregno, machine_mode xmode,
         3 for each part, but in memory it's two 128-bit parts.
         Padding is assumed to be at the end (not necessarily the 'high part')
         of each unit.  */
-      if ((offset / GET_MODE_SIZE (xmode_unit) + 1 < nunits)
-         && (offset / GET_MODE_SIZE (xmode_unit)
-             != ((offset + ysize - 1) / GET_MODE_SIZE (xmode_unit))))
+      if ((coffset / GET_MODE_SIZE (xmode_unit) + 1 < nunits)
+         && (coffset / GET_MODE_SIZE (xmode_unit)
+             != ((coffset + cysize - 1) / GET_MODE_SIZE (xmode_unit))))
        {
          info->representable_p = false;
          rknown = true;
        }
     }
   else
-    nregs_xmode = hard_regno_nregs[xregno][xmode];
+    nregs_xmode = hard_regno_nregs (xregno, xmode);
+
+  nregs_ymode = hard_regno_nregs (xregno, ymode);
 
-  nregs_ymode = hard_regno_nregs[xregno][ymode];
+  /* Subreg sizes must be ordered, so that we can tell whether they are
+     partial, paradoxical or complete.  */
+  gcc_checking_assert (ordered_p (xsize, ysize));
 
   /* Paradoxical subregs are otherwise valid.  */
-  if (!rknown && offset == 0 && ysize > xsize)
+  if (!rknown && known_eq (offset, 0U) && maybe_gt (ysize, xsize))
     {
       info->representable_p = true;
       /* If this is a big endian paradoxical subreg, which uses more
@@ -3697,29 +4117,34 @@ subreg_get_info (unsigned int xregno, machine_mode xmode,
 
   /* If registers store different numbers of bits in the different
      modes, we cannot generally form this subreg.  */
+  poly_uint64 regsize_xmode, regsize_ymode;
   if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
       && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
-      && (xsize % nregs_xmode) == 0
-      && (ysize % nregs_ymode) == 0)
+      && multiple_p (xsize, nregs_xmode, &regsize_xmode)
+      && multiple_p (ysize, nregs_ymode, &regsize_ymode))
     {
-      int regsize_xmode = xsize / nregs_xmode;
-      int regsize_ymode = ysize / nregs_ymode;
       if (!rknown
-         && ((nregs_ymode > 1 && regsize_xmode > regsize_ymode)
-             || (nregs_xmode > 1 && regsize_ymode > regsize_xmode)))
+         && ((nregs_ymode > 1 && maybe_gt (regsize_xmode, regsize_ymode))
+             || (nregs_xmode > 1 && maybe_gt (regsize_ymode, regsize_xmode))))
        {
          info->representable_p = false;
-         info->nregs = CEIL (ysize, regsize_xmode);
-         info->offset = offset / regsize_xmode;
+         if (!can_div_away_from_zero_p (ysize, regsize_xmode, &info->nregs)
+             || !can_div_trunc_p (offset, regsize_xmode, &info->offset))
+           /* Checked by validate_subreg.  We must know at compile time
+              which inner registers are being accessed.  */
+           gcc_unreachable ();
          return;
        }
       /* It's not valid to extract a subreg of mode YMODE at OFFSET that
         would go outside of XMODE.  */
-      if (!rknown && ysize + offset > xsize)
+      if (!rknown && maybe_gt (ysize + offset, xsize))
        {
          info->representable_p = false;
          info->nregs = nregs_ymode;
-         info->offset = offset / regsize_xmode;
+         if (!can_div_trunc_p (offset, regsize_xmode, &info->offset))
+           /* Checked by validate_subreg.  We must know at compile time
+              which inner registers are being accessed.  */
+           gcc_unreachable ();
          return;
        }
       /* Quick exit for the simple and common case of extracting whole
@@ -3727,26 +4152,27 @@ subreg_get_info (unsigned int xregno, machine_mode xmode,
       /* ??? It would be better to integrate this into the code below,
         if we can generalize the concept enough and figure out how
         odd-sized modes can coexist with the other weird cases we support.  */
+      HOST_WIDE_INT count;
       if (!rknown
          && WORDS_BIG_ENDIAN == REG_WORDS_BIG_ENDIAN
-         && regsize_xmode == regsize_ymode
-         && (offset % regsize_ymode) == 0)
+         && known_eq (regsize_xmode, regsize_ymode)
+         && constant_multiple_p (offset, regsize_ymode, &count))
        {
          info->representable_p = true;
          info->nregs = nregs_ymode;
-         info->offset = offset / regsize_ymode;
+         info->offset = count;
          gcc_assert (info->offset + info->nregs <= (int) nregs_xmode);
          return;
        }
     }
 
   /* Lowpart subregs are otherwise valid.  */
-  if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
+  if (!rknown && known_eq (offset, subreg_lowpart_offset (ymode, xmode)))
     {
       info->representable_p = true;
       rknown = true;
 
-      if (offset == 0 || nregs_xmode == nregs_ymode)
+      if (known_eq (offset, 0U) || nregs_xmode == nregs_ymode)
        {
          info->offset = 0;
          info->nregs = nregs_ymode;
@@ -3766,20 +4192,24 @@ subreg_get_info (unsigned int xregno, machine_mode xmode,
      be exact, otherwise we don't know how to verify the constraint.
      These conditions may be relaxed but subreg_regno_offset would
      need to be redesigned.  */
-  gcc_assert ((xsize % num_blocks) == 0);
-  unsigned int bytes_per_block = xsize / num_blocks;
+  poly_uint64 bytes_per_block = exact_div (xsize, num_blocks);
 
   /* Get the number of the first block that contains the subreg and the byte
      offset of the subreg from the start of that block.  */
-  unsigned int block_number = offset / bytes_per_block;
-  unsigned int subblock_offset = offset % bytes_per_block;
+  unsigned int block_number;
+  poly_uint64 subblock_offset;
+  if (!can_div_trunc_p (offset, bytes_per_block, &block_number,
+                       &subblock_offset))
+    /* Checked by validate_subreg.  We must know at compile time which
+       inner registers are being accessed.  */
+    gcc_unreachable ();
 
   if (!rknown)
     {
       /* Only the lowpart of each block is representable.  */
       info->representable_p
-       = (subblock_offset
-          == subreg_size_lowpart_offset (ysize, bytes_per_block));
+       = known_eq (subblock_offset,
+                   subreg_size_lowpart_offset (ysize, bytes_per_block));
       rknown = true;
     }
 
@@ -3806,7 +4236,7 @@ subreg_get_info (unsigned int xregno, machine_mode xmode,
    RETURN - The regno offset which would be used.  */
 unsigned int
 subreg_regno_offset (unsigned int xregno, machine_mode xmode,
-                    unsigned int offset, machine_mode ymode)
+                    poly_uint64 offset, machine_mode ymode)
 {
   struct subreg_info info;
   subreg_get_info (xregno, xmode, offset, ymode, &info);
@@ -3822,7 +4252,7 @@ subreg_regno_offset (unsigned int xregno, machine_mode xmode,
    RETURN - Whether the offset is representable.  */
 bool
 subreg_offset_representable_p (unsigned int xregno, machine_mode xmode,
-                              unsigned int offset, machine_mode ymode)
+                              poly_uint64 offset, machine_mode ymode)
 {
   struct subreg_info info;
   subreg_get_info (xregno, xmode, offset, ymode, &info);
@@ -3839,20 +4269,16 @@ subreg_offset_representable_p (unsigned int xregno, machine_mode xmode,
 
 int
 simplify_subreg_regno (unsigned int xregno, machine_mode xmode,
-                      unsigned int offset, machine_mode ymode)
+                      poly_uint64 offset, machine_mode ymode)
 {
   struct subreg_info info;
   unsigned int yregno;
 
-#ifdef CANNOT_CHANGE_MODE_CLASS
   /* Give the backend a chance to disallow the mode change.  */
   if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
       && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
-      && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode)
-      /* We can use mode change in LRA for some transformations.  */
-      && ! lra_in_progress)
+      && !REG_CAN_CHANGE_MODE_P (xregno, xmode, ymode))
     return -1;
-#endif
 
   /* We shouldn't simplify stack-related registers.  */
   if ((!reload_completed || frame_pointer_needed)
@@ -3884,8 +4310,8 @@ simplify_subreg_regno (unsigned int xregno, machine_mode xmode,
      ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
      This is a kludge to work around how complex FP arguments are passed
      on IA-64 and should be fixed.  See PR target/49226.  */
-  if (!HARD_REGNO_MODE_OK (yregno, ymode)
-      && HARD_REGNO_MODE_OK (xregno, xmode))
+  if (!targetm.hard_regno_mode_ok (yregno, ymode)
+      && targetm.hard_regno_mode_ok (xregno, xmode))
     return -1;
 
   return (int) yregno;
@@ -4007,7 +4433,7 @@ find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary)
       if (INSN_P (before))
        {
          int nregs_old = parm.nregs;
-         note_stores (PATTERN (before), parms_set, &parm);
+         note_stores (before, parms_set, &parm);
          /* If we found something that did not set a parameter reg,
             we're done.  Do not keep going, as that might result
             in hoisting an insn before the setting of a pseudo
@@ -4107,18 +4533,23 @@ rtx_cost (rtx x, machine_mode mode, enum rtx_code outer_code,
   const char *fmt;
   int total;
   int factor;
+  unsigned mode_size;
 
   if (x == 0)
     return 0;
 
-  if (GET_MODE (x) != VOIDmode)
+  if (GET_CODE (x) == SET)
+    /* A SET doesn't have a mode, so let's look at the SET_DEST to get
+       the mode for the factor.  */
+    mode = GET_MODE (SET_DEST (x));
+  else if (GET_MODE (x) != VOIDmode)
     mode = GET_MODE (x);
 
+  mode_size = estimated_poly_value (GET_MODE_SIZE (mode));
+
   /* A size N times larger than UNITS_PER_WORD likely needs N times as
      many insns, taking N times as long.  */
-  factor = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
-  if (factor == 0)
-    factor = 1;
+  factor = mode_size > UNITS_PER_WORD ? mode_size / UNITS_PER_WORD : 1;
 
   /* Compute the default costs of certain things.
      Note that targetm.rtx_costs can override the defaults.  */
@@ -4143,14 +4574,6 @@ rtx_cost (rtx x, machine_mode mode, enum rtx_code outer_code,
       /* Used in combine.c as a marker.  */
       total = 0;
       break;
-    case SET:
-      /* A SET doesn't have a mode, so let's look at the SET_DEST to get
-        the mode for the factor.  */
-      mode = GET_MODE (SET_DEST (x));
-      factor = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
-      if (factor == 0)
-       factor = 1;
-      /* FALLTHRU */
     default:
       total = factor * COSTS_N_INSNS (1);
     }
@@ -4164,12 +4587,12 @@ rtx_cost (rtx x, machine_mode mode, enum rtx_code outer_code,
       total = 0;
       /* If we can't tie these modes, make this expensive.  The larger
         the mode, the more expensive it is.  */
-      if (! MODES_TIEABLE_P (mode, GET_MODE (SUBREG_REG (x))))
+      if (!targetm.modes_tieable_p (mode, GET_MODE (SUBREG_REG (x))))
        return COSTS_N_INSNS (2 + factor);
       break;
 
     case TRUNCATE:
-      if (MODES_TIEABLE_P (mode, GET_MODE (XEXP (x, 0))))
+      if (targetm.modes_tieable_p (mode, GET_MODE (XEXP (x, 0))))
        {
          total = 0;
          break;
@@ -4351,8 +4774,9 @@ nonzero_bits1 (const_rtx x, scalar_int_mode mode, const_rtx known_x,
 {
   unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
   unsigned HOST_WIDE_INT inner_nz;
-  enum rtx_code code;
+  enum rtx_code code = GET_CODE (x);
   machine_mode inner_mode;
+  unsigned int inner_width;
   scalar_int_mode xmode;
 
   unsigned int mode_width = GET_MODE_PRECISION (mode);
@@ -4386,16 +4810,16 @@ nonzero_bits1 (const_rtx x, scalar_int_mode mode, const_rtx known_x,
     return nonzero;
 
   /* If MODE is wider than X, but both are a single word for both the host
-     and target machines, we can compute this from which bits of the
-     object might be nonzero in its own mode, taking into account the fact
-     that on many CISC machines, accessing an object in a wider mode
-     causes the high-order bits to become undefined.  So they are
-     not known to be zero.  */
-
-  if (!WORD_REGISTER_OPERATIONS
-      && mode_width > xmode_width
+     and target machines, we can compute this from which bits of the object
+     might be nonzero in its own mode, taking into account the fact that, on
+     CISC machines, accessing an object in a wider mode generally causes the
+     high-order bits to become undefined, so they are not known to be zero.
+     We extend this reasoning to RISC machines for operations that might not
+     operate on the full registers.  */
+  if (mode_width > xmode_width
       && xmode_width <= BITS_PER_WORD
-      && xmode_width <= HOST_BITS_PER_WIDE_INT)
+      && xmode_width <= HOST_BITS_PER_WIDE_INT
+      && !(WORD_REGISTER_OPERATIONS && word_register_operation_p (x)))
     {
       nonzero &= cached_nonzero_bits (x, xmode,
                                      known_x, known_mode, known_ret);
@@ -4405,7 +4829,6 @@ nonzero_bits1 (const_rtx x, scalar_int_mode mode, const_rtx known_x,
 
   /* Please keep nonzero_bits_binary_arith_p above in sync with
      the code in the switch below.  */
-  code = GET_CODE (x);
   switch (code)
     {
     case REG:
@@ -4440,8 +4863,10 @@ nonzero_bits1 (const_rtx x, scalar_int_mode mode, const_rtx known_x,
             stack to be momentarily aligned only to that amount,
             so we pick the least alignment.  */
          if (x == stack_pointer_rtx && PUSH_ARGS)
-           alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
-                            alignment);
+           {
+             poly_uint64 rounded_1 = PUSH_ROUNDING (poly_int64 (1));
+             alignment = MIN (known_alignment (rounded_1), alignment);
+           }
 #endif
 
          nonzero &= ~(alignment - 1);
@@ -4655,32 +5080,38 @@ nonzero_bits1 (const_rtx x, scalar_int_mode mode, const_rtx known_x,
         machines, we can compute this from which bits of the inner
         object might be nonzero.  */
       inner_mode = GET_MODE (SUBREG_REG (x));
-      if (GET_MODE_PRECISION (inner_mode) <= BITS_PER_WORD
-         && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT)
+      if (GET_MODE_PRECISION (inner_mode).is_constant (&inner_width)
+         && inner_width <= BITS_PER_WORD
+         && inner_width <= HOST_BITS_PER_WIDE_INT)
        {
          nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
                                          known_x, known_mode, known_ret);
 
-          /* On many CISC machines, accessing an object in a wider mode
+          /* On a typical CISC machine, accessing an object in a wider mode
             causes the high-order bits to become undefined.  So they are
-            not known to be zero.  */
+            not known to be zero.
+
+            On a typical RISC machine, we only have to worry about the way
+            loads are extended.  Otherwise, if we get a reload for the inner
+            part, it may be loaded from the stack, and then we may lose all
+            the zero bits that existed before the store to the stack.  */
          rtx_code extend_op;
          if ((!WORD_REGISTER_OPERATIONS
-              /* If this is a typical RISC machine, we only have to worry
-                 about the way loads are extended.  */
               || ((extend_op = load_extend_op (inner_mode)) == SIGN_EXTEND
                   ? val_signbit_known_set_p (inner_mode, nonzero)
                   : extend_op != ZERO_EXTEND)
-              || (!MEM_P (SUBREG_REG (x)) && !REG_P (SUBREG_REG (x))))
-             && xmode_width > GET_MODE_PRECISION (inner_mode))
-           nonzero |= (GET_MODE_MASK (xmode) & ~GET_MODE_MASK (inner_mode));
+              || !MEM_P (SUBREG_REG (x)))
+             && xmode_width > inner_width)
+           nonzero
+             |= (GET_MODE_MASK (GET_MODE (x)) & ~GET_MODE_MASK (inner_mode));
        }
       break;
 
+    case ASHIFT:
     case ASHIFTRT:
     case LSHIFTRT:
-    case ASHIFT:
     case ROTATE:
+    case ROTATERT:
       /* The nonzero bits are in two classes: any bits within MODE
         that aren't in xmode are always significant.  The rest of the
         nonzero bits are those that are significant in the operand of
@@ -4703,10 +5134,17 @@ nonzero_bits1 (const_rtx x, scalar_int_mode mode, const_rtx known_x,
          if (mode_width > xmode_width)
            outer = (op_nonzero & nonzero & ~mode_mask);
 
-         if (code == LSHIFTRT)
-           inner >>= count;
-         else if (code == ASHIFTRT)
+         switch (code)
            {
+           case ASHIFT:
+             inner <<= count;
+             break;
+
+           case LSHIFTRT:
+             inner >>= count;
+             break;
+
+           case ASHIFTRT:
              inner >>= count;
 
              /* If the sign bit may have been nonzero before the shift, we
@@ -4715,13 +5153,23 @@ nonzero_bits1 (const_rtx x, scalar_int_mode mode, const_rtx known_x,
              if (inner & (HOST_WIDE_INT_1U << (xmode_width - 1 - count)))
                inner |= (((HOST_WIDE_INT_1U << count) - 1)
                          << (xmode_width - count));
+             break;
+
+           case ROTATE:
+             inner = (inner << (count % xmode_width)
+                      | (inner >> (xmode_width - (count % xmode_width))))
+                     & mode_mask;
+             break;
+
+           case ROTATERT:
+             inner = (inner >> (count % xmode_width)
+                      | (inner << (xmode_width - (count % xmode_width))))
+                     & mode_mask;
+             break;
+
+           default:
+             gcc_unreachable ();
            }
-         else if (code == ASHIFT)
-           inner <<= count;
-         else
-           inner = ((inner << (count % xmode_width)
-                     | (inner >> (xmode_width - (count % xmode_width))))
-                    & mode_mask);
 
          nonzero &= (outer | inner);
        }
@@ -4909,8 +5357,9 @@ num_sign_bit_copies1 (const_rtx x, scalar_int_mode mode, const_rtx known_x,
     {
       /* If this machine does not do all register operations on the entire
         register and MODE is wider than the mode of X, we can say nothing
-        at all about the high-order bits.  */
-      if (!WORD_REGISTER_OPERATIONS)
+        at all about the high-order bits.  We extend this reasoning to RISC
+        machines for operations that might not operate on full registers.  */
+      if (!(WORD_REGISTER_OPERATIONS && word_register_operation_p (x)))
        return 1;
 
       /* Likewise on machines that do, if the mode of the object is smaller
@@ -4989,17 +5438,16 @@ num_sign_bit_copies1 (const_rtx x, scalar_int_mode mode, const_rtx known_x,
          /* For paradoxical SUBREGs on machines where all register operations
             affect the entire register, just look inside.  Note that we are
             passing MODE to the recursive call, so the number of sign bit
-            copies will remain relative to that mode, not the inner mode.  */
+            copies will remain relative to that mode, not the inner mode.
 
-         /* This works only if loads sign extend.  Otherwise, if we get a
+            This works only if loads sign extend.  Otherwise, if we get a
             reload for the inner part, it may be loaded from the stack, and
             then we lose all sign bit copies that existed before the store
             to the stack.  */
-
          if (WORD_REGISTER_OPERATIONS
              && load_extend_op (inner_mode) == SIGN_EXTEND
              && paradoxical_subreg_p (x)
-             && (MEM_P (SUBREG_REG (x)) || REG_P (SUBREG_REG (x))))
+             && MEM_P (SUBREG_REG (x)))
            return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
                                               known_x, known_mode, known_ret);
        }
@@ -5254,11 +5702,11 @@ num_sign_bit_copies1 (const_rtx x, scalar_int_mode mode, const_rtx known_x,
         ? 1 : bitwidth - floor_log2 (nonzero) - 1;
 }
 
-/* Calculate the rtx_cost of a single instruction.  A return value of
+/* Calculate the rtx_cost of a single instruction pattern.  A return value of
    zero indicates an instruction pattern without a known cost.  */
 
 int
-insn_rtx_cost (rtx pat, bool speed)
+pattern_cost (rtx pat, bool speed)
 {
   int i, cost;
   rtx set;
@@ -5308,6 +5756,18 @@ insn_rtx_cost (rtx pat, bool speed)
   return cost > 0 ? cost : COSTS_N_INSNS (1);
 }
 
+/* Calculate the cost of a single instruction.  A return value of zero
+   indicates an instruction pattern without a known cost.  */
+
+int
+insn_cost (rtx_insn *insn, bool speed)
+{
+  if (targetm.insn_cost)
+    return targetm.insn_cost (insn, speed);
+
+  return pattern_cost (PATTERN (insn), speed);
+}
+
 /* Returns estimate on cost of computing SEQ.  */
 
 unsigned
@@ -5321,8 +5781,14 @@ seq_cost (const rtx_insn *seq, bool speed)
       set = single_set (seq);
       if (set)
         cost += set_rtx_cost (set, speed);
-      else
-        cost++;
+      else if (NONDEBUG_INSN_P (seq))
+       {
+         int this_cost = insn_cost (CONST_CAST_RTX_INSN (seq), speed);
+         if (this_cost > 0)
+           cost += this_cost;
+         else
+           cost++;
+       }
     }
 
   return cost;
@@ -5603,7 +6069,11 @@ canonicalize_condition (rtx_insn *insn, rtx cond, int reverse,
   if (CC0_P (op0))
     return 0;
 
-  return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
+  /* We promised to return a comparison.  */
+  rtx ret = gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
+  if (COMPARISON_P (ret))
+    return ret;
+  return 0;
 }
 
 /* Given a jump insn JUMP, return the condition that will cause it to branch
@@ -5783,7 +6253,7 @@ low_bitmask_len (machine_mode mode, unsigned HOST_WIDE_INT m)
 {
   if (mode != VOIDmode)
     {
-      if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
+      if (!HWI_COMPUTABLE_MODE_P (mode))
        return -1;
       m &= GET_MODE_MASK (mode);
     }
@@ -5976,8 +6446,9 @@ lsb_bitfield_op_p (rtx x)
       machine_mode mode = GET_MODE (XEXP (x, 0));
       HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
       HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
+      poly_int64 remaining_bits = GET_MODE_PRECISION (mode) - len;
 
-      return (pos == (BITS_BIG_ENDIAN ? GET_MODE_PRECISION (mode) - len : 0));
+      return known_eq (pos, BITS_BIG_ENDIAN ? remaining_bits : 0);
     }
   return false;
 }
@@ -6409,6 +6880,20 @@ contains_symbolic_reference_p (const_rtx x)
   return false;
 }
 
+/* Return true if RTL X contains a constant pool address.  */
+
+bool
+contains_constant_pool_address_p (const_rtx x)
+{
+  subrtx_iterator::array_type array;
+  FOR_EACH_SUBRTX (iter, array, x, ALL)
+    if (SYMBOL_REF_P (*iter) && CONSTANT_POOL_ADDRESS_P (*iter))
+      return true;
+
+  return false;
+}
+
+
 /* Return true if X contains a thread-local symbol.  */
 
 bool
@@ -6423,3 +6908,41 @@ tls_referenced_p (const_rtx x)
       return true;
   return false;
 }
+
+/* Process recursively X of INSN and add REG_INC notes if necessary.  */
+void
+add_auto_inc_notes (rtx_insn *insn, rtx x)
+{
+  enum rtx_code code = GET_CODE (x);
+  const char *fmt;
+  int i, j;
+
+  if (code == MEM && auto_inc_p (XEXP (x, 0)))
+    {
+      add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
+      return;
+    }
+
+  /* Scan all X sub-expressions.  */
+  fmt = GET_RTX_FORMAT (code);
+  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
+    {
+      if (fmt[i] == 'e')
+       add_auto_inc_notes (insn, XEXP (x, i));
+      else if (fmt[i] == 'E')
+       for (j = XVECLEN (x, i) - 1; j >= 0; j--)
+         add_auto_inc_notes (insn, XVECEXP (x, i, j));
+    }
+}
+
+/* Return true if X is register asm.  */
+
+bool
+register_asm_p (const_rtx x)
+{
+  return (REG_P (x)
+         && REG_EXPR (x) != NULL_TREE
+         && HAS_DECL_ASSEMBLER_NAME_P (REG_EXPR (x))
+         && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (x))
+         && DECL_REGISTER (REG_EXPR (x)));
+}