2010-06-25 Doug Kwan <dougkwan@google.com>
[binutils-gdb.git] / gold / arm.cc
index 3e2d70d37ede55a116c630d490be05586e0a65eb..d19d04c4bc25de52d934a254a9639bc765b0e8e1 100644 (file)
@@ -1,6 +1,6 @@
 // arm.cc -- arm target support for gold.
 
-// Copyright 2009 Free Software Foundation, Inc.
+// Copyright 2009, 2010 Free Software Foundation, Inc.
 // Written by Doug Kwan <dougkwan@google.com> based on the i386 code
 // by Ian Lance Taylor <iant@google.com>.
 // This file also contains borrowed and adapted code from
@@ -30,6 +30,9 @@
 #include <cstdio>
 #include <string>
 #include <algorithm>
+#include <map>
+#include <utility>
+#include <set>
 
 #include "elfcpp.h"
 #include "parameters.h"
@@ -46,6 +49,8 @@
 #include "tls.h"
 #include "defstd.h"
 #include "gc.h"
+#include "attributes.h"
+#include "arm-reloc-property.h"
 
 namespace
 {
@@ -61,12 +66,26 @@ class Stub_table;
 template<bool big_endian>
 class Arm_input_section;
 
+class Arm_exidx_cantunwind;
+
+class Arm_exidx_merged_section;
+
+class Arm_exidx_fixup;
+
 template<bool big_endian>
 class Arm_output_section;
 
+class Arm_exidx_input_section;
+
 template<bool big_endian>
 class Arm_relobj;
 
+template<bool big_endian>
+class Arm_relocate_functions;
+
+template<bool big_endian>
+class Arm_output_data_got;
+
 template<bool big_endian>
 class Target_arm;
 
@@ -81,54 +100,34 @@ const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4);
 const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4);
 const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4);
 
+// Thread Control Block size.
+const size_t ARM_TCB_SIZE = 8;
+
 // The arm target class.
 //
 // This is a very simple port of gold for ARM-EABI.  It is intended for
-// supporting Android only for the time being.  Only these relocation types
-// are supported.
-//
-// R_ARM_NONE
-// R_ARM_ABS32
-// R_ARM_ABS32_NOI
-// R_ARM_ABS16
-// R_ARM_ABS12
-// R_ARM_ABS8
-// R_ARM_THM_ABS5
-// R_ARM_BASE_ABS
-// R_ARM_REL32
-// R_ARM_THM_CALL
-// R_ARM_COPY
-// R_ARM_GLOB_DAT
-// R_ARM_BASE_PREL
-// R_ARM_JUMP_SLOT
-// R_ARM_RELATIVE
-// R_ARM_GOTOFF32
-// R_ARM_GOT_BREL
-// R_ARM_GOT_PREL
-// R_ARM_PLT32
-// R_ARM_CALL
-// R_ARM_JUMP24
-// R_ARM_TARGET1
-// R_ARM_PREL31
-// R_ARM_ABS8
-// R_ARM_MOVW_ABS_NC
-// R_ARM_MOVT_ABS
-// R_ARM_THM_MOVW_ABS_NC
-// R_ARM_THM_MOVT_ABS
-// R_ARM_MOVW_PREL_NC
-// R_ARM_MOVT_PREL
-// R_ARM_THM_MOVW_PREL_NC
-// R_ARM_THM_MOVT_PREL
+// supporting Android only for the time being.
 // 
 // TODOs:
-// - Generate various branch stubs.
-// - Support interworking.
-// - Define section symbols __exidx_start and __exidx_stop.
-// - Support more relocation types as needed. 
+// - Implement all static relocation types documented in arm-reloc.def.
 // - Make PLTs more flexible for different architecture features like
 //   Thumb-2 and BE8.
 // There are probably a lot more.
 
+// Ideally we would like to avoid using global variables but this is used
+// very in many places and sometimes in loops.  If we use a function
+// returning a static instance of Arm_reloc_property_table, it will very
+// slow in an threaded environment since the static instance needs to be
+// locked.  The pointer is below initialized in the
+// Target::do_select_as_default_target() hook so that we do not spend time
+// building the table if we are not linking ARM objects.
+//
+// An alternative is to to process the information in arm-reloc.def in
+// compilation time and generate a representation of it in PODs only.  That
+// way we can avoid initialization when the linker starts.
+
+Arm_reloc_property_table *arm_reloc_property_table = NULL;
+
 // Instruction template class.  This class is similar to the insn_sequence
 // struct in bfd/elf32-arm.c.
 
@@ -139,22 +138,27 @@ class Insn_template
   enum Type
     {
       THUMB16_TYPE = 1,
+      // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction 
+      // templates with class-specific semantics.  Currently this is used
+      // only by the Cortex_a8_stub class for handling condition codes in
+      // conditional branches.
+      THUMB16_SPECIAL_TYPE,
       THUMB32_TYPE,
       ARM_TYPE,
       DATA_TYPE
     };
 
-  // Factory methods to create instrunction templates in different formats.
+  // Factory methods to create instruction templates in different formats.
 
   static const Insn_template
   thumb16_insn(uint32_t data)
   { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); } 
 
-  // A bit of a hack.  A Thumb conditional branch, in which the proper
-  // condition is inserted when we build the stub.
+  // A Thumb conditional branch, in which the proper condition is inserted
+  // when we build the stub.
   static const Insn_template
   thumb16_bcond_insn(uint32_t data)
-  { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 1); } 
+  { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); } 
 
   static const Insn_template
   thumb32_insn(uint32_t data)
@@ -200,11 +204,11 @@ class Insn_template
   reloc_addend() const
   { return this->reloc_addend_; }
 
-  // Return size of instrunction template in bytes.
+  // Return size of instruction template in bytes.
   size_t
   size() const;
 
-  // Return byte-alignment of instrunction template.
+  // Return byte-alignment of instruction template.
   unsigned
   alignment() const;
 
@@ -246,7 +250,8 @@ class Insn_template
   DEF_STUB(a8_veneer_b_cond) \
   DEF_STUB(a8_veneer_b) \
   DEF_STUB(a8_veneer_bl) \
-  DEF_STUB(a8_veneer_blx)
+  DEF_STUB(a8_veneer_blx) \
+  DEF_STUB(v4_veneer_bx)
 
 // Stub types.
 
@@ -267,7 +272,7 @@ typedef enum
     arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx,
     
     // Last stub type.
-    arm_stub_type_last = arm_stub_a8_veneer_blx
+    arm_stub_type_last = arm_stub_v4_veneer_bx
   } Stub_type;
 #undef DEF_STUB
 
@@ -412,16 +417,39 @@ class Stub
   write(unsigned char* view, section_size_type view_size, bool big_endian)
   { this->do_write(view, view_size, big_endian); }
 
+  // Return the instruction for THUMB16_SPECIAL_TYPE instruction template
+  // for the i-th instruction.
+  uint16_t
+  thumb16_special(size_t i)
+  { return this->do_thumb16_special(i); }
+
  protected:
   // This must be defined in the child class.
   virtual Arm_address
   do_reloc_target(size_t) = 0;
 
-  // This must be defined in the child class.
+  // This may be overridden in the child class.
   virtual void
-  do_write(unsigned char*, section_size_type, bool) = 0;
+  do_write(unsigned char* view, section_size_type view_size, bool big_endian)
+  {
+    if (big_endian)
+      this->do_fixed_endian_write<true>(view, view_size);
+    else
+      this->do_fixed_endian_write<false>(view, view_size);
+  }
   
+  // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE
+  // instruction template.
+  virtual uint16_t
+  do_thumb16_special(size_t)
+  { gold_unreachable(); }
+
  private:
+  // A template to implement do_write.
+  template<bool big_endian>
+  void inline
+  do_fixed_endian_write(unsigned char*, section_size_type);
+
   // Its template.
   const Stub_template* stub_template_;
   // Offset within the section of containing this stub.
@@ -572,9 +600,9 @@ class Reloc_stub : public Stub
     unsigned int r_sym_;
     // If r_sym_ is invalid index.  This points to a global symbol.
     // Otherwise, this points a relobj.  We used the unsized and target
-    // independent Symbol and Relobj classes instead of Arm_symbol and  
+    // independent Symbol and Relobj classes instead of Sized_symbol<32> and  
     // Arm_relobj.  This is done to avoid making the stub class a template
-    // as most of the stub machinery is endianity-neutral.  However, it
+    // as most of the stub machinery is endianness-neutral.  However, it
     // may require a bit of casting done by users of this class.
     union
     {
@@ -596,7 +624,6 @@ class Reloc_stub : public Stub
 
   friend class Stub_factory;
 
- private:
   // Return the relocation target address of the i-th relocation in the
   // stub.
   Arm_address
@@ -607,17 +634,173 @@ class Reloc_stub : public Stub
     return this->destination_address_;
   }
 
-  // A template to implement do_write below.
-  template<bool big_endian>
-  void inline
-  do_fixed_endian_write(unsigned char*, section_size_type);
+ private:
+  // Address of destination.
+  Arm_address destination_address_;
+};
 
-  // Write a stub.
-  void
-  do_write(unsigned char* view, section_size_type view_size, bool big_endian);
+// Cortex-A8 stub class.  We need a Cortex-A8 stub to redirect any 32-bit
+// THUMB branch that meets the following conditions:
+// 
+// 1. The branch straddles across a page boundary. i.e. lower 12-bit of
+//    branch address is 0xffe.
+// 2. The branch target address is in the same page as the first word of the
+//    branch.
+// 3. The branch follows a 32-bit instruction which is not a branch.
+//
+// To do the fix up, we need to store the address of the branch instruction
+// and its target at least.  We also need to store the original branch
+// instruction bits for the condition code in a conditional branch.  The
+// condition code is used in a special instruction template.  We also want
+// to identify input sections needing Cortex-A8 workaround quickly.  We store
+// extra information about object and section index of the code section
+// containing a branch being fixed up.  The information is used to mark
+// the code section when we finalize the Cortex-A8 stubs.
+//
 
-  // Address of destination.
+class Cortex_a8_stub : public Stub
+{
+ public:
+  ~Cortex_a8_stub()
+  { }
+
+  // Return the object of the code section containing the branch being fixed
+  // up.
+  Relobj*
+  relobj() const
+  { return this->relobj_; }
+
+  // Return the section index of the code section containing the branch being
+  // fixed up.
+  unsigned int
+  shndx() const
+  { return this->shndx_; }
+
+  // Return the source address of stub.  This is the address of the original
+  // branch instruction.  LSB is 1 always set to indicate that it is a THUMB
+  // instruction.
+  Arm_address
+  source_address() const
+  { return this->source_address_; }
+
+  // Return the destination address of the stub.  This is the branch taken
+  // address of the original branch instruction.  LSB is 1 if it is a THUMB
+  // instruction address.
+  Arm_address
+  destination_address() const
+  { return this->destination_address_; }
+
+  // Return the instruction being fixed up.
+  uint32_t
+  original_insn() const
+  { return this->original_insn_; }
+
+ protected:
+  // Cortex_a8_stubs are created via a stub factory.  So these are protected.
+  Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj,
+                unsigned int shndx, Arm_address source_address,
+                Arm_address destination_address, uint32_t original_insn)
+    : Stub(stub_template), relobj_(relobj), shndx_(shndx),
+      source_address_(source_address | 1U),
+      destination_address_(destination_address),
+      original_insn_(original_insn)
+  { }
+
+  friend class Stub_factory;
+
+  // Return the relocation target address of the i-th relocation in the
+  // stub.
+  Arm_address
+  do_reloc_target(size_t i)
+  {
+    if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond)
+      {
+        // The conditional branch veneer has two relocations.
+        gold_assert(i < 2);
+       return i == 0 ? this->source_address_ + 4 : this->destination_address_;
+      }
+    else
+      {
+        // All other Cortex-A8 stubs have only one relocation.
+        gold_assert(i == 0);
+        return this->destination_address_;
+      }
+  }
+
+  // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template.
+  uint16_t
+  do_thumb16_special(size_t);
+
+ private:
+  // Object of the code section containing the branch being fixed up.
+  Relobj* relobj_;
+  // Section index of the code section containing the branch begin fixed up.
+  unsigned int shndx_;
+  // Source address of original branch.
+  Arm_address source_address_;
+  // Destination address of the original branch.
   Arm_address destination_address_;
+  // Original branch instruction.  This is needed for copying the condition
+  // code from a condition branch to its stub.
+  uint32_t original_insn_;
+};
+
+// ARMv4 BX Rx branch relocation stub class.
+class Arm_v4bx_stub : public Stub
+{
+ public:
+  ~Arm_v4bx_stub()
+  { }
+
+  // Return the associated register.
+  uint32_t
+  reg() const
+  { return this->reg_; }
+
+ protected:
+  // Arm V4BX stubs are created via a stub factory.  So these are protected.
+  Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg)
+    : Stub(stub_template), reg_(reg)
+  { }
+
+  friend class Stub_factory;
+
+  // Return the relocation target address of the i-th relocation in the
+  // stub.
+  Arm_address
+  do_reloc_target(size_t)
+  { gold_unreachable(); }
+
+  // This may be overridden in the child class.
+  virtual void
+  do_write(unsigned char* view, section_size_type view_size, bool big_endian)
+  {
+    if (big_endian)
+      this->do_fixed_endian_v4bx_write<true>(view, view_size);
+    else
+      this->do_fixed_endian_v4bx_write<false>(view, view_size);
+  }
+
+ private:
+  // A template to implement do_write.
+  template<bool big_endian>
+  void inline
+  do_fixed_endian_v4bx_write(unsigned char* view, section_size_type)
+  {
+    const Insn_template* insns = this->stub_template()->insns();
+    elfcpp::Swap<32, big_endian>::writeval(view,
+                                          (insns[0].data()
+                                          + (this->reg_ << 16)));
+    view += insns[0].size();
+    elfcpp::Swap<32, big_endian>::writeval(view,
+                                          (insns[1].data() + this->reg_));
+    view += insns[1].size();
+    elfcpp::Swap<32, big_endian>::writeval(view,
+                                          (insns[2].data() + this->reg_));
+  }
+
+  // A register index (r0-r14), which is associated with the stub.
+  uint32_t reg_;
 };
 
 // Stub factory class.
@@ -642,6 +825,28 @@ class Stub_factory
     return new Reloc_stub(this->stub_templates_[stub_type]);
   }
 
+  // Make a Cortex-A8 stub.
+  Cortex_a8_stub*
+  make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx,
+                     Arm_address source, Arm_address destination,
+                     uint32_t original_insn) const
+  {
+    gold_assert(stub_type >= arm_stub_cortex_a8_first
+               && stub_type <= arm_stub_cortex_a8_last);
+    return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx,
+                             source, destination, original_insn);
+  }
+
+  // Make an ARM V4BX relocation stub.
+  // This method creates a stub from the arm_stub_v4_veneer_bx template only.
+  Arm_v4bx_stub*
+  make_arm_v4bx_stub(uint32_t reg) const
+  {
+    gold_assert(reg < 0xf);
+    return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx],
+                            reg);
+  }
+
  private:
   // Constructor and destructor are protected since we only return a single
   // instance created in Stub_factory::get_instance().
@@ -663,8 +868,9 @@ class Stub_table : public Output_data
 {
  public:
   Stub_table(Arm_input_section<big_endian>* owner)
-    : Output_data(), addralign_(1), owner_(owner), has_been_changed_(false),
-      reloc_stubs_()
+    : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0),
+      reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf),
+      prev_data_size_(0), prev_addralign_(1)
   { }
 
   ~Stub_table()
@@ -678,17 +884,11 @@ class Stub_table : public Output_data
   // Whether this stub table is empty.
   bool
   empty() const
-  { return this->reloc_stubs_.empty(); }
-
-  // Whether this has been changed.
-  bool
-  has_been_changed() const
-  { return this->has_been_changed_; }
-
-  // Set the has-been-changed flag.
-  void
-  set_has_been_changed(bool value)
-  { this->has_been_changed_ = value; }
+  {
+    return (this->reloc_stubs_.empty()
+           && this->cortex_a8_stubs_.empty()
+           && this->arm_v4bx_stubs_.empty());
+  }
 
   // Return the current data size.
   off_t
@@ -698,7 +898,44 @@ class Stub_table : public Output_data
   // Add a STUB with using KEY.  Caller is reponsible for avoid adding
   // if already a STUB with the same key has been added. 
   void
-  add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key);
+  add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key)
+  {
+    const Stub_template* stub_template = stub->stub_template();
+    gold_assert(stub_template->type() == key.stub_type());
+    this->reloc_stubs_[key] = stub;
+
+    // Assign stub offset early.  We can do this because we never remove
+    // reloc stubs and they are in the beginning of the stub table.
+    uint64_t align = stub_template->alignment();
+    this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align);
+    stub->set_offset(this->reloc_stubs_size_);
+    this->reloc_stubs_size_ += stub_template->size();
+    this->reloc_stubs_addralign_ =
+      std::max(this->reloc_stubs_addralign_, align);
+  }
+
+  // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS.
+  // Caller is reponsible for avoid adding if already a STUB with the same
+  // address has been added. 
+  void
+  add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub)
+  {
+    std::pair<Arm_address, Cortex_a8_stub*> value(address, stub);
+    this->cortex_a8_stubs_.insert(value);
+  }
+
+  // Add an ARM V4BX relocation stub. A register index will be retrieved
+  // from the stub.
+  void
+  add_arm_v4bx_stub(Arm_v4bx_stub* stub)
+  {
+    gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL);
+    this->arm_v4bx_stubs_[stub->reg()] = stub;
+  }
+
+  // Remove all Cortex-A8 stubs.
+  void
+  remove_all_cortex_a8_stubs();
 
   // Look up a relocation stub using KEY.  Return NULL if there is none.
   Reloc_stub*
@@ -708,12 +945,38 @@ class Stub_table : public Output_data
     return (p != this->reloc_stubs_.end()) ? p->second : NULL;
   }
 
+  // Look up an arm v4bx relocation stub using the register index.
+  // Return NULL if there is none.
+  Arm_v4bx_stub*
+  find_arm_v4bx_stub(const uint32_t reg) const
+  {
+    gold_assert(reg < 0xf);
+    return this->arm_v4bx_stubs_[reg];
+  }
+
   // Relocate stubs in this stub table.
   void
   relocate_stubs(const Relocate_info<32, big_endian>*,
                 Target_arm<big_endian>*, Output_section*,
                 unsigned char*, Arm_address, section_size_type);
 
+  // Update data size and alignment at the end of a relaxation pass.  Return
+  // true if either data size or alignment is different from that of the
+  // previous relaxation pass.
+  bool
+  update_data_size_and_addralign();
+
+  // Finalize stubs.  Set the offsets of all stubs and mark input sections
+  // needing the Cortex-A8 workaround.
+  void
+  finalize_stubs();
+  
+  // Apply Cortex-A8 workaround to an address range.
+  void
+  apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*,
+                                             unsigned char*, Arm_address,
+                                             section_size_type);
+
  protected:
   // Write out section contents.
   void
@@ -722,33 +985,144 @@ class Stub_table : public Output_data
   // Return the required alignment.
   uint64_t
   do_addralign() const
-  { return this->addralign_; }
-
-  // Finalize data size.
-  void
-  set_final_data_size()
-  { this->set_data_size(this->current_data_size_for_child()); }
+  { return this->prev_addralign_; }
 
   // Reset address and file offset.
   void
-  do_reset_address_and_file_offset();
+  do_reset_address_and_file_offset()
+  { this->set_current_data_size_for_child(this->prev_data_size_); }
 
+  // Set final data size.
+  void
+  set_final_data_size()
+  { this->set_data_size(this->current_data_size()); }
+  
  private:
-  // Unordered map of stubs.
+  // Relocate one stub.
+  void
+  relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
+               Target_arm<big_endian>*, Output_section*,
+               unsigned char*, Arm_address, section_size_type);
+
+  // Unordered map of relocation stubs.
   typedef
     Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash,
                  Reloc_stub::Key::equal_to>
     Reloc_stub_map;
 
-  // Address alignment
-  uint64_t addralign_;
+  // List of Cortex-A8 stubs ordered by addresses of branches being
+  // fixed up in output.
+  typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list;
+  // List of Arm V4BX relocation stubs ordered by associated registers.
+  typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list;
+
   // Owner of this stub table.
   Arm_input_section<big_endian>* owner_;
-  // This is set to true during relaxiong if the size of the stub table
-  // has been changed.
-  bool has_been_changed_;
   // The relocation stubs.
   Reloc_stub_map reloc_stubs_;
+  // Size of reloc stubs.
+  off_t reloc_stubs_size_;
+  // Maximum address alignment of reloc stubs.
+  uint64_t reloc_stubs_addralign_;
+  // The cortex_a8_stubs.
+  Cortex_a8_stub_list cortex_a8_stubs_;
+  // The Arm V4BX relocation stubs.
+  Arm_v4bx_stub_list arm_v4bx_stubs_;
+  // data size of this in the previous pass.
+  off_t prev_data_size_;
+  // address alignment of this in the previous pass.
+  uint64_t prev_addralign_;
+};
+
+// Arm_exidx_cantunwind class.  This represents an EXIDX_CANTUNWIND entry
+// we add to the end of an EXIDX input section that goes into the output.
+
+class Arm_exidx_cantunwind : public Output_section_data
+{
+ public:
+  Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx)
+    : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx)
+  { }
+
+  // Return the object containing the section pointed by this.
+  Relobj*
+  relobj() const
+  { return this->relobj_; }
+
+  // Return the section index of the section pointed by this.
+  unsigned int
+  shndx() const
+  { return this->shndx_; }
+
+ protected:
+  void
+  do_write(Output_file* of)
+  {
+    if (parameters->target().is_big_endian())
+      this->do_fixed_endian_write<true>(of);
+    else
+      this->do_fixed_endian_write<false>(of);
+  }
+
+ private:
+  // Implement do_write for a given endianness.
+  template<bool big_endian>
+  void inline
+  do_fixed_endian_write(Output_file*);
+  
+  // The object containing the section pointed by this.
+  Relobj* relobj_;
+  // The section index of the section pointed by this.
+  unsigned int shndx_;
+};
+
+// During EXIDX coverage fix-up, we compact an EXIDX section.  The
+// Offset map is used to map input section offset within the EXIDX section
+// to the output offset from the start of this EXIDX section. 
+
+typedef std::map<section_offset_type, section_offset_type>
+       Arm_exidx_section_offset_map;
+
+// Arm_exidx_merged_section class.  This represents an EXIDX input section
+// with some of its entries merged.
+
+class Arm_exidx_merged_section : public Output_relaxed_input_section
+{
+ public:
+  // Constructor for Arm_exidx_merged_section.
+  // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
+  // SECTION_OFFSET_MAP points to a section offset map describing how
+  // parts of the input section are mapped to output.  DELETED_BYTES is
+  // the number of bytes deleted from the EXIDX input section.
+  Arm_exidx_merged_section(
+      const Arm_exidx_input_section& exidx_input_section,
+      const Arm_exidx_section_offset_map& section_offset_map,
+      uint32_t deleted_bytes);
+
+  // Return the original EXIDX input section.
+  const Arm_exidx_input_section&
+  exidx_input_section() const
+  { return this->exidx_input_section_; }
+
+  // Return the section offset map.
+  const Arm_exidx_section_offset_map&
+  section_offset_map() const
+  { return this->section_offset_map_; }
+
+ protected:
+  // Write merged section into file OF.
+  void
+  do_write(Output_file* of);
+
+  bool
+  do_output_offset(const Relobj*, unsigned int, section_offset_type,
+                 section_offset_type*) const;
+
+ private:
+  // Original EXIDX input section.
+  const Arm_exidx_input_section& exidx_input_section_;
+  // Section offset map.
+  const Arm_exidx_section_offset_map& section_offset_map_;
 };
 
 // A class to wrap an ordinary input section containing executable code.
@@ -790,6 +1164,11 @@ class Arm_input_section : public Output_relaxed_input_section
   as_arm_input_section(Output_relaxed_input_section* poris)
   { return static_cast<Arm_input_section<big_endian>*>(poris); }
 
+  // Return the original size of the section.
+  uint32_t
+  original_size() const
+  { return this->original_size_; }
+
  protected:
   // Write data to output file.
   void
@@ -801,7 +1180,7 @@ class Arm_input_section : public Output_relaxed_input_section
   {
     if (this->is_stub_table_owner())
       return std::max(this->stub_table_->addralign(),
-                     this->original_addralign_);
+                     static_cast<uint64_t>(this->original_addralign_));
     else
       return this->original_addralign_;
   }
@@ -823,8 +1202,8 @@ class Arm_input_section : public Output_relaxed_input_section
     if ((object == this->relobj())
        && (shndx == this->shndx())
        && (offset >= 0)
-       && (convert_types<uint64_t, section_offset_type>(offset)
-           <= this->original_size_))
+       && (offset <=
+           convert_types<section_offset_type, uint32_t>(this->original_size_)))
       {
        *poutput = offset;
        return true;
@@ -839,13 +1218,100 @@ class Arm_input_section : public Output_relaxed_input_section
   Arm_input_section& operator=(const Arm_input_section&);
 
   // Address alignment of the original input section.
-  uint64_t original_addralign_;
+  uint32_t original_addralign_;
   // Section size of the original input section.
-  uint64_t original_size_;
+  uint32_t original_size_;
   // Stub table.
   Stub_table<big_endian>* stub_table_;
 };
 
+// Arm_exidx_fixup class.  This is used to define a number of methods
+// and keep states for fixing up EXIDX coverage.
+
+class Arm_exidx_fixup
+{
+ public:
+  Arm_exidx_fixup(Output_section* exidx_output_section,
+                 bool merge_exidx_entries = true)
+    : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE),
+      last_inlined_entry_(0), last_input_section_(NULL),
+      section_offset_map_(NULL), first_output_text_section_(NULL),
+      merge_exidx_entries_(merge_exidx_entries)
+  { }
+
+  ~Arm_exidx_fixup()
+  { delete this->section_offset_map_; }
+
+  // Process an EXIDX section for entry merging.  Return  number of bytes to
+  // be deleted in output.  If parts of the input EXIDX section are merged
+  // a heap allocated Arm_exidx_section_offset_map is store in the located
+  // PSECTION_OFFSET_MAP.  The caller owns the map and is reponsible for
+  // releasing it.
+  template<bool big_endian>
+  uint32_t
+  process_exidx_section(const Arm_exidx_input_section* exidx_input_section,
+                       Arm_exidx_section_offset_map** psection_offset_map);
+  
+  // Append an EXIDX_CANTUNWIND entry pointing at the end of the last
+  // input section, if there is not one already.
+  void
+  add_exidx_cantunwind_as_needed();
+
+  // Return the output section for the text section which is linked to the
+  // first exidx input in output.
+  Output_section*
+  first_output_text_section() const
+  { return this->first_output_text_section_; }
+
+ private:
+  // Copying is not allowed.
+  Arm_exidx_fixup(const Arm_exidx_fixup&);
+  Arm_exidx_fixup& operator=(const Arm_exidx_fixup&);
+
+  // Type of EXIDX unwind entry.
+  enum Unwind_type
+  {
+    // No type.
+    UT_NONE,
+    // EXIDX_CANTUNWIND.
+    UT_EXIDX_CANTUNWIND,
+    // Inlined entry.
+    UT_INLINED_ENTRY,
+    // Normal entry.
+    UT_NORMAL_ENTRY,
+  };
+
+  // Process an EXIDX entry.  We only care about the second word of the
+  // entry.  Return true if the entry can be deleted.
+  bool
+  process_exidx_entry(uint32_t second_word);
+
+  // Update the current section offset map during EXIDX section fix-up.
+  // If there is no map, create one.  INPUT_OFFSET is the offset of a
+  // reference point, DELETED_BYTES is the number of deleted by in the
+  // section so far.  If DELETE_ENTRY is true, the reference point and
+  // all offsets after the previous reference point are discarded.
+  void
+  update_offset_map(section_offset_type input_offset,
+                   section_size_type deleted_bytes, bool delete_entry);
+
+  // EXIDX output section.
+  Output_section* exidx_output_section_;
+  // Unwind type of the last EXIDX entry processed.
+  Unwind_type last_unwind_type_;
+  // Last seen inlined EXIDX entry.
+  uint32_t last_inlined_entry_;
+  // Last processed EXIDX input section.
+  const Arm_exidx_input_section* last_input_section_;
+  // Section offset map created in process_exidx_section.
+  Arm_exidx_section_offset_map* section_offset_map_;
+  // Output section for the text section which is linked to the first exidx
+  // input in output.
+  Output_section* first_output_text_section_;
+
+  bool merge_exidx_entries_;
+};
+
 // Arm output section class.  This is defined mainly to add a number of
 // stub generation methods.
 
@@ -853,6 +1319,8 @@ template<bool big_endian>
 class Arm_output_section : public Output_section
 {
  public:
+  typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list;
+
   Arm_output_section(const char* name, elfcpp::Elf_Word type,
                     elfcpp::Elf_Xword flags)
     : Output_section(name, type, flags)
@@ -871,6 +1339,19 @@ class Arm_output_section : public Output_section
   as_arm_output_section(Output_section* os)
   { return static_cast<Arm_output_section<big_endian>*>(os); }
 
+  // Append all input text sections in this into LIST.
+  void
+  append_text_sections_to_list(Text_section_list* list);
+
+  // Fix EXIDX coverage of this EXIDX output section.  SORTED_TEXT_SECTION
+  // is a list of text input sections sorted in ascending order of their
+  // output addresses.
+  void
+  fix_exidx_coverage(Layout* layout,
+                    const Text_section_list& sorted_text_section,
+                    Symbol_table* symtab,
+                    bool merge_exidx_entries);
+
  private:
   // For convenience.
   typedef Output_section::Input_section Input_section;
@@ -884,6 +1365,63 @@ class Arm_output_section : public Output_section
                         std::vector<Output_relaxed_input_section*>*);
 };
 
+// Arm_exidx_input_section class.  This represents an EXIDX input section.
+
+class Arm_exidx_input_section
+{
+ public:
+  static const section_offset_type invalid_offset =
+    static_cast<section_offset_type>(-1);
+
+  Arm_exidx_input_section(Relobj* relobj, unsigned int shndx,
+                         unsigned int link, uint32_t size, uint32_t addralign)
+    : relobj_(relobj), shndx_(shndx), link_(link), size_(size),
+      addralign_(addralign)
+  { }
+
+  ~Arm_exidx_input_section()
+  { }
+       
+  // Accessors:  This is a read-only class.
+
+  // Return the object containing this EXIDX input section.
+  Relobj*
+  relobj() const
+  { return this->relobj_; }
+
+  // Return the section index of this EXIDX input section.
+  unsigned int
+  shndx() const
+  { return this->shndx_; }
+
+  // Return the section index of linked text section in the same object.
+  unsigned int
+  link() const
+  { return this->link_; }
+
+  // Return size of the EXIDX input section.
+  uint32_t
+  size() const
+  { return this->size_; }
+
+  // Reutnr address alignment of EXIDX input section.
+  uint32_t
+  addralign() const
+  { return this->addralign_; }
+
+ private:
+  // Object containing this.
+  Relobj* relobj_;
+  // Section index of this.
+  unsigned int shndx_;
+  // text section linked to this in the same object.
+  unsigned int link_;
+  // Size of this.  For ARM 32-bit is sufficient.
+  uint32_t size_;
+  // Address alignment of this.  For ARM 32-bit is sufficient.
+  uint32_t addralign_;
+};
+
 // Arm_relobj class.
 
 template<bool big_endian>
@@ -895,11 +1433,15 @@ class Arm_relobj : public Sized_relobj<32, big_endian>
   Arm_relobj(const std::string& name, Input_file* input_file, off_t offset,
              const typename elfcpp::Ehdr<32, big_endian>& ehdr)
     : Sized_relobj<32, big_endian>(name, input_file, offset, ehdr),
-      stub_tables_(), local_symbol_is_thumb_function_()
+      stub_tables_(), local_symbol_is_thumb_function_(),
+      attributes_section_data_(NULL), mapping_symbols_info_(),
+      section_has_cortex_a8_workaround_(NULL), exidx_section_map_(),
+      output_local_symbol_count_needs_update_(false),
+      merge_flags_and_attributes_(true)
   { }
 
   ~Arm_relobj()
-  { }
+  { delete this->attributes_section_data_; }
  
   // Return the stub table of the SHNDX-th section if there is one.
   Stub_table<big_endian>*
@@ -937,7 +1479,7 @@ class Arm_relobj : public Sized_relobj<32, big_endian>
   {
     // The stubs have relocations and we need to process them after writing
     // out the stubs.  So relocation now must follow section write.
-    this->invalidate_section_offset(shndx);
+    this->set_section_offset(shndx, -1ULL);
     this->set_relocs_must_follow_section_writes();
   }
 
@@ -953,17 +1495,103 @@ class Arm_relobj : public Sized_relobj<32, big_endian>
   processor_specific_flags() const
   { return this->processor_specific_flags_; }
 
- protected:
-  // Post constructor setup.
+  // Attribute section data  This is the contents of the .ARM.attribute section
+  // if there is one.
+  const Attributes_section_data*
+  attributes_section_data() const
+  { return this->attributes_section_data_; }
+
+  // Mapping symbol location.
+  typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position;
+
+  // Functor for STL container.
+  struct Mapping_symbol_position_less
+  {
+    bool
+    operator()(const Mapping_symbol_position& p1,
+              const Mapping_symbol_position& p2) const
+    {
+      return (p1.first < p2.first
+             || (p1.first == p2.first && p1.second < p2.second));
+    }
+  };
+  
+  // We only care about the first character of a mapping symbol, so
+  // we only store that instead of the whole symbol name.
+  typedef std::map<Mapping_symbol_position, char,
+                  Mapping_symbol_position_less> Mapping_symbols_info;
+
+  // Whether a section contains any Cortex-A8 workaround.
+  bool
+  section_has_cortex_a8_workaround(unsigned int shndx) const
+  { 
+    return (this->section_has_cortex_a8_workaround_ != NULL
+           && (*this->section_has_cortex_a8_workaround_)[shndx]);
+  }
+  
+  // Mark a section that has Cortex-A8 workaround.
   void
-  do_setup()
+  mark_section_for_cortex_a8_workaround(unsigned int shndx)
   {
-    // Call parent's setup method.
-    Sized_relobj<32, big_endian>::do_setup();
+    if (this->section_has_cortex_a8_workaround_ == NULL)
+      this->section_has_cortex_a8_workaround_ =
+       new std::vector<bool>(this->shnum(), false);
+    (*this->section_has_cortex_a8_workaround_)[shndx] = true;
+  }
 
-    // Initialize look-up tables.
-    Stub_table_list empty_stub_table_list(this->shnum(), NULL);
-    this->stub_tables_.swap(empty_stub_table_list);
+  // Return the EXIDX section of an text section with index SHNDX or NULL
+  // if the text section has no associated EXIDX section.
+  const Arm_exidx_input_section*
+  exidx_input_section_by_link(unsigned int shndx) const
+  {
+    Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
+    return ((p != this->exidx_section_map_.end()
+            && p->second->link() == shndx)
+           ? p->second
+           : NULL);
+  }
+
+  // Return the EXIDX section with index SHNDX or NULL if there is none.
+  const Arm_exidx_input_section*
+  exidx_input_section_by_shndx(unsigned shndx) const
+  {
+    Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx);
+    return ((p != this->exidx_section_map_.end()
+            && p->second->shndx() == shndx)
+           ? p->second
+           : NULL);
+  }
+
+  // Whether output local symbol count needs updating.
+  bool
+  output_local_symbol_count_needs_update() const
+  { return this->output_local_symbol_count_needs_update_; }
+
+  // Set output_local_symbol_count_needs_update flag to be true.
+  void
+  set_output_local_symbol_count_needs_update()
+  { this->output_local_symbol_count_needs_update_ = true; }
+  
+  // Update output local symbol count at the end of relaxation.
+  void
+  update_output_local_symbol_count();
+
+  // Whether we want to merge processor-specific flags and attributes.
+  bool
+  merge_flags_and_attributes() const
+  { return this->merge_flags_and_attributes_; }
+  
+ protected:
+  // Post constructor setup.
+  void
+  do_setup()
+  {
+    // Call parent's setup method.
+    Sized_relobj<32, big_endian>::do_setup();
+
+    // Initialize look-up tables.
+    Stub_table_list empty_stub_table_list(this->shnum(), NULL);
+    this->stub_tables_.swap(empty_stub_table_list);
   }
 
   // Count the local symbols.
@@ -972,8 +1600,7 @@ class Arm_relobj : public Sized_relobj<32, big_endian>
                          Stringpool_template<char>*);
 
   void
-  do_relocate_sections(const General_options& options,
-                      const Symbol_table* symtab, const Layout* layout,
+  do_relocate_sections(const Symbol_table* symtab, const Layout* layout,
                       const unsigned char* pshdrs,
                       typename Sized_relobj<32, big_endian>::Views* pivews);
 
@@ -981,15 +1608,82 @@ class Arm_relobj : public Sized_relobj<32, big_endian>
   void
   do_read_symbols(Read_symbols_data* sd);
 
+  // Process relocs for garbage collection.
+  void
+  do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*);
+
  private:
-  // List of stub tables.
+
+  // Whether a section needs to be scanned for relocation stubs.
+  bool
+  section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
+                                   const Relobj::Output_sections&,
+                                   const Symbol_table *, const unsigned char*);
+
+  // Whether a section is a scannable text section.
+  bool
+  section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int,
+                      const Output_section*, const Symbol_table *);
+
+  // Whether a section needs to be scanned for the Cortex-A8 erratum.
+  bool
+  section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&,
+                                       unsigned int, Output_section*,
+                                       const Symbol_table *);
+
+  // Scan a section for the Cortex-A8 erratum.
+  void
+  scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&,
+                                    unsigned int, Output_section*,
+                                    Target_arm<big_endian>*);
+
+  // Find the linked text section of an EXIDX section by looking at the
+  // first reloction of the EXIDX section.  PSHDR points to the section
+  // headers of a relocation section and PSYMS points to the local symbols.
+  // PSHNDX points to a location storing the text section index if found.
+  // Return whether we can find the linked section.
+  bool
+  find_linked_text_section(const unsigned char* pshdr,
+                          const unsigned char* psyms, unsigned int* pshndx);
+
+  //
+  // Make a new Arm_exidx_input_section object for EXIDX section with
+  // index SHNDX and section header SHDR.  TEXT_SHNDX is the section
+  // index of the linked text section.
+  void
+  make_exidx_input_section(unsigned int shndx,
+                          const elfcpp::Shdr<32, big_endian>& shdr,
+                          unsigned int text_shndx);
+
+  // Return the output address of either a plain input section or a
+  // relaxed input section.  SHNDX is the section index.
+  Arm_address
+  simple_input_section_output_address(unsigned int, Output_section*);
+
   typedef std::vector<Stub_table<big_endian>*> Stub_table_list;
+  typedef Unordered_map<unsigned int, const Arm_exidx_input_section*>
+    Exidx_section_map;
+
+  // List of stub tables.
   Stub_table_list stub_tables_;
   // Bit vector to tell if a local symbol is a thumb function or not.
   // This is only valid after do_count_local_symbol is called.
   std::vector<bool> local_symbol_is_thumb_function_;
   // processor-specific flags in ELF file header.
   elfcpp::Elf_Word processor_specific_flags_;
+  // Object attributes if there is an .ARM.attributes section or NULL.
+  Attributes_section_data* attributes_section_data_;
+  // Mapping symbols information.
+  Mapping_symbols_info mapping_symbols_info_;
+  // Bitmap to indicate sections with Cortex-A8 workaround or NULL.
+  std::vector<bool>* section_has_cortex_a8_workaround_;
+  // Map a text section to its associated .ARM.exidx section, if there is one.
+  Exidx_section_map exidx_section_map_;
+  // Whether output local symbol count needs updating.
+  bool output_local_symbol_count_needs_update_;
+  // Whether we merge processor flags and attributes of this object to
+  // output.
+  bool merge_flags_and_attributes_;
 };
 
 // Arm_dynobj class.
@@ -1001,11 +1695,11 @@ class Arm_dynobj : public Sized_dynobj<32, big_endian>
   Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset,
             const elfcpp::Ehdr<32, big_endian>& ehdr)
     : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr),
-      processor_specific_flags_(0)
+      processor_specific_flags_(0), attributes_section_data_(NULL)
   { }
  
   ~Arm_dynobj()
-  { }
+  { delete this->attributes_section_data_; }
 
   // Downcast a base pointer to an Arm_relobj pointer.  This is
   // not type-safe but we only use Arm_relobj not the base class.
@@ -1019,6 +1713,11 @@ class Arm_dynobj : public Sized_dynobj<32, big_endian>
   processor_specific_flags() const
   { return this->processor_specific_flags_; }
 
+  // Attributes section data.
+  const Attributes_section_data*
+  attributes_section_data() const
+  { return this->attributes_section_data_; }
+
  protected:
   // Read the symbol information.
   void
@@ -1027,6 +1726,8 @@ class Arm_dynobj : public Sized_dynobj<32, big_endian>
  private:
   // processor-specific flags in ELF file header.
   elfcpp::Elf_Word processor_specific_flags_;
+  // Object attributes if there is an .ARM.attributes section or NULL.
+  Attributes_section_data* attributes_section_data_;
 };
 
 // Functor to read reloc addends during stub generation.
@@ -1074,6 +1775,260 @@ struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian>
   { return reloc.get_r_addend(); }
 };
 
+// Cortex_a8_reloc class.  We keep record of relocation that may need
+// the Cortex-A8 erratum workaround.
+
+class Cortex_a8_reloc
+{
+ public:
+  Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type,
+                 Arm_address destination)
+    : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination)
+  { }
+
+  ~Cortex_a8_reloc()
+  { }
+
+  // Accessors:  This is a read-only class.
+  
+  // Return the relocation stub associated with this relocation if there is
+  // one.
+  const Reloc_stub*
+  reloc_stub() const
+  { return this->reloc_stub_; } 
+  
+  // Return the relocation type.
+  unsigned int
+  r_type() const
+  { return this->r_type_; }
+
+  // Return the destination address of the relocation.  LSB stores the THUMB
+  // bit.
+  Arm_address
+  destination() const
+  { return this->destination_; }
+
+ private:
+  // Associated relocation stub if there is one, or NULL.
+  const Reloc_stub* reloc_stub_;
+  // Relocation type.
+  unsigned int r_type_;
+  // Destination address of this relocation.  LSB is used to distinguish
+  // ARM/THUMB mode.
+  Arm_address destination_;
+};
+
+// Arm_output_data_got class.  We derive this from Output_data_got to add
+// extra methods to handle TLS relocations in a static link.
+
+template<bool big_endian>
+class Arm_output_data_got : public Output_data_got<32, big_endian>
+{
+ public:
+  Arm_output_data_got(Symbol_table* symtab, Layout* layout)
+    : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout)
+  { }
+
+  // Add a static entry for the GOT entry at OFFSET.  GSYM is a global
+  // symbol and R_TYPE is the code of a dynamic relocation that needs to be
+  // applied in a static link.
+  void
+  add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
+  { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
+
+  // Add a static reloc for the GOT entry at OFFSET.  RELOBJ is an object
+  // defining a local symbol with INDEX.  R_TYPE is the code of a dynamic
+  // relocation that needs to be applied in a static link.
+  void
+  add_static_reloc(unsigned int got_offset, unsigned int r_type,
+                  Sized_relobj<32, big_endian>* relobj, unsigned int index)
+  {
+    this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
+                                               index));
+  }
+
+  // Add a GOT pair for R_ARM_TLS_GD32.  The creates a pair of GOT entries.
+  // The first one is initialized to be 1, which is the module index for
+  // the main executable and the second one 0.  A reloc of the type
+  // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
+  // be applied by gold.  GSYM is a global symbol.
+  void
+  add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym);
+
+  // Same as the above but for a local symbol in OBJECT with INDEX.
+  void
+  add_tls_gd32_with_static_reloc(unsigned int got_type,
+                                Sized_relobj<32, big_endian>* object,
+                                unsigned int index);
+
+ protected:
+  // Write out the GOT table.
+  void
+  do_write(Output_file*);
+
+ private:
+  // This class represent dynamic relocations that need to be applied by
+  // gold because we are using TLS relocations in a static link.
+  class Static_reloc
+  {
+   public:
+    Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
+      : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
+    { this->u_.global.symbol = gsym; }
+
+    Static_reloc(unsigned int got_offset, unsigned int r_type,
+         Sized_relobj<32, big_endian>* relobj, unsigned int index)
+      : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
+    {
+      this->u_.local.relobj = relobj;
+      this->u_.local.index = index;
+    }
+
+    // Return the GOT offset.
+    unsigned int
+    got_offset() const
+    { return this->got_offset_; }
+
+    // Relocation type.
+    unsigned int
+    r_type() const
+    { return this->r_type_; }
+
+    // Whether the symbol is global or not.
+    bool
+    symbol_is_global() const
+    { return this->symbol_is_global_; }
+
+    // For a relocation against a global symbol, the global symbol.
+    Symbol*
+    symbol() const
+    {
+      gold_assert(this->symbol_is_global_);
+      return this->u_.global.symbol;
+    }
+
+    // For a relocation against a local symbol, the defining object.
+    Sized_relobj<32, big_endian>*
+    relobj() const
+    {
+      gold_assert(!this->symbol_is_global_);
+      return this->u_.local.relobj;
+    }
+
+    // For a relocation against a local symbol, the local symbol index.
+    unsigned int
+    index() const
+    {
+      gold_assert(!this->symbol_is_global_);
+      return this->u_.local.index;
+    }
+
+   private:
+    // GOT offset of the entry to which this relocation is applied.
+    unsigned int got_offset_;
+    // Type of relocation.
+    unsigned int r_type_;
+    // Whether this relocation is against a global symbol.
+    bool symbol_is_global_;
+    // A global or local symbol.
+    union
+    {
+      struct
+      {
+       // For a global symbol, the symbol itself.
+       Symbol* symbol;
+      } global;
+      struct
+      {
+       // For a local symbol, the object defining object.
+       Sized_relobj<32, big_endian>* relobj;
+       // For a local symbol, the symbol index.
+       unsigned int index;
+      } local;
+    } u_;
+  };
+
+  // Symbol table of the output object.
+  Symbol_table* symbol_table_;
+  // Layout of the output object.
+  Layout* layout_;
+  // Static relocs to be applied to the GOT.
+  std::vector<Static_reloc> static_relocs_;
+};
+
+// The ARM target has many relocation types with odd-sizes or incontigious
+// bits.  The default handling of relocatable relocation cannot process these
+// relocations.  So we have to extend the default code.
+
+template<bool big_endian, int sh_type, typename Classify_reloc>
+class Arm_scan_relocatable_relocs :
+  public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
+{
+ public:
+  // Return the strategy to use for a local symbol which is a section
+  // symbol, given the relocation type.
+  inline Relocatable_relocs::Reloc_strategy
+  local_section_strategy(unsigned int r_type, Relobj*)
+  {
+    if (sh_type == elfcpp::SHT_RELA)
+      return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
+    else
+      {
+       if (r_type == elfcpp::R_ARM_TARGET1
+           || r_type == elfcpp::R_ARM_TARGET2)
+         {
+           const Target_arm<big_endian>* arm_target =
+             Target_arm<big_endian>::default_target();
+           r_type = arm_target->get_real_reloc_type(r_type);
+         }
+
+       switch(r_type)
+         {
+         // Relocations that write nothing.  These exclude R_ARM_TARGET1
+         // and R_ARM_TARGET2.
+         case elfcpp::R_ARM_NONE:
+         case elfcpp::R_ARM_V4BX:
+         case elfcpp::R_ARM_TLS_GOTDESC:
+         case elfcpp::R_ARM_TLS_CALL:
+         case elfcpp::R_ARM_TLS_DESCSEQ:
+         case elfcpp::R_ARM_THM_TLS_CALL:
+         case elfcpp::R_ARM_GOTRELAX:
+         case elfcpp::R_ARM_GNU_VTENTRY:
+         case elfcpp::R_ARM_GNU_VTINHERIT:
+         case elfcpp::R_ARM_THM_TLS_DESCSEQ16:
+         case elfcpp::R_ARM_THM_TLS_DESCSEQ32:
+           return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
+         // These should have been converted to something else above.
+         case elfcpp::R_ARM_TARGET1:
+         case elfcpp::R_ARM_TARGET2:
+           gold_unreachable();
+         // Relocations that write full 32 bits.
+         case elfcpp::R_ARM_ABS32:
+         case elfcpp::R_ARM_REL32:
+         case elfcpp::R_ARM_SBREL32:
+         case elfcpp::R_ARM_GOTOFF32:
+         case elfcpp::R_ARM_BASE_PREL:
+         case elfcpp::R_ARM_GOT_BREL:
+         case elfcpp::R_ARM_BASE_ABS:
+         case elfcpp::R_ARM_ABS32_NOI:
+         case elfcpp::R_ARM_REL32_NOI:
+         case elfcpp::R_ARM_PLT32_ABS:
+         case elfcpp::R_ARM_GOT_ABS:
+         case elfcpp::R_ARM_GOT_PREL:
+         case elfcpp::R_ARM_TLS_GD32:
+         case elfcpp::R_ARM_TLS_LDM32:
+         case elfcpp::R_ARM_TLS_LDO32:
+         case elfcpp::R_ARM_TLS_IE32:
+         case elfcpp::R_ARM_TLS_LE32:
+           return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4;
+         default:
+           // For all other static relocations, return RELOC_SPECIAL.
+           return Relocatable_relocs::RELOC_SPECIAL;
+         }
+      }
+  }
+};
+
 // Utilities for manipulating integers of up to 32-bits
 
 namespace utils
@@ -1140,13 +2095,37 @@ class Target_arm : public Sized_target<32, big_endian>
   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian>
     Reloc_section;
 
+  // When were are relocating a stub, we pass this as the relocation number.
+  static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1);
+
   Target_arm()
     : Sized_target<32, big_endian>(&arm_info),
       got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
-      copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL),
-      may_use_blx_(true), should_force_pic_veneer_(false)
+      copy_relocs_(elfcpp::R_ARM_COPY), dynbss_(NULL), 
+      got_mod_index_offset_(-1U), tls_base_symbol_defined_(false),
+      stub_tables_(), stub_factory_(Stub_factory::get_instance()),
+      may_use_blx_(false), should_force_pic_veneer_(false),
+      arm_input_section_map_(), attributes_section_data_(NULL),
+      fix_cortex_a8_(false), cortex_a8_relocs_info_()
   { }
 
+  // Virtual function which is set to return true by a target if
+  // it can use relocation types to determine if a function's
+  // pointer is taken.
+  virtual bool
+  can_check_for_function_pointers() const
+  { return true; }
+
+  // Whether a section called SECTION_NAME may have function pointers to
+  // sections not eligible for safe ICF folding.
+  virtual bool
+  section_may_have_icf_unsafe_pointers(const char* section_name) const
+  {
+    return (!is_prefix_of(".ARM.exidx", section_name)
+           && !is_prefix_of(".ARM.extab", section_name)
+           && Target::section_may_have_icf_unsafe_pointers(section_name));
+  }
+  
   // Whether we can use BLX.
   bool
   may_use_blx() const
@@ -1171,18 +2150,54 @@ class Target_arm : public Sized_target<32, big_endian>
   bool
   using_thumb2() const
   {
-    // FIXME:  This should not hard-coded.
-    return false;
+    Object_attribute* attr =
+      this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
+    int arch = attr->int_value();
+    return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7;
   }
 
   // Whether we use THUMB/THUMB-2 instructions only.
   bool
   using_thumb_only() const
   {
-    // FIXME:  This should not hard-coded.
-    return false;
+    Object_attribute* attr =
+      this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
+
+    if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M
+       || attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M)
+      return true;
+    if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7
+       && attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M)
+      return false;
+    attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
+    return attr->int_value() == 'M';
+  }
+
+  // Whether we have an NOP instruction.  If not, use mov r0, r0 instead.
+  bool
+  may_use_arm_nop() const
+  {
+    Object_attribute* attr =
+      this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
+    int arch = attr->int_value();
+    return (arch == elfcpp::TAG_CPU_ARCH_V6T2
+           || arch == elfcpp::TAG_CPU_ARCH_V6K
+           || arch == elfcpp::TAG_CPU_ARCH_V7
+           || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
   }
 
+  // Whether we have THUMB-2 NOP.W instruction.
+  bool
+  may_use_thumb2_nop() const
+  {
+    Object_attribute* attr =
+      this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
+    int arch = attr->int_value();
+    return (arch == elfcpp::TAG_CPU_ARCH_V6T2
+           || arch == elfcpp::TAG_CPU_ARCH_V7
+           || arch == elfcpp::TAG_CPU_ARCH_V7E_M);
+  }
+  
   // Process the relocations to determine unreferenced sections for 
   // garbage collection.
   void
@@ -1214,7 +2229,7 @@ class Target_arm : public Sized_target<32, big_endian>
 
   // Finalize the sections.
   void
-  do_finalize_sections(Layout*, const Input_objects*);
+  do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
 
   // Return the value to use for a dynamic symbol which requires special
   // treatment.
@@ -1264,11 +2279,31 @@ class Target_arm : public Sized_target<32, big_endian>
                           unsigned char* reloc_view,
                           section_size_type reloc_view_size);
 
+  // Perform target-specific processing in a relocatable link.  This is
+  // only used if we use the relocation strategy RELOC_SPECIAL.
+  void
+  relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo,
+                              unsigned int sh_type,
+                              const unsigned char* preloc_in,
+                              size_t relnum,
+                              Output_section* output_section,
+                              off_t offset_in_output_section,
+                              unsigned char* view,
+                              typename elfcpp::Elf_types<32>::Elf_Addr
+                                view_address,
+                              section_size_type view_size,
+                              unsigned char* preloc_out);
   // Return whether SYM is defined by the ABI.
   bool
   do_is_defined_by_abi(Symbol* sym) const
   { return strcmp(sym->name(), "__tls_get_addr") == 0; }
 
+  // Return whether there is a GOT section.
+  bool
+  has_got_section() const
+  { return this->got_ != NULL; }
+
   // Return the size of the GOT section.
   section_size_type
   got_size()
@@ -1281,19 +2316,149 @@ class Target_arm : public Sized_target<32, big_endian>
   static unsigned int
   get_real_reloc_type (unsigned int r_type);
 
+  //
+  // Methods to support stub-generations.
+  //
+  
+  // Return the stub factory
+  const Stub_factory&
+  stub_factory() const
+  { return this->stub_factory_; }
+
+  // Make a new Arm_input_section object.
+  Arm_input_section<big_endian>*
+  new_arm_input_section(Relobj*, unsigned int);
+
+  // Find the Arm_input_section object corresponding to the SHNDX-th input
+  // section of RELOBJ.
+  Arm_input_section<big_endian>*
+  find_arm_input_section(Relobj* relobj, unsigned int shndx) const;
+
+  // Make a new Stub_table
+  Stub_table<big_endian>*
+  new_stub_table(Arm_input_section<big_endian>*);
+
+  // Scan a section for stub generation.
+  void
+  scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int,
+                        const unsigned char*, size_t, Output_section*,
+                        bool, const unsigned char*, Arm_address,
+                        section_size_type);
+
+  // Relocate a stub. 
+  void
+  relocate_stub(Stub*, const Relocate_info<32, big_endian>*,
+               Output_section*, unsigned char*, Arm_address,
+               section_size_type);
   // Get the default ARM target.
-  static const Target_arm<big_endian>&
+  static Target_arm<big_endian>*
   default_target()
   {
     gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM
                && parameters->target().is_big_endian() == big_endian);
-    return static_cast<const Target_arm<big_endian>&>(parameters->target());
+    return static_cast<Target_arm<big_endian>*>(
+            parameters->sized_target<32, big_endian>());
+  }
+
+  // Whether NAME belongs to a mapping symbol.
+  static bool
+  is_mapping_symbol_name(const char* name)
+  {
+    return (name
+           && name[0] == '$'
+           && (name[1] == 'a' || name[1] == 't' || name[1] == 'd')
+           && (name[2] == '\0' || name[2] == '.'));
   }
 
+  // Whether we work around the Cortex-A8 erratum.
+  bool
+  fix_cortex_a8() const
+  { return this->fix_cortex_a8_; }
+
+  // Whether we merge exidx entries in debuginfo.
+  bool
+  merge_exidx_entries() const
+  { return parameters->options().merge_exidx_entries(); }
+
+  // Whether we fix R_ARM_V4BX relocation.
+  // 0 - do not fix
+  // 1 - replace with MOV instruction (armv4 target)
+  // 2 - make interworking veneer (>= armv4t targets only)
+  General_options::Fix_v4bx
+  fix_v4bx() const
+  { return parameters->options().fix_v4bx(); }
+
+  // Scan a span of THUMB code section for Cortex-A8 erratum.
+  void
+  scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int,
+                                 section_size_type, section_size_type,
+                                 const unsigned char*, Arm_address);
+
+  // Apply Cortex-A8 workaround to a branch.
+  void
+  apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address,
+                            unsigned char*, Arm_address);
+
  protected:
+  // Make an ELF object.
+  Object*
+  do_make_elf_object(const std::string&, Input_file*, off_t,
+                    const elfcpp::Ehdr<32, big_endian>& ehdr);
+
+  Object*
+  do_make_elf_object(const std::string&, Input_file*, off_t,
+                    const elfcpp::Ehdr<32, !big_endian>&)
+  { gold_unreachable(); }
+
+  Object*
+  do_make_elf_object(const std::string&, Input_file*, off_t,
+                     const elfcpp::Ehdr<64, false>&)
+  { gold_unreachable(); }
+
+  Object*
+  do_make_elf_object(const std::string&, Input_file*, off_t,
+                    const elfcpp::Ehdr<64, true>&)
+  { gold_unreachable(); }
+
+  // Make an output section.
+  Output_section*
+  do_make_output_section(const char* name, elfcpp::Elf_Word type,
+                        elfcpp::Elf_Xword flags)
+  { return new Arm_output_section<big_endian>(name, type, flags); }
+
   void
   do_adjust_elf_header(unsigned char* view, int len) const;
 
+  // We only need to generate stubs, and hence perform relaxation if we are
+  // not doing relocatable linking.
+  bool
+  do_may_relax() const
+  { return !parameters->options().relocatable(); }
+
+  bool
+  do_relax(int, const Input_objects*, Symbol_table*, Layout*);
+
+  // Determine whether an object attribute tag takes an integer, a
+  // string or both.
+  int
+  do_attribute_arg_type(int tag) const;
+
+  // Reorder tags during output.
+  int
+  do_attributes_order(int num) const;
+
+  // This is called when the target is selected as the default.
+  void
+  do_select_as_default_target()
+  {
+    // No locking is required since there should only be one default target.
+    // We cannot have both the big-endian and little-endian ARM targets
+    // as the default.
+    gold_assert(arm_reloc_property_table == NULL);
+    arm_reloc_property_table = new Arm_reloc_property_table();
+  }
+
  private:
   // The class which scans relocations.
   class Scan
@@ -1319,6 +2484,23 @@ class Target_arm : public Sized_target<32, big_endian>
           const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type,
           Symbol* gsym);
 
+    inline bool
+    local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
+                                       Sized_relobj<32, big_endian>* ,
+                                       unsigned int ,
+                                       Output_section* ,
+                                       const elfcpp::Rel<32, big_endian>& ,
+                                       unsigned int ,
+                                       const elfcpp::Sym<32, big_endian>&);
+
+    inline bool
+    global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* ,
+                                        Sized_relobj<32, big_endian>* ,
+                                        unsigned int ,
+                                        Output_section* ,
+                                        const elfcpp::Rel<32, big_endian>& ,
+                                        unsigned int , Symbol*);
+
    private:
     static void
     unsupported_reloc_local(Sized_relobj<32, big_endian>*,
@@ -1348,6 +2530,9 @@ class Target_arm : public Sized_target<32, big_endian>
                  || sym->is_preemptible()));
     }
 
+    inline bool
+    possible_function_pointer_reloc(unsigned int r_type);
+
     // Whether we have issued an error about a non-PIC compilation.
     bool issued_non_pic_error_;
   };
@@ -1381,27 +2566,50 @@ class Target_arm : public Sized_target<32, big_endian>
             section_size_type);
 
     // Return whether we want to pass flag NON_PIC_REF for this
-    // reloc.
+    // reloc.  This means the relocation type accesses a symbol not via
+    // GOT or PLT.
     static inline bool
     reloc_is_non_pic (unsigned int r_type)
     {
       switch (r_type)
        {
-       case elfcpp::R_ARM_REL32:
-       case elfcpp::R_ARM_THM_CALL:
+       // These relocation types reference GOT or PLT entries explicitly.
+       case elfcpp::R_ARM_GOT_BREL:
+       case elfcpp::R_ARM_GOT_ABS:
+       case elfcpp::R_ARM_GOT_PREL:
+       case elfcpp::R_ARM_GOT_BREL12:
+       case elfcpp::R_ARM_PLT32_ABS:
+       case elfcpp::R_ARM_TLS_GD32:
+       case elfcpp::R_ARM_TLS_LDM32:
+       case elfcpp::R_ARM_TLS_IE32:
+       case elfcpp::R_ARM_TLS_IE12GP:
+
+       // These relocate types may use PLT entries.
        case elfcpp::R_ARM_CALL:
+       case elfcpp::R_ARM_THM_CALL:
        case elfcpp::R_ARM_JUMP24:
+       case elfcpp::R_ARM_THM_JUMP24:
+       case elfcpp::R_ARM_THM_JUMP19:
+       case elfcpp::R_ARM_PLT32:
+       case elfcpp::R_ARM_THM_XPC22:
        case elfcpp::R_ARM_PREL31:
-       case elfcpp::R_ARM_THM_ABS5:
-       case elfcpp::R_ARM_ABS8:
-       case elfcpp::R_ARM_ABS12:
-       case elfcpp::R_ARM_ABS16:
-       case elfcpp::R_ARM_BASE_ABS:
-         return true;
-       default:
+       case elfcpp::R_ARM_SBREL31:
          return false;
+
+       default:
+         return true;
        }
     }
+
+   private:
+    // Do a TLS relocation.
+    inline typename Arm_relocate_functions<big_endian>::Status
+    relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*,
+                 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int,
+                const Sized_symbol<32>*, const Symbol_value<32>*,
+                unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
+                section_size_type);
+
   };
 
   // A class which returns the size required for a relocation type,
@@ -1413,8 +2621,13 @@ class Target_arm : public Sized_target<32, big_endian>
     get_size_for_reloc(unsigned int, Relobj*);
   };
 
+  // Adjust TLS relocation type based on the options and whether this
+  // is a local symbol.
+  static tls::Tls_optimization
+  optimize_tls_reloc(bool is_final, int r_type);
+
   // Get the GOT section, creating it if necessary.
-  Output_data_got<32, big_endian>*
+  Arm_output_data_got<big_endian>*
   got_section(Symbol_table*, Layout*);
 
   // Get the GOT PLT section.
@@ -1429,6 +2642,15 @@ class Target_arm : public Sized_target<32, big_endian>
   void
   make_plt_entry(Symbol_table*, Layout*, Symbol*);
 
+  // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
+  void
+  define_tls_base_symbol(Symbol_table*, Layout*);
+
+  // Create a GOT entry for the TLS module index.
+  unsigned int
+  got_mod_index_entry(Symbol_table* symtab, Layout* layout,
+                     Sized_relobj<32, big_endian>* object);
+
   // Get the PLT section.
   const Output_data_plt_arm<big_endian>*
   plt_section() const
@@ -1441,6 +2663,10 @@ class Target_arm : public Sized_target<32, big_endian>
   Reloc_section*
   rel_dyn_section(Layout*);
 
+  // Get the section to use for TLS_DESC relocations.
+  Reloc_section*
+  rel_tls_desc_section(Layout*) const;
+
   // Return true if the symbol may need a COPY relocation.
   // References from an executable object to non-function symbols
   // defined in a dynamic object may need a COPY relocation.
@@ -1473,37 +2699,109 @@ class Target_arm : public Sized_target<32, big_endian>
   void
   merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word);
 
-  Object*
-  do_make_elf_object(const std::string&, Input_file*, off_t,
-                    const elfcpp::Ehdr<32, big_endian>& ehdr);
+  // Get the secondary compatible architecture.
+  static int
+  get_secondary_compatible_arch(const Attributes_section_data*);
 
-  Object*
-  do_make_elf_object(const std::string&, Input_file*, off_t,
-                    const elfcpp::Ehdr<32, !big_endian>&)
-  { gold_unreachable(); }
+  // Set the secondary compatible architecture.
+  static void
+  set_secondary_compatible_arch(Attributes_section_data*, int);
 
-  Object*
-  do_make_elf_object(const std::string&, Input_file*, off_t,
-                     const elfcpp::Ehdr<64, false>&)
-  { gold_unreachable(); }
+  static int
+  tag_cpu_arch_combine(const char*, int, int*, int, int);
 
-  Object*
-  do_make_elf_object(const std::string&, Input_file*, off_t,
-                    const elfcpp::Ehdr<64, true>&)
-  { gold_unreachable(); }
+  // Helper to print AEABI enum tag value.
+  static std::string
+  aeabi_enum_name(unsigned int);
 
-  // Information about this specific target which we pass to the
-  // general Target structure.
-  static const Target::Target_info arm_info;
+  // Return string value for TAG_CPU_name.
+  static std::string
+  tag_cpu_name_value(unsigned int);
 
-  // The types of GOT entries needed for this platform.
-  enum Got_type
+  // Merge object attributes from input object and those in the output.
+  void
+  merge_object_attributes(const char*, const Attributes_section_data*);
+
+  // Helper to get an AEABI object attribute
+  Object_attribute*
+  get_aeabi_object_attribute(int tag) const
+  {
+    Attributes_section_data* pasd = this->attributes_section_data_;
+    gold_assert(pasd != NULL);
+    Object_attribute* attr =
+      pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag);
+    gold_assert(attr != NULL);
+    return attr;
+  }
+
+  //
+  // Methods to support stub-generations.
+  //
+
+  // Group input sections for stub generation.
+  void
+  group_sections(Layout*, section_size_type, bool);
+
+  // Scan a relocation for stub generation.
+  void
+  scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int,
+                     const Sized_symbol<32>*, unsigned int,
+                     const Symbol_value<32>*,
+                     elfcpp::Elf_types<32>::Elf_Swxword, Arm_address);
+
+  // Scan a relocation section for stub.
+  template<int sh_type>
+  void
+  scan_reloc_section_for_stubs(
+      const Relocate_info<32, big_endian>* relinfo,
+      const unsigned char* prelocs,
+      size_t reloc_count,
+      Output_section* output_section,
+      bool needs_special_offset_handling,
+      const unsigned char* view,
+      elfcpp::Elf_types<32>::Elf_Addr view_address,
+      section_size_type);
+
+  // Fix .ARM.exidx section coverage.
+  void
+  fix_exidx_coverage(Layout*, Arm_output_section<big_endian>*, Symbol_table*);
+
+  // Functors for STL set.
+  struct output_section_address_less_than
   {
-    GOT_TYPE_STANDARD = 0      // GOT entry for a regular symbol
+    bool
+    operator()(const Output_section* s1, const Output_section* s2) const
+    { return s1->address() < s2->address(); }
+  };
+
+  // Information about this specific target which we pass to the
+  // general Target structure.
+  static const Target::Target_info arm_info;
+
+  // The types of GOT entries needed for this platform.
+  enum Got_type
+  {
+    GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol
+    GOT_TYPE_TLS_NOFFSET = 1,   // GOT entry for negative TLS offset
+    GOT_TYPE_TLS_OFFSET = 2,    // GOT entry for positive TLS offset
+    GOT_TYPE_TLS_PAIR = 3,      // GOT entry for TLS module/offset pair
+    GOT_TYPE_TLS_DESC = 4       // GOT entry for TLS_DESC pair
   };
 
+  typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list;
+
+  // Map input section to Arm_input_section.
+  typedef Unordered_map<Section_id,
+                       Arm_input_section<big_endian>*,
+                       Section_id_hash>
+         Arm_input_section_map;
+    
+  // Map output addresses to relocs for Cortex-A8 erratum.
+  typedef Unordered_map<Arm_address, const Cortex_a8_reloc*>
+         Cortex_a8_relocs_info;
+
   // The GOT section.
-  Output_data_got<32, big_endian>* got_;
+  Arm_output_data_got<big_endian>* got_;
   // The PLT section.
   Output_data_plt_arm<big_endian>* plt_;
   // The GOT PLT section.
@@ -1514,10 +2812,26 @@ class Target_arm : public Sized_target<32, big_endian>
   Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_;
   // Space for variables copied with a COPY reloc.
   Output_data_space* dynbss_;
+  // Offset of the GOT entry for the TLS module index.
+  unsigned int got_mod_index_offset_;
+  // True if the _TLS_MODULE_BASE_ symbol has been defined.
+  bool tls_base_symbol_defined_;
+  // Vector of Stub_tables created.
+  Stub_table_list stub_tables_;
+  // Stub factory.
+  const Stub_factory &stub_factory_;
   // Whether we can use BLX.
   bool may_use_blx_;
   // Whether we force PIC branch veneers.
   bool should_force_pic_veneer_;
+  // Map for locating Arm_input_sections.
+  Arm_input_section_map arm_input_section_map_;
+  // Attributes section data in output.
+  Attributes_section_data* attributes_section_data_;
+  // Whether we want to fix code for Cortex-A8 erratum.
+  bool fix_cortex_a8_;
+  // Map addresses to relocs for Cortex-A8 erratum.
+  Cortex_a8_relocs_info cortex_a8_relocs_info_;
 };
 
 template<bool big_endian>
@@ -1538,7 +2852,9 @@ const Target::Target_info Target_arm<big_endian>::arm_info =
   elfcpp::SHN_UNDEF,   // small_common_shndx
   elfcpp::SHN_UNDEF,   // large_common_shndx
   0,                   // small_common_section_flags
-  0                    // large_common_section_flags
+  0,                   // large_common_section_flags
+  ".ARM.attributes",   // attributes_section
+  "aeabi"              // attributes_vendor
 };
 
 // Arm relocate functions class
@@ -1559,27 +2875,6 @@ class Arm_relocate_functions : public Relocate_functions<32, big_endian>
   typedef Relocate_functions<32, big_endian> Base;
   typedef Arm_relocate_functions<big_endian> This;
 
-  // Get an symbol value of *PSYMVAL with an ADDEND.  This is a wrapper
-  // to Symbol_value::value().  If HAS_THUMB_BIT is true, that LSB is used
-  // to distinguish ARM and THUMB functions and it is treated specially.
-  static inline Symbol_value<32>::Value
-  arm_symbol_value (const Sized_relobj<32, big_endian> *object,
-                   const Symbol_value<32>* psymval,
-                   Symbol_value<32>::Value addend,
-                   bool has_thumb_bit)
-  {
-    typedef Symbol_value<32>::Value Valtype;
-
-    if (has_thumb_bit)
-      {
-       Valtype raw = psymval->value(object, 0);
-       Valtype thumb_bit = raw & 1;
-       return ((raw & ~((Valtype) 1)) + addend) | thumb_bit;
-      }
-    else
-      return psymval->value(object, addend);
-  }
-
   // Encoding of imm16 argument for movt and movw ARM instructions
   // from ARM ARM:
   //     
@@ -1653,70 +2948,162 @@ class Arm_relocate_functions : public Relocate_functions<32, big_endian>
     return val;
   }
 
-  // FIXME: This probably only works for Android on ARM v5te. We should
-  // following GNU ld for the general case.
-  template<unsigned r_type>
-  static inline typename This::Status
-  arm_branch_common(unsigned char *view,
-                   const Sized_relobj<32, big_endian>* object,
-                   const Symbol_value<32>* psymval,
-                   Arm_address address,
-                   bool has_thumb_bit)
+  // Calculate the smallest constant Kn for the specified residual.
+  // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
+  static uint32_t
+  calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual)
   {
-    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
-    Valtype* wv = reinterpret_cast<Valtype*>(view);
-    Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
-     
-    bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
-                     && ((val & 0x0f000000UL) == 0x0a000000UL);
-    bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
-    bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
-                           && ((val & 0x0f000000UL) == 0x0b000000UL);
-    bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
-    bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
-
-    if (r_type == elfcpp::R_ARM_CALL)
-      {
-       if (!insn_is_uncond_bl && !insn_is_blx)
-         return This::STATUS_BAD_RELOC;
-      }
-    else if (r_type == elfcpp::R_ARM_JUMP24)
-      {
-       if (!insn_is_b && !insn_is_cond_bl)
-         return This::STATUS_BAD_RELOC;
-      }
-    else if (r_type == elfcpp::R_ARM_PLT32)
+    int32_t msb;
+
+    if (residual == 0)
+      return 0;
+    // Determine the most significant bit in the residual and
+    // align the resulting value to a 2-bit boundary.
+    for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2)
+      ;
+    // The desired shift is now (msb - 6), or zero, whichever
+    // is the greater.
+    return (((msb - 6) < 0) ? 0 : (msb - 6));
+  }
+
+  // Calculate the final residual for the specified group index.
+  // If the passed group index is less than zero, the method will return
+  // the value of the specified residual without any change.
+  // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
+  static typename elfcpp::Swap<32, big_endian>::Valtype
+  calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual,
+                   const int group)
+  {
+    for (int n = 0; n <= group; n++)
       {
-       if (!insn_is_any_branch)
-         return This::STATUS_BAD_RELOC;
+       // Calculate which part of the value to mask.
+       uint32_t shift = calc_grp_kn(residual);
+       // Calculate the residual for the next time around.
+       residual &= ~(residual & (0xff << shift));
       }
-    else
-      gold_unreachable();
 
-    Valtype addend = utils::sign_extend<26>(val << 2);
-    Valtype x = (This::arm_symbol_value(object, psymval, addend, has_thumb_bit)
-                - address);
+    return residual;
+  }
+
+  // Calculate the value of Gn for the specified group index.
+  // We return it in the form of an encoded constant-and-rotation.
+  // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32)
+  static typename elfcpp::Swap<32, big_endian>::Valtype
+  calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual,
+             const int group)
+  {
+    typename elfcpp::Swap<32, big_endian>::Valtype gn = 0;
+    uint32_t shift = 0;
 
-    // If target has thumb bit set, we need to either turn the BL
-    // into a BLX (for ARMv5 or above) or generate a stub.
-    if (x & 1)
+    for (int n = 0; n <= group; n++)
       {
-       // Turn BL to BLX.
-       if (insn_is_uncond_bl)
-         val = (val & 0xffffff) | 0xfa000000 | ((x & 2) << 23);
-       else
-         return This::STATUS_BAD_RELOC;
+       // Calculate which part of the value to mask.
+       shift = calc_grp_kn(residual);
+       // Calculate Gn in 32-bit as well as encoded constant-and-rotation form.
+       gn = residual & (0xff << shift);
+       // Calculate the residual for the next time around.
+       residual &= ~gn;
       }
-    else
-      gold_assert(!insn_is_blx);
-
-    val = utils::bit_select(val, (x >> 2), 0xffffffUL);
-    elfcpp::Swap<32, big_endian>::writeval(wv, val);
-    return (utils::has_overflow<26>(x)
-           ? This::STATUS_OVERFLOW : This::STATUS_OKAY);
+    // Return Gn in the form of an encoded constant-and-rotation.
+    return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8));
   }
 
  public:
+  // Handle ARM long branches.
+  static typename This::Status
+  arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
+                   unsigned char *, const Sized_symbol<32>*,
+                   const Arm_relobj<big_endian>*, unsigned int,
+                   const Symbol_value<32>*, Arm_address, Arm_address, bool);
+
+  // Handle THUMB long branches.
+  static typename This::Status
+  thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*,
+                     unsigned char *, const Sized_symbol<32>*,
+                     const Arm_relobj<big_endian>*, unsigned int,
+                     const Symbol_value<32>*, Arm_address, Arm_address, bool);
+
+
+  // Return the branch offset of a 32-bit THUMB branch.
+  static inline int32_t
+  thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
+  {
+    // We use the Thumb-2 encoding (backwards compatible with Thumb-1)
+    // involving the J1 and J2 bits.
+    uint32_t s = (upper_insn & (1U << 10)) >> 10;
+    uint32_t upper = upper_insn & 0x3ffU;
+    uint32_t lower = lower_insn & 0x7ffU;
+    uint32_t j1 = (lower_insn & (1U << 13)) >> 13;
+    uint32_t j2 = (lower_insn & (1U << 11)) >> 11;
+    uint32_t i1 = j1 ^ s ? 0 : 1;
+    uint32_t i2 = j2 ^ s ? 0 : 1;
+
+    return utils::sign_extend<25>((s << 24) | (i1 << 23) | (i2 << 22)
+                                 | (upper << 12) | (lower << 1));
+  }
+
+  // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction.
+  // UPPER_INSN is the original upper instruction of the branch.  Caller is
+  // responsible for overflow checking and BLX offset adjustment.
+  static inline uint16_t
+  thumb32_branch_upper(uint16_t upper_insn, int32_t offset)
+  {
+    uint32_t s = offset < 0 ? 1 : 0;
+    uint32_t bits = static_cast<uint32_t>(offset);
+    return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10);
+  }
+
+  // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction.
+  // LOWER_INSN is the original lower instruction of the branch.  Caller is
+  // responsible for overflow checking and BLX offset adjustment.
+  static inline uint16_t
+  thumb32_branch_lower(uint16_t lower_insn, int32_t offset)
+  {
+    uint32_t s = offset < 0 ? 1 : 0;
+    uint32_t bits = static_cast<uint32_t>(offset);
+    return ((lower_insn & ~0x2fffU)
+            | ((((bits >> 23) & 1) ^ !s) << 13)
+            | ((((bits >> 22) & 1) ^ !s) << 11)
+            | ((bits >> 1) & 0x7ffU));
+  }
+
+  // Return the branch offset of a 32-bit THUMB conditional branch.
+  static inline int32_t
+  thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn)
+  {
+    uint32_t s = (upper_insn & 0x0400U) >> 10;
+    uint32_t j1 = (lower_insn & 0x2000U) >> 13;
+    uint32_t j2 = (lower_insn & 0x0800U) >> 11;
+    uint32_t lower = (lower_insn & 0x07ffU);
+    uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU);
+
+    return utils::sign_extend<21>((upper << 12) | (lower << 1));
+  }
+
+  // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper
+  // instruction.  UPPER_INSN is the original upper instruction of the branch.
+  // Caller is responsible for overflow checking.
+  static inline uint16_t
+  thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset)
+  {
+    uint32_t s = offset < 0 ? 1 : 0;
+    uint32_t bits = static_cast<uint32_t>(offset);
+    return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12);
+  }
+
+  // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower
+  // instruction.  LOWER_INSN is the original lower instruction of the branch.
+  // Caller is reponsible for overflow checking.
+  static inline uint16_t
+  thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset)
+  {
+    uint32_t bits = static_cast<uint32_t>(offset);
+    uint32_t j2 = (bits & 0x00080000U) >> 19;
+    uint32_t j1 = (bits & 0x00040000U) >> 18;
+    uint32_t lo = (bits & 0x00000ffeU) >> 1;
+
+    return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo;
+  }
 
   // R_ARM_ABS8: S + A
   static inline typename This::Status
@@ -1729,10 +3116,13 @@ class Arm_relocate_functions : public Relocate_functions<32, big_endian>
     Valtype* wv = reinterpret_cast<Valtype*>(view);
     Valtype val = elfcpp::Swap<8, big_endian>::readval(wv);
     Reltype addend = utils::sign_extend<8>(val);
-    Reltype x = This::arm_symbol_value(object, psymval, addend, false);
+    Reltype x = psymval->value(object, addend);
     val = utils::bit_select(val, x, 0xffU);
     elfcpp::Swap<8, big_endian>::writeval(wv, val);
-    return (utils::has_signed_unsigned_overflow<8>(x)
+
+    // R_ARM_ABS8 permits signed or unsigned results.
+    int signed_x = static_cast<int32_t>(x);
+    return ((signed_x < -128 || signed_x > 255)
            ? This::STATUS_OVERFLOW
            : This::STATUS_OKAY);
   }
@@ -1748,10 +3138,13 @@ class Arm_relocate_functions : public Relocate_functions<32, big_endian>
     Valtype* wv = reinterpret_cast<Valtype*>(view);
     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
     Reltype addend = (val & 0x7e0U) >> 6;
-    Reltype x = This::arm_symbol_value(object, psymval, addend, false);
+    Reltype x = psymval->value(object, addend);
     val = utils::bit_select(val, x << 6, 0x7e0U);
     elfcpp::Swap<16, big_endian>::writeval(wv, val);
-    return (utils::has_overflow<5>(x)
+
+    // R_ARM_ABS16 permits signed or unsigned results.
+    int signed_x = static_cast<int32_t>(x);
+    return ((signed_x < -32768 || signed_x > 65535)
            ? This::STATUS_OVERFLOW
            : This::STATUS_OKAY);
   }
@@ -1759,15 +3152,15 @@ class Arm_relocate_functions : public Relocate_functions<32, big_endian>
   // R_ARM_ABS12: S + A
   static inline typename This::Status
   abs12(unsigned char *view,
-       const Sized_relobj<32, big_endian>* object,
-       const Symbol_value<32>* psymval)
+       const Sized_relobj<32, big_endian>* object,
+       const Symbol_value<32>* psymval)
   {
     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
     Valtype* wv = reinterpret_cast<Valtype*>(view);
     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
     Reltype addend = val & 0x0fffU;
-    Reltype x = This::arm_symbol_value(object, psymval, addend, false);
+    Reltype x = psymval->value(object, addend);
     val = utils::bit_select(val, x, 0x0fffU);
     elfcpp::Swap<32, big_endian>::writeval(wv, val);
     return (utils::has_overflow<12>(x)
@@ -1778,15 +3171,15 @@ class Arm_relocate_functions : public Relocate_functions<32, big_endian>
   // R_ARM_ABS16: S + A
   static inline typename This::Status
   abs16(unsigned char *view,
-       const Sized_relobj<32, big_endian>* object,
-       const Symbol_value<32>* psymval)
+       const Sized_relobj<32, big_endian>* object,
+       const Symbol_value<32>* psymval)
   {
     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
     Valtype* wv = reinterpret_cast<Valtype*>(view);
     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
     Reltype addend = utils::sign_extend<16>(val);
-    Reltype x = This::arm_symbol_value(object, psymval, addend, false);
+    Reltype x = psymval->value(object, addend);
     val = utils::bit_select(val, x, 0xffffU);
     elfcpp::Swap<16, big_endian>::writeval(wv, val);
     return (utils::has_signed_unsigned_overflow<16>(x)
@@ -1799,12 +3192,12 @@ class Arm_relocate_functions : public Relocate_functions<32, big_endian>
   abs32(unsigned char *view,
        const Sized_relobj<32, big_endian>* object,
        const Symbol_value<32>* psymval,
-       bool has_thumb_bit)
+       Arm_address thumb_bit)
   {
     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
     Valtype* wv = reinterpret_cast<Valtype*>(view);
     Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
-    Valtype x = This::arm_symbol_value(object, psymval, addend, has_thumb_bit);
+    Valtype x = psymval->value(object, addend) | thumb_bit;
     elfcpp::Swap<32, big_endian>::writeval(wv, x);
     return This::STATUS_OKAY;
   }
@@ -1815,50 +3208,78 @@ class Arm_relocate_functions : public Relocate_functions<32, big_endian>
        const Sized_relobj<32, big_endian>* object,
        const Symbol_value<32>* psymval,
        Arm_address address,
-       bool has_thumb_bit)
+       Arm_address thumb_bit)
   {
     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
     Valtype* wv = reinterpret_cast<Valtype*>(view);
     Valtype addend = elfcpp::Swap<32, big_endian>::readval(wv);
-    Valtype x = (This::arm_symbol_value(object, psymval, addend, has_thumb_bit) 
-                - address);
+    Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
     elfcpp::Swap<32, big_endian>::writeval(wv, x);
     return This::STATUS_OKAY;
   }
 
-  // R_ARM_THM_CALL: (S + A) | T - P
+  // R_ARM_THM_JUMP24: (S + A) | T - P
+  static typename This::Status
+  thm_jump19(unsigned char *view, const Arm_relobj<big_endian>* object,
+            const Symbol_value<32>* psymval, Arm_address address,
+            Arm_address thumb_bit);
+
+  // R_ARM_THM_JUMP6: S + A â€“ P
   static inline typename This::Status
-  thm_call(unsigned char *view,
-          const Sized_relobj<32, big_endian>* object,
-          const Symbol_value<32>* psymval,
-          Arm_address address,
-          bool has_thumb_bit)
+  thm_jump6(unsigned char *view,
+           const Sized_relobj<32, big_endian>* object,
+           const Symbol_value<32>* psymval,
+           Arm_address address)
   {
-    // A thumb call consists of two instructions.
     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
-    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
+    typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
     Valtype* wv = reinterpret_cast<Valtype*>(view);
-    Valtype hi = elfcpp::Swap<16, big_endian>::readval(wv);
-    Valtype lo = elfcpp::Swap<16, big_endian>::readval(wv + 1);
-    // Must be a BL instruction. lo == 11111xxxxxxxxxxx.
-    gold_assert((lo & 0xf800) == 0xf800);
-    Reltype addend = utils::sign_extend<23>(((hi & 0x7ff) << 12)
-                                          | ((lo & 0x7ff) << 1));
-    Reltype x = (This::arm_symbol_value(object, psymval, addend, has_thumb_bit)
-                - address);
-
-    // If target has no thumb bit set, we need to either turn the BL
-    // into a BLX (for ARMv5 or above) or generate a stub.
-    if ((x & 1) == 0)
-      {
-       // This only works for ARMv5 and above with interworking enabled.
-       lo &= 0xefff;
-      }
-    hi = utils::bit_select(hi, (x >> 12), 0x7ffU);
-    lo = utils::bit_select(lo, (x >> 1), 0x7ffU);
-    elfcpp::Swap<16, big_endian>::writeval(wv, hi);
-    elfcpp::Swap<16, big_endian>::writeval(wv + 1, lo);
-    return (utils::has_overflow<23>(x)
+    Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
+    // bit[9]:bit[7:3]:’0’ (mask: 0x02f8)
+    Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2));
+    Reltype x = (psymval->value(object, addend) - address);
+    val = (val & 0xfd07) | ((x  & 0x0040) << 3) | ((val & 0x003e) << 2);
+    elfcpp::Swap<16, big_endian>::writeval(wv, val);
+    // CZB does only forward jumps.
+    return ((x > 0x007e)
+           ? This::STATUS_OVERFLOW
+           : This::STATUS_OKAY);
+  }
+
+  // R_ARM_THM_JUMP8: S + A â€“ P
+  static inline typename This::Status
+  thm_jump8(unsigned char *view,
+           const Sized_relobj<32, big_endian>* object,
+           const Symbol_value<32>* psymval,
+           Arm_address address)
+  {
+    typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
+    typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
+    Valtype* wv = reinterpret_cast<Valtype*>(view);
+    Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
+    Reltype addend = utils::sign_extend<8>((val & 0x00ff) << 1);
+    Reltype x = (psymval->value(object, addend) - address);
+    elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xff00) | ((x & 0x01fe) >> 1));
+    return (utils::has_overflow<8>(x)
+           ? This::STATUS_OVERFLOW
+           : This::STATUS_OKAY);
+  }
+
+  // R_ARM_THM_JUMP11: S + A â€“ P
+  static inline typename This::Status
+  thm_jump11(unsigned char *view,
+           const Sized_relobj<32, big_endian>* object,
+           const Symbol_value<32>* psymval,
+           Arm_address address)
+  {
+    typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
+    typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
+    Valtype* wv = reinterpret_cast<Valtype*>(view);
+    Valtype val = elfcpp::Swap<16, big_endian>::readval(wv);
+    Reltype addend = utils::sign_extend<11>((val & 0x07ff) << 1);
+    Reltype x = (psymval->value(object, addend) - address);
+    elfcpp::Swap<16, big_endian>::writeval(wv, (val & 0xf800) | ((x & 0x0ffe) >> 1));
+    return (utils::has_overflow<11>(x)
            ? This::STATUS_OVERFLOW
            : This::STATUS_OKAY);
   }
@@ -1876,7 +3297,7 @@ class Arm_relocate_functions : public Relocate_functions<32, big_endian>
   // R_ARM_BASE_ABS: B(S) + A
   static inline typename This::Status
   base_abs(unsigned char* view,
-           Arm_address origin)
+          Arm_address origin)
   {
     Base::rel32(view, origin);
     return STATUS_OKAY;
@@ -1891,244 +3312,816 @@ class Arm_relocate_functions : public Relocate_functions<32, big_endian>
     return This::STATUS_OKAY;
   }
 
-  // R_ARM_GOT_PREL: GOT(S) + A â€“ P
+  // R_ARM_GOT_PREL: GOT(S) + A - P
   static inline typename This::Status
-  got_prel(unsigned charview,
-          typename elfcpp::Swap<32, big_endian>::Valtype got_offset,
+  got_prel(unsigned char *view,
+          Arm_address got_entry,
           Arm_address address)
   {
-    Base::rel32(view, got_offset - address);
+    Base::rel32(view, got_entry - address);
     return This::STATUS_OKAY;
   }
 
-  // R_ARM_PLT32: (S + A) | T - P
-  static inline typename This::Status
-  plt32(unsigned char *view,
-       const Sized_relobj<32, big_endian>* object,
-       const Symbol_value<32>* psymval,
-       Arm_address address,
-       bool has_thumb_bit)
-  {
-    return arm_branch_common<elfcpp::R_ARM_PLT32>(view, object, psymval,
-                                                 address, has_thumb_bit);
-  }
-
-  // R_ARM_CALL: (S + A) | T - P
-  static inline typename This::Status
-  call(unsigned char *view,
-       const Sized_relobj<32, big_endian>* object,
-       const Symbol_value<32>* psymval,
-       Arm_address address,
-       bool has_thumb_bit)
-  {
-    return arm_branch_common<elfcpp::R_ARM_CALL>(view, object, psymval,
-                                                address, has_thumb_bit);
-  }
-
-  // R_ARM_JUMP24: (S + A) | T - P
-  static inline typename This::Status
-  jump24(unsigned char *view,
-        const Sized_relobj<32, big_endian>* object,
-        const Symbol_value<32>* psymval,
-        Arm_address address,
-        bool has_thumb_bit)
-  {
-    return arm_branch_common<elfcpp::R_ARM_JUMP24>(view, object, psymval,
-                                                  address, has_thumb_bit);
-  }
-
   // R_ARM_PREL: (S + A) | T - P
   static inline typename This::Status
   prel31(unsigned char *view,
         const Sized_relobj<32, big_endian>* object,
         const Symbol_value<32>* psymval,
         Arm_address address,
-        bool has_thumb_bit)
+        Arm_address thumb_bit)
   {
     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
     Valtype* wv = reinterpret_cast<Valtype*>(view);
     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
     Valtype addend = utils::sign_extend<31>(val);
-    Valtype x = (This::arm_symbol_value(object, psymval, addend, has_thumb_bit)
-                - address);
+    Valtype x = (psymval->value(object, addend) | thumb_bit) - address;
     val = utils::bit_select(val, x, 0x7fffffffU);
     elfcpp::Swap<32, big_endian>::writeval(wv, val);
     return (utils::has_overflow<31>(x) ?
            This::STATUS_OVERFLOW : This::STATUS_OKAY);
   }
 
-  // R_ARM_MOVW_ABS_NC: (S + A) | T
-  static inline typename This::Status 
-  movw_abs_nc(unsigned char *view,
-             const Sized_relobj<32, big_endian>* object,
-             const Symbol_value<32>* psymval,
-             bool has_thumb_bit)
+  // R_ARM_MOVW_ABS_NC: (S + A) | T    (relative address base is )
+  // R_ARM_MOVW_PREL_NC: (S + A) | T - P
+  // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S)
+  // R_ARM_MOVW_BREL: ((S + A) | T) - B(S)
+  static inline typename This::Status
+  movw(unsigned char* view,
+       const Sized_relobj<32, big_endian>* object,
+       const Symbol_value<32>* psymval,
+       Arm_address relative_address_base,
+       Arm_address thumb_bit,
+       bool check_overflow)
   {
     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
     Valtype* wv = reinterpret_cast<Valtype*>(view);
     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
-    Valtype addend =  This::extract_arm_movw_movt_addend(val);
-    Valtype x = This::arm_symbol_value(object, psymval, addend, has_thumb_bit);
+    Valtype addend = This::extract_arm_movw_movt_addend(val);
+    Valtype x = ((psymval->value(object, addend) | thumb_bit)
+                - relative_address_base);
     val = This::insert_val_arm_movw_movt(val, x);
     elfcpp::Swap<32, big_endian>::writeval(wv, val);
-    return This::STATUS_OKAY;
+    return ((check_overflow && utils::has_overflow<16>(x))
+           ? This::STATUS_OVERFLOW
+           : This::STATUS_OKAY);
   }
 
-  // R_ARM_MOVT_ABS: S + A
+  // R_ARM_MOVT_ABS: S + A     (relative address base is 0)
+  // R_ARM_MOVT_PREL: S + A - P
+  // R_ARM_MOVT_BREL: S + A - B(S)
   static inline typename This::Status
-  movt_abs(unsigned char *view,
-          const Sized_relobj<32, big_endian>* object,
-           const Symbol_value<32>* psymval)
+  movt(unsigned char* view,
+       const Sized_relobj<32, big_endian>* object,
+       const Symbol_value<32>* psymval,
+       Arm_address relative_address_base)
   {
     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
     Valtype* wv = reinterpret_cast<Valtype*>(view);
     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
     Valtype addend = This::extract_arm_movw_movt_addend(val);
-    Valtype x = This::arm_symbol_value(object, psymval, addend, 0) >> 16;
+    Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16;
     val = This::insert_val_arm_movw_movt(val, x);
     elfcpp::Swap<32, big_endian>::writeval(wv, val);
+    // FIXME: IHI0044D says that we should check for overflow.
     return This::STATUS_OKAY;
   }
 
-  //  R_ARM_THM_MOVW_ABS_NC: S + A | T
-  static inline typename This::Status 
-  thm_movw_abs_nc(unsigned char *view,
-                 const Sized_relobj<32, big_endian>* object,
-                 const Symbol_value<32>* psymval,
-                 bool has_thumb_bit)
+  // R_ARM_THM_MOVW_ABS_NC: S + A | T          (relative_address_base is 0)
+  // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
+  // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S)
+  // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S)
+  static inline typename This::Status
+  thm_movw(unsigned char *view,
+          const Sized_relobj<32, big_endian>* object,
+          const Symbol_value<32>* psymval,
+          Arm_address relative_address_base,
+          Arm_address thumb_bit,
+          bool check_overflow)
   {
     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
     Valtype* wv = reinterpret_cast<Valtype*>(view);
-    Reltype val = ((elfcpp::Swap<16, big_endian>::readval(wv) << 16)
-                  | elfcpp::Swap<16, big_endian>::readval(wv + 1));
-    Reltype addend = extract_thumb_movw_movt_addend(val);
-    Reltype x = This::arm_symbol_value(object, psymval, addend, has_thumb_bit);
+    Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
+                 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
+    Reltype addend = This::extract_thumb_movw_movt_addend(val);
+    Reltype x =
+      (psymval->value(object, addend) | thumb_bit) - relative_address_base;
     val = This::insert_val_thumb_movw_movt(val, x);
     elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
     elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
-    return This::STATUS_OKAY;
+    return ((check_overflow && utils::has_overflow<16>(x))
+           ? This::STATUS_OVERFLOW
+           : This::STATUS_OKAY);
   }
 
-  //  R_ARM_THM_MOVT_ABS: S + A
-  static inline typename This::Status 
-  thm_movt_abs(unsigned char *view,
-              const Sized_relobj<32, big_endian>* object,
-              const Symbol_value<32>* psymval)
+  // R_ARM_THM_MOVT_ABS: S + A         (relative address base is 0)
+  // R_ARM_THM_MOVT_PREL: S + A - P
+  // R_ARM_THM_MOVT_BREL: S + A - B(S)
+  static inline typename This::Status
+  thm_movt(unsigned char* view,
+          const Sized_relobj<32, big_endian>* object,
+          const Symbol_value<32>* psymval,
+          Arm_address relative_address_base)
   {
     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
     Valtype* wv = reinterpret_cast<Valtype*>(view);
-    Reltype val = ((elfcpp::Swap<16, big_endian>::readval(wv) << 16)
-                  | elfcpp::Swap<16, big_endian>::readval(wv + 1));
+    Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
+                 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
     Reltype addend = This::extract_thumb_movw_movt_addend(val);
-    Reltype x = This::arm_symbol_value(object, psymval, addend, 0) >> 16;
+    Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16;
     val = This::insert_val_thumb_movw_movt(val, x);
     elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
     elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
     return This::STATUS_OKAY;
   }
 
-  // R_ARM_MOVW_PREL_NC: (S + A) | T - P
+  // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32)
+  static inline typename This::Status
+  thm_alu11(unsigned char* view,
+           const Sized_relobj<32, big_endian>* object,
+           const Symbol_value<32>* psymval,
+           Arm_address address,
+           Arm_address thumb_bit)
+  {
+    typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
+    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
+    Valtype* wv = reinterpret_cast<Valtype*>(view);
+    Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
+                  | elfcpp::Swap<16, big_endian>::readval(wv + 1);
+
+    //       f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0
+    // -----------------------------------------------------------------------
+    // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd     |imm8
+    // ADDW   1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd     |imm8
+    // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd     |imm8
+    // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd     |imm8
+    // SUBW   1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd     |imm8
+    // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd     |imm8
+
+    // Determine a sign for the addend.
+    const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000
+                     || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1;
+    // Thumb2 addend encoding:
+    // imm12 := i | imm3 | imm8
+    int32_t addend = (insn & 0xff)
+                    | ((insn & 0x00007000) >> 4)
+                    | ((insn & 0x04000000) >> 15);
+    // Apply a sign to the added.
+    addend *= sign;
+
+    int32_t x = (psymval->value(object, addend) | thumb_bit)
+               - (address & 0xfffffffc);
+    Reltype val = abs(x);
+    // Mask out the value and a distinct part of the ADD/SUB opcode
+    // (bits 7:5 of opword).
+    insn = (insn & 0xfb0f8f00)
+          | (val & 0xff)
+          | ((val & 0x700) << 4)
+          | ((val & 0x800) << 15);
+    // Set the opcode according to whether the value to go in the
+    // place is negative.
+    if (x < 0)
+      insn |= 0x00a00000;
+
+    elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
+    elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
+    return ((val > 0xfff) ?
+           This::STATUS_OVERFLOW : This::STATUS_OKAY);
+  }
+
+  // R_ARM_THM_PC8: S + A - Pa (Thumb)
+  static inline typename This::Status
+  thm_pc8(unsigned char* view,
+         const Sized_relobj<32, big_endian>* object,
+         const Symbol_value<32>* psymval,
+         Arm_address address)
+  {
+    typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
+    typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype;
+    Valtype* wv = reinterpret_cast<Valtype*>(view);
+    Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv);
+    Reltype addend = ((insn & 0x00ff) << 2);
+    int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
+    Reltype val = abs(x);
+    insn = (insn & 0xff00) | ((val & 0x03fc) >> 2);
+
+    elfcpp::Swap<16, big_endian>::writeval(wv, insn);
+    return ((val > 0x03fc)
+           ? This::STATUS_OVERFLOW
+           : This::STATUS_OKAY);
+  }
+
+  // R_ARM_THM_PC12: S + A - Pa (Thumb32)
+  static inline typename This::Status
+  thm_pc12(unsigned char* view,
+          const Sized_relobj<32, big_endian>* object,
+          const Symbol_value<32>* psymval,
+          Arm_address address)
+  {
+    typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
+    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
+    Valtype* wv = reinterpret_cast<Valtype*>(view);
+    Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
+                  | elfcpp::Swap<16, big_endian>::readval(wv + 1);
+    // Determine a sign for the addend (positive if the U bit is 1).
+    const int sign = (insn & 0x00800000) ? 1 : -1;
+    int32_t addend = (insn & 0xfff);
+    // Apply a sign to the added.
+    addend *= sign;
+
+    int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc));
+    Reltype val = abs(x);
+    // Mask out and apply the value and the U bit.
+    insn = (insn & 0xff7ff000) | (val & 0xfff);
+    // Set the U bit according to whether the value to go in the
+    // place is positive.
+    if (x >= 0)
+      insn |= 0x00800000;
+
+    elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16);
+    elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff);
+    return ((val > 0xfff) ?
+           This::STATUS_OVERFLOW : This::STATUS_OKAY);
+  }
+
+  // R_ARM_V4BX
   static inline typename This::Status
-  movw_prel_nc(unsigned char *view,
-              const Sized_relobj<32, big_endian>* object,
-              const Symbol_value<32>* psymval,
-              Arm_address address,
-              bool has_thumb_bit)
+  v4bx(const Relocate_info<32, big_endian>* relinfo,
+       unsigned char *view,
+       const Arm_relobj<big_endian>* object,
+       const Arm_address address,
+       const bool is_interworking)
   {
+
     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
     Valtype* wv = reinterpret_cast<Valtype*>(view);
     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
-    Valtype addend = This::extract_arm_movw_movt_addend(val);
-    Valtype x = (This::arm_symbol_value(object, psymval, addend, has_thumb_bit)
-                 - address);
-    val = This::insert_val_arm_movw_movt(val, x);
+
+    // Ensure that we have a BX instruction.
+    gold_assert((val & 0x0ffffff0) == 0x012fff10);
+    const uint32_t reg = (val & 0xf);
+    if (is_interworking && reg != 0xf)
+      {
+       Stub_table<big_endian>* stub_table =
+           object->stub_table(relinfo->data_shndx);
+       gold_assert(stub_table != NULL);
+
+       Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg);
+       gold_assert(stub != NULL);
+
+       int32_t veneer_address =
+           stub_table->address() + stub->offset() - 8 - address;
+       gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET)
+                   && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET));
+       // Replace with a branch to veneer (B <addr>)
+       val = (val & 0xf0000000) | 0x0a000000
+             | ((veneer_address >> 2) & 0x00ffffff);
+      }
+    else
+      {
+       // Preserve Rm (lowest four bits) and the condition code
+       // (highest four bits). Other bits encode MOV PC,Rm.
+       val = (val & 0xf000000f) | 0x01a0f000;
+      }
     elfcpp::Swap<32, big_endian>::writeval(wv, val);
     return This::STATUS_OKAY;
   }
 
-  // R_ARM_MOVT_PREL: S + A - P
+  // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P
+  // R_ARM_ALU_PC_G0:    ((S + A) | T) - P
+  // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P
+  // R_ARM_ALU_PC_G1:    ((S + A) | T) - P
+  // R_ARM_ALU_PC_G2:    ((S + A) | T) - P
+  // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S)
+  // R_ARM_ALU_SB_G0:    ((S + A) | T) - B(S)
+  // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S)
+  // R_ARM_ALU_SB_G1:    ((S + A) | T) - B(S)
+  // R_ARM_ALU_SB_G2:    ((S + A) | T) - B(S)
   static inline typename This::Status
-  movt_prel(unsigned char *view,
-           const Sized_relobj<32, big_endian>* object,
-           const Symbol_value<32>* psymval,
-            Arm_address address)
+  arm_grp_alu(unsigned char* view,
+       const Sized_relobj<32, big_endian>* object,
+       const Symbol_value<32>* psymval,
+       const int group,
+       Arm_address address,
+       Arm_address thumb_bit,
+       bool check_overflow)
   {
+    gold_assert(group >= 0 && group < 3);
     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
     Valtype* wv = reinterpret_cast<Valtype*>(view);
-    Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
-    Valtype addend = This::extract_arm_movw_movt_addend(val);
-    Valtype x = (This::arm_symbol_value(object, psymval, addend, 0)
-                 - address) >> 16;
-    val = This::insert_val_arm_movw_movt(val, x);
-    elfcpp::Swap<32, big_endian>::writeval(wv, val);
+    Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
+
+    // ALU group relocations are allowed only for the ADD/SUB instructions.
+    // (0x00800000 - ADD, 0x00400000 - SUB)
+    const Valtype opcode = insn & 0x01e00000;
+    if (opcode != 0x00800000 && opcode != 0x00400000)
+      return This::STATUS_BAD_RELOC;
+
+    // Determine a sign for the addend.
+    const int sign = (opcode == 0x00800000) ? 1 : -1;
+    // shifter = rotate_imm * 2
+    const uint32_t shifter = (insn & 0xf00) >> 7;
+    // Initial addend value.
+    int32_t addend = insn & 0xff;
+    // Rotate addend right by shifter.
+    addend = (addend >> shifter) | (addend << (32 - shifter));
+    // Apply a sign to the added.
+    addend *= sign;
+
+    int32_t x = ((psymval->value(object, addend) | thumb_bit) - address);
+    Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group);
+    // Check for overflow if required
+    if (check_overflow
+       && (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0))
+      return This::STATUS_OVERFLOW;
+
+    // Mask out the value and the ADD/SUB part of the opcode; take care
+    // not to destroy the S bit.
+    insn &= 0xff1ff000;
+    // Set the opcode according to whether the value to go in the
+    // place is negative.
+    insn |= ((x < 0) ? 0x00400000 : 0x00800000);
+    // Encode the offset (encoded Gn).
+    insn |= gn;
+
+    elfcpp::Swap<32, big_endian>::writeval(wv, insn);
     return This::STATUS_OKAY;
   }
 
-  // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P
+  // R_ARM_LDR_PC_G0: S + A - P
+  // R_ARM_LDR_PC_G1: S + A - P
+  // R_ARM_LDR_PC_G2: S + A - P
+  // R_ARM_LDR_SB_G0: S + A - B(S)
+  // R_ARM_LDR_SB_G1: S + A - B(S)
+  // R_ARM_LDR_SB_G2: S + A - B(S)
   static inline typename This::Status
-  thm_movw_prel_nc(unsigned char *view,
-                  const Sized_relobj<32, big_endian>* object,
-                  const Symbol_value<32>* psymval,
-                  Arm_address address,
-                  bool has_thumb_bit)
+  arm_grp_ldr(unsigned char* view,
+       const Sized_relobj<32, big_endian>* object,
+       const Symbol_value<32>* psymval,
+       const int group,
+       Arm_address address)
   {
-    typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
-    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
+    gold_assert(group >= 0 && group < 3);
+    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
     Valtype* wv = reinterpret_cast<Valtype*>(view);
-    Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
-                 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
-    Reltype addend = This::extract_thumb_movw_movt_addend(val);
-    Reltype x = (This::arm_symbol_value(object, psymval, addend, has_thumb_bit)
-                 - address);
-    val = This::insert_val_thumb_movw_movt(val, x);
-    elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
-    elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
+    Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
+
+    const int sign = (insn & 0x00800000) ? 1 : -1;
+    int32_t addend = (insn & 0xfff) * sign;
+    int32_t x = (psymval->value(object, addend) - address);
+    // Calculate the relevant G(n-1) value to obtain this stage residual.
+    Valtype residual =
+       Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
+    if (residual >= 0x1000)
+      return This::STATUS_OVERFLOW;
+
+    // Mask out the value and U bit.
+    insn &= 0xff7ff000;
+    // Set the U bit for non-negative values.
+    if (x >= 0)
+      insn |= 0x00800000;
+    insn |= residual;
+
+    elfcpp::Swap<32, big_endian>::writeval(wv, insn);
     return This::STATUS_OKAY;
   }
 
-  // R_ARM_THM_MOVT_PREL: S + A - P
+  // R_ARM_LDRS_PC_G0: S + A - P
+  // R_ARM_LDRS_PC_G1: S + A - P
+  // R_ARM_LDRS_PC_G2: S + A - P
+  // R_ARM_LDRS_SB_G0: S + A - B(S)
+  // R_ARM_LDRS_SB_G1: S + A - B(S)
+  // R_ARM_LDRS_SB_G2: S + A - B(S)
   static inline typename This::Status
-  thm_movt_prel(unsigned char *view,
-               const Sized_relobj<32, big_endian>* object,
-               const Symbol_value<32>* psymval,
-               Arm_address address)
+  arm_grp_ldrs(unsigned char* view,
+       const Sized_relobj<32, big_endian>* object,
+       const Symbol_value<32>* psymval,
+       const int group,
+       Arm_address address)
   {
-    typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
-    typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype;
+    gold_assert(group >= 0 && group < 3);
+    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
     Valtype* wv = reinterpret_cast<Valtype*>(view);
-    Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16)
-                 | elfcpp::Swap<16, big_endian>::readval(wv + 1);
-    Reltype addend = This::extract_thumb_movw_movt_addend(val);
-    Reltype x = (This::arm_symbol_value(object, psymval, addend, 0)
-                 - address) >> 16;
-    val = This::insert_val_thumb_movw_movt(val, x);
-    elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16);
-    elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff);
+    Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
+
+    const int sign = (insn & 0x00800000) ? 1 : -1;
+    int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign;
+    int32_t x = (psymval->value(object, addend) - address);
+    // Calculate the relevant G(n-1) value to obtain this stage residual.
+    Valtype residual =
+       Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
+   if (residual >= 0x100)
+      return This::STATUS_OVERFLOW;
+
+    // Mask out the value and U bit.
+    insn &= 0xff7ff0f0;
+    // Set the U bit for non-negative values.
+    if (x >= 0)
+      insn |= 0x00800000;
+    insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
+
+    elfcpp::Swap<32, big_endian>::writeval(wv, insn);
+    return This::STATUS_OKAY;
+  }
+
+  // R_ARM_LDC_PC_G0: S + A - P
+  // R_ARM_LDC_PC_G1: S + A - P
+  // R_ARM_LDC_PC_G2: S + A - P
+  // R_ARM_LDC_SB_G0: S + A - B(S)
+  // R_ARM_LDC_SB_G1: S + A - B(S)
+  // R_ARM_LDC_SB_G2: S + A - B(S)
+  static inline typename This::Status
+  arm_grp_ldc(unsigned char* view,
+      const Sized_relobj<32, big_endian>* object,
+      const Symbol_value<32>* psymval,
+      const int group,
+      Arm_address address)
+  {
+    gold_assert(group >= 0 && group < 3);
+    typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
+    Valtype* wv = reinterpret_cast<Valtype*>(view);
+    Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv);
+
+    const int sign = (insn & 0x00800000) ? 1 : -1;
+    int32_t addend = ((insn & 0xff) << 2) * sign;
+    int32_t x = (psymval->value(object, addend) - address);
+    // Calculate the relevant G(n-1) value to obtain this stage residual.
+    Valtype residual =
+      Arm_relocate_functions::calc_grp_residual(abs(x), group - 1);
+    if ((residual & 0x3) != 0 || residual >= 0x400)
+      return This::STATUS_OVERFLOW;
+
+    // Mask out the value and U bit.
+    insn &= 0xff7fff00;
+    // Set the U bit for non-negative values.
+    if (x >= 0)
+      insn |= 0x00800000;
+    insn |= (residual >> 2);
+
+    elfcpp::Swap<32, big_endian>::writeval(wv, insn);
     return This::STATUS_OKAY;
   }
 };
 
-// Get the GOT section, creating it if necessary.
+// Relocate ARM long branches.  This handles relocation types
+// R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25.
+// If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
+// undefined and we do not use PLT in this relocation.  In such a case,
+// the branch is converted into an NOP.
 
 template<bool big_endian>
-Output_data_got<32, big_endian>*
-Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
+typename Arm_relocate_functions<big_endian>::Status
+Arm_relocate_functions<big_endian>::arm_branch_common(
+    unsigned int r_type,
+    const Relocate_info<32, big_endian>* relinfo,
+    unsigned char *view,
+    const Sized_symbol<32>* gsym,
+    const Arm_relobj<big_endian>* object,
+    unsigned int r_sym,
+    const Symbol_value<32>* psymval,
+    Arm_address address,
+    Arm_address thumb_bit,
+    bool is_weakly_undefined_without_plt)
+{
+  typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
+  Valtype* wv = reinterpret_cast<Valtype*>(view);
+  Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
+     
+  bool insn_is_b = (((val >> 28) & 0xf) <= 0xe)
+                   && ((val & 0x0f000000UL) == 0x0a000000UL);
+  bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL;
+  bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe)
+                         && ((val & 0x0f000000UL) == 0x0b000000UL);
+  bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL;
+  bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL;
+
+  // Check that the instruction is valid.
+  if (r_type == elfcpp::R_ARM_CALL)
+    {
+      if (!insn_is_uncond_bl && !insn_is_blx)
+       return This::STATUS_BAD_RELOC;
+    }
+  else if (r_type == elfcpp::R_ARM_JUMP24)
+    {
+      if (!insn_is_b && !insn_is_cond_bl)
+       return This::STATUS_BAD_RELOC;
+    }
+  else if (r_type == elfcpp::R_ARM_PLT32)
+    {
+      if (!insn_is_any_branch)
+       return This::STATUS_BAD_RELOC;
+    }
+  else if (r_type == elfcpp::R_ARM_XPC25)
+    {
+      // FIXME: AAELF document IH0044C does not say much about it other
+      // than it being obsolete.
+      if (!insn_is_any_branch)
+       return This::STATUS_BAD_RELOC;
+    }
+  else
+    gold_unreachable();
+
+  // A branch to an undefined weak symbol is turned into a jump to
+  // the next instruction unless a PLT entry will be created.
+  // Do the same for local undefined symbols.
+  // The jump to the next instruction is optimized as a NOP depending
+  // on the architecture.
+  const Target_arm<big_endian>* arm_target =
+    Target_arm<big_endian>::default_target();
+  if (is_weakly_undefined_without_plt)
+    {
+      gold_assert(!parameters->options().relocatable());
+      Valtype cond = val & 0xf0000000U;
+      if (arm_target->may_use_arm_nop())
+       val = cond | 0x0320f000;
+      else
+       val = cond | 0x01a00000;        // Using pre-UAL nop: mov r0, r0.
+      elfcpp::Swap<32, big_endian>::writeval(wv, val);
+      return This::STATUS_OKAY;
+    }
+  Valtype addend = utils::sign_extend<26>(val << 2);
+  Valtype branch_target = psymval->value(object, addend);
+  int32_t branch_offset = branch_target - address;
+
+  // We need a stub if the branch offset is too large or if we need
+  // to switch mode.
+  bool may_use_blx = arm_target->may_use_blx();
+  Reloc_stub* stub = NULL;
+
+  if (!parameters->options().relocatable()
+      && (utils::has_overflow<26>(branch_offset)
+         || ((thumb_bit != 0)
+             && !(may_use_blx && r_type == elfcpp::R_ARM_CALL))))
+    {
+      Valtype unadjusted_branch_target = psymval->value(object, 0);
+
+      Stub_type stub_type =
+       Reloc_stub::stub_type_for_reloc(r_type, address,
+                                       unadjusted_branch_target,
+                                       (thumb_bit != 0));
+      if (stub_type != arm_stub_none)
+       {
+         Stub_table<big_endian>* stub_table =
+           object->stub_table(relinfo->data_shndx);
+         gold_assert(stub_table != NULL);
+
+         Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
+         stub = stub_table->find_reloc_stub(stub_key);
+         gold_assert(stub != NULL);
+         thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
+         branch_target = stub_table->address() + stub->offset() + addend;
+         branch_offset = branch_target - address;
+         gold_assert(!utils::has_overflow<26>(branch_offset));
+       }
+    }
+
+  // At this point, if we still need to switch mode, the instruction
+  // must either be a BLX or a BL that can be converted to a BLX.
+  if (thumb_bit != 0)
+    {
+      // Turn BL to BLX.
+      gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL);
+      val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23);
+    }
+
+  val = utils::bit_select(val, (branch_offset >> 2), 0xffffffUL);
+  elfcpp::Swap<32, big_endian>::writeval(wv, val);
+  return (utils::has_overflow<26>(branch_offset)
+         ? This::STATUS_OVERFLOW : This::STATUS_OKAY);
+}
+
+// Relocate THUMB long branches.  This handles relocation types
+// R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22.
+// If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
+// undefined and we do not use PLT in this relocation.  In such a case,
+// the branch is converted into an NOP.
+
+template<bool big_endian>
+typename Arm_relocate_functions<big_endian>::Status
+Arm_relocate_functions<big_endian>::thumb_branch_common(
+    unsigned int r_type,
+    const Relocate_info<32, big_endian>* relinfo,
+    unsigned char *view,
+    const Sized_symbol<32>* gsym,
+    const Arm_relobj<big_endian>* object,
+    unsigned int r_sym,
+    const Symbol_value<32>* psymval,
+    Arm_address address,
+    Arm_address thumb_bit,
+    bool is_weakly_undefined_without_plt)
+{
+  typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
+  Valtype* wv = reinterpret_cast<Valtype*>(view);
+  uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
+  uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
+
+  // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference
+  // into account.
+  bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U;
+  bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U;
+     
+  // Check that the instruction is valid.
+  if (r_type == elfcpp::R_ARM_THM_CALL)
+    {
+      if (!is_bl_insn && !is_blx_insn)
+       return This::STATUS_BAD_RELOC;
+    }
+  else if (r_type == elfcpp::R_ARM_THM_JUMP24)
+    {
+      // This cannot be a BLX.
+      if (!is_bl_insn)
+       return This::STATUS_BAD_RELOC;
+    }
+  else if (r_type == elfcpp::R_ARM_THM_XPC22)
+    {
+      // Check for Thumb to Thumb call.
+      if (!is_blx_insn)
+       return This::STATUS_BAD_RELOC;
+      if (thumb_bit != 0)
+       {
+         gold_warning(_("%s: Thumb BLX instruction targets "
+                        "thumb function '%s'."),
+                        object->name().c_str(),
+                        (gsym ? gsym->name() : "(local)")); 
+         // Convert BLX to BL.
+         lower_insn |= 0x1000U;
+       }
+    }
+  else
+    gold_unreachable();
+
+  // A branch to an undefined weak symbol is turned into a jump to
+  // the next instruction unless a PLT entry will be created.
+  // The jump to the next instruction is optimized as a NOP.W for
+  // Thumb-2 enabled architectures.
+  const Target_arm<big_endian>* arm_target =
+    Target_arm<big_endian>::default_target();
+  if (is_weakly_undefined_without_plt)
+    {
+      gold_assert(!parameters->options().relocatable());
+      if (arm_target->may_use_thumb2_nop())
+       {
+         elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af);
+         elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000);
+       }
+      else
+       {
+         elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000);
+         elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00);
+       }
+      return This::STATUS_OKAY;
+    }
+  int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn);
+  Arm_address branch_target = psymval->value(object, addend);
+
+  // For BLX, bit 1 of target address comes from bit 1 of base address.
+  bool may_use_blx = arm_target->may_use_blx();
+  if (thumb_bit == 0 && may_use_blx)
+    branch_target = utils::bit_select(branch_target, address, 0x2);
+
+  int32_t branch_offset = branch_target - address;
+
+  // We need a stub if the branch offset is too large or if we need
+  // to switch mode.
+  bool thumb2 = arm_target->using_thumb2();
+  if (!parameters->options().relocatable()
+      && ((!thumb2 && utils::has_overflow<23>(branch_offset))
+         || (thumb2 && utils::has_overflow<25>(branch_offset))
+         || ((thumb_bit == 0)
+             && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx)
+                 || r_type == elfcpp::R_ARM_THM_JUMP24))))
+    {
+      Arm_address unadjusted_branch_target = psymval->value(object, 0);
+
+      Stub_type stub_type =
+       Reloc_stub::stub_type_for_reloc(r_type, address,
+                                       unadjusted_branch_target,
+                                       (thumb_bit != 0));
+
+      if (stub_type != arm_stub_none)
+       {
+         Stub_table<big_endian>* stub_table =
+           object->stub_table(relinfo->data_shndx);
+         gold_assert(stub_table != NULL);
+
+         Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
+         Reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
+         gold_assert(stub != NULL);
+         thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0;
+         branch_target = stub_table->address() + stub->offset() + addend;
+         if (thumb_bit == 0 && may_use_blx) 
+           branch_target = utils::bit_select(branch_target, address, 0x2);
+         branch_offset = branch_target - address;
+       }
+    }
+
+  // At this point, if we still need to switch mode, the instruction
+  // must either be a BLX or a BL that can be converted to a BLX.
+  if (thumb_bit == 0)
+    {
+      gold_assert(may_use_blx
+                 && (r_type == elfcpp::R_ARM_THM_CALL
+                     || r_type == elfcpp::R_ARM_THM_XPC22));
+      // Make sure this is a BLX.
+      lower_insn &= ~0x1000U;
+    }
+  else
+    {
+      // Make sure this is a BL.
+      lower_insn |= 0x1000U;
+    }
+
+  // For a BLX instruction, make sure that the relocation is rounded up
+  // to a word boundary.  This follows the semantics of the instruction
+  // which specifies that bit 1 of the target address will come from bit
+  // 1 of the base address.
+  if ((lower_insn & 0x5000U) == 0x4000U)
+    gold_assert((branch_offset & 3) == 0);
+
+  // Put BRANCH_OFFSET back into the insn.  Assumes two's complement.
+  // We use the Thumb-2 encoding, which is safe even if dealing with
+  // a Thumb-1 instruction by virtue of our overflow check above.  */
+  upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset);
+  lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset);
+
+  elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
+  elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
+
+  gold_assert(!utils::has_overflow<25>(branch_offset));
+
+  return ((thumb2
+          ? utils::has_overflow<25>(branch_offset)
+          : utils::has_overflow<23>(branch_offset))
+         ? This::STATUS_OVERFLOW
+         : This::STATUS_OKAY);
+}
+
+// Relocate THUMB-2 long conditional branches.
+// If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly
+// undefined and we do not use PLT in this relocation.  In such a case,
+// the branch is converted into an NOP.
+
+template<bool big_endian>
+typename Arm_relocate_functions<big_endian>::Status
+Arm_relocate_functions<big_endian>::thm_jump19(
+    unsigned char *view,
+    const Arm_relobj<big_endian>* object,
+    const Symbol_value<32>* psymval,
+    Arm_address address,
+    Arm_address thumb_bit)
+{
+  typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
+  Valtype* wv = reinterpret_cast<Valtype*>(view);
+  uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
+  uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
+  int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn);
+
+  Arm_address branch_target = psymval->value(object, addend);
+  int32_t branch_offset = branch_target - address;
+
+  // ??? Should handle interworking?  GCC might someday try to
+  // use this for tail calls.
+  // FIXME: We do support thumb entry to PLT yet.
+  if (thumb_bit == 0)
+    {
+      gold_error(_("conditional branch to PLT in THUMB-2 not supported yet."));
+      return This::STATUS_BAD_RELOC;
+    }
+
+  // Put RELOCATION back into the insn.
+  upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset);
+  lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset);
+
+  // Put the relocated value back in the object file:
+  elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
+  elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
+
+  return (utils::has_overflow<21>(branch_offset)
+         ? This::STATUS_OVERFLOW
+         : This::STATUS_OKAY);
+}
+
+// Get the GOT section, creating it if necessary.
+
+template<bool big_endian>
+Arm_output_data_got<big_endian>*
+Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
 {
   if (this->got_ == NULL)
     {
       gold_assert(symtab != NULL && layout != NULL);
 
-      this->got_ = new Output_data_got<32, big_endian>();
+      this->got_ = new Arm_output_data_got<big_endian>(symtab, layout);
 
       Output_section* os;
       os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
                                           (elfcpp::SHF_ALLOC
                                            | elfcpp::SHF_WRITE),
-                                          this->got_);
-      os->set_is_relro();
-
+                                          this->got_, false, false, false,
+                                          true);
       // The old GNU linker creates a .got.plt section.  We just
       // create another set of data in the .got section.  Note that we
       // always create a PLT if we create a GOT, although the PLT
@@ -2137,14 +4130,15 @@ Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout)
       os = layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
                                           (elfcpp::SHF_ALLOC
                                            | elfcpp::SHF_WRITE),
-                                          this->got_plt_);
-      os->set_is_relro();
+                                          this->got_plt_, false, false,
+                                          false, false);
 
       // The first three entries are reserved.
       this->got_plt_->set_current_data_size(3 * 4);
 
       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
       symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
+                                   Symbol_table::PREDEFINED,
                                    this->got_plt_,
                                    0, 0, elfcpp::STT_OBJECT,
                                    elfcpp::STB_LOCAL,
@@ -2165,7 +4159,8 @@ Target_arm<big_endian>::rel_dyn_section(Layout* layout)
       gold_assert(layout != NULL);
       this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
       layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
-                                     elfcpp::SHF_ALLOC, this->rel_dyn_);
+                                     elfcpp::SHF_ALLOC, this->rel_dyn_, true,
+                                     false, false, false);
     }
   return this->rel_dyn_;
 }
@@ -2180,6 +4175,7 @@ Insn_template::size() const
   switch (this->type())
     {
     case THUMB16_TYPE:
+    case THUMB16_SPECIAL_TYPE:
       return 2;
     case ARM_TYPE:
     case THUMB32_TYPE:
@@ -2198,6 +4194,7 @@ Insn_template::alignment() const
   switch (this->type())
     {
     case THUMB16_TYPE:
+    case THUMB16_SPECIAL_TYPE:
     case THUMB32_TYPE:
       return 2;
     case ARM_TYPE:
@@ -2228,6 +4225,7 @@ Stub_template::Stub_template(
       switch (insns[i].type())
        {
        case Insn_template::THUMB16_TYPE:
+       case Insn_template::THUMB16_SPECIAL_TYPE:
          if (i == 0)
            this->entry_in_thumb_mode_ = true;
          break;
@@ -2260,6 +4258,51 @@ Stub_template::Stub_template(
   this->size_ = offset;
 }
 
+// Stub methods.
+
+// Template to implement do_write for a specific target endianness.
+
+template<bool big_endian>
+void inline
+Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size)
+{
+  const Stub_template* stub_template = this->stub_template();
+  const Insn_template* insns = stub_template->insns();
+
+  // FIXME:  We do not handle BE8 encoding yet.
+  unsigned char* pov = view;
+  for (size_t i = 0; i < stub_template->insn_count(); i++)
+    {
+      switch (insns[i].type())
+       {
+       case Insn_template::THUMB16_TYPE:
+         elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
+         break;
+       case Insn_template::THUMB16_SPECIAL_TYPE:
+         elfcpp::Swap<16, big_endian>::writeval(
+             pov,
+             this->thumb16_special(i));
+         break;
+       case Insn_template::THUMB32_TYPE:
+         {
+           uint32_t hi = (insns[i].data() >> 16) & 0xffff;
+           uint32_t lo = insns[i].data() & 0xffff;
+           elfcpp::Swap<16, big_endian>::writeval(pov, hi);
+           elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
+         }
+          break;
+       case Insn_template::ARM_TYPE:
+       case Insn_template::DATA_TYPE:
+         elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
+         break;
+       default:
+         gold_unreachable();
+       }
+      pov += insns[i].size();
+    }
+  gold_assert(static_cast<section_size_type>(pov - view) == view_size);
+} 
+
 // Reloc_stub::Key methods.
 
 // Dump a Key as a string for debugging.
@@ -2320,27 +4363,32 @@ Reloc_stub::stub_type_for_reloc(
   bool thumb_only;
   if (parameters->target().is_big_endian())
     {
-      const Target_arm<true>& big_endian_target =
+      const Target_arm<true>* big_endian_target =
        Target_arm<true>::default_target();
-      may_use_blx = big_endian_target.may_use_blx();
-      should_force_pic_veneer = big_endian_target.should_force_pic_veneer();
-      thumb2 = big_endian_target.using_thumb2();
-      thumb_only = big_endian_target.using_thumb_only();
+      may_use_blx = big_endian_target->may_use_blx();
+      should_force_pic_veneer = big_endian_target->should_force_pic_veneer();
+      thumb2 = big_endian_target->using_thumb2();
+      thumb_only = big_endian_target->using_thumb_only();
     }
   else
     {
-      const Target_arm<false>& little_endian_target =
+      const Target_arm<false>* little_endian_target =
        Target_arm<false>::default_target();
-      may_use_blx = little_endian_target.may_use_blx();
-      should_force_pic_veneer = little_endian_target.should_force_pic_veneer();
-      thumb2 = little_endian_target.using_thumb2();
-      thumb_only = little_endian_target.using_thumb_only();
+      may_use_blx = little_endian_target->may_use_blx();
+      should_force_pic_veneer = little_endian_target->should_force_pic_veneer();
+      thumb2 = little_endian_target->using_thumb2();
+      thumb_only = little_endian_target->using_thumb_only();
     }
 
-  int64_t branch_offset = (int64_t)destination - location;
-
+  int64_t branch_offset;
   if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24)
     {
+      // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the
+      // base address (instruction address + 4).
+      if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb)
+       destination = utils::bit_select(destination, location, 0x2);
+      branch_offset = static_cast<int64_t>(destination) - location;
+       
       // Handle cases where:
       // - this call goes too far (different Thumb/Thumb2 max
       //   distance)
@@ -2361,7 +4409,8 @@ Reloc_stub::stub_type_for_reloc(
              // Thumb to thumb.
              if (!thumb_only)
                {
-                 stub_type = (parameters->options().shared() | should_force_pic_veneer)
+                 stub_type = (parameters->options().shared()
+                              || should_force_pic_veneer)
                    // PIC stubs.
                    ? ((may_use_blx
                        && (r_type == elfcpp::R_ARM_THM_CALL))
@@ -2381,7 +4430,8 @@ Reloc_stub::stub_type_for_reloc(
                }
              else
                {
-                 stub_type = (parameters->options().shared() | should_force_pic_veneer)
+                 stub_type = (parameters->options().shared()
+                              || should_force_pic_veneer)
                    ? arm_stub_long_branch_thumb_only_pic       // PIC stub.
                    : arm_stub_long_branch_thumb_only;  // non-PIC stub.
                }
@@ -2419,6 +4469,7 @@ Reloc_stub::stub_type_for_reloc(
           || r_type == elfcpp::R_ARM_JUMP24
           || r_type == elfcpp::R_ARM_PLT32)
     {
+      branch_offset = static_cast<int64_t>(destination) - location;
       if (target_is_thumb)
        {
          // Arm to thumb.
@@ -2464,57 +4515,23 @@ Reloc_stub::stub_type_for_reloc(
   return stub_type;
 }
 
-// Template to implement do_write for a specific target endianity.
+// Cortex_a8_stub methods.
 
-template<bool big_endian>
-void inline
-Reloc_stub::do_fixed_endian_write(unsigned char* view,
-                                 section_size_type view_size)
-{
-  const Stub_template* stub_template = this->stub_template();
-  const Insn_template* insns = stub_template->insns();
-
-  // FIXME:  We do not handle BE8 encoding yet.
-  unsigned char* pov = view;
-  for (size_t i = 0; i < stub_template->insn_count(); i++)
-    {
-      switch (insns[i].type())
-       {
-       case Insn_template::THUMB16_TYPE:
-         // Non-zero reloc addends are only used in Cortex-A8 stubs. 
-         gold_assert(insns[i].reloc_addend() == 0);
-         elfcpp::Swap<16, big_endian>::writeval(pov, insns[i].data() & 0xffff);
-         break;
-       case Insn_template::THUMB32_TYPE:
-         {
-           uint32_t hi = (insns[i].data() >> 16) & 0xffff;
-           uint32_t lo = insns[i].data() & 0xffff;
-           elfcpp::Swap<16, big_endian>::writeval(pov, hi);
-           elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo);
-         }
-          break;
-       case Insn_template::ARM_TYPE:
-       case Insn_template::DATA_TYPE:
-         elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data());
-         break;
-       default:
-         gold_unreachable();
-       }
-      pov += insns[i].size();
-    }
-  gold_assert(static_cast<section_size_type>(pov - view) == view_size);
-} 
+// Return the instruction for a THUMB16_SPECIAL_TYPE instruction template.
+// I is the position of the instruction template in the stub template.
 
-// Write a reloc stub to VIEW with endianity specified by BIG_ENDIAN.
-
-void
-Reloc_stub::do_write(unsigned char* view, section_size_type view_size,
-                    bool big_endian)
+uint16_t
+Cortex_a8_stub::do_thumb16_special(size_t i)
 {
-  if (big_endian)
-    this->do_fixed_endian_write<true>(view, view_size);
-  else
-    this->do_fixed_endian_write<false>(view, view_size);
+  // The only use of this is to copy condition code from a conditional
+  // branch being worked around to the corresponding conditional branch in
+  // to the stub.
+  gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond
+             && i == 0);
+  uint16_t data = this->stub_template()->insns()[i].data();
+  gold_assert((data & 0xff00U) == 0xd000U);
+  data |= ((this->original_insn_ >> 22) & 0xf) << 8;
+  return data;
 }
 
 // Stub_factory methods.
@@ -2692,11 +4709,20 @@ Stub_factory::Stub_factory()
   // Stub used for Thumb-2 blx.w instructions.  We modified the original blx.w
   // instruction (which switches to ARM mode) to point to this stub.  Jump to
   // the real destination using an ARM-mode branch.
-  const Insn_template elf32_arm_stub_a8_veneer_blx[] =
+  static const Insn_template elf32_arm_stub_a8_veneer_blx[] =
     {
       Insn_template::arm_rel_insn(0xea000000, -8)      // b dest
     };
 
+  // Stub used to provide an interworking for R_ARM_V4BX relocation
+  // (bx r[n] instruction).
+  static const Insn_template elf32_arm_stub_v4_veneer_bx[] =
+    {
+      Insn_template::arm_insn(0xe3100001),             // tst   r<n>, #1
+      Insn_template::arm_insn(0x01a0f000),             // moveq pc, r<n>
+      Insn_template::arm_insn(0xe12fff10)              // bx    r<n>
+    };
+
   // Fill in the stub template look-up table.  Stub templates are constructed
   // per instance of Stub_factory for fast look-up without locking
   // in a thread-enabled environment.
@@ -2721,23 +4747,47 @@ Stub_factory::Stub_factory()
 
 // Stub_table methods.
 
-// Add a STUB with using KEY.  Caller is reponsible for avoid adding
-// if already a STUB with the same key has been added. 
+// Removel all Cortex-A8 stub.
 
 template<bool big_endian>
 void
-Stub_table<big_endian>::add_reloc_stub(
-    Reloc_stub* stub,
-    const Reloc_stub::Key& key)
+Stub_table<big_endian>::remove_all_cortex_a8_stubs()
+{
+  for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
+       p != this->cortex_a8_stubs_.end();
+       ++p)
+    delete p->second;
+  this->cortex_a8_stubs_.clear();
+}
+
+// Relocate one stub.  This is a helper for Stub_table::relocate_stubs().
+
+template<bool big_endian>
+void
+Stub_table<big_endian>::relocate_stub(
+    Stub* stub,
+    const Relocate_info<32, big_endian>* relinfo,
+    Target_arm<big_endian>* arm_target,
+    Output_section* output_section,
+    unsigned char* view,
+    Arm_address address,
+    section_size_type view_size)
 {
   const Stub_template* stub_template = stub->stub_template();
-  gold_assert(stub_template->type() == key.stub_type());
-  this->reloc_stubs_[key] = stub;
-  if (this->addralign_ < stub_template->alignment())
-    this->addralign_ = stub_template->alignment();
-  this->has_been_changed_ = true;
+  if (stub_template->reloc_count() != 0)
+    {
+      // Adjust view to cover the stub only.
+      section_size_type offset = stub->offset();
+      section_size_type stub_size = stub_template->size();
+      gold_assert(offset + stub_size <= view_size);
+
+      arm_target->relocate_stub(stub, relinfo, output_section, view + offset,
+                               address + offset, stub_size);
+    }
 }
 
+// Relocate all stubs in this stub table.
+
 template<bool big_endian>
 void
 Stub_table<big_endian>::relocate_stubs(
@@ -2754,50 +4804,29 @@ Stub_table<big_endian>::relocate_stubs(
              && (view_size
                  == static_cast<section_size_type>(this->data_size())));
 
+  // Relocate all relocation stubs.
   for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
       p != this->reloc_stubs_.end();
       ++p)
-    {
-      Reloc_stub* stub = p->second;
-      const Stub_template* stub_template = stub->stub_template();
-      if (stub_template->reloc_count() != 0)
-       {
-         // Adjust view to cover the stub only.
-         section_size_type offset = stub->offset();
-         section_size_type stub_size = stub_template->size();
-         gold_assert(offset + stub_size <= view_size);
-
-         arm_target->relocate_stub(stub, relinfo, output_section,
-                                   view + offset, address + offset,
-                                   stub_size);
-       }
-    }
-}
+    this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
+                       address, view_size);
 
-// Reset address and file offset.
+  // Relocate all Cortex-A8 stubs.
+  for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin();
+       p != this->cortex_a8_stubs_.end();
+       ++p)
+    this->relocate_stub(p->second, relinfo, arm_target, output_section, view,
+                       address, view_size);
 
-template<bool big_endian>
-void
-Stub_table<big_endian>::do_reset_address_and_file_offset()
-{
-  off_t off = 0;
-  uint64_t max_addralign = 1;
-  for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
-      p != this->reloc_stubs_.end();
-      ++p)
+  // Relocate all ARM V4BX stubs.
+  for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin();
+       p != this->arm_v4bx_stubs_.end();
+       ++p)
     {
-      Reloc_stub* stub = p->second;
-      const Stub_template* stub_template = stub->stub_template();
-      uint64_t stub_addralign = stub_template->alignment();
-      max_addralign = std::max(max_addralign, stub_addralign);
-      off = align_address(off, stub_addralign);
-      stub->set_offset(off);
-      stub->reset_destination_address();
-      off += stub_template->size();
+      if (*p != NULL)
+       this->relocate_stub(*p, relinfo, arm_target, output_section, view,
+                           address, view_size);
     }
-
-  this->addralign_ = max_addralign;
-  this->set_current_data_size_for_child(off);
 }
 
 // Write out the stubs to file.
@@ -2811,6 +4840,7 @@ Stub_table<big_endian>::do_write(Output_file* of)
     convert_to_section_size_type(this->data_size());
   unsigned char* const oview = of->get_output_view(offset, oview_size);
 
+  // Write relocation stubs.
   for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
       p != this->reloc_stubs_.end();
       ++p)
@@ -2822,37 +4852,196 @@ Stub_table<big_endian>::do_write(Output_file* of)
                                   stub->stub_template()->alignment()));
       stub->write(oview + stub->offset(), stub->stub_template()->size(),
                  big_endian);
-    } 
+    }
+
+  // Write Cortex-A8 stubs.
+  for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
+       p != this->cortex_a8_stubs_.end();
+       ++p)
+    {
+      Cortex_a8_stub* stub = p->second;
+      Arm_address address = this->address() + stub->offset();
+      gold_assert(address
+                 == align_address(address,
+                                  stub->stub_template()->alignment()));
+      stub->write(oview + stub->offset(), stub->stub_template()->size(),
+                 big_endian);
+    }
+
+  // Write ARM V4BX relocation stubs.
+  for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
+       p != this->arm_v4bx_stubs_.end();
+       ++p)
+    {
+      if (*p == NULL)
+       continue;
+
+      Arm_address address = this->address() + (*p)->offset();
+      gold_assert(address
+                 == align_address(address,
+                                  (*p)->stub_template()->alignment()));
+      (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(),
+                 big_endian);
+    }
+
   of->write_output_view(this->offset(), oview_size, oview);
 }
 
-// Arm_input_section methods.
-
-// Initialize an Arm_input_section.
+// Update the data size and address alignment of the stub table at the end
+// of a relaxation pass.   Return true if either the data size or the
+// alignment changed in this relaxation pass.
 
 template<bool big_endian>
-void
-Arm_input_section<big_endian>::init()
+bool
+Stub_table<big_endian>::update_data_size_and_addralign()
 {
-  Relobj* relobj = this->relobj();
-  unsigned int shndx = this->shndx();
+  // Go over all stubs in table to compute data size and address alignment.
+  off_t size = this->reloc_stubs_size_;
+  unsigned addralign = this->reloc_stubs_addralign_;
 
-  // Cache these to speed up size and alignment queries.  It is too slow
-  // to call section_addraglin and section_size every time.
-  this->original_addralign_ = relobj->section_addralign(shndx);
-  this->original_size_ = relobj->section_size(shndx);
+  for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
+       p != this->cortex_a8_stubs_.end();
+       ++p)
+    {
+      const Stub_template* stub_template = p->second->stub_template();
+      addralign = std::max(addralign, stub_template->alignment());
+      size = (align_address(size, stub_template->alignment())
+             + stub_template->size());
+    }
 
-  // We want to make this look like the original input section after
-  // output sections are finalized.
-  Output_section* os = relobj->output_section(shndx);
-  off_t offset = relobj->output_section_offset(shndx);
-  gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
-  this->set_address(os->address() + offset);
-  this->set_file_offset(os->offset() + offset);
+  for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
+       p != this->arm_v4bx_stubs_.end();
+       ++p)
+    {
+      if (*p == NULL)
+       continue;
 
-  this->set_current_data_size(this->original_size_);
-  this->finalize_data_size();
-}
+      const Stub_template* stub_template = (*p)->stub_template();
+      addralign = std::max(addralign, stub_template->alignment());
+      size = (align_address(size, stub_template->alignment())
+             + stub_template->size());
+    }
+
+  // Check if either data size or alignment changed in this pass.
+  // Update prev_data_size_ and prev_addralign_.  These will be used
+  // as the current data size and address alignment for the next pass.
+  bool changed = size != this->prev_data_size_;
+  this->prev_data_size_ = size; 
+
+  if (addralign != this->prev_addralign_)
+    changed = true;
+  this->prev_addralign_ = addralign;
+
+  return changed;
+}
+
+// Finalize the stubs.  This sets the offsets of the stubs within the stub
+// table.  It also marks all input sections needing Cortex-A8 workaround.
+
+template<bool big_endian>
+void
+Stub_table<big_endian>::finalize_stubs()
+{
+  off_t off = this->reloc_stubs_size_;
+  for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin();
+       p != this->cortex_a8_stubs_.end();
+       ++p)
+    {
+      Cortex_a8_stub* stub = p->second;
+      const Stub_template* stub_template = stub->stub_template();
+      uint64_t stub_addralign = stub_template->alignment();
+      off = align_address(off, stub_addralign);
+      stub->set_offset(off);
+      off += stub_template->size();
+
+      // Mark input section so that we can determine later if a code section
+      // needs the Cortex-A8 workaround quickly.
+      Arm_relobj<big_endian>* arm_relobj =
+       Arm_relobj<big_endian>::as_arm_relobj(stub->relobj());
+      arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx());
+    }
+
+  for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin();
+      p != this->arm_v4bx_stubs_.end();
+      ++p)
+    {
+      if (*p == NULL)
+       continue;
+
+      const Stub_template* stub_template = (*p)->stub_template();
+      uint64_t stub_addralign = stub_template->alignment();
+      off = align_address(off, stub_addralign);
+      (*p)->set_offset(off);
+      off += stub_template->size();
+    }
+
+  gold_assert(off <= this->prev_data_size_);
+}
+
+// Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS
+// and VIEW_ADDRESS + VIEW_SIZE - 1.  VIEW points to the mapped address
+// of the address range seen by the linker.
+
+template<bool big_endian>
+void
+Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range(
+    Target_arm<big_endian>* arm_target,
+    unsigned char* view,
+    Arm_address view_address,
+    section_size_type view_size)
+{
+  // Cortex-A8 stubs are sorted by addresses of branches being fixed up.
+  for (Cortex_a8_stub_list::const_iterator p =
+        this->cortex_a8_stubs_.lower_bound(view_address);
+       ((p != this->cortex_a8_stubs_.end())
+       && (p->first < (view_address + view_size)));
+       ++p)
+    {
+      // We do not store the THUMB bit in the LSB of either the branch address
+      // or the stub offset.  There is no need to strip the LSB.
+      Arm_address branch_address = p->first;
+      const Cortex_a8_stub* stub = p->second;
+      Arm_address stub_address = this->address() + stub->offset();
+
+      // Offset of the branch instruction relative to this view.
+      section_size_type offset =
+       convert_to_section_size_type(branch_address - view_address);
+      gold_assert((offset + 4) <= view_size);
+
+      arm_target->apply_cortex_a8_workaround(stub, stub_address,
+                                            view + offset, branch_address);
+    }
+}
+
+// Arm_input_section methods.
+
+// Initialize an Arm_input_section.
+
+template<bool big_endian>
+void
+Arm_input_section<big_endian>::init()
+{
+  Relobj* relobj = this->relobj();
+  unsigned int shndx = this->shndx();
+
+  // Cache these to speed up size and alignment queries.  It is too slow
+  // to call section_addraglin and section_size every time.
+  this->original_addralign_ =
+    convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
+  this->original_size_ =
+    convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
+
+  // We want to make this look like the original input section after
+  // output sections are finalized.
+  Output_section* os = relobj->output_section(shndx);
+  off_t offset = relobj->output_section_offset(shndx);
+  gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
+  this->set_address(os->address() + offset);
+  this->set_file_offset(os->offset() + offset);
+
+  this->set_current_data_size(this->original_size_);
+  this->finalize_data_size();
+}
 
 template<bool big_endian>
 void
@@ -2875,21 +5064,15 @@ template<bool big_endian>
 void
 Arm_input_section<big_endian>::set_final_data_size()
 {
-  // If this owns a stub table, finalize its data size as well.
+  off_t off = convert_types<off_t, uint64_t>(this->original_size_);
+
   if (this->is_stub_table_owner())
     {
-      uint64_t address = this->address();
-
-      // The stub table comes after the original section contents.
-      address += this->original_size_;
-      address = align_address(address, this->stub_table_->addralign());
-      off_t offset = this->offset() + (address - this->address());
-      this->stub_table_->set_address_and_file_offset(address, offset);
-      address += this->stub_table_->data_size();
-      gold_assert(address == this->address() + this->current_data_size());
+      this->stub_table_->finalize_data_size();
+      off = align_address(off, this->stub_table_->addralign());
+      off += this->stub_table_->data_size();
     }
-
-  this->set_data_size(this->current_data_size());
+  this->set_data_size(off);
 }
 
 // Reset address and file offset.
@@ -2916,6 +5099,341 @@ Arm_input_section<big_endian>::do_reset_address_and_file_offset()
   this->set_current_data_size(off);
 }
 
+// Arm_exidx_cantunwind methods.
+
+// Write this to Output file OF for a fixed endianness.
+
+template<bool big_endian>
+void
+Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of)
+{
+  off_t offset = this->offset();
+  const section_size_type oview_size = 8;
+  unsigned char* const oview = of->get_output_view(offset, oview_size);
+  
+  typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
+  Valtype* wv = reinterpret_cast<Valtype*>(oview);
+
+  Output_section* os = this->relobj_->output_section(this->shndx_);
+  gold_assert(os != NULL);
+
+  Arm_relobj<big_endian>* arm_relobj =
+    Arm_relobj<big_endian>::as_arm_relobj(this->relobj_);
+  Arm_address output_offset =
+    arm_relobj->get_output_section_offset(this->shndx_);
+  Arm_address section_start;
+  if (output_offset != Arm_relobj<big_endian>::invalid_address)
+    section_start = os->address() + output_offset;
+  else
+    {
+      // Currently this only happens for a relaxed section.
+      const Output_relaxed_input_section* poris =
+       os->find_relaxed_input_section(this->relobj_, this->shndx_);
+      gold_assert(poris != NULL);
+      section_start = poris->address();
+    }
+
+  // We always append this to the end of an EXIDX section.
+  Arm_address output_address =
+    section_start + this->relobj_->section_size(this->shndx_);
+
+  // Write out the entry.  The first word either points to the beginning
+  // or after the end of a text section.  The second word is the special
+  // EXIDX_CANTUNWIND value.
+  uint32_t prel31_offset = output_address - this->address();
+  if (utils::has_overflow<31>(offset))
+    gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry"));
+  elfcpp::Swap<32, big_endian>::writeval(wv, prel31_offset & 0x7fffffffU);
+  elfcpp::Swap<32, big_endian>::writeval(wv + 1, elfcpp::EXIDX_CANTUNWIND);
+
+  of->write_output_view(this->offset(), oview_size, oview);
+}
+
+// Arm_exidx_merged_section methods.
+
+// Constructor for Arm_exidx_merged_section.
+// EXIDX_INPUT_SECTION points to the unmodified EXIDX input section.
+// SECTION_OFFSET_MAP points to a section offset map describing how
+// parts of the input section are mapped to output.  DELETED_BYTES is
+// the number of bytes deleted from the EXIDX input section.
+
+Arm_exidx_merged_section::Arm_exidx_merged_section(
+    const Arm_exidx_input_section& exidx_input_section,
+    const Arm_exidx_section_offset_map& section_offset_map,
+    uint32_t deleted_bytes)
+  : Output_relaxed_input_section(exidx_input_section.relobj(),
+                                exidx_input_section.shndx(),
+                                exidx_input_section.addralign()),
+    exidx_input_section_(exidx_input_section),
+    section_offset_map_(section_offset_map)
+{
+  // Fix size here so that we do not need to implement set_final_data_size.
+  this->set_data_size(exidx_input_section.size() - deleted_bytes);
+  this->fix_data_size();
+}
+
+// Given an input OBJECT, an input section index SHNDX within that
+// object, and an OFFSET relative to the start of that input
+// section, return whether or not the corresponding offset within
+// the output section is known.  If this function returns true, it
+// sets *POUTPUT to the output offset.  The value -1 indicates that
+// this input offset is being discarded.
+
+bool
+Arm_exidx_merged_section::do_output_offset(
+    const Relobj* relobj,
+    unsigned int shndx,
+    section_offset_type offset,
+    section_offset_type* poutput) const
+{
+  // We only handle offsets for the original EXIDX input section.
+  if (relobj != this->exidx_input_section_.relobj()
+      || shndx != this->exidx_input_section_.shndx())
+    return false;
+
+  section_offset_type section_size =
+    convert_types<section_offset_type>(this->exidx_input_section_.size());
+  if (offset < 0 || offset >= section_size)
+    // Input offset is out of valid range.
+    *poutput = -1;
+  else
+    {
+      // We need to look up the section offset map to determine the output
+      // offset.  Find the reference point in map that is first offset
+      // bigger than or equal to this offset.
+      Arm_exidx_section_offset_map::const_iterator p =
+       this->section_offset_map_.lower_bound(offset);
+
+      // The section offset maps are build such that this should not happen if
+      // input offset is in the valid range.
+      gold_assert(p != this->section_offset_map_.end());
+
+      // We need to check if this is dropped.
+     section_offset_type ref = p->first;
+     section_offset_type mapped_ref = p->second;
+
+      if (mapped_ref != Arm_exidx_input_section::invalid_offset)
+       // Offset is present in output.
+       *poutput = mapped_ref + (offset - ref);
+      else
+       // Offset is discarded owing to EXIDX entry merging.
+       *poutput = -1;
+    }
+  
+  return true;
+}
+
+// Write this to output file OF.
+
+void
+Arm_exidx_merged_section::do_write(Output_file* of)
+{
+  // If we retain or discard the whole EXIDX input section,  we would
+  // not be here.
+  gold_assert(this->data_size() != this->exidx_input_section_.size()
+             && this->data_size() != 0);
+
+  off_t offset = this->offset();
+  const section_size_type oview_size = this->data_size();
+  unsigned char* const oview = of->get_output_view(offset, oview_size);
+  
+  Output_section* os = this->relobj()->output_section(this->shndx());
+  gold_assert(os != NULL);
+
+  // Get contents of EXIDX input section.
+  section_size_type section_size;
+  const unsigned char* section_contents =
+    this->relobj()->section_contents(this->shndx(), &section_size, false); 
+  gold_assert(section_size == this->exidx_input_section_.size());
+
+  // Go over spans of input offsets and write only those that are not
+  // discarded.
+  section_offset_type in_start = 0;
+  section_offset_type out_start = 0;
+  for(Arm_exidx_section_offset_map::const_iterator p =
+        this->section_offset_map_.begin();
+      p != this->section_offset_map_.end();
+      ++p)
+    {
+      section_offset_type in_end = p->first;
+      gold_assert(in_end >= in_start);
+      section_offset_type out_end = p->second;
+      size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1);
+      if (out_end != -1)
+       {
+         size_t out_chunk_size =
+           convert_types<size_t>(out_end - out_start + 1);
+         gold_assert(out_chunk_size == in_chunk_size);
+         memcpy(oview + out_start, section_contents + in_start,
+                out_chunk_size);
+         out_start += out_chunk_size;
+       }
+      in_start += in_chunk_size;
+    }
+
+  gold_assert(convert_to_section_size_type(out_start) == oview_size);
+  of->write_output_view(this->offset(), oview_size, oview);
+}
+
+// Arm_exidx_fixup methods.
+
+// Append an EXIDX_CANTUNWIND in the current output section if the last entry
+// is not an EXIDX_CANTUNWIND entry already.  The new EXIDX_CANTUNWIND entry
+// points to the end of the last seen EXIDX section.
+
+void
+Arm_exidx_fixup::add_exidx_cantunwind_as_needed()
+{
+  if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND
+      && this->last_input_section_ != NULL)
+    {
+      Relobj* relobj = this->last_input_section_->relobj();
+      unsigned int text_shndx = this->last_input_section_->link();
+      Arm_exidx_cantunwind* cantunwind =
+       new Arm_exidx_cantunwind(relobj, text_shndx);
+      this->exidx_output_section_->add_output_section_data(cantunwind);
+      this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
+    }
+}
+
+// Process an EXIDX section entry in input.  Return whether this entry
+// can be deleted in the output.  SECOND_WORD in the second word of the
+// EXIDX entry.
+
+bool
+Arm_exidx_fixup::process_exidx_entry(uint32_t second_word)
+{
+  bool delete_entry;
+  if (second_word == elfcpp::EXIDX_CANTUNWIND)
+    {
+      // Merge if previous entry is also an EXIDX_CANTUNWIND.
+      delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND;
+      this->last_unwind_type_ = UT_EXIDX_CANTUNWIND;
+    }
+  else if ((second_word & 0x80000000) != 0)
+    {
+      // Inlined unwinding data.  Merge if equal to previous.
+      delete_entry = (merge_exidx_entries_
+                     && this->last_unwind_type_ == UT_INLINED_ENTRY
+                     && this->last_inlined_entry_ == second_word);
+      this->last_unwind_type_ = UT_INLINED_ENTRY;
+      this->last_inlined_entry_ = second_word;
+    }
+  else
+    {
+      // Normal table entry.  In theory we could merge these too,
+      // but duplicate entries are likely to be much less common.
+      delete_entry = false;
+      this->last_unwind_type_ = UT_NORMAL_ENTRY;
+    }
+  return delete_entry;
+}
+
+// Update the current section offset map during EXIDX section fix-up.
+// If there is no map, create one.  INPUT_OFFSET is the offset of a
+// reference point, DELETED_BYTES is the number of deleted by in the
+// section so far.  If DELETE_ENTRY is true, the reference point and
+// all offsets after the previous reference point are discarded.
+
+void
+Arm_exidx_fixup::update_offset_map(
+    section_offset_type input_offset,
+    section_size_type deleted_bytes,
+    bool delete_entry)
+{
+  if (this->section_offset_map_ == NULL)
+    this->section_offset_map_ = new Arm_exidx_section_offset_map();
+  section_offset_type output_offset;
+  if (delete_entry)
+    output_offset = Arm_exidx_input_section::invalid_offset;
+  else
+    output_offset = input_offset - deleted_bytes;
+  (*this->section_offset_map_)[input_offset] = output_offset;
+}
+
+// Process EXIDX_INPUT_SECTION for EXIDX entry merging.  Return the number of
+// bytes deleted.  If some entries are merged, also store a pointer to a newly
+// created Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP.  The
+// caller owns the map and is responsible for releasing it after use.
+
+template<bool big_endian>
+uint32_t
+Arm_exidx_fixup::process_exidx_section(
+    const Arm_exidx_input_section* exidx_input_section,
+    Arm_exidx_section_offset_map** psection_offset_map)
+{
+  Relobj* relobj = exidx_input_section->relobj();
+  unsigned shndx = exidx_input_section->shndx();
+  section_size_type section_size;
+  const unsigned char* section_contents =
+    relobj->section_contents(shndx, &section_size, false);
+
+  if ((section_size % 8) != 0)
+    {
+      // Something is wrong with this section.  Better not touch it.
+      gold_error(_("uneven .ARM.exidx section size in %s section %u"),
+                relobj->name().c_str(), shndx);
+      this->last_input_section_ = exidx_input_section;
+      this->last_unwind_type_ = UT_NONE;
+      return 0;
+    }
+  
+  uint32_t deleted_bytes = 0;
+  bool prev_delete_entry = false;
+  gold_assert(this->section_offset_map_ == NULL);
+
+  for (section_size_type i = 0; i < section_size; i += 8)
+    {
+      typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
+      const Valtype* wv =
+         reinterpret_cast<const Valtype*>(section_contents + i + 4);
+      uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv);
+
+      bool delete_entry = this->process_exidx_entry(second_word);
+
+      // Entry deletion causes changes in output offsets.  We use a std::map
+      // to record these.  And entry (x, y) means input offset x
+      // is mapped to output offset y.  If y is invalid_offset, then x is
+      // dropped in the output.  Because of the way std::map::lower_bound
+      // works, we record the last offset in a region w.r.t to keeping or
+      // dropping.  If there is no entry (x0, y0) for an input offset x0,
+      // the output offset y0 of it is determined by the output offset y1 of
+      // the smallest input offset x1 > x0 that there is an (x1, y1) entry
+      // in the map.  If y1 is not -1, then y0 = y1 + x0 - x1.  Othewise, y1
+      // y0 is also -1.
+      if (delete_entry != prev_delete_entry && i != 0)
+       this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry);
+
+      // Update total deleted bytes for this entry.
+      if (delete_entry)
+       deleted_bytes += 8;
+
+      prev_delete_entry = delete_entry;
+    }
+  
+  // If section offset map is not NULL, make an entry for the end of
+  // section.
+  if (this->section_offset_map_ != NULL)
+    update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry);
+
+  *psection_offset_map = this->section_offset_map_;
+  this->section_offset_map_ = NULL;
+  this->last_input_section_ = exidx_input_section;
+  
+  // Set the first output text section so that we can link the EXIDX output
+  // section to it.  Ignore any EXIDX input section that is completely merged.
+  if (this->first_output_text_section_ == NULL
+      && deleted_bytes != section_size)
+    {
+      unsigned int link = exidx_input_section->link();
+      Output_section* os = relobj->output_section(link);
+      gold_assert(os != NULL);
+      this->first_output_text_section_ = os;
+    }
+
+  return deleted_bytes;
+}
+
 // Arm_output_section methods.
 
 // Create a stub group for input sections from BEGIN to END.  OWNER
@@ -2930,6 +5448,12 @@ Arm_output_section<big_endian>::create_stub_group(
   Target_arm<big_endian>* target,
   std::vector<Output_relaxed_input_section*>* new_relaxed_sections)
 {
+  // We use a different kind of relaxed section in an EXIDX section.
+  // The static casting from Output_relaxed_input_section to
+  // Arm_input_section is invalid in an EXIDX section.  We are okay
+  // because we should not be calling this for an EXIDX section. 
+  gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX);
+
   // Currently we convert ordinary input sections into relaxed sections only
   // at this point but we may want to support creating relaxed input section
   // very early.  So we check here to see if owner is already a relaxed
@@ -3125,130 +5649,524 @@ Arm_output_section<big_endian>::group_sections(
     }
 }
 
-// Arm_relobj methods.
-
-// Scan relocations for stub generation.
+// Append non empty text sections in this to LIST in ascending
+// order of their position in this.
 
 template<bool big_endian>
 void
-Arm_relobj<big_endian>::scan_sections_for_stubs(
-    Target_arm<big_endian>* arm_target,
-    const Symbol_table* symtab,
-    const Layout* layout)
+Arm_output_section<big_endian>::append_text_sections_to_list(
+    Text_section_list* list)
 {
-  unsigned int shnum = this->shnum();
-  const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
+  // We only care about text sections.
+  if ((this->flags() & elfcpp::SHF_EXECINSTR) == 0)
+    return;
 
-  // Read the section headers.
-  const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
-                                              shnum * shdr_size,
-                                              true, true);
+  gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0);
 
-  // To speed up processing, we set up hash tables for fast lookup of
-  // input offsets to output addresses.
-  this->initialize_input_to_output_maps();
+  for (Input_section_list::const_iterator p = this->input_sections().begin();
+       p != this->input_sections().end();
+       ++p)
+    {
+      // We only care about plain or relaxed input sections.  We also
+      // ignore any merged sections.
+      if ((p->is_input_section() || p->is_relaxed_input_section())
+         && p->data_size() != 0)
+       list->push_back(Text_section_list::value_type(p->relobj(),
+                                                     p->shndx()));
+    }
+}
 
-  const Relobj::Output_sections& out_sections(this->output_sections());
+template<bool big_endian>
+void
+Arm_output_section<big_endian>::fix_exidx_coverage(
+    Layout* layout,
+    const Text_section_list& sorted_text_sections,
+    Symbol_table* symtab,
+    bool merge_exidx_entries)
+{
+  // We should only do this for the EXIDX output section.
+  gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX);
+
+  // We don't want the relaxation loop to undo these changes, so we discard
+  // the current saved states and take another one after the fix-up.
+  this->discard_states();
+
+  // Remove all input sections.
+  uint64_t address = this->address();
+  typedef std::list<Output_section::Input_section> Input_section_list;
+  Input_section_list input_sections;
+  this->reset_address_and_file_offset();
+  this->get_input_sections(address, std::string(""), &input_sections);
+
+  if (!this->input_sections().empty())
+    gold_error(_("Found non-EXIDX input sections in EXIDX output section"));
+  
+  // Go through all the known input sections and record them.
+  typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
+  typedef Unordered_map<Section_id, const Output_section::Input_section*,
+                       Section_id_hash> Text_to_exidx_map;
+  Text_to_exidx_map text_to_exidx_map;
+  for (Input_section_list::const_iterator p = input_sections.begin();
+       p != input_sections.end();
+       ++p)
+    {
+      // This should never happen.  At this point, we should only see
+      // plain EXIDX input sections.
+      gold_assert(!p->is_relaxed_input_section());
+      text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p);
+    }
 
-  Relocate_info<32, big_endian> relinfo;
-  relinfo.symtab = symtab;
-  relinfo.layout = layout;
-  relinfo.object = this;
+  Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries);
 
-  const unsigned char* p = pshdrs + shdr_size;
-  for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
+  // Go over the sorted text sections.
+  typedef Unordered_set<Section_id, Section_id_hash> Section_id_set;
+  Section_id_set processed_input_sections;
+  for (Text_section_list::const_iterator p = sorted_text_sections.begin();
+       p != sorted_text_sections.end();
+       ++p)
     {
-      typename elfcpp::Shdr<32, big_endian> shdr(p);
-
-      unsigned int sh_type = shdr.get_sh_type();
-      if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
-       continue;
+      Relobj* relobj = p->first;
+      unsigned int shndx = p->second;
 
-      off_t sh_size = shdr.get_sh_size();
-      if (sh_size == 0)
-       continue;
+      Arm_relobj<big_endian>* arm_relobj =
+        Arm_relobj<big_endian>::as_arm_relobj(relobj);
+      const Arm_exidx_input_section* exidx_input_section =
+        arm_relobj->exidx_input_section_by_link(shndx);
 
-      unsigned int index = this->adjust_shndx(shdr.get_sh_info());
-      if (index >= this->shnum())
+      // If this text section has no EXIDX section, force an EXIDX_CANTUNWIND
+      // entry pointing to the end of the last seen EXIDX section.
+      if (exidx_input_section == NULL)
        {
-         // Ignore reloc section with bad info.  This error will be
-         // reported in the final link.
+         exidx_fixup.add_exidx_cantunwind_as_needed();
          continue;
        }
 
-      Output_section* os = out_sections[index];
-      if (os == NULL)
+      Relobj* exidx_relobj = exidx_input_section->relobj();
+      unsigned int exidx_shndx = exidx_input_section->shndx();
+      Section_id sid(exidx_relobj, exidx_shndx);
+      Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid);
+      if (iter == text_to_exidx_map.end())
        {
-         // This relocation section is against a section which we
-         // discarded.
-         continue;
-       }
-      Arm_address output_offset = this->get_output_section_offset(index);
+         // This is odd.  We have not seen this EXIDX input section before.
+         // We cannot do fix-up.  If we saw a SECTIONS clause in a script,
+         // issue a warning instead.  We assume the user knows what he
+         // or she is doing.  Otherwise, this is an error.
+         if (layout->script_options()->saw_sections_clause())
+           gold_warning(_("unwinding may not work because EXIDX input section"
+                          " %u of %s is not in EXIDX output section"),
+                        exidx_shndx, exidx_relobj->name().c_str());
+         else
+           gold_error(_("unwinding may not work because EXIDX input section"
+                        " %u of %s is not in EXIDX output section"),
+                      exidx_shndx, exidx_relobj->name().c_str());
 
-      if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
-       {
-         // Ignore reloc section with unexpected symbol table.  The
-         // error will be reported in the final link.
+         exidx_fixup.add_exidx_cantunwind_as_needed();
          continue;
        }
 
-      const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
-                                                   sh_size, true, false);
+      // Fix up coverage and append input section to output data list.
+      Arm_exidx_section_offset_map* section_offset_map = NULL;
+      uint32_t deleted_bytes =
+        exidx_fixup.process_exidx_section<big_endian>(exidx_input_section,
+                                                     &section_offset_map);
 
-      unsigned int reloc_size;
-      if (sh_type == elfcpp::SHT_REL)
-       reloc_size = elfcpp::Elf_sizes<32>::rel_size;
-      else
-       reloc_size = elfcpp::Elf_sizes<32>::rela_size;
+      if (deleted_bytes == exidx_input_section->size())
+       {
+         // The whole EXIDX section got merged.  Remove it from output.
+         gold_assert(section_offset_map == NULL);
+         exidx_relobj->set_output_section(exidx_shndx, NULL);
 
-      if (reloc_size != shdr.get_sh_entsize())
+         // All local symbols defined in this input section will be dropped.
+         // We need to adjust output local symbol count.
+         arm_relobj->set_output_local_symbol_count_needs_update();
+       }
+      else if (deleted_bytes > 0)
        {
-         // Ignore reloc section with unexpected entsize.  The error
-         // will be reported in the final link.
-         continue;
+         // Some entries are merged.  We need to convert this EXIDX input
+         // section into a relaxed section.
+         gold_assert(section_offset_map != NULL);
+         Arm_exidx_merged_section* merged_section =
+           new Arm_exidx_merged_section(*exidx_input_section,
+                                        *section_offset_map, deleted_bytes);
+         this->add_relaxed_input_section(merged_section);
+         arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx);
+
+         // All local symbols defined in discarded portions of this input
+         // section will be dropped.  We need to adjust output local symbol
+         // count.
+         arm_relobj->set_output_local_symbol_count_needs_update();
        }
-
-      size_t reloc_count = sh_size / reloc_size;
-      if (static_cast<off_t>(reloc_count * reloc_size) != sh_size)
+      else
        {
-         // Ignore reloc section with uneven size.  The error will be
-         // reported in the final link.
-         continue;
+         // Just add back the EXIDX input section.
+         gold_assert(section_offset_map == NULL);
+         const Output_section::Input_section* pis = iter->second;
+         gold_assert(pis->is_input_section());
+         this->add_script_input_section(*pis);
        }
 
-      gold_assert(output_offset != invalid_address
-                 || this->relocs_must_follow_section_writes());
+      processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx)); 
+    }
 
-      // Get the section contents.  This does work for the case in which
-      // we modify the contents of an input section.  We need to pass the
-      // output view under such circumstances.
-      section_size_type input_view_size = 0;
-      const unsigned char* input_view =
-       this->section_contents(index, &input_view_size, false);
+  // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary.
+  exidx_fixup.add_exidx_cantunwind_as_needed();
 
-      relinfo.reloc_shndx = i;
-      relinfo.data_shndx = index;
-      arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
-                                        reloc_count, os,
-                                        output_offset == invalid_address,
-                                        input_view,
-                                        os->address(),
-                                        input_view_size);
+  // Remove any known EXIDX input sections that are not processed.
+  for (Input_section_list::const_iterator p = input_sections.begin();
+       p != input_sections.end();
+       ++p)
+    {
+      if (processed_input_sections.find(Section_id(p->relobj(), p->shndx()))
+         == processed_input_sections.end())
+       {
+         // We only discard a known EXIDX section because its linked
+         // text section has been folded by ICF.
+         Arm_relobj<big_endian>* arm_relobj =
+           Arm_relobj<big_endian>::as_arm_relobj(p->relobj());
+         const Arm_exidx_input_section* exidx_input_section =
+           arm_relobj->exidx_input_section_by_shndx(p->shndx());
+         gold_assert(exidx_input_section != NULL);
+         unsigned int text_shndx = exidx_input_section->link();
+         gold_assert(symtab->is_section_folded(p->relobj(), text_shndx));
+
+         // Remove this from link.  We also need to recount the
+         // local symbols.
+         p->relobj()->set_output_section(p->shndx(), NULL);
+         arm_relobj->set_output_local_symbol_count_needs_update();
+       }
     }
-
-  // After we've done the relocations, we release the hash tables,
-  // since we no longer need them.
-  this->free_input_to_output_maps();
+    
+  // Link exidx output section to the first seen output section and
+  // set correct entry size.
+  this->set_link_section(exidx_fixup.first_output_text_section());
+  this->set_entsize(8);
+
+  // Make changes permanent.
+  this->save_states();
+  this->set_section_offsets_need_adjustment();
 }
 
-// Count the local symbols.  The ARM backend needs to know if a symbol
-// is a THUMB function or not.  For global symbols, it is easy because
-// the Symbol object keeps the ELF symbol type.  For local symbol it is
-// harder because we cannot access this information.   So we override the
-// do_count_local_symbol in parent and scan local symbols to mark
-// THUMB functions.  This is not the most efficient way but I do not want to
-// slow down other ports by calling a per symbol targer hook inside
-// Sized_relobj<size, big_endian>::do_count_local_symbols. 
+// Arm_relobj methods.
+
+// Determine if an input section is scannable for stub processing.  SHDR is
+// the header of the section and SHNDX is the section index.  OS is the output
+// section for the input section and SYMTAB is the global symbol table used to
+// look up ICF information.
+
+template<bool big_endian>
+bool
+Arm_relobj<big_endian>::section_is_scannable(
+    const elfcpp::Shdr<32, big_endian>& shdr,
+    unsigned int shndx,
+    const Output_section* os,
+    const Symbol_table *symtab)
+{
+  // Skip any empty sections, unallocated sections or sections whose
+  // type are not SHT_PROGBITS.
+  if (shdr.get_sh_size() == 0
+      || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
+      || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
+    return false;
+
+  // Skip any discarded or ICF'ed sections.
+  if (os == NULL || symtab->is_section_folded(this, shndx))
+    return false;
+
+  // If this requires special offset handling, check to see if it is
+  // a relaxed section.  If this is not, then it is a merged section that
+  // we cannot handle.
+  if (this->is_output_section_offset_invalid(shndx))
+    {
+      const Output_relaxed_input_section* poris =
+       os->find_relaxed_input_section(this, shndx);
+      if (poris == NULL)
+       return false;
+    }
+
+  return true;
+}
+
+// Determine if we want to scan the SHNDX-th section for relocation stubs.
+// This is a helper for Arm_relobj::scan_sections_for_stubs() below.
+
+template<bool big_endian>
+bool
+Arm_relobj<big_endian>::section_needs_reloc_stub_scanning(
+    const elfcpp::Shdr<32, big_endian>& shdr,
+    const Relobj::Output_sections& out_sections,
+    const Symbol_table *symtab,
+    const unsigned char* pshdrs)
+{
+  unsigned int sh_type = shdr.get_sh_type();
+  if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA)
+    return false;
+
+  // Ignore empty section.
+  off_t sh_size = shdr.get_sh_size();
+  if (sh_size == 0)
+    return false;
+
+  // Ignore reloc section with unexpected symbol table.  The
+  // error will be reported in the final link.
+  if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
+    return false;
+
+  unsigned int reloc_size;
+  if (sh_type == elfcpp::SHT_REL)
+    reloc_size = elfcpp::Elf_sizes<32>::rel_size;
+  else
+    reloc_size = elfcpp::Elf_sizes<32>::rela_size;
+
+  // Ignore reloc section with unexpected entsize or uneven size.
+  // The error will be reported in the final link.
+  if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
+    return false;
+
+  // Ignore reloc section with bad info.  This error will be
+  // reported in the final link.
+  unsigned int index = this->adjust_shndx(shdr.get_sh_info());
+  if (index >= this->shnum())
+    return false;
+
+  const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
+  const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size);
+  return this->section_is_scannable(text_shdr, index,
+                                  out_sections[index], symtab);
+}
+
+// Return the output address of either a plain input section or a relaxed
+// input section.  SHNDX is the section index.  We define and use this
+// instead of calling Output_section::output_address because that is slow
+// for large output.
+
+template<bool big_endian>
+Arm_address
+Arm_relobj<big_endian>::simple_input_section_output_address(
+    unsigned int shndx,
+    Output_section* os)
+{
+  if (this->is_output_section_offset_invalid(shndx))
+    {
+      const Output_relaxed_input_section* poris =
+       os->find_relaxed_input_section(this, shndx);
+      // We do not handle merged sections here.
+      gold_assert(poris != NULL);
+      return poris->address();
+    }
+  else
+    return os->address() + this->get_output_section_offset(shndx);
+}
+
+// Determine if we want to scan the SHNDX-th section for non-relocation stubs.
+// This is a helper for Arm_relobj::scan_sections_for_stubs() below.
+
+template<bool big_endian>
+bool
+Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning(
+    const elfcpp::Shdr<32, big_endian>& shdr,
+    unsigned int shndx,
+    Output_section* os,
+    const Symbol_table* symtab)
+{
+  if (!this->section_is_scannable(shdr, shndx, os, symtab))
+    return false;
+
+  // If the section does not cross any 4K-boundaries, it does not need to
+  // be scanned.
+  Arm_address address = this->simple_input_section_output_address(shndx, os);
+  if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU))
+    return false;
+
+  return true;
+}
+
+// Scan a section for Cortex-A8 workaround.
+
+template<bool big_endian>
+void
+Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum(
+    const elfcpp::Shdr<32, big_endian>& shdr,
+    unsigned int shndx,
+    Output_section* os,
+    Target_arm<big_endian>* arm_target)
+{
+  // Look for the first mapping symbol in this section.  It should be
+  // at (shndx, 0).
+  Mapping_symbol_position section_start(shndx, 0);
+  typename Mapping_symbols_info::const_iterator p =
+    this->mapping_symbols_info_.lower_bound(section_start);
+
+  // There are no mapping symbols for this section.  Treat it as a data-only
+  // section.  Issue a warning if section is marked as containing
+  // instructions.
+  if (p == this->mapping_symbols_info_.end() || p->first.first != shndx)
+    {
+      if ((this->section_flags(shndx) & elfcpp::SHF_EXECINSTR) != 0)
+       gold_warning(_("cannot scan executable section %u of %s for Cortex-A8 "
+                      "erratum because it has no mapping symbols."),
+                    shndx, this->name().c_str());
+      return;
+    }
+
+  Arm_address output_address =
+    this->simple_input_section_output_address(shndx, os);
+
+  // Get the section contents.
+  section_size_type input_view_size = 0;
+  const unsigned char* input_view =
+    this->section_contents(shndx, &input_view_size, false);
+
+  // We need to go through the mapping symbols to determine what to
+  // scan.  There are two reasons.  First, we should look at THUMB code and
+  // THUMB code only.  Second, we only want to look at the 4K-page boundary
+  // to speed up the scanning.
+  
+  while (p != this->mapping_symbols_info_.end()
+       && p->first.first == shndx)
+    {
+      typename Mapping_symbols_info::const_iterator next =
+       this->mapping_symbols_info_.upper_bound(p->first);
+
+      // Only scan part of a section with THUMB code.
+      if (p->second == 't')
+       {
+         // Determine the end of this range.
+         section_size_type span_start =
+           convert_to_section_size_type(p->first.second);
+         section_size_type span_end;
+         if (next != this->mapping_symbols_info_.end()
+             && next->first.first == shndx)
+           span_end = convert_to_section_size_type(next->first.second);
+         else
+           span_end = convert_to_section_size_type(shdr.get_sh_size());
+         
+         if (((span_start + output_address) & ~0xfffUL)
+             != ((span_end + output_address - 1) & ~0xfffUL))
+           {
+             arm_target->scan_span_for_cortex_a8_erratum(this, shndx,
+                                                         span_start, span_end,
+                                                         input_view,
+                                                         output_address);
+           }
+       }
+
+      p = next; 
+    }
+}
+
+// Scan relocations for stub generation.
+
+template<bool big_endian>
+void
+Arm_relobj<big_endian>::scan_sections_for_stubs(
+    Target_arm<big_endian>* arm_target,
+    const Symbol_table* symtab,
+    const Layout* layout)
+{
+  unsigned int shnum = this->shnum();
+  const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
+
+  // Read the section headers.
+  const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
+                                              shnum * shdr_size,
+                                              true, true);
+
+  // To speed up processing, we set up hash tables for fast lookup of
+  // input offsets to output addresses.
+  this->initialize_input_to_output_maps();
+
+  const Relobj::Output_sections& out_sections(this->output_sections());
+
+  Relocate_info<32, big_endian> relinfo;
+  relinfo.symtab = symtab;
+  relinfo.layout = layout;
+  relinfo.object = this;
+
+  // Do relocation stubs scanning.
+  const unsigned char* p = pshdrs + shdr_size;
+  for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
+    {
+      const elfcpp::Shdr<32, big_endian> shdr(p);
+      if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
+                                                 pshdrs))
+       {
+         unsigned int index = this->adjust_shndx(shdr.get_sh_info());
+         Arm_address output_offset = this->get_output_section_offset(index);
+         Arm_address output_address;
+         if (output_offset != invalid_address)
+           output_address = out_sections[index]->address() + output_offset;
+         else
+           {
+             // Currently this only happens for a relaxed section.
+             const Output_relaxed_input_section* poris =
+             out_sections[index]->find_relaxed_input_section(this, index);
+             gold_assert(poris != NULL);
+             output_address = poris->address();
+           }
+
+         // Get the relocations.
+         const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
+                                                       shdr.get_sh_size(),
+                                                       true, false);
+
+         // Get the section contents.  This does work for the case in which
+         // we modify the contents of an input section.  We need to pass the
+         // output view under such circumstances.
+         section_size_type input_view_size = 0;
+         const unsigned char* input_view =
+           this->section_contents(index, &input_view_size, false);
+
+         relinfo.reloc_shndx = i;
+         relinfo.data_shndx = index;
+         unsigned int sh_type = shdr.get_sh_type();
+         unsigned int reloc_size;
+         if (sh_type == elfcpp::SHT_REL)
+           reloc_size = elfcpp::Elf_sizes<32>::rel_size;
+         else
+           reloc_size = elfcpp::Elf_sizes<32>::rela_size;
+
+         Output_section* os = out_sections[index];
+         arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
+                                            shdr.get_sh_size() / reloc_size,
+                                            os,
+                                            output_offset == invalid_address,
+                                            input_view, output_address,
+                                            input_view_size);
+       }
+    }
+
+  // Do Cortex-A8 erratum stubs scanning.  This has to be done for a section
+  // after its relocation section, if there is one, is processed for
+  // relocation stubs.  Merging this loop with the one above would have been
+  // complicated since we would have had to make sure that relocation stub
+  // scanning is done first.
+  if (arm_target->fix_cortex_a8())
+    {
+      const unsigned char* p = pshdrs + shdr_size;
+      for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
+       {
+         const elfcpp::Shdr<32, big_endian> shdr(p);
+         if (this->section_needs_cortex_a8_stub_scanning(shdr, i,
+                                                         out_sections[i],
+                                                         symtab))
+           this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i],
+                                                    arm_target);
+       }
+    }
+
+  // After we've done the relocations, we release the hash tables,
+  // since we no longer need them.
+  this->free_input_to_output_maps();
+}
+
+// Count the local symbols.  The ARM backend needs to know if a symbol
+// is a THUMB function or not.  For global symbols, it is easy because
+// the Symbol object keeps the ELF symbol type.  For local symbol it is
+// harder because we cannot access this information.   So we override the
+// do_count_local_symbol in parent and scan local symbols to mark
+// THUMB functions.  This is not the most efficient way but I do not want to
+// slow down other ports by calling a per symbol targer hook inside
+// Sized_relobj<size, big_endian>::do_count_local_symbols. 
 
 template<bool big_endian>
 void
@@ -3282,6 +6200,27 @@ Arm_relobj<big_endian>::do_count_local_symbols(
   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
                                              locsize, true, true);
 
+  // For mapping symbol processing, we need to read the symbol names.
+  unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
+  if (strtab_shndx >= this->shnum())
+    {
+      this->error(_("invalid symbol table name index: %u"), strtab_shndx);
+      return;
+    }
+
+  elfcpp::Shdr<32, big_endian>
+    strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
+  if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
+    {
+      this->error(_("symbol table name section has wrong type: %u"),
+                 static_cast<unsigned int>(strtabshdr.get_sh_type()));
+      return;
+    }
+  const char* pnames =
+    reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
+                                                strtabshdr.get_sh_size(),
+                                                false, false));
+
   // Loop over the local symbols and mark any local symbols pointing
   // to THUMB functions.
 
@@ -3296,6 +6235,20 @@ Arm_relobj<big_endian>::do_count_local_symbols(
       Symbol_value<32>& lv((*plocal_values)[i]);
       Arm_address input_value = lv.input_value();
 
+      // Check to see if this is a mapping symbol.
+      const char* sym_name = pnames + sym.get_st_name();
+      if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name))
+       {
+         bool is_ordinary;
+         unsigned int input_shndx =
+           this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
+         gold_assert(is_ordinary);
+
+         // Strip of LSB in case this is a THUMB symbol.
+         Mapping_symbol_position msp(input_shndx, input_value & ~1U);
+         this->mapping_symbols_info_[msp] = sym_name[1];
+       }
+
       if (st_type == elfcpp::STT_ARM_TFUNC
          || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0)))
        {
@@ -3312,15 +6265,14 @@ Arm_relobj<big_endian>::do_count_local_symbols(
 template<bool big_endian>
 void
 Arm_relobj<big_endian>::do_relocate_sections(
-    const General_options& options,
     const Symbol_table* symtab,
     const Layout* layout,
     const unsigned char* pshdrs,
     typename Sized_relobj<32, big_endian>::Views* pviews)
 {
   // Call parent to relocate sections.
-  Sized_relobj<32, big_endian>::do_relocate_sections(options, symtab, layout,
-                                                    pshdrs, pviews); 
+  Sized_relobj<32, big_endian>::do_relocate_sections(symtab, layout, pshdrs,
+                                                    pviews); 
 
   // We do not generate stubs if doing a relocatable link.
   if (parameters->options().relocatable())
@@ -3333,7 +6285,6 @@ Arm_relobj<big_endian>::do_relocate_sections(
     Target_arm<big_endian>::default_target();
 
   Relocate_info<32, big_endian> relinfo;
-  relinfo.options = &options;
   relinfo.symtab = symtab;
   relinfo.layout = layout;
   relinfo.object = this;
@@ -3343,37 +6294,181 @@ Arm_relobj<big_endian>::do_relocate_sections(
       Arm_input_section<big_endian>* arm_input_section =
        arm_target->find_arm_input_section(this, i);
 
-      if (arm_input_section == NULL
-         || !arm_input_section->is_stub_table_owner()
-         || arm_input_section->stub_table()->empty())
+      if (arm_input_section != NULL
+         && arm_input_section->is_stub_table_owner()
+         && !arm_input_section->stub_table()->empty())
+       {
+         // We cannot discard a section if it owns a stub table.
+         Output_section* os = this->output_section(i);
+         gold_assert(os != NULL);
+
+         relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
+         relinfo.reloc_shdr = NULL;
+         relinfo.data_shndx = i;
+         relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
+
+         gold_assert((*pviews)[i].view != NULL);
+
+         // We are passed the output section view.  Adjust it to cover the
+         // stub table only.
+         Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
+         gold_assert((stub_table->address() >= (*pviews)[i].address)
+                     && ((stub_table->address() + stub_table->data_size())
+                         <= (*pviews)[i].address + (*pviews)[i].view_size));
+
+         off_t offset = stub_table->address() - (*pviews)[i].address;
+         unsigned char* view = (*pviews)[i].view + offset;
+         Arm_address address = stub_table->address();
+         section_size_type view_size = stub_table->data_size();
+         stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
+                                    view_size);
+       }
+
+      // Apply Cortex A8 workaround if applicable.
+      if (this->section_has_cortex_a8_workaround(i))
+       {
+         unsigned char* view = (*pviews)[i].view;
+         Arm_address view_address = (*pviews)[i].address;
+         section_size_type view_size = (*pviews)[i].view_size;
+         Stub_table<big_endian>* stub_table = this->stub_tables_[i];
+
+         // Adjust view to cover section.
+         Output_section* os = this->output_section(i);
+         gold_assert(os != NULL);
+         Arm_address section_address =
+           this->simple_input_section_output_address(i, os);
+         uint64_t section_size = this->section_size(i);
+
+         gold_assert(section_address >= view_address
+                     && ((section_address + section_size)
+                         <= (view_address + view_size)));
+
+         unsigned char* section_view = view + (section_address - view_address);
+
+         // Apply the Cortex-A8 workaround to the output address range
+         // corresponding to this input section.
+         stub_table->apply_cortex_a8_workaround_to_address_range(
+             arm_target,
+             section_view,
+             section_address,
+             section_size);
+       }
+    }
+}
+
+// Find the linked text section of an EXIDX section by looking the the first
+// relocation.  4.4.1 of the EHABI specifications says that an EXIDX section
+// must be linked to to its associated code section via the sh_link field of
+// its section header.  However, some tools are broken and the link is not
+// always set.  LD just drops such an EXIDX section silently, causing the
+// associated code not unwindabled.   Here we try a little bit harder to
+// discover the linked code section.
+//
+// PSHDR points to the section header of a relocation section of an EXIDX
+// section.  If we can find a linked text section, return true and
+// store the text section index in the location PSHNDX.  Otherwise
+// return false.
+
+template<bool big_endian>
+bool
+Arm_relobj<big_endian>::find_linked_text_section(
+    const unsigned char* pshdr,
+    const unsigned char* psyms,
+    unsigned int* pshndx)
+{
+  elfcpp::Shdr<32, big_endian> shdr(pshdr);
+  
+  // If there is no relocation, we cannot find the linked text section.
+  size_t reloc_size;
+  if (shdr.get_sh_type() == elfcpp::SHT_REL)
+      reloc_size = elfcpp::Elf_sizes<32>::rel_size;
+  else
+      reloc_size = elfcpp::Elf_sizes<32>::rela_size;
+  size_t reloc_count = shdr.get_sh_size() / reloc_size;
+  // Get the relocations.
+  const unsigned char* prelocs =
+      this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false); 
+
+  // Find the REL31 relocation for the first word of the first EXIDX entry.
+  for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
+    {
+      Arm_address r_offset;
+      typename elfcpp::Elf_types<32>::Elf_WXword r_info;
+      if (shdr.get_sh_type() == elfcpp::SHT_REL)
+       {
+         typename elfcpp::Rel<32, big_endian> reloc(prelocs);
+         r_info = reloc.get_r_info();
+         r_offset = reloc.get_r_offset();
+       }
+      else
+       {
+         typename elfcpp::Rela<32, big_endian> reloc(prelocs);
+         r_info = reloc.get_r_info();
+         r_offset = reloc.get_r_offset();
+       }
+
+      unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
+      if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31)
        continue;
 
-      // We cannot discard a section if it owns a stub table.
-      Output_section* os = this->output_section(i);
-      gold_assert(os != NULL);
+      unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
+      if (r_sym == 0
+         || r_sym >= this->local_symbol_count()
+         || r_offset != 0)
+       continue;
 
-      relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
-      relinfo.reloc_shdr = NULL;
-      relinfo.data_shndx = i;
-      relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size;
+      // This is the relocation for the first word of the first EXIDX entry.
+      // We expect to see a local section symbol.
+      const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
+      elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size);
+      if (sym.get_st_type() == elfcpp::STT_SECTION)
+       {
+         bool is_ordinary;
+         *pshndx =
+           this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary);
+         gold_assert(is_ordinary);
+         return true;
+       }
+      else
+       return false;
+    }
 
-      gold_assert((*pviews)[i].view != NULL);
+  return false;
+}
 
-      // We are passed the output section view.  Adjust it to cover the
-      // stub table only.
-      Stub_table<big_endian>* stub_table = arm_input_section->stub_table();
-      gold_assert((stub_table->address() >= (*pviews)[i].address)
-                 && ((stub_table->address() + stub_table->data_size())
-                     <= (*pviews)[i].address + (*pviews)[i].view_size));
+// Make an EXIDX input section object for an EXIDX section whose index is
+// SHNDX.  SHDR is the section header of the EXIDX section and TEXT_SHNDX
+// is the section index of the linked text section.
 
-      off_t offset = stub_table->address() - (*pviews)[i].address;
-      unsigned char* view = (*pviews)[i].view + offset;
-      Arm_address address = stub_table->address();
-      section_size_type view_size = stub_table->data_size();
-      stub_table->relocate_stubs(&relinfo, arm_target, os, view, address,
-                                view_size);
+template<bool big_endian>
+void
+Arm_relobj<big_endian>::make_exidx_input_section(
+    unsigned int shndx,
+    const elfcpp::Shdr<32, big_endian>& shdr,
+    unsigned int text_shndx)
+{
+  // Issue an error and ignore this EXIDX section if it points to a text
+  // section already has an EXIDX section.
+  if (this->exidx_section_map_[text_shndx] != NULL)
+    {
+      gold_error(_("EXIDX sections %u and %u both link to text section %u "
+                  "in %s"),
+                shndx, this->exidx_section_map_[text_shndx]->shndx(),
+                text_shndx, this->name().c_str());
+      return;
     }
+
+  // Create an Arm_exidx_input_section object for this EXIDX section.
+  Arm_exidx_input_section* exidx_input_section =
+    new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(),
+                               shdr.get_sh_addralign());
+  this->exidx_section_map_[text_shndx] = exidx_input_section;
+
+  // Also map the EXIDX section index to this.
+  gold_assert(this->exidx_section_map_[shndx] == NULL);
+  this->exidx_section_map_[shndx] = exidx_input_section;
 }
 
 // Read the symbol information.
@@ -3385,49 +6480,340 @@ Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
   // Call parent class to read symbol information.
   Sized_relobj<32, big_endian>::do_read_symbols(sd);
 
+  // If this input file is a binary file, it has no processor
+  // specific flags and attributes section.
+  Input_file::Format format = this->input_file()->format();
+  if (format != Input_file::FORMAT_ELF)
+    {
+      gold_assert(format == Input_file::FORMAT_BINARY);
+      this->merge_flags_and_attributes_ = false;
+      return;
+    }
+
   // Read processor-specific flags in ELF file header.
   const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
                                              elfcpp::Elf_sizes<32>::ehdr_size,
                                              true, false);
   elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
   this->processor_specific_flags_ = ehdr.get_e_flags();
-}
 
-// Arm_dynobj methods.
+  // Go over the section headers and look for .ARM.attributes and .ARM.exidx
+  // sections.
+  std::vector<unsigned int> deferred_exidx_sections;
+  const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
+  const unsigned char* pshdrs = sd->section_headers->data();
+  const unsigned char *ps = pshdrs + shdr_size;
+  bool must_merge_flags_and_attributes = false;
+  for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
+    {
+      elfcpp::Shdr<32, big_endian> shdr(ps);
 
-// Read the symbol information.
+      // Sometimes an object has no contents except the section name string
+      // table and an empty symbol table with the undefined symbol.  We
+      // don't want to merge processor-specific flags from such an object.
+      if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB)
+       {
+         // Symbol table is not empty.
+         const elfcpp::Elf_types<32>::Elf_WXword sym_size =
+            elfcpp::Elf_sizes<32>::sym_size;
+         if (shdr.get_sh_size() > sym_size)
+           must_merge_flags_and_attributes = true;
+       }
+      else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB)
+       // If this is neither an empty symbol table nor a string table,
+       // be conservative.
+       must_merge_flags_and_attributes = true;
+
+      if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
+       {
+         gold_assert(this->attributes_section_data_ == NULL);
+         section_offset_type section_offset = shdr.get_sh_offset();
+         section_size_type section_size =
+           convert_to_section_size_type(shdr.get_sh_size());
+         File_view* view = this->get_lasting_view(section_offset,
+                                                  section_size, true, false);
+         this->attributes_section_data_ =
+           new Attributes_section_data(view->data(), section_size);
+       }
+      else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
+       {
+         unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
+         if (text_shndx >= this->shnum())
+           gold_error(_("EXIDX section %u linked to invalid section %u"),
+                      i, text_shndx);
+         else if (text_shndx == elfcpp::SHN_UNDEF)
+           deferred_exidx_sections.push_back(i);
+         else
+           this->make_exidx_input_section(i, shdr, text_shndx);
+       }
+    }
+
+  // This is rare.
+  if (!must_merge_flags_and_attributes)
+    {
+      this->merge_flags_and_attributes_ = false;
+      return;
+    }
+
+  // Some tools are broken and they do not set the link of EXIDX sections. 
+  // We look at the first relocation to figure out the linked sections.
+  if (!deferred_exidx_sections.empty())
+    {
+      // We need to go over the section headers again to find the mapping
+      // from sections being relocated to their relocation sections.  This is
+      // a bit inefficient as we could do that in the loop above.  However,
+      // we do not expect any deferred EXIDX sections normally.  So we do not
+      // want to slow down the most common path.
+      typedef Unordered_map<unsigned int, unsigned int> Reloc_map;
+      Reloc_map reloc_map;
+      ps = pshdrs + shdr_size;
+      for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
+       {
+         elfcpp::Shdr<32, big_endian> shdr(ps);
+         elfcpp::Elf_Word sh_type = shdr.get_sh_type();
+         if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA)
+           {
+             unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info());
+             if (info_shndx >= this->shnum())
+               gold_error(_("relocation section %u has invalid info %u"),
+                          i, info_shndx);
+             Reloc_map::value_type value(info_shndx, i);
+             std::pair<Reloc_map::iterator, bool> result =
+               reloc_map.insert(value);
+             if (!result.second)
+               gold_error(_("section %u has multiple relocation sections "
+                            "%u and %u"),
+                          info_shndx, i, reloc_map[info_shndx]);
+           }
+       }
+
+      // Read the symbol table section header.
+      const unsigned int symtab_shndx = this->symtab_shndx();
+      elfcpp::Shdr<32, big_endian>
+         symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
+      gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
+
+      // Read the local symbols.
+      const int sym_size =elfcpp::Elf_sizes<32>::sym_size;
+      const unsigned int loccount = this->local_symbol_count();
+      gold_assert(loccount == symtabshdr.get_sh_info());
+      off_t locsize = loccount * sym_size;
+      const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
+                                                 locsize, true, true);
+
+      // Process the deferred EXIDX sections. 
+      for(unsigned int i = 0; i < deferred_exidx_sections.size(); ++i)
+       {
+         unsigned int shndx = deferred_exidx_sections[i];
+         elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size);
+         unsigned int text_shndx;
+         Reloc_map::const_iterator it = reloc_map.find(shndx);
+         if (it != reloc_map.end()
+             && find_linked_text_section(pshdrs + it->second * shdr_size,
+                                         psyms, &text_shndx))
+           this->make_exidx_input_section(shndx, shdr, text_shndx);
+         else
+           gold_error(_("EXIDX section %u has no linked text section."),
+                      shndx);
+       }
+    }
+}
+
+// Process relocations for garbage collection.  The ARM target uses .ARM.exidx
+// sections for unwinding.  These sections are referenced implicitly by 
+// text sections linked in the section headers.  If we ignore these implict
+// references, the .ARM.exidx sections and any .ARM.extab sections they use
+// will be garbage-collected incorrectly.  Hence we override the same function
+// in the base class to handle these implicit references.
 
 template<bool big_endian>
 void
-Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
+Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab,
+                                            Layout* layout,
+                                            Read_relocs_data* rd)
 {
-  // Call parent class to read symbol information.
-  Sized_dynobj<32, big_endian>::do_read_symbols(sd);
+  // First, call base class method to process relocations in this object.
+  Sized_relobj<32, big_endian>::do_gc_process_relocs(symtab, layout, rd);
 
-  // Read processor-specific flags in ELF file header.
-  const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
-                                             elfcpp::Elf_sizes<32>::ehdr_size,
-                                             true, false);
-  elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
-  this->processor_specific_flags_ = ehdr.get_e_flags();
-}
+  // If --gc-sections is not specified, there is nothing more to do.
+  // This happens when --icf is used but --gc-sections is not.
+  if (!parameters->options().gc_sections())
+    return;
+  
+  unsigned int shnum = this->shnum();
+  const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
+  const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
+                                              shnum * shdr_size,
+                                              true, true);
 
-// Stub_addend_reader methods.
+  // Scan section headers for sections of type SHT_ARM_EXIDX.  Add references
+  // to these from the linked text sections.
+  const unsigned char* ps = pshdrs + shdr_size;
+  for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size)
+    {
+      elfcpp::Shdr<32, big_endian> shdr(ps);
+      if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX)
+       {
+         // Found an .ARM.exidx section, add it to the set of reachable
+         // sections from its linked text section.
+         unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link());
+         symtab->gc()->add_reference(this, text_shndx, this, i);
+       }
+    }
+}
 
-// Read the addend of a REL relocation of type R_TYPE at VIEW.
+// Update output local symbol count.  Owing to EXIDX entry merging, some local
+// symbols  will be removed in output.  Adjust output local symbol count
+// accordingly.  We can only changed the static output local symbol count.  It
+// is too late to change the dynamic symbols.
 
 template<bool big_endian>
-elfcpp::Elf_types<32>::Elf_Swxword
-Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
-    unsigned int r_type,
-    const unsigned char* view,
-    const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
+void
+Arm_relobj<big_endian>::update_output_local_symbol_count()
 {
-  switch (r_type)
+  // Caller should check that this needs updating.  We want caller checking
+  // because output_local_symbol_count_needs_update() is most likely inlined.
+  gold_assert(this->output_local_symbol_count_needs_update_);
+
+  gold_assert(this->symtab_shndx() != -1U);
+  if (this->symtab_shndx() == 0)
     {
-    case elfcpp::R_ARM_CALL:
-    case elfcpp::R_ARM_JUMP24:
-    case elfcpp::R_ARM_PLT32:
+      // This object has no symbols.  Weird but legal.
+      return;
+    }
+
+  // Read the symbol table section header.
+  const unsigned int symtab_shndx = this->symtab_shndx();
+  elfcpp::Shdr<32, big_endian>
+    symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
+  gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
+
+  // Read the local symbols.
+  const int sym_size = elfcpp::Elf_sizes<32>::sym_size;
+  const unsigned int loccount = this->local_symbol_count();
+  gold_assert(loccount == symtabshdr.get_sh_info());
+  off_t locsize = loccount * sym_size;
+  const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
+                                             locsize, true, true);
+
+  // Loop over the local symbols.
+
+  typedef typename Sized_relobj<32, big_endian>::Output_sections
+     Output_sections;
+  const Output_sections& out_sections(this->output_sections());
+  unsigned int shnum = this->shnum();
+  unsigned int count = 0;
+  // Skip the first, dummy, symbol.
+  psyms += sym_size;
+  for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
+    {
+      elfcpp::Sym<32, big_endian> sym(psyms);
+
+      Symbol_value<32>& lv((*this->local_values())[i]);
+
+      // This local symbol was already discarded by do_count_local_symbols.
+      if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry())
+       continue;
+
+      bool is_ordinary;
+      unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(),
+                                                 &is_ordinary);
+
+      if (shndx < shnum)
+       {
+         Output_section* os = out_sections[shndx];
+
+         // This local symbol no longer has an output section.  Discard it.
+         if (os == NULL)
+           {
+             lv.set_no_output_symtab_entry();
+             continue;
+           }
+
+         // Currently we only discard parts of EXIDX input sections.
+         // We explicitly check for a merged EXIDX input section to avoid
+         // calling Output_section_data::output_offset unless necessary.
+         if ((this->get_output_section_offset(shndx) == invalid_address)
+             && (this->exidx_input_section_by_shndx(shndx) != NULL))
+           {
+             section_offset_type output_offset =
+               os->output_offset(this, shndx, lv.input_value());
+             if (output_offset == -1)
+               {
+                 // This symbol is defined in a part of an EXIDX input section
+                 // that is discarded due to entry merging.
+                 lv.set_no_output_symtab_entry();
+                 continue;
+               }       
+           }
+       }
+
+      ++count;
+    }
+
+  this->set_output_local_symbol_count(count);
+  this->output_local_symbol_count_needs_update_ = false;
+}
+
+// Arm_dynobj methods.
+
+// Read the symbol information.
+
+template<bool big_endian>
+void
+Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd)
+{
+  // Call parent class to read symbol information.
+  Sized_dynobj<32, big_endian>::do_read_symbols(sd);
+
+  // Read processor-specific flags in ELF file header.
+  const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
+                                             elfcpp::Elf_sizes<32>::ehdr_size,
+                                             true, false);
+  elfcpp::Ehdr<32, big_endian> ehdr(pehdr);
+  this->processor_specific_flags_ = ehdr.get_e_flags();
+
+  // Read the attributes section if there is one.
+  // We read from the end because gas seems to put it near the end of
+  // the section headers.
+  const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
+  const unsigned char *ps =
+    sd->section_headers->data() + shdr_size * (this->shnum() - 1);
+  for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size)
+    {
+      elfcpp::Shdr<32, big_endian> shdr(ps);
+      if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES)
+       {
+         section_offset_type section_offset = shdr.get_sh_offset();
+         section_size_type section_size =
+           convert_to_section_size_type(shdr.get_sh_size());
+         File_view* view = this->get_lasting_view(section_offset,
+                                                  section_size, true, false);
+         this->attributes_section_data_ =
+           new Attributes_section_data(view->data(), section_size);
+         break;
+       }
+    }
+}
+
+// Stub_addend_reader methods.
+
+// Read the addend of a REL relocation of type R_TYPE at VIEW.
+
+template<bool big_endian>
+elfcpp::Elf_types<32>::Elf_Swxword
+Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
+    unsigned int r_type,
+    const unsigned char* view,
+    const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const
+{
+  typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
+  
+  switch (r_type)
+    {
+    case elfcpp::R_ARM_CALL:
+    case elfcpp::R_ARM_JUMP24:
+    case elfcpp::R_ARM_PLT32:
       {
        typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
        const Valtype* wv = reinterpret_cast<const Valtype*>(view);
@@ -3439,23 +6825,11 @@ Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
     case elfcpp::R_ARM_THM_JUMP24:
     case elfcpp::R_ARM_THM_XPC22:
       {
-       // Fetch the addend.  We use the Thumb-2 encoding (backwards
-       // compatible with Thumb-1) involving the J1 and J2 bits.
        typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
        const Valtype* wv = reinterpret_cast<const Valtype*>(view);
        Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
        Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
-
-       uint32_t s = (upper_insn & (1 << 10)) >> 10;
-       uint32_t upper = upper_insn & 0x3ff;
-       uint32_t lower = lower_insn & 0x7ff;
-       uint32_t j1 = (lower_insn & (1 << 13)) >> 13;
-       uint32_t j2 = (lower_insn & (1 << 11)) >> 11;
-       uint32_t i1 = j1 ^ s ? 0 : 1;
-       uint32_t i2 = j2 ^ s ? 0 : 1;
-
-       return utils::sign_extend<25>((s << 24) | (i1 << 23) | (i2 << 22)
-                                     | (upper << 12) | (lower << 1));
+       return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn);
       }
 
     case elfcpp::R_ARM_THM_JUMP19:
@@ -3464,16 +6838,7 @@ Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
        const Valtype* wv = reinterpret_cast<const Valtype*>(view);
        Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
        Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
-
-       // Reconstruct the top three bits and squish the two 11 bit pieces
-       // together.
-       uint32_t S = (upper_insn & 0x0400) >> 10;
-       uint32_t J1 = (lower_insn & 0x2000) >> 13;
-       uint32_t J2 = (lower_insn & 0x0800) >> 11;
-       uint32_t upper =
-         (S << 8) | (J2 << 7) | (J1 << 6) | (upper_insn & 0x003f);
-       uint32_t lower = (lower_insn & 0x07ff);
-       return utils::sign_extend<23>((upper << 12) | (lower << 1));
+       return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn);
       }
 
     default:
@@ -3481,6 +6846,162 @@ Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()(
     }
 }
 
+// Arm_output_data_got methods.
+
+// Add a GOT pair for R_ARM_TLS_GD32.  The creates a pair of GOT entries.
+// The first one is initialized to be 1, which is the module index for
+// the main executable and the second one 0.  A reloc of the type
+// R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will
+// be applied by gold.  GSYM is a global symbol.
+//
+template<bool big_endian>
+void
+Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
+    unsigned int got_type,
+    Symbol* gsym)
+{
+  if (gsym->has_got_offset(got_type))
+    return;
+
+  // We are doing a static link.  Just mark it as belong to module 1,
+  // the executable.
+  unsigned int got_offset = this->add_constant(1);
+  gsym->set_got_offset(got_type, got_offset); 
+  got_offset = this->add_constant(0);
+  this->static_relocs_.push_back(Static_reloc(got_offset,
+                                             elfcpp::R_ARM_TLS_DTPOFF32,
+                                             gsym));
+}
+
+// Same as the above but for a local symbol.
+
+template<bool big_endian>
+void
+Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc(
+  unsigned int got_type,
+  Sized_relobj<32, big_endian>* object,
+  unsigned int index)
+{
+  if (object->local_has_got_offset(index, got_type))
+    return;
+
+  // We are doing a static link.  Just mark it as belong to module 1,
+  // the executable.
+  unsigned int got_offset = this->add_constant(1);
+  object->set_local_got_offset(index, got_type, got_offset);
+  got_offset = this->add_constant(0);
+  this->static_relocs_.push_back(Static_reloc(got_offset, 
+                                             elfcpp::R_ARM_TLS_DTPOFF32, 
+                                             object, index));
+}
+
+template<bool big_endian>
+void
+Arm_output_data_got<big_endian>::do_write(Output_file* of)
+{
+  // Call parent to write out GOT.
+  Output_data_got<32, big_endian>::do_write(of);
+
+  // We are done if there is no fix up.
+  if (this->static_relocs_.empty())
+    return;
+
+  gold_assert(parameters->doing_static_link());
+
+  const off_t offset = this->offset();
+  const section_size_type oview_size =
+    convert_to_section_size_type(this->data_size());
+  unsigned char* const oview = of->get_output_view(offset, oview_size);
+
+  Output_segment* tls_segment = this->layout_->tls_segment();
+  gold_assert(tls_segment != NULL);
+  
+  // The thread pointer $tp points to the TCB, which is followed by the
+  // TLS.  So we need to adjust $tp relative addressing by this amount.
+  Arm_address aligned_tcb_size =
+    align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
+
+  for (size_t i = 0; i < this->static_relocs_.size(); ++i)
+    {
+      Static_reloc& reloc(this->static_relocs_[i]);
+      
+      Arm_address value;
+      if (!reloc.symbol_is_global())
+       {
+         Sized_relobj<32, big_endian>* object = reloc.relobj();
+         const Symbol_value<32>* psymval =
+           reloc.relobj()->local_symbol(reloc.index());
+
+         // We are doing static linking.  Issue an error and skip this
+         // relocation if the symbol is undefined or in a discarded_section.
+         bool is_ordinary;
+         unsigned int shndx = psymval->input_shndx(&is_ordinary);
+         if ((shndx == elfcpp::SHN_UNDEF)
+             || (is_ordinary
+                 && shndx != elfcpp::SHN_UNDEF
+                 && !object->is_section_included(shndx)
+                 && !this->symbol_table_->is_section_folded(object, shndx)))
+           {
+             gold_error(_("undefined or discarded local symbol %u from "
+                          " object %s in GOT"),
+                        reloc.index(), reloc.relobj()->name().c_str());
+             continue;
+           }
+         
+         value = psymval->value(object, 0);
+       }
+      else
+       {
+         const Symbol* gsym = reloc.symbol();
+         gold_assert(gsym != NULL);
+         if (gsym->is_forwarder())
+           gsym = this->symbol_table_->resolve_forwards(gsym);
+
+         // We are doing static linking.  Issue an error and skip this
+         // relocation if the symbol is undefined or in a discarded_section
+         // unless it is a weakly_undefined symbol.
+         if ((gsym->is_defined_in_discarded_section()
+              || gsym->is_undefined())
+             && !gsym->is_weak_undefined())
+           {
+             gold_error(_("undefined or discarded symbol %s in GOT"),
+                        gsym->name());
+             continue;
+           }
+
+         if (!gsym->is_weak_undefined())
+           {
+             const Sized_symbol<32>* sym =
+               static_cast<const Sized_symbol<32>*>(gsym);
+             value = sym->value();
+           }
+         else
+             value = 0;
+       }
+
+      unsigned got_offset = reloc.got_offset();
+      gold_assert(got_offset < oview_size);
+
+      typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
+      Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
+      Valtype x;
+      switch (reloc.r_type())
+       {
+       case elfcpp::R_ARM_TLS_DTPOFF32:
+         x = value;
+         break;
+       case elfcpp::R_ARM_TLS_TPOFF32:
+         x = value + aligned_tcb_size;
+         break;
+       default:
+         gold_unreachable();
+       }
+      elfcpp::Swap<32, big_endian>::writeval(wv, x);
+    }
+
+  of->write_output_view(offset, oview_size, oview);
+}
+
 // A class to handle the PLT data.
 
 template<bool big_endian>
@@ -3548,7 +7069,8 @@ Output_data_plt_arm<big_endian>::Output_data_plt_arm(Layout* layout,
 {
   this->rel_ = new Reloc_section(false);
   layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
-                                 elfcpp::SHF_ALLOC, this->rel_);
+                                 elfcpp::SHF_ALLOC, this->rel_, true, false,
+                                 false, false);
 }
 
 template<bool big_endian>
@@ -3710,11 +7232,95 @@ Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout,
       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
                                      (elfcpp::SHF_ALLOC
                                       | elfcpp::SHF_EXECINSTR),
-                                     this->plt_);
+                                     this->plt_, false, false, false, false);
     }
   this->plt_->add_entry(gsym);
 }
 
+// Get the section to use for TLS_DESC relocations.
+
+template<bool big_endian>
+typename Target_arm<big_endian>::Reloc_section*
+Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const
+{
+  return this->plt_section()->rel_tls_desc(layout);
+}
+
+// Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
+
+template<bool big_endian>
+void
+Target_arm<big_endian>::define_tls_base_symbol(
+    Symbol_table* symtab,
+    Layout* layout)
+{
+  if (this->tls_base_symbol_defined_)
+    return;
+
+  Output_segment* tls_segment = layout->tls_segment();
+  if (tls_segment != NULL)
+    {
+      bool is_exec = parameters->options().output_is_executable();
+      symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
+                                      Symbol_table::PREDEFINED,
+                                      tls_segment, 0, 0,
+                                      elfcpp::STT_TLS,
+                                      elfcpp::STB_LOCAL,
+                                      elfcpp::STV_HIDDEN, 0,
+                                      (is_exec
+                                       ? Symbol::SEGMENT_END
+                                       : Symbol::SEGMENT_START),
+                                      true);
+    }
+  this->tls_base_symbol_defined_ = true;
+}
+
+// Create a GOT entry for the TLS module index.
+
+template<bool big_endian>
+unsigned int
+Target_arm<big_endian>::got_mod_index_entry(
+    Symbol_table* symtab,
+    Layout* layout,
+    Sized_relobj<32, big_endian>* object)
+{
+  if (this->got_mod_index_offset_ == -1U)
+    {
+      gold_assert(symtab != NULL && layout != NULL && object != NULL);
+      Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout);
+      unsigned int got_offset;
+      if (!parameters->doing_static_link())
+       {
+         got_offset = got->add_constant(0);
+         Reloc_section* rel_dyn = this->rel_dyn_section(layout);
+         rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got,
+                            got_offset);
+       }
+      else
+       {
+         // We are doing a static link.  Just mark it as belong to module 1,
+         // the executable.
+         got_offset = got->add_constant(1);
+       }
+
+      got->add_constant(0);
+      this->got_mod_index_offset_ = got_offset;
+    }
+  return this->got_mod_index_offset_;
+}
+
+// Optimize the TLS relocation type based on what we know about the
+// symbol.  IS_FINAL is true if the final address of this symbol is
+// known at link time.
+
+template<bool big_endian>
+tls::Tls_optimization
+Target_arm<big_endian>::optimize_tls_reloc(bool, int)
+{
+  // FIXME: Currently we do not do any TLS optimization.
+  return tls::TLSOPT_NONE;
+}
+
 // Report an unsupported relocation against a local symbol.
 
 template<bool big_endian>
@@ -3758,15 +7364,21 @@ Target_arm<big_endian>::Scan::check_non_pic(Relobj* object,
       return;
 
     default:
-      // This prevents us from issuing more than one error per reloc
-      // section.  But we can still wind up issuing more than one
-      // error per object file.
-      if (this->issued_non_pic_error_)
+      {
+       // This prevents us from issuing more than one error per reloc
+       // section.  But we can still wind up issuing more than one
+       // error per object file.
+       if (this->issued_non_pic_error_)
+         return;
+       const Arm_reloc_property* reloc_property =
+         arm_reloc_property_table->get_reloc_property(r_type);
+       gold_assert(reloc_property != NULL);
+       object->error(_("requires unsupported dynamic reloc %s; "
+                     "recompile with -fPIC"),
+                     reloc_property->name().c_str());
+       this->issued_non_pic_error_ = true;
        return;
-      object->error(_("requires unsupported dynamic reloc; "
-                     "recompile with -fPIC"));
-      this->issued_non_pic_error_ = true;
-      return;
+      }
 
     case elfcpp::R_ARM_NONE:
       gold_unreachable();
@@ -3787,12 +7399,15 @@ Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
                                    Output_section* output_section,
                                    const elfcpp::Rel<32, big_endian>& reloc,
                                    unsigned int r_type,
-                                   const elfcpp::Sym<32, big_endian>&)
+                                   const elfcpp::Sym<32, big_endian>& lsym)
 {
   r_type = get_real_reloc_type(r_type);
   switch (r_type)
     {
     case elfcpp::R_ARM_NONE:
+    case elfcpp::R_ARM_V4BX:
+    case elfcpp::R_ARM_GNU_VTENTRY:
+    case elfcpp::R_ARM_GNU_VTINHERIT:
       break;
 
     case elfcpp::R_ARM_ABS32:
@@ -3815,41 +7430,121 @@ Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
        }
       break;
 
-    case elfcpp::R_ARM_REL32:
-    case elfcpp::R_ARM_THM_CALL:
-    case elfcpp::R_ARM_CALL:
-    case elfcpp::R_ARM_PREL31:
-    case elfcpp::R_ARM_JUMP24:
-    case elfcpp::R_ARM_PLT32:
+    case elfcpp::R_ARM_ABS16:
+    case elfcpp::R_ARM_ABS12:
     case elfcpp::R_ARM_THM_ABS5:
     case elfcpp::R_ARM_ABS8:
-    case elfcpp::R_ARM_ABS12:
-    case elfcpp::R_ARM_ABS16:
     case elfcpp::R_ARM_BASE_ABS:
     case elfcpp::R_ARM_MOVW_ABS_NC:
     case elfcpp::R_ARM_MOVT_ABS:
     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
     case elfcpp::R_ARM_THM_MOVT_ABS:
+      // If building a shared library (or a position-independent
+      // executable), we need to create a dynamic relocation for
+      // this location. Because the addend needs to remain in the
+      // data section, we need to be careful not to apply this
+      // relocation statically.
+      if (parameters->options().output_is_position_independent())
+        {
+         check_non_pic(object, r_type);
+          Reloc_section* rel_dyn = target->rel_dyn_section(layout);
+         unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
+          if (lsym.get_st_type() != elfcpp::STT_SECTION)
+           rel_dyn->add_local(object, r_sym, r_type, output_section,
+                              data_shndx, reloc.get_r_offset());
+          else
+            {
+              gold_assert(lsym.get_st_value() == 0);
+             unsigned int shndx = lsym.get_st_shndx();
+             bool is_ordinary;
+             shndx = object->adjust_sym_shndx(r_sym, shndx,
+                                              &is_ordinary);
+             if (!is_ordinary)
+               object->error(_("section symbol %u has bad shndx %u"),
+                             r_sym, shndx);
+             else
+               rel_dyn->add_local_section(object, shndx,
+                                          r_type, output_section,
+                                          data_shndx, reloc.get_r_offset());
+            }
+        }
+      break;
+
+    case elfcpp::R_ARM_PC24:
+    case elfcpp::R_ARM_REL32:
+    case elfcpp::R_ARM_LDR_PC_G0:
+    case elfcpp::R_ARM_SBREL32:
+    case elfcpp::R_ARM_THM_CALL:
+    case elfcpp::R_ARM_THM_PC8:
+    case elfcpp::R_ARM_BASE_PREL:
+    case elfcpp::R_ARM_PLT32:
+    case elfcpp::R_ARM_CALL:
+    case elfcpp::R_ARM_JUMP24:
+    case elfcpp::R_ARM_THM_JUMP24:
+    case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
+    case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
+    case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
+    case elfcpp::R_ARM_SBREL31:
+    case elfcpp::R_ARM_PREL31:
     case elfcpp::R_ARM_MOVW_PREL_NC:
     case elfcpp::R_ARM_MOVT_PREL:
     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
     case elfcpp::R_ARM_THM_MOVT_PREL:
+    case elfcpp::R_ARM_THM_JUMP19:
+    case elfcpp::R_ARM_THM_JUMP6:
+    case elfcpp::R_ARM_THM_ALU_PREL_11_0:
+    case elfcpp::R_ARM_THM_PC12:
+    case elfcpp::R_ARM_REL32_NOI:
+    case elfcpp::R_ARM_ALU_PC_G0_NC:
+    case elfcpp::R_ARM_ALU_PC_G0:
+    case elfcpp::R_ARM_ALU_PC_G1_NC:
+    case elfcpp::R_ARM_ALU_PC_G1:
+    case elfcpp::R_ARM_ALU_PC_G2:
+    case elfcpp::R_ARM_LDR_PC_G1:
+    case elfcpp::R_ARM_LDR_PC_G2:
+    case elfcpp::R_ARM_LDRS_PC_G0:
+    case elfcpp::R_ARM_LDRS_PC_G1:
+    case elfcpp::R_ARM_LDRS_PC_G2:
+    case elfcpp::R_ARM_LDC_PC_G0:
+    case elfcpp::R_ARM_LDC_PC_G1:
+    case elfcpp::R_ARM_LDC_PC_G2:
+    case elfcpp::R_ARM_ALU_SB_G0_NC:
+    case elfcpp::R_ARM_ALU_SB_G0:
+    case elfcpp::R_ARM_ALU_SB_G1_NC:
+    case elfcpp::R_ARM_ALU_SB_G1:
+    case elfcpp::R_ARM_ALU_SB_G2:
+    case elfcpp::R_ARM_LDR_SB_G0:
+    case elfcpp::R_ARM_LDR_SB_G1:
+    case elfcpp::R_ARM_LDR_SB_G2:
+    case elfcpp::R_ARM_LDRS_SB_G0:
+    case elfcpp::R_ARM_LDRS_SB_G1:
+    case elfcpp::R_ARM_LDRS_SB_G2:
+    case elfcpp::R_ARM_LDC_SB_G0:
+    case elfcpp::R_ARM_LDC_SB_G1:
+    case elfcpp::R_ARM_LDC_SB_G2:
+    case elfcpp::R_ARM_MOVW_BREL_NC:
+    case elfcpp::R_ARM_MOVT_BREL:
+    case elfcpp::R_ARM_MOVW_BREL:
+    case elfcpp::R_ARM_THM_MOVW_BREL_NC:
+    case elfcpp::R_ARM_THM_MOVT_BREL:
+    case elfcpp::R_ARM_THM_MOVW_BREL:
+    case elfcpp::R_ARM_THM_JUMP11:
+    case elfcpp::R_ARM_THM_JUMP8:
+      // We don't need to do anything for a relative addressing relocation
+      // against a local symbol if it does not reference the GOT.
       break;
 
     case elfcpp::R_ARM_GOTOFF32:
+    case elfcpp::R_ARM_GOTOFF12:
       // We need a GOT section:
       target->got_section(symtab, layout);
       break;
 
-    case elfcpp::R_ARM_BASE_PREL:
-      // FIXME: What about this?
-      break;
-
     case elfcpp::R_ARM_GOT_BREL:
     case elfcpp::R_ARM_GOT_PREL:
       {
        // The symbol requires a GOT entry.
-       Output_data_got<32, big_endian>* got =
+       Arm_output_data_got<big_endian>* got =
          target->got_section(symtab, layout);
        unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
        if (got->add_local(object, r_sym, GOT_TYPE_STANDARD))
@@ -3869,6 +7564,7 @@ Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
       break;
 
     case elfcpp::R_ARM_TARGET1:
+    case elfcpp::R_ARM_TARGET2:
       // This should have been mapped to another type already.
       // Fall through.
     case elfcpp::R_ARM_COPY:
@@ -3881,6 +7577,116 @@ Target_arm<big_endian>::Scan::local(Symbol_table* symtab,
                 object->name().c_str(), r_type);
       break;
 
+
+      // These are initial TLS relocs, which are expected when
+      // linking.
+    case elfcpp::R_ARM_TLS_GD32:       // Global-dynamic
+    case elfcpp::R_ARM_TLS_LDM32:      // Local-dynamic
+    case elfcpp::R_ARM_TLS_LDO32:      // Alternate local-dynamic
+    case elfcpp::R_ARM_TLS_IE32:       // Initial-exec
+    case elfcpp::R_ARM_TLS_LE32:       // Local-exec
+      {
+       bool output_is_shared = parameters->options().shared();
+       const tls::Tls_optimization optimized_type
+            = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared,
+                                                        r_type);
+       switch (r_type)
+         {
+         case elfcpp::R_ARM_TLS_GD32:          // Global-dynamic
+           if (optimized_type == tls::TLSOPT_NONE)
+             {
+               // Create a pair of GOT entries for the module index and
+               // dtv-relative offset.
+                Arm_output_data_got<big_endian>* got
+                    = target->got_section(symtab, layout);
+                unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
+               unsigned int shndx = lsym.get_st_shndx();
+               bool is_ordinary;
+               shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
+               if (!is_ordinary)
+                 {
+                   object->error(_("local symbol %u has bad shndx %u"),
+                                 r_sym, shndx);
+                   break;
+                 }
+
+               if (!parameters->doing_static_link())
+                 got->add_local_pair_with_rel(object, r_sym, shndx,
+                                              GOT_TYPE_TLS_PAIR,
+                                              target->rel_dyn_section(layout),
+                                              elfcpp::R_ARM_TLS_DTPMOD32, 0);
+               else
+                 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR,
+                                                     object, r_sym);
+             }
+           else
+             // FIXME: TLS optimization not supported yet.
+             gold_unreachable();
+           break;
+
+         case elfcpp::R_ARM_TLS_LDM32:         // Local-dynamic
+           if (optimized_type == tls::TLSOPT_NONE)
+             {
+               // Create a GOT entry for the module index.
+               target->got_mod_index_entry(symtab, layout, object);
+             }
+           else
+             // FIXME: TLS optimization not supported yet.
+             gold_unreachable();
+           break;
+
+         case elfcpp::R_ARM_TLS_LDO32:         // Alternate local-dynamic
+           break;
+
+         case elfcpp::R_ARM_TLS_IE32:          // Initial-exec
+           layout->set_has_static_tls();
+           if (optimized_type == tls::TLSOPT_NONE)
+             {
+               // Create a GOT entry for the tp-relative offset.
+               Arm_output_data_got<big_endian>* got
+                 = target->got_section(symtab, layout);
+               unsigned int r_sym =
+                  elfcpp::elf_r_sym<32>(reloc.get_r_info());
+               if (!parameters->doing_static_link())
+                   got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
+                                           target->rel_dyn_section(layout),
+                                           elfcpp::R_ARM_TLS_TPOFF32);
+               else if (!object->local_has_got_offset(r_sym,
+                                                      GOT_TYPE_TLS_OFFSET))
+                 {
+                   got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
+                   unsigned int got_offset =
+                     object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
+                   got->add_static_reloc(got_offset,
+                                         elfcpp::R_ARM_TLS_TPOFF32, object,
+                                         r_sym);
+                 }
+             }
+           else
+             // FIXME: TLS optimization not supported yet.
+             gold_unreachable();
+           break;
+
+         case elfcpp::R_ARM_TLS_LE32:          // Local-exec
+           layout->set_has_static_tls();
+           if (output_is_shared)
+             {
+               // We need to create a dynamic relocation.
+                gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
+                unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
+               Reloc_section* rel_dyn = target->rel_dyn_section(layout);
+               rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32,
+                                  output_section, data_shndx,
+                                  reloc.get_r_offset());
+             }
+           break;
+
+         default:
+           gold_unreachable();
+         }
+      }
+      break;
+
     default:
       unsupported_reloc_local(object, r_type);
       break;
@@ -3900,14 +7706,78 @@ Target_arm<big_endian>::Scan::unsupported_reloc_global(
             object->name().c_str(), r_type, gsym->demangled_name().c_str());
 }
 
-// Scan a relocation for a global symbol.
-// FIXME: This only handles a subset of relocation types used by Android
-// on ARM v5te devices.
-
 template<bool big_endian>
-inline void
-Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
-                                    Layout* layout,
+inline bool
+Target_arm<big_endian>::Scan::possible_function_pointer_reloc(
+    unsigned int r_type)
+{
+  switch (r_type)
+    {
+    case elfcpp::R_ARM_PC24:
+    case elfcpp::R_ARM_THM_CALL:
+    case elfcpp::R_ARM_PLT32:
+    case elfcpp::R_ARM_CALL:
+    case elfcpp::R_ARM_JUMP24:
+    case elfcpp::R_ARM_THM_JUMP24:
+    case elfcpp::R_ARM_SBREL31:
+    case elfcpp::R_ARM_PREL31:
+    case elfcpp::R_ARM_THM_JUMP19:
+    case elfcpp::R_ARM_THM_JUMP6:
+    case elfcpp::R_ARM_THM_JUMP11:
+    case elfcpp::R_ARM_THM_JUMP8:
+      // All the relocations above are branches except SBREL31 and PREL31.
+      return false;
+
+    default:
+      // Be conservative and assume this is a function pointer.
+      return true;
+    }
+}
+
+template<bool big_endian>
+inline bool
+Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer(
+  Symbol_table*,
+  Layout*,
+  Target_arm<big_endian>* target,
+  Sized_relobj<32, big_endian>*,
+  unsigned int,
+  Output_section*,
+  const elfcpp::Rel<32, big_endian>&,
+  unsigned int r_type,
+  const elfcpp::Sym<32, big_endian>&)
+{
+  r_type = target->get_real_reloc_type(r_type);
+  return possible_function_pointer_reloc(r_type);
+}
+
+template<bool big_endian>
+inline bool
+Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer(
+  Symbol_table*,
+  Layout*,
+  Target_arm<big_endian>* target,
+  Sized_relobj<32, big_endian>*,
+  unsigned int,
+  Output_section*,
+  const elfcpp::Rel<32, big_endian>&,
+  unsigned int r_type,
+  Symbol* gsym)
+{
+  // GOT is not a function.
+  if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
+    return false;
+
+  r_type = target->get_real_reloc_type(r_type);
+  return possible_function_pointer_reloc(r_type);
+}
+
+// Scan a relocation for a global symbol.
+
+template<bool big_endian>
+inline void
+Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
+                                    Layout* layout,
                                     Target_arm* target,
                                     Sized_relobj<32, big_endian>* object,
                                     unsigned int data_shndx,
@@ -3916,73 +7786,129 @@ Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
                                     unsigned int r_type,
                                     Symbol* gsym)
 {
+  // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
+  // section.  We check here to avoid creating a dynamic reloc against
+  // _GLOBAL_OFFSET_TABLE_.
+  if (!target->has_got_section()
+      && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
+    target->got_section(symtab, layout);
+
   r_type = get_real_reloc_type(r_type);
   switch (r_type)
     {
     case elfcpp::R_ARM_NONE:
+    case elfcpp::R_ARM_V4BX:
+    case elfcpp::R_ARM_GNU_VTENTRY:
+    case elfcpp::R_ARM_GNU_VTINHERIT:
       break;
 
     case elfcpp::R_ARM_ABS32:
-    case elfcpp::R_ARM_ABS32_NOI:
-      {
-       // Make a dynamic relocation if necessary.
-       if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
-         {
-           if (target->may_need_copy_reloc(gsym))
-             {
-               target->copy_reloc(symtab, layout, object,
-                                  data_shndx, output_section, gsym, reloc);
-             }
-           else if (gsym->can_use_relative_reloc(false))
-             {
-               // If we are to add more other reloc types than R_ARM_ABS32,
-               // we need to add check_non_pic(object, r_type) here.
-               Reloc_section* rel_dyn = target->rel_dyn_section(layout);
-               rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
-                                            output_section, object,
-                                            data_shndx, reloc.get_r_offset());
-             }
-           else
-             {
-               // If we are to add more other reloc types than R_ARM_ABS32,
-               // we need to add check_non_pic(object, r_type) here.
-               Reloc_section* rel_dyn = target->rel_dyn_section(layout);
-               rel_dyn->add_global(gsym, r_type, output_section, object,
-                                   data_shndx, reloc.get_r_offset());
-             }
-         }
-      }
-      break;
-
+    case elfcpp::R_ARM_ABS16:
+    case elfcpp::R_ARM_ABS12:
+    case elfcpp::R_ARM_THM_ABS5:
+    case elfcpp::R_ARM_ABS8:
+    case elfcpp::R_ARM_BASE_ABS:
     case elfcpp::R_ARM_MOVW_ABS_NC:
     case elfcpp::R_ARM_MOVT_ABS:
     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
     case elfcpp::R_ARM_THM_MOVT_ABS:
-    case elfcpp::R_ARM_MOVW_PREL_NC:
-    case elfcpp::R_ARM_MOVT_PREL:
-    case elfcpp::R_ARM_THM_MOVW_PREL_NC:
-    case elfcpp::R_ARM_THM_MOVT_PREL:
-      break;
-
-    case elfcpp::R_ARM_THM_ABS5:
-    case elfcpp::R_ARM_ABS8:
-    case elfcpp::R_ARM_ABS12:
-    case elfcpp::R_ARM_ABS16:
-    case elfcpp::R_ARM_BASE_ABS:
+    case elfcpp::R_ARM_ABS32_NOI:
+      // Absolute addressing relocations.
       {
-       // No dynamic relocs of this kinds.
-       // Report the error in case of PIC.
-       int flags = Symbol::NON_PIC_REF;
-       if (gsym->type() == elfcpp::STT_FUNC
-           || gsym->type() == elfcpp::STT_ARM_TFUNC)
-         flags |= Symbol::FUNCTION_CALL;
-       if (gsym->needs_dynamic_reloc(flags))
-         check_non_pic(object, r_type);
+        // Make a PLT entry if necessary.
+        if (this->symbol_needs_plt_entry(gsym))
+          {
+            target->make_plt_entry(symtab, layout, gsym);
+            // Since this is not a PC-relative relocation, we may be
+            // taking the address of a function. In that case we need to
+            // set the entry in the dynamic symbol table to the address of
+            // the PLT entry.
+            if (gsym->is_from_dynobj() && !parameters->options().shared())
+              gsym->set_needs_dynsym_value();
+          }
+        // Make a dynamic relocation if necessary.
+        if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
+          {
+            if (gsym->may_need_copy_reloc())
+              {
+               target->copy_reloc(symtab, layout, object,
+                                  data_shndx, output_section, gsym, reloc);
+              }
+            else if ((r_type == elfcpp::R_ARM_ABS32
+                     || r_type == elfcpp::R_ARM_ABS32_NOI)
+                     && gsym->can_use_relative_reloc(false))
+              {
+                Reloc_section* rel_dyn = target->rel_dyn_section(layout);
+                rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE,
+                                             output_section, object,
+                                             data_shndx, reloc.get_r_offset());
+              }
+            else
+              {
+               check_non_pic(object, r_type);
+                Reloc_section* rel_dyn = target->rel_dyn_section(layout);
+                rel_dyn->add_global(gsym, r_type, output_section, object,
+                                    data_shndx, reloc.get_r_offset());
+              }
+          }
       }
       break;
 
+    case elfcpp::R_ARM_GOTOFF32:
+    case elfcpp::R_ARM_GOTOFF12:
+      // We need a GOT section.
+      target->got_section(symtab, layout);
+      break;
+      
     case elfcpp::R_ARM_REL32:
-    case elfcpp::R_ARM_PREL31:
+    case elfcpp::R_ARM_LDR_PC_G0:
+    case elfcpp::R_ARM_SBREL32:
+    case elfcpp::R_ARM_THM_PC8:
+    case elfcpp::R_ARM_BASE_PREL:
+    case elfcpp::R_ARM_LDR_SBREL_11_0_NC:
+    case elfcpp::R_ARM_ALU_SBREL_19_12_NC:
+    case elfcpp::R_ARM_ALU_SBREL_27_20_CK:
+    case elfcpp::R_ARM_MOVW_PREL_NC:
+    case elfcpp::R_ARM_MOVT_PREL:
+    case elfcpp::R_ARM_THM_MOVW_PREL_NC:
+    case elfcpp::R_ARM_THM_MOVT_PREL:
+    case elfcpp::R_ARM_THM_ALU_PREL_11_0:
+    case elfcpp::R_ARM_THM_PC12:
+    case elfcpp::R_ARM_REL32_NOI:
+    case elfcpp::R_ARM_ALU_PC_G0_NC:
+    case elfcpp::R_ARM_ALU_PC_G0:
+    case elfcpp::R_ARM_ALU_PC_G1_NC:
+    case elfcpp::R_ARM_ALU_PC_G1:
+    case elfcpp::R_ARM_ALU_PC_G2:
+    case elfcpp::R_ARM_LDR_PC_G1:
+    case elfcpp::R_ARM_LDR_PC_G2:
+    case elfcpp::R_ARM_LDRS_PC_G0:
+    case elfcpp::R_ARM_LDRS_PC_G1:
+    case elfcpp::R_ARM_LDRS_PC_G2:
+    case elfcpp::R_ARM_LDC_PC_G0:
+    case elfcpp::R_ARM_LDC_PC_G1:
+    case elfcpp::R_ARM_LDC_PC_G2:
+    case elfcpp::R_ARM_ALU_SB_G0_NC:
+    case elfcpp::R_ARM_ALU_SB_G0:
+    case elfcpp::R_ARM_ALU_SB_G1_NC:
+    case elfcpp::R_ARM_ALU_SB_G1:
+    case elfcpp::R_ARM_ALU_SB_G2:
+    case elfcpp::R_ARM_LDR_SB_G0:
+    case elfcpp::R_ARM_LDR_SB_G1:
+    case elfcpp::R_ARM_LDR_SB_G2:
+    case elfcpp::R_ARM_LDRS_SB_G0:
+    case elfcpp::R_ARM_LDRS_SB_G1:
+    case elfcpp::R_ARM_LDRS_SB_G2:
+    case elfcpp::R_ARM_LDC_SB_G0:
+    case elfcpp::R_ARM_LDC_SB_G1:
+    case elfcpp::R_ARM_LDC_SB_G2:
+    case elfcpp::R_ARM_MOVW_BREL_NC:
+    case elfcpp::R_ARM_MOVT_BREL:
+    case elfcpp::R_ARM_MOVW_BREL:
+    case elfcpp::R_ARM_THM_MOVW_BREL_NC:
+    case elfcpp::R_ARM_THM_MOVT_BREL:
+    case elfcpp::R_ARM_THM_MOVW_BREL:
+      // Relative addressing relocations.
       {
        // Make a dynamic relocation if necessary.
        int flags = Symbol::NON_PIC_REF;
@@ -4004,37 +7930,27 @@ Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
       }
       break;
 
-    case elfcpp::R_ARM_JUMP24:
+    case elfcpp::R_ARM_PC24:
     case elfcpp::R_ARM_THM_CALL:
+    case elfcpp::R_ARM_PLT32:
     case elfcpp::R_ARM_CALL:
-      {
-       if (Target_arm<big_endian>::Scan::symbol_needs_plt_entry(gsym))
-         target->make_plt_entry(symtab, layout, gsym);
-       // Make a dynamic relocation if necessary.
-       int flags = Symbol::NON_PIC_REF;
-       if (gsym->type() == elfcpp::STT_FUNC
-           || gsym->type() == elfcpp::STT_ARM_TFUNC)
-         flags |= Symbol::FUNCTION_CALL;
-       if (gsym->needs_dynamic_reloc(flags))
-         {
-           if (target->may_need_copy_reloc(gsym))
-             {
-               target->copy_reloc(symtab, layout, object,
-                                  data_shndx, output_section, gsym,
-                                  reloc);
-             }
-           else
-             {
-               check_non_pic(object, r_type);
-               Reloc_section* rel_dyn = target->rel_dyn_section(layout);
-               rel_dyn->add_global(gsym, r_type, output_section, object,
-                                   data_shndx, reloc.get_r_offset());
-             }
-         }
-      }
-      break;
+    case elfcpp::R_ARM_JUMP24:
+    case elfcpp::R_ARM_THM_JUMP24:
+    case elfcpp::R_ARM_SBREL31:
+    case elfcpp::R_ARM_PREL31:
+    case elfcpp::R_ARM_THM_JUMP19:
+    case elfcpp::R_ARM_THM_JUMP6:
+    case elfcpp::R_ARM_THM_JUMP11:
+    case elfcpp::R_ARM_THM_JUMP8:
+      // All the relocation above are branches except for the PREL31 ones.
+      // A PREL31 relocation can point to a personality function in a shared
+      // library.  In that case we want to use a PLT because we want to
+      // call the personality routine and the dyanmic linkers we care about
+      // do not support dynamic PREL31 relocations. An REL31 relocation may
+      // point to a function whose unwinding behaviour is being described but
+      // we will not mistakenly generate a PLT for that because we should use
+      // a local section symbol.
 
-    case elfcpp::R_ARM_PLT32:
       // If the symbol is fully resolved, this is just a relative
       // local reloc.  Otherwise we need a PLT entry.
       if (gsym->final_value_is_known())
@@ -4049,20 +7965,12 @@ Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
       target->make_plt_entry(symtab, layout, gsym);
       break;
 
-    case elfcpp::R_ARM_GOTOFF32:
-      // We need a GOT section.
-      target->got_section(symtab, layout);
-      break;
-
-    case elfcpp::R_ARM_BASE_PREL:
-      // FIXME: What about this?
-      break;
-      
     case elfcpp::R_ARM_GOT_BREL:
+    case elfcpp::R_ARM_GOT_ABS:
     case elfcpp::R_ARM_GOT_PREL:
       {
        // The symbol requires a GOT entry.
-       Output_data_got<32, big_endian>* got =
+       Arm_output_data_got<big_endian>* got =
          target->got_section(symtab, layout);
        if (gsym->final_value_is_known())
          got->add_global(gsym, GOT_TYPE_STANDARD);
@@ -4088,7 +7996,8 @@ Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
       break;
 
     case elfcpp::R_ARM_TARGET1:
-      // This should have been mapped to another type already.
+    case elfcpp::R_ARM_TARGET2:
+      // These should have been mapped to other types already.
       // Fall through.
     case elfcpp::R_ARM_COPY:
     case elfcpp::R_ARM_GLOB_DAT:
@@ -4100,6 +8009,96 @@ Target_arm<big_endian>::Scan::global(Symbol_table* symtab,
                 object->name().c_str(), r_type);
       break;
 
+      // These are initial tls relocs, which are expected when
+      // linking.
+    case elfcpp::R_ARM_TLS_GD32:       // Global-dynamic
+    case elfcpp::R_ARM_TLS_LDM32:      // Local-dynamic
+    case elfcpp::R_ARM_TLS_LDO32:      // Alternate local-dynamic
+    case elfcpp::R_ARM_TLS_IE32:       // Initial-exec
+    case elfcpp::R_ARM_TLS_LE32:       // Local-exec
+      {
+       const bool is_final = gsym->final_value_is_known();
+       const tls::Tls_optimization optimized_type
+            = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
+       switch (r_type)
+         {
+         case elfcpp::R_ARM_TLS_GD32:          // Global-dynamic
+           if (optimized_type == tls::TLSOPT_NONE)
+             {
+               // Create a pair of GOT entries for the module index and
+               // dtv-relative offset.
+                Arm_output_data_got<big_endian>* got
+                    = target->got_section(symtab, layout);
+               if (!parameters->doing_static_link())
+                 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
+                                               target->rel_dyn_section(layout),
+                                               elfcpp::R_ARM_TLS_DTPMOD32,
+                                               elfcpp::R_ARM_TLS_DTPOFF32);
+               else
+                 got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym);
+             }
+           else
+             // FIXME: TLS optimization not supported yet.
+             gold_unreachable();
+           break;
+
+         case elfcpp::R_ARM_TLS_LDM32:         // Local-dynamic
+           if (optimized_type == tls::TLSOPT_NONE)
+             {
+               // Create a GOT entry for the module index.
+               target->got_mod_index_entry(symtab, layout, object);
+             }
+           else
+             // FIXME: TLS optimization not supported yet.
+             gold_unreachable();
+           break;
+
+         case elfcpp::R_ARM_TLS_LDO32:         // Alternate local-dynamic
+           break;
+
+         case elfcpp::R_ARM_TLS_IE32:          // Initial-exec
+           layout->set_has_static_tls();
+           if (optimized_type == tls::TLSOPT_NONE)
+             {
+               // Create a GOT entry for the tp-relative offset.
+               Arm_output_data_got<big_endian>* got
+                 = target->got_section(symtab, layout);
+               if (!parameters->doing_static_link())
+                 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
+                                          target->rel_dyn_section(layout),
+                                          elfcpp::R_ARM_TLS_TPOFF32);
+               else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
+                 {
+                   got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
+                   unsigned int got_offset =
+                      gsym->got_offset(GOT_TYPE_TLS_OFFSET);
+                   got->add_static_reloc(got_offset,
+                                         elfcpp::R_ARM_TLS_TPOFF32, gsym);
+                 }
+             }
+           else
+             // FIXME: TLS optimization not supported yet.
+             gold_unreachable();
+           break;
+
+         case elfcpp::R_ARM_TLS_LE32:  // Local-exec
+           layout->set_has_static_tls();
+           if (parameters->options().shared())
+             {
+               // We need to create a dynamic relocation.
+                Reloc_section* rel_dyn = target->rel_dyn_section(layout);
+                rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32,
+                                   output_section, object,
+                                    data_shndx, reloc.get_r_offset());
+             }
+           break;
+
+         default:
+           gold_unreachable();
+         }
+      }
+      break;
+
     default:
       unsupported_reloc_global(object, r_type, gsym);
       break;
@@ -4183,8 +8182,10 @@ template<bool big_endian>
 void
 Target_arm<big_endian>::do_finalize_sections(
     Layout* layout,
-    const Input_objects* input_objects)
+    const Input_objects* input_objects,
+    Symbol_table* symtab)
 {
+  bool merged_any_attributes = false;
   // Merge processor-specific flags.
   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
        p != input_objects->relobj_end();
@@ -4192,9 +8193,15 @@ Target_arm<big_endian>::do_finalize_sections(
     {
       Arm_relobj<big_endian>* arm_relobj =
        Arm_relobj<big_endian>::as_arm_relobj(*p);
-      this->merge_processor_specific_flags(
-         arm_relobj->name(),
-         arm_relobj->processor_specific_flags());
+      if (arm_relobj->merge_flags_and_attributes())
+       {
+         this->merge_processor_specific_flags(
+             arm_relobj->name(),
+             arm_relobj->processor_specific_flags());
+         this->merge_object_attributes(arm_relobj->name().c_str(),
+                                       arm_relobj->attributes_section_data());
+         merged_any_attributes = true;
+       }
     } 
 
   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
@@ -4206,63 +8213,101 @@ Target_arm<big_endian>::do_finalize_sections(
       this->merge_processor_specific_flags(
          arm_dynobj->name(),
          arm_dynobj->processor_specific_flags());
+      this->merge_object_attributes(arm_dynobj->name().c_str(),
+                                   arm_dynobj->attributes_section_data());
+      merged_any_attributes = true;
     }
 
-  // Fill in some more dynamic tags.
-  Output_data_dynamic* const odyn = layout->dynamic_data();
-  if (odyn != NULL)
+  // Create an empty uninitialized attribute section if we still don't have it
+  // at this moment.  This happens if there is no attributes sections in all
+  // inputs.
+  if (this->attributes_section_data_ == NULL)
+    this->attributes_section_data_ = new Attributes_section_data(NULL, 0);
+
+  // Check BLX use.
+  const Object_attribute* cpu_arch_attr =
+    this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch);
+  if (cpu_arch_attr->int_value() > elfcpp::TAG_CPU_ARCH_V4)
+    this->set_may_use_blx(true);
+  // Check if we need to use Cortex-A8 workaround.
+  if (parameters->options().user_set_fix_cortex_a8())
+    this->fix_cortex_a8_ = parameters->options().fix_cortex_a8();
+  else
     {
-      if (this->got_plt_ != NULL)
-       odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
-
-      if (this->plt_ != NULL)
-       {
-         const Output_data* od = this->plt_->rel_plt();
-         odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
-         odyn->add_section_address(elfcpp::DT_JMPREL, od);
-         odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_REL);
-       }
-
-      if (this->rel_dyn_ != NULL)
-       {
-         const Output_data* od = this->rel_dyn_;
-         odyn->add_section_address(elfcpp::DT_REL, od);
-         odyn->add_section_size(elfcpp::DT_RELSZ, od);
-         odyn->add_constant(elfcpp::DT_RELENT,
-                            elfcpp::Elf_sizes<32>::rel_size);
-       }
-
-      if (!parameters->options().shared())
-       {
-         // The value of the DT_DEBUG tag is filled in by the dynamic
-         // linker at run time, and used by the debugger.
-         odyn->add_constant(elfcpp::DT_DEBUG, 0);
-       }
+      // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on
+      // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown
+      // profile.  
+      const Object_attribute* cpu_arch_profile_attr =
+       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile);
+      this->fix_cortex_a8_ =
+       (cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7
+         && (cpu_arch_profile_attr->int_value() == 'A'
+             || cpu_arch_profile_attr->int_value() == 0));
     }
+  
+  // Check if we can use V4BX interworking.
+  // The V4BX interworking stub contains BX instruction,
+  // which is not specified for some profiles.
+  if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING
+      && !this->may_use_blx())
+    gold_error(_("unable to provide V4BX reloc interworking fix up; "
+                "the target profile does not support BX instruction"));
+
+  // Fill in some more dynamic tags.
+  const Reloc_section* rel_plt = (this->plt_ == NULL
+                                 ? NULL
+                                 : this->plt_->rel_plt());
+  layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt,
+                                 this->rel_dyn_, true, false);
 
   // Emit any relocs we saved in an attempt to avoid generating COPY
   // relocs.
   if (this->copy_relocs_.any_saved_relocs())
     this->copy_relocs_.emit(this->rel_dyn_section(layout));
 
-  // For the ARM target, we need to add a PT_ARM_EXIDX segment for
-  // the .ARM.exidx section.
-  if (!layout->script_options()->saw_phdrs_clause()
+  // Handle the .ARM.exidx section.
+  Output_section* exidx_section = layout->find_output_section(".ARM.exidx");
+  if (exidx_section != NULL
+      && exidx_section->type() == elfcpp::SHT_ARM_EXIDX
       && !parameters->options().relocatable())
     {
-      Output_section* exidx_section =
-       layout->find_output_section(".ARM.exidx");
-
-      if (exidx_section != NULL
-         && exidx_section->type() == elfcpp::SHT_ARM_EXIDX)
+      // Create __exidx_start and __exdix_end symbols.
+      symtab->define_in_output_data("__exidx_start", NULL,
+                                   Symbol_table::PREDEFINED,
+                                   exidx_section, 0, 0, elfcpp::STT_OBJECT,
+                                   elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
+                                   false, true);
+      symtab->define_in_output_data("__exidx_end", NULL,
+                                   Symbol_table::PREDEFINED,
+                                   exidx_section, 0, 0, elfcpp::STT_OBJECT,
+                                   elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0,
+                                   true, true);
+
+      // For the ARM target, we need to add a PT_ARM_EXIDX segment for
+      // the .ARM.exidx section.
+      if (!layout->script_options()->saw_phdrs_clause())
        {
          gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0, 0)
                      == NULL);
          Output_segment*  exidx_segment =
            layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R);
-         exidx_segment->add_output_section(exidx_section, elfcpp::PF_R);
+         exidx_segment->add_output_section(exidx_section, elfcpp::PF_R,
+                                           false);
        }
     }
+
+  // Create an .ARM.attributes section if we have merged any attributes
+  // from inputs.
+  if (merged_any_attributes)
+    {
+      Output_attributes_section_data* attributes_section =
+      new Output_attributes_section_data(*this->attributes_section_data_);
+      layout->add_output_section_data(".ARM.attributes",
+                                     elfcpp::SHT_ARM_ATTRIBUTES, 0,
+                                     attributes_section, false, false, false,
+                                     false);
+    }
 }
 
 // Return whether a direct absolute static relocation needs to be applied.
@@ -4320,30 +8365,93 @@ Target_arm<big_endian>::Relocate::relocate(
     const Symbol_value<32>* psymval,
     unsigned char* view,
     Arm_address address,
-    section_size_type /* view_size */ )
+    section_size_type view_size)
 {
   typedef Arm_relocate_functions<big_endian> Arm_relocate_functions;
 
   r_type = get_real_reloc_type(r_type);
+  const Arm_reloc_property* reloc_property =
+    arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
+  if (reloc_property == NULL)
+    {
+      std::string reloc_name =
+       arm_reloc_property_table->reloc_name_in_error_message(r_type);
+      gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
+                            _("cannot relocate %s in object file"),
+                            reloc_name.c_str());
+      return true;
+    }
 
-  // If this the symbol may be a Thumb function, set thumb bit to 1.
-  bool has_thumb_bit = ((gsym != NULL)
-                       && (gsym->type() == elfcpp::STT_FUNC
-                           || gsym->type() == elfcpp::STT_ARM_TFUNC));
+  const Arm_relobj<big_endian>* object =
+    Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
 
-  // Pick the value to use for symbols defined in shared objects.
+  // If the final branch target of a relocation is THUMB instruction, this
+  // is 1.  Otherwise it is 0.
+  Arm_address thumb_bit = 0;
   Symbol_value<32> symval;
-  if (gsym != NULL
-      && gsym->use_plt_offset(reloc_is_non_pic(r_type)))
+  bool is_weakly_undefined_without_plt = false;
+  if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs)
     {
-      symval.set_output_value(target->plt_section()->address()
-                             + gsym->plt_offset());
-      psymval = &symval;
-      has_thumb_bit = 0;
+      if (gsym != NULL)
+       {
+         // This is a global symbol.  Determine if we use PLT and if the
+         // final target is THUMB.
+         if (gsym->use_plt_offset(reloc_is_non_pic(r_type)))
+           {
+             // This uses a PLT, change the symbol value.
+             symval.set_output_value(target->plt_section()->address()
+                                     + gsym->plt_offset());
+             psymval = &symval;
+           }
+         else if (gsym->is_weak_undefined())
+           {
+             // This is a weakly undefined symbol and we do not use PLT
+             // for this relocation.  A branch targeting this symbol will
+             // be converted into an NOP.
+             is_weakly_undefined_without_plt = true;
+           }
+         else
+           {
+             // Set thumb bit if symbol:
+             // -Has type STT_ARM_TFUNC or
+             // -Has type STT_FUNC, is defined and with LSB in value set.
+             thumb_bit =
+               (((gsym->type() == elfcpp::STT_ARM_TFUNC)
+                || (gsym->type() == elfcpp::STT_FUNC
+                    && !gsym->is_undefined()
+                    && ((psymval->value(object, 0) & 1) != 0)))
+               ? 1
+               : 0);
+           }
+       }
+      else
+       {
+          // This is a local symbol.  Determine if the final target is THUMB.
+          // We saved this information when all the local symbols were read.
+         elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info();
+         unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
+         thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
+       }
+    }
+  else
+    {
+      // This is a fake relocation synthesized for a stub.  It does not have
+      // a real symbol.  We just look at the LSB of the symbol value to
+      // determine if the target is THUMB or not.
+      thumb_bit = ((psymval->value(object, 0) & 1) != 0);
     }
 
-  const Sized_relobj<32, big_endian>* object = relinfo->object;
-  
+  // Strip LSB if this points to a THUMB target.
+  if (thumb_bit != 0
+      && reloc_property->uses_thumb_bit() 
+      && ((psymval->value(object, 0) & 1) != 0))
+    {
+      Arm_address stripped_value =
+       psymval->value(object, 0) & ~static_cast<Arm_address>(1);
+      symval.set_output_value(stripped_value);
+      psymval = &symval;
+    } 
+
   // Get the GOT offset if needed.
   // The GOT pointer points to the end of the GOT section.
   // We need to subtract the size of the GOT section to get
@@ -4374,8 +8482,61 @@ Target_arm<big_endian>::Relocate::relocate(
       break;
     }
 
+  // To look up relocation stubs, we need to pass the symbol table index of
+  // a local symbol.
+  unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
+
+  // Get the addressing origin of the output segment defining the
+  // symbol gsym if needed (AAELF 4.6.1.2 Relocation types).
+  Arm_address sym_origin = 0;
+  if (reloc_property->uses_symbol_base())
+    {
+      if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL)
+       // R_ARM_BASE_ABS with the NULL symbol will give the
+       // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
+       // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
+       sym_origin = target->got_plt_section()->address();
+      else if (gsym == NULL)
+       sym_origin = 0;
+      else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
+       sym_origin = gsym->output_segment()->vaddr();
+      else if (gsym->source() == Symbol::IN_OUTPUT_DATA)
+       sym_origin = gsym->output_data()->address();
+
+      // TODO: Assumes the segment base to be zero for the global symbols
+      // till the proper support for the segment-base-relative addressing
+      // will be implemented.  This is consistent with GNU ld.
+    }
+
+  // For relative addressing relocation, find out the relative address base.
+  Arm_address relative_address_base = 0;
+  switch(reloc_property->relative_address_base())
+    {
+    case Arm_reloc_property::RAB_NONE:
+    // Relocations with relative address bases RAB_TLS and RAB_tp are
+    // handled by relocate_tls.  So we do not need to do anything here.
+    case Arm_reloc_property::RAB_TLS:
+    case Arm_reloc_property::RAB_tp:
+      break;
+    case Arm_reloc_property::RAB_B_S:
+      relative_address_base = sym_origin;
+      break;
+    case Arm_reloc_property::RAB_GOT_ORG:
+      relative_address_base = target->got_plt_section()->address();
+      break;
+    case Arm_reloc_property::RAB_P:
+      relative_address_base = address;
+      break;
+    case Arm_reloc_property::RAB_Pa:
+      relative_address_base = address & 0xfffffffcU;
+      break;
+    default:
+      gold_unreachable(); 
+    }
+    
   typename Arm_relocate_functions::Status reloc_status =
        Arm_relocate_functions::STATUS_OKAY;
+  bool check_overflow = reloc_property->checks_overflow();
   switch (r_type)
     {
     case elfcpp::R_ARM_NONE:
@@ -4403,7 +8564,7 @@ Target_arm<big_endian>::Relocate::relocate(
       if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
                                    output_section))
        reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
-                                                    has_thumb_bit);
+                                                    thumb_bit);
       break;
 
     case elfcpp::R_ARM_ABS32_NOI:
@@ -4411,75 +8572,72 @@ Target_arm<big_endian>::Relocate::relocate(
                                    output_section))
        // No thumb bit for this relocation: (S + A)
        reloc_status = Arm_relocate_functions::abs32(view, object, psymval,
-                                                    false);
+                                                    0);
       break;
 
     case elfcpp::R_ARM_MOVW_ABS_NC:
-      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
+      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
                                    output_section))
-       reloc_status = Arm_relocate_functions::movw_abs_nc(view, object,
-                                                          psymval,
-                                                                  has_thumb_bit);
-      else
-       gold_error(_("relocation R_ARM_MOVW_ABS_NC cannot be used when making"
-                    "a shared object; recompile with -fPIC"));
+       reloc_status = Arm_relocate_functions::movw(view, object, psymval,
+                                                   0, thumb_bit,
+                                                   check_overflow);
       break;
 
     case elfcpp::R_ARM_MOVT_ABS:
-      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
+      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
                                    output_section))
-       reloc_status = Arm_relocate_functions::movt_abs(view, object, psymval);
-      else
-       gold_error(_("relocation R_ARM_MOVT_ABS cannot be used when making"
-                    "a shared object; recompile with -fPIC"));
+       reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0);
       break;
 
     case elfcpp::R_ARM_THM_MOVW_ABS_NC:
-      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
+      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
                                    output_section))
-       reloc_status = Arm_relocate_functions::thm_movw_abs_nc(view, object,
-                                                              psymval,
-                                                                      has_thumb_bit);
-      else
-       gold_error(_("relocation R_ARM_THM_MOVW_ABS_NC cannot be used when"
-                    "making a shared object; recompile with -fPIC"));
+       reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval,
+                                                               0, thumb_bit, false);
       break;
 
     case elfcpp::R_ARM_THM_MOVT_ABS:
-      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
+      if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
                                    output_section))
-       reloc_status = Arm_relocate_functions::thm_movt_abs(view, object,
-                                                           psymval);
-      else
-       gold_error(_("relocation R_ARM_THM_MOVT_ABS cannot be used when"
-                    "making a shared object; recompile with -fPIC"));
+       reloc_status = Arm_relocate_functions::thm_movt(view, object,
+                                                       psymval, 0);
       break;
 
     case elfcpp::R_ARM_MOVW_PREL_NC:
-      reloc_status = Arm_relocate_functions::movw_prel_nc(view, object,
-                                                         psymval, address,
-                                                         has_thumb_bit);
+    case elfcpp::R_ARM_MOVW_BREL_NC:
+    case elfcpp::R_ARM_MOVW_BREL:
+      reloc_status =
+       Arm_relocate_functions::movw(view, object, psymval,
+                                    relative_address_base, thumb_bit,
+                                    check_overflow);
       break;
 
     case elfcpp::R_ARM_MOVT_PREL:
-      reloc_status = Arm_relocate_functions::movt_prel(view, object,
-                                                       psymval, address);
+    case elfcpp::R_ARM_MOVT_BREL:
+      reloc_status =
+       Arm_relocate_functions::movt(view, object, psymval,
+                                    relative_address_base);
       break;
 
     case elfcpp::R_ARM_THM_MOVW_PREL_NC:
-      reloc_status = Arm_relocate_functions::thm_movw_prel_nc(view, object,
-                                                             psymval, address,
-                                                             has_thumb_bit);
+    case elfcpp::R_ARM_THM_MOVW_BREL_NC:
+    case elfcpp::R_ARM_THM_MOVW_BREL:
+      reloc_status =
+       Arm_relocate_functions::thm_movw(view, object, psymval,
+                                        relative_address_base,
+                                        thumb_bit, check_overflow);
       break;
 
     case elfcpp::R_ARM_THM_MOVT_PREL:
-      reloc_status = Arm_relocate_functions::thm_movt_prel(view, object,
-                                                          psymval, address);
+    case elfcpp::R_ARM_THM_MOVT_BREL:
+      reloc_status =
+       Arm_relocate_functions::thm_movt(view, object, psymval,
+                                        relative_address_base);
       break;
        
     case elfcpp::R_ARM_REL32:
       reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
-                                                  address, has_thumb_bit);
+                                                  address, thumb_bit);
       break;
 
     case elfcpp::R_ARM_THM_ABS5:
@@ -4488,9 +8646,14 @@ Target_arm<big_endian>::Relocate::relocate(
        reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval);
       break;
 
+    // Thumb long branches.
     case elfcpp::R_ARM_THM_CALL:
-      reloc_status = Arm_relocate_functions::thm_call(view, object, psymval,
-                                                     address, has_thumb_bit);
+    case elfcpp::R_ARM_THM_XPC22:
+    case elfcpp::R_ARM_THM_JUMP24:
+      reloc_status =
+       Arm_relocate_functions::thumb_branch_common(
+           r_type, relinfo, view, gsym, object, r_sym, psymval, address,
+           thumb_bit, is_weakly_undefined_without_plt);
       break;
 
     case elfcpp::R_ARM_GOTOFF32:
@@ -4498,56 +8661,23 @@ Target_arm<big_endian>::Relocate::relocate(
        Arm_address got_origin;
        got_origin = target->got_plt_section()->address();
        reloc_status = Arm_relocate_functions::rel32(view, object, psymval,
-                                                    got_origin, has_thumb_bit);
+                                                    got_origin, thumb_bit);
       }
       break;
 
     case elfcpp::R_ARM_BASE_PREL:
-      {
-       uint32_t origin;
-       // Get the addressing origin of the output segment defining the 
-       // symbol gsym (AAELF 4.6.1.2 Relocation types)
-       gold_assert(gsym != NULL); 
-       if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
-         origin = gsym->output_segment()->vaddr();
-       else if (gsym->source () == Symbol::IN_OUTPUT_DATA)
-         origin = gsym->output_data()->address();
-       else
-         {
-            gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
-                                  _("cannot find origin of R_ARM_BASE_PREL"));
-           return true;
-         }
-       reloc_status = Arm_relocate_functions::base_prel(view, origin, address);
-      }
+      gold_assert(gsym != NULL);
+      reloc_status =
+         Arm_relocate_functions::base_prel(view, sym_origin, address);
       break;
 
     case elfcpp::R_ARM_BASE_ABS:
       {
-       if (!should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true,
+       if (!should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false,
                                      output_section))
          break;
 
-       uint32_t origin;
-       // Get the addressing origin of the output segment defining
-       // the symbol gsym (AAELF 4.6.1.2 Relocation types).
-       if (gsym == NULL)
-         // R_ARM_BASE_ABS with the NULL symbol will give the
-         // absolute address of the GOT origin (GOT_ORG) (see ARM IHI
-         // 0044C (AAELF): 4.6.1.8 Proxy generating relocations).
-         origin = target->got_plt_section()->address();
-       else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT)
-         origin = gsym->output_segment()->vaddr();
-       else if (gsym->source () == Symbol::IN_OUTPUT_DATA)
-         origin = gsym->output_data()->address();
-       else
-         {
-            gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
-                                  _("cannot find origin of R_ARM_BASE_ABS"));
-           return true;
-         }
-
-       reloc_status = Arm_relocate_functions::base_abs(view, origin);
+       reloc_status = Arm_relocate_functions::base_abs(view, sym_origin);
       }
       break;
 
@@ -4569,50 +8699,141 @@ Target_arm<big_endian>::Relocate::relocate(
       break;
 
     case elfcpp::R_ARM_PLT32:
+    case elfcpp::R_ARM_CALL:
+    case elfcpp::R_ARM_JUMP24:
+    case elfcpp::R_ARM_XPC25:
       gold_assert(gsym == NULL
                  || gsym->has_plt_offset()
                  || gsym->final_value_is_known()
                  || (gsym->is_defined()
                      && !gsym->is_from_dynobj()
                      && !gsym->is_preemptible()));
-      reloc_status = Arm_relocate_functions::plt32(view, object, psymval,
-                                                  address, has_thumb_bit);
+      reloc_status =
+       Arm_relocate_functions::arm_branch_common(
+           r_type, relinfo, view, gsym, object, r_sym, psymval, address,
+           thumb_bit, is_weakly_undefined_without_plt);
       break;
 
-    case elfcpp::R_ARM_CALL:
-      reloc_status = Arm_relocate_functions::call(view, object, psymval,
-                                                 address, has_thumb_bit);
+    case elfcpp::R_ARM_THM_JUMP19:
+      reloc_status =
+       Arm_relocate_functions::thm_jump19(view, object, psymval, address,
+                                          thumb_bit);
       break;
 
-    case elfcpp::R_ARM_JUMP24:
-      reloc_status = Arm_relocate_functions::jump24(view, object, psymval,
-                                                   address, has_thumb_bit);
+    case elfcpp::R_ARM_THM_JUMP6:
+      reloc_status =
+       Arm_relocate_functions::thm_jump6(view, object, psymval, address);
       break;
 
-    case elfcpp::R_ARM_PREL31:
-      reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
-                                                   address, has_thumb_bit);
+    case elfcpp::R_ARM_THM_JUMP8:
+      reloc_status =
+       Arm_relocate_functions::thm_jump8(view, object, psymval, address);
       break;
 
-    case elfcpp::R_ARM_TARGET1:
-      // This should have been mapped to another type already.
-      // Fall through.
-    case elfcpp::R_ARM_COPY:
-    case elfcpp::R_ARM_GLOB_DAT:
-    case elfcpp::R_ARM_JUMP_SLOT:
-    case elfcpp::R_ARM_RELATIVE:
-      // These are relocations which should only be seen by the
-      // dynamic linker, and should never be seen here.
-      gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
-                            _("unexpected reloc %u in object file"),
-                            r_type);
+    case elfcpp::R_ARM_THM_JUMP11:
+      reloc_status =
+       Arm_relocate_functions::thm_jump11(view, object, psymval, address);
       break;
 
-    default:
-      gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
-                            _("unsupported reloc %u"),
-                            r_type);
+    case elfcpp::R_ARM_PREL31:
+      reloc_status = Arm_relocate_functions::prel31(view, object, psymval,
+                                                   address, thumb_bit);
+      break;
+
+    case elfcpp::R_ARM_V4BX:
+      if (target->fix_v4bx() > General_options::FIX_V4BX_NONE)
+       {
+         const bool is_v4bx_interworking =
+             (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING);
+         reloc_status =
+           Arm_relocate_functions::v4bx(relinfo, view, object, address,
+                                        is_v4bx_interworking);
+       }
+      break;
+
+    case elfcpp::R_ARM_THM_PC8:
+      reloc_status =
+       Arm_relocate_functions::thm_pc8(view, object, psymval, address);
+      break;
+
+    case elfcpp::R_ARM_THM_PC12:
+      reloc_status =
+       Arm_relocate_functions::thm_pc12(view, object, psymval, address);
+      break;
+
+    case elfcpp::R_ARM_THM_ALU_PREL_11_0:
+      reloc_status =
+       Arm_relocate_functions::thm_alu11(view, object, psymval, address,
+                                         thumb_bit);
+      break;
+
+    case elfcpp::R_ARM_ALU_PC_G0_NC:
+    case elfcpp::R_ARM_ALU_PC_G0:
+    case elfcpp::R_ARM_ALU_PC_G1_NC:
+    case elfcpp::R_ARM_ALU_PC_G1:
+    case elfcpp::R_ARM_ALU_PC_G2:
+    case elfcpp::R_ARM_ALU_SB_G0_NC:
+    case elfcpp::R_ARM_ALU_SB_G0:
+    case elfcpp::R_ARM_ALU_SB_G1_NC:
+    case elfcpp::R_ARM_ALU_SB_G1:
+    case elfcpp::R_ARM_ALU_SB_G2:
+      reloc_status =
+       Arm_relocate_functions::arm_grp_alu(view, object, psymval,
+                                           reloc_property->group_index(),
+                                           relative_address_base,
+                                           thumb_bit, check_overflow);
+      break;
+
+    case elfcpp::R_ARM_LDR_PC_G0:
+    case elfcpp::R_ARM_LDR_PC_G1:
+    case elfcpp::R_ARM_LDR_PC_G2:
+    case elfcpp::R_ARM_LDR_SB_G0:
+    case elfcpp::R_ARM_LDR_SB_G1:
+    case elfcpp::R_ARM_LDR_SB_G2:
+      reloc_status =
+         Arm_relocate_functions::arm_grp_ldr(view, object, psymval,
+                                             reloc_property->group_index(),
+                                             relative_address_base);
+      break;
+
+    case elfcpp::R_ARM_LDRS_PC_G0:
+    case elfcpp::R_ARM_LDRS_PC_G1:
+    case elfcpp::R_ARM_LDRS_PC_G2:
+    case elfcpp::R_ARM_LDRS_SB_G0:
+    case elfcpp::R_ARM_LDRS_SB_G1:
+    case elfcpp::R_ARM_LDRS_SB_G2:
+      reloc_status =
+         Arm_relocate_functions::arm_grp_ldrs(view, object, psymval,
+                                              reloc_property->group_index(),
+                                              relative_address_base);
+      break;
+
+    case elfcpp::R_ARM_LDC_PC_G0:
+    case elfcpp::R_ARM_LDC_PC_G1:
+    case elfcpp::R_ARM_LDC_PC_G2:
+    case elfcpp::R_ARM_LDC_SB_G0:
+    case elfcpp::R_ARM_LDC_SB_G1:
+    case elfcpp::R_ARM_LDC_SB_G2:
+      reloc_status =
+         Arm_relocate_functions::arm_grp_ldc(view, object, psymval,
+                                             reloc_property->group_index(),
+                                             relative_address_base);
       break;
+
+      // These are initial tls relocs, which are expected when
+      // linking.
+    case elfcpp::R_ARM_TLS_GD32:       // Global-dynamic
+    case elfcpp::R_ARM_TLS_LDM32:      // Local-dynamic
+    case elfcpp::R_ARM_TLS_LDO32:      // Alternate local-dynamic
+    case elfcpp::R_ARM_TLS_IE32:       // Initial-exec
+    case elfcpp::R_ARM_TLS_LE32:       // Local-exec
+      reloc_status =
+       this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
+                          view, address, view_size);
+      break;
+
+    default:
+      gold_unreachable();
     }
 
   // Report any errors.
@@ -4622,16 +8843,16 @@ Target_arm<big_endian>::Relocate::relocate(
       break;
     case Arm_relocate_functions::STATUS_OVERFLOW:
       gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
-                            _("relocation overflow in relocation %u"),
-                            r_type);
+                            _("relocation overflow in %s"),
+                            reloc_property->name().c_str());
       break;
     case Arm_relocate_functions::STATUS_BAD_RELOC:
       gold_error_at_location(
        relinfo,
        relnum,
        rel.get_r_offset(),
-       _("unexpected opcode while processing relocation %u"),
-       r_type);
+       _("unexpected opcode while processing relocation %s"),
+       reloc_property->name().c_str());
       break;
     default:
       gold_unreachable();
@@ -4640,6 +8861,145 @@ Target_arm<big_endian>::Relocate::relocate(
   return true;
 }
 
+// Perform a TLS relocation.
+
+template<bool big_endian>
+inline typename Arm_relocate_functions<big_endian>::Status
+Target_arm<big_endian>::Relocate::relocate_tls(
+    const Relocate_info<32, big_endian>* relinfo,
+    Target_arm<big_endian>* target,
+    size_t relnum,
+    const elfcpp::Rel<32, big_endian>& rel,
+    unsigned int r_type,
+    const Sized_symbol<32>* gsym,
+    const Symbol_value<32>* psymval,
+    unsigned char* view,
+    elfcpp::Elf_types<32>::Elf_Addr address,
+    section_size_type /*view_size*/ )
+{
+  typedef Arm_relocate_functions<big_endian> ArmRelocFuncs;
+  typedef Relocate_functions<32, big_endian> RelocFuncs;
+  Output_segment* tls_segment = relinfo->layout->tls_segment();
+
+  const Sized_relobj<32, big_endian>* object = relinfo->object;
+
+  elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
+
+  const bool is_final = (gsym == NULL
+                        ? !parameters->options().shared()
+                        : gsym->final_value_is_known());
+  const tls::Tls_optimization optimized_type
+      = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type);
+  switch (r_type)
+    {
+    case elfcpp::R_ARM_TLS_GD32:       // Global-dynamic
+        {
+          unsigned int got_type = GOT_TYPE_TLS_PAIR;
+          unsigned int got_offset;
+          if (gsym != NULL)
+            {
+              gold_assert(gsym->has_got_offset(got_type));
+              got_offset = gsym->got_offset(got_type) - target->got_size();
+            }
+          else
+            {
+              unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
+              gold_assert(object->local_has_got_offset(r_sym, got_type));
+              got_offset = (object->local_got_offset(r_sym, got_type)
+                           - target->got_size());
+            }
+          if (optimized_type == tls::TLSOPT_NONE)
+            {
+             Arm_address got_entry =
+               target->got_plt_section()->address() + got_offset;
+             
+              // Relocate the field with the PC relative offset of the pair of
+              // GOT entries.
+             RelocFuncs::pcrel32(view, got_entry, address);
+              return ArmRelocFuncs::STATUS_OKAY;
+            }
+        }
+      break;
+
+    case elfcpp::R_ARM_TLS_LDM32:      // Local-dynamic
+      if (optimized_type == tls::TLSOPT_NONE)
+        {
+          // Relocate the field with the offset of the GOT entry for
+          // the module index.
+          unsigned int got_offset;
+          got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
+                       - target->got_size());
+         Arm_address got_entry =
+           target->got_plt_section()->address() + got_offset;
+
+          // Relocate the field with the PC relative offset of the pair of
+          // GOT entries.
+          RelocFuncs::pcrel32(view, got_entry, address);
+         return ArmRelocFuncs::STATUS_OKAY;
+        }
+      break;
+
+    case elfcpp::R_ARM_TLS_LDO32:      // Alternate local-dynamic
+      RelocFuncs::rel32(view, value);
+      return ArmRelocFuncs::STATUS_OKAY;
+
+    case elfcpp::R_ARM_TLS_IE32:       // Initial-exec
+      if (optimized_type == tls::TLSOPT_NONE)
+        {
+          // Relocate the field with the offset of the GOT entry for
+          // the tp-relative offset of the symbol.
+         unsigned int got_type = GOT_TYPE_TLS_OFFSET;
+          unsigned int got_offset;
+          if (gsym != NULL)
+            {
+              gold_assert(gsym->has_got_offset(got_type));
+              got_offset = gsym->got_offset(got_type);
+            }
+          else
+            {
+              unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
+              gold_assert(object->local_has_got_offset(r_sym, got_type));
+              got_offset = object->local_got_offset(r_sym, got_type);
+            }
+
+          // All GOT offsets are relative to the end of the GOT.
+          got_offset -= target->got_size();
+
+         Arm_address got_entry =
+           target->got_plt_section()->address() + got_offset;
+
+          // Relocate the field with the PC relative offset of the GOT entry.
+         RelocFuncs::pcrel32(view, got_entry, address);
+         return ArmRelocFuncs::STATUS_OKAY;
+        }
+      break;
+
+    case elfcpp::R_ARM_TLS_LE32:       // Local-exec
+      // If we're creating a shared library, a dynamic relocation will
+      // have been created for this location, so do not apply it now.
+      if (!parameters->options().shared())
+        {
+          gold_assert(tls_segment != NULL);
+
+         // $tp points to the TCB, which is followed by the TLS, so we
+         // need to add TCB size to the offset.
+         Arm_address aligned_tcb_size =
+           align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment());
+          RelocFuncs::rel32(view, value + aligned_tcb_size);
+
+        }
+      return ArmRelocFuncs::STATUS_OKAY;
+    
+    default:
+      gold_unreachable();
+    }
+
+  gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
+                        _("unsupported reloc %u"),
+                        r_type);
+  return ArmRelocFuncs::STATUS_BAD_RELOC;
+}
+
 // Relocate section data.
 
 template<bool big_endian>
@@ -4659,6 +9019,29 @@ Target_arm<big_endian>::relocate_section(
   typedef typename Target_arm<big_endian>::Relocate Arm_relocate;
   gold_assert(sh_type == elfcpp::SHT_REL);
 
+  // See if we are relocating a relaxed input section.  If so, the view
+  // covers the whole output section and we need to adjust accordingly.
+  if (needs_special_offset_handling)
+    {
+      const Output_relaxed_input_section* poris =
+       output_section->find_relaxed_input_section(relinfo->object,
+                                                  relinfo->data_shndx);
+      if (poris != NULL)
+       {
+         Arm_address section_address = poris->address();
+         section_size_type section_size = poris->data_size();
+
+         gold_assert((section_address >= address)
+                     && ((section_address + section_size)
+                         <= (address + view_size)));
+
+         off_t offset = section_address - address;
+         view += offset;
+         address += offset;
+         view_size = section_size;
+       }
+    }
+
   gold::relocate_section<32, big_endian, Target_arm, elfcpp::SHT_REL,
                         Arm_relocate>(
     relinfo,
@@ -4683,57 +9066,16 @@ Target_arm<big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
     Relobj* object)
 {
   r_type = get_real_reloc_type(r_type);
-  switch (r_type)
+  const Arm_reloc_property* arp =
+      arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
+  if (arp != NULL)
+    return arp->size();
+  else
     {
-    case elfcpp::R_ARM_NONE:
-      return 0;
-
-    case elfcpp::R_ARM_ABS8:
-      return 1;
-
-    case elfcpp::R_ARM_ABS16:
-    case elfcpp::R_ARM_THM_ABS5:
-      return 2;
-
-    case elfcpp::R_ARM_ABS32:
-    case elfcpp::R_ARM_ABS32_NOI:
-    case elfcpp::R_ARM_ABS12:
-    case elfcpp::R_ARM_BASE_ABS:
-    case elfcpp::R_ARM_REL32:
-    case elfcpp::R_ARM_THM_CALL:
-    case elfcpp::R_ARM_GOTOFF32:
-    case elfcpp::R_ARM_BASE_PREL:
-    case elfcpp::R_ARM_GOT_BREL:
-    case elfcpp::R_ARM_GOT_PREL:
-    case elfcpp::R_ARM_PLT32:
-    case elfcpp::R_ARM_CALL:
-    case elfcpp::R_ARM_JUMP24:
-    case elfcpp::R_ARM_PREL31:
-    case elfcpp::R_ARM_MOVW_ABS_NC:
-    case elfcpp::R_ARM_MOVT_ABS:
-    case elfcpp::R_ARM_THM_MOVW_ABS_NC:
-    case elfcpp::R_ARM_THM_MOVT_ABS:
-    case elfcpp::R_ARM_MOVW_PREL_NC:
-    case elfcpp::R_ARM_MOVT_PREL:
-    case elfcpp::R_ARM_THM_MOVW_PREL_NC:
-    case elfcpp::R_ARM_THM_MOVT_PREL:
-      return 4;
-
-    case elfcpp::R_ARM_TARGET1:
-      // This should have been mapped to another type already.
-      // Fall through.
-    case elfcpp::R_ARM_COPY:
-    case elfcpp::R_ARM_GLOB_DAT:
-    case elfcpp::R_ARM_JUMP_SLOT:
-    case elfcpp::R_ARM_RELATIVE:
-      // These are relocations which should only be seen by the
-      // dynamic linker, and should never be seen here.
-      gold_error(_("%s: unexpected reloc %u in object file"),
-                object->name().c_str(), r_type);
-      return 0;
-
-    default:
-      object->error(_("unsupported reloc %u in object file"), r_type);
+      std::string reloc_name =
+       arm_reloc_property_table->reloc_name_in_error_message(r_type);
+      gold_error(_("%s: unexpected %s in object file"),
+                object->name().c_str(), reloc_name.c_str());
       return 0;
     }
 }
@@ -4758,7 +9100,7 @@ Target_arm<big_endian>::scan_relocatable_relocs(
 {
   gold_assert(sh_type == elfcpp::SHT_REL);
 
-  typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_REL,
+  typedef Arm_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
     Relocatable_size_for_reloc> Scan_relocatable_relocs;
 
   gold::scan_relocatable_relocs<32, big_endian, elfcpp::SHT_REL,
@@ -4810,6 +9152,291 @@ Target_arm<big_endian>::relocate_for_relocatable(
     reloc_view_size);
 }
 
+// Perform target-specific processing in a relocatable link.  This is
+// only used if we use the relocation strategy RELOC_SPECIAL.
+
+template<bool big_endian>
+void
+Target_arm<big_endian>::relocate_special_relocatable(
+    const Relocate_info<32, big_endian>* relinfo,
+    unsigned int sh_type,
+    const unsigned char* preloc_in,
+    size_t relnum,
+    Output_section* output_section,
+    off_t offset_in_output_section,
+    unsigned char* view,
+    elfcpp::Elf_types<32>::Elf_Addr view_address,
+    section_size_type,
+    unsigned char* preloc_out)
+{
+  // We can only handle REL type relocation sections.
+  gold_assert(sh_type == elfcpp::SHT_REL);
+
+  typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype;
+  typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write
+    Reltype_write;
+  const Arm_address invalid_address = static_cast<Arm_address>(0) - 1;
+
+  const Arm_relobj<big_endian>* object =
+    Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
+  const unsigned int local_count = object->local_symbol_count();
+
+  Reltype reloc(preloc_in);
+  Reltype_write reloc_write(preloc_out);
+
+  elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
+  const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
+  const unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
+
+  const Arm_reloc_property* arp =
+    arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
+  gold_assert(arp != NULL);
+
+  // Get the new symbol index.
+  // We only use RELOC_SPECIAL strategy in local relocations.
+  gold_assert(r_sym < local_count);
+
+  // We are adjusting a section symbol.  We need to find
+  // the symbol table index of the section symbol for
+  // the output section corresponding to input section
+  // in which this symbol is defined.
+  bool is_ordinary;
+  unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
+  gold_assert(is_ordinary);
+  Output_section* os = object->output_section(shndx);
+  gold_assert(os != NULL);
+  gold_assert(os->needs_symtab_index());
+  unsigned int new_symndx = os->symtab_index();
+
+  // Get the new offset--the location in the output section where
+  // this relocation should be applied.
+
+  Arm_address offset = reloc.get_r_offset();
+  Arm_address new_offset;
+  if (offset_in_output_section != invalid_address)
+    new_offset = offset + offset_in_output_section;
+  else
+    {
+      section_offset_type sot_offset =
+          convert_types<section_offset_type, Arm_address>(offset);
+      section_offset_type new_sot_offset =
+          output_section->output_offset(object, relinfo->data_shndx,
+                                        sot_offset);
+      gold_assert(new_sot_offset != -1);
+      new_offset = new_sot_offset;
+    }
+
+  // In an object file, r_offset is an offset within the section.
+  // In an executable or dynamic object, generated by
+  // --emit-relocs, r_offset is an absolute address.
+  if (!parameters->options().relocatable())
+    {
+      new_offset += view_address;
+      if (offset_in_output_section != invalid_address)
+        new_offset -= offset_in_output_section;
+    }
+
+  reloc_write.put_r_offset(new_offset);
+  reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
+
+  // Handle the reloc addend.
+  // The relocation uses a section symbol in the input file.
+  // We are adjusting it to use a section symbol in the output
+  // file.  The input section symbol refers to some address in
+  // the input section.  We need the relocation in the output
+  // file to refer to that same address.  This adjustment to
+  // the addend is the same calculation we use for a simple
+  // absolute relocation for the input section symbol.
+
+  const Symbol_value<32>* psymval = object->local_symbol(r_sym);
+
+  // Handle THUMB bit.
+  Symbol_value<32> symval;
+  Arm_address thumb_bit =
+     object->local_symbol_is_thumb_function(r_sym) ? 1 : 0;
+  if (thumb_bit != 0
+      && arp->uses_thumb_bit() 
+      && ((psymval->value(object, 0) & 1) != 0))
+    {
+      Arm_address stripped_value =
+       psymval->value(object, 0) & ~static_cast<Arm_address>(1);
+      symval.set_output_value(stripped_value);
+      psymval = &symval;
+    } 
+
+  unsigned char* paddend = view + offset;
+  typename Arm_relocate_functions<big_endian>::Status reloc_status =
+       Arm_relocate_functions<big_endian>::STATUS_OKAY;
+  switch (r_type)
+    {
+    case elfcpp::R_ARM_ABS8:
+      reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object,
+                                                             psymval);
+      break;
+
+    case elfcpp::R_ARM_ABS12:
+      reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object,
+                                                              psymval);
+      break;
+
+    case elfcpp::R_ARM_ABS16:
+      reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object,
+                                                              psymval);
+      break;
+
+    case elfcpp::R_ARM_THM_ABS5:
+      reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend,
+                                                                 object,
+                                                                 psymval);
+      break;
+
+    case elfcpp::R_ARM_MOVW_ABS_NC:
+    case elfcpp::R_ARM_MOVW_PREL_NC:
+    case elfcpp::R_ARM_MOVW_BREL_NC:
+    case elfcpp::R_ARM_MOVW_BREL:
+      reloc_status = Arm_relocate_functions<big_endian>::movw(
+         paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
+      break;
+
+    case elfcpp::R_ARM_THM_MOVW_ABS_NC:
+    case elfcpp::R_ARM_THM_MOVW_PREL_NC:
+    case elfcpp::R_ARM_THM_MOVW_BREL_NC:
+    case elfcpp::R_ARM_THM_MOVW_BREL:
+      reloc_status = Arm_relocate_functions<big_endian>::thm_movw(
+         paddend, object, psymval, 0, thumb_bit, arp->checks_overflow());
+      break;
+
+    case elfcpp::R_ARM_THM_CALL:
+    case elfcpp::R_ARM_THM_XPC22:
+    case elfcpp::R_ARM_THM_JUMP24:
+      reloc_status =
+       Arm_relocate_functions<big_endian>::thumb_branch_common(
+           r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
+           false);
+      break;
+
+    case elfcpp::R_ARM_PLT32:
+    case elfcpp::R_ARM_CALL:
+    case elfcpp::R_ARM_JUMP24:
+    case elfcpp::R_ARM_XPC25:
+      reloc_status =
+       Arm_relocate_functions<big_endian>::arm_branch_common(
+           r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit,
+           false);
+      break;
+
+    case elfcpp::R_ARM_THM_JUMP19:
+      reloc_status =
+       Arm_relocate_functions<big_endian>::thm_jump19(paddend, object,
+                                                      psymval, 0, thumb_bit);
+      break;
+
+    case elfcpp::R_ARM_THM_JUMP6:
+      reloc_status =
+       Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval,
+                                                     0);
+      break;
+
+    case elfcpp::R_ARM_THM_JUMP8:
+      reloc_status =
+       Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval,
+                                                     0);
+      break;
+
+    case elfcpp::R_ARM_THM_JUMP11:
+      reloc_status =
+       Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval,
+                                                      0);
+      break;
+
+    case elfcpp::R_ARM_PREL31:
+      reloc_status =
+       Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0,
+                                                  thumb_bit);
+      break;
+
+    case elfcpp::R_ARM_THM_PC8:
+      reloc_status =
+       Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval,
+                                                   0);
+      break;
+
+    case elfcpp::R_ARM_THM_PC12:
+      reloc_status =
+       Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval,
+                                                    0);
+      break;
+
+    case elfcpp::R_ARM_THM_ALU_PREL_11_0:
+      reloc_status =
+       Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval,
+                                                     0, thumb_bit);
+      break;
+
+    // These relocation truncate relocation results so we cannot handle them
+    // in a relocatable link.
+    case elfcpp::R_ARM_MOVT_ABS:
+    case elfcpp::R_ARM_THM_MOVT_ABS:
+    case elfcpp::R_ARM_MOVT_PREL:
+    case elfcpp::R_ARM_MOVT_BREL:
+    case elfcpp::R_ARM_THM_MOVT_PREL:
+    case elfcpp::R_ARM_THM_MOVT_BREL:
+    case elfcpp::R_ARM_ALU_PC_G0_NC:
+    case elfcpp::R_ARM_ALU_PC_G0:
+    case elfcpp::R_ARM_ALU_PC_G1_NC:
+    case elfcpp::R_ARM_ALU_PC_G1:
+    case elfcpp::R_ARM_ALU_PC_G2:
+    case elfcpp::R_ARM_ALU_SB_G0_NC:
+    case elfcpp::R_ARM_ALU_SB_G0:
+    case elfcpp::R_ARM_ALU_SB_G1_NC:
+    case elfcpp::R_ARM_ALU_SB_G1:
+    case elfcpp::R_ARM_ALU_SB_G2:
+    case elfcpp::R_ARM_LDR_PC_G0:
+    case elfcpp::R_ARM_LDR_PC_G1:
+    case elfcpp::R_ARM_LDR_PC_G2:
+    case elfcpp::R_ARM_LDR_SB_G0:
+    case elfcpp::R_ARM_LDR_SB_G1:
+    case elfcpp::R_ARM_LDR_SB_G2:
+    case elfcpp::R_ARM_LDRS_PC_G0:
+    case elfcpp::R_ARM_LDRS_PC_G1:
+    case elfcpp::R_ARM_LDRS_PC_G2:
+    case elfcpp::R_ARM_LDRS_SB_G0:
+    case elfcpp::R_ARM_LDRS_SB_G1:
+    case elfcpp::R_ARM_LDRS_SB_G2:
+    case elfcpp::R_ARM_LDC_PC_G0:
+    case elfcpp::R_ARM_LDC_PC_G1:
+    case elfcpp::R_ARM_LDC_PC_G2:
+    case elfcpp::R_ARM_LDC_SB_G0:
+    case elfcpp::R_ARM_LDC_SB_G1:
+    case elfcpp::R_ARM_LDC_SB_G2:
+      gold_error(_("cannot handle %s in a relocatable link"),
+                arp->name().c_str());
+      break;
+
+    default:
+      gold_unreachable();
+    }
+
+  // Report any errors.
+  switch (reloc_status)
+    {
+    case Arm_relocate_functions<big_endian>::STATUS_OKAY:
+      break;
+    case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW:
+      gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
+                            _("relocation overflow in %s"),
+                            arp->name().c_str());
+      break;
+    case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC:
+      gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
+       _("unexpected opcode while processing relocation %s"),
+       arp->name().c_str());
+      break;
+    default:
+      gold_unreachable();
+    }
+}
+
 // Return the value to use for a dynamic symbol which requires special
 // treatment.  This is how we support equality comparisons of function
 // pointers across shared library boundaries, as described in the
@@ -4854,7 +9481,8 @@ Target_arm<big_endian>::are_eabi_versions_compatible(
 {
   // v4 and v5 are the same spec before and after it was released,
   // so allow mixing them.
-  if ((v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
+  if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN)
+      || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5)
       || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4))
     return true;
 
@@ -4883,7 +9511,8 @@ Target_arm<big_endian>::merge_processor_specific_flags(
       // Complain about various flag mismatches.
       elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags);
       elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags);
-      if (!this->are_eabi_versions_compatible(version1, version2))
+      if (!this->are_eabi_versions_compatible(version1, version2)
+         && parameters->options().warn_mismatch())
        gold_error(_("Source object %s has EABI version %d but output has "
                     "EABI version %d."),
                   name.c_str(),
@@ -4968,21 +9597,1869 @@ Target_arm<big_endian>::do_make_elf_object(
     }
 }
 
-// The selector for arm object files.
+// Read the architecture from the Tag_also_compatible_with attribute, if any.
+// Returns -1 if no architecture could be read.
+// This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c.
 
 template<bool big_endian>
-class Target_selector_arm : public Target_selector
+int
+Target_arm<big_endian>::get_secondary_compatible_arch(
+    const Attributes_section_data* pasd)
 {
- public:
-  Target_selector_arm()
-    : Target_selector(elfcpp::EM_ARM, 32, big_endian,
-                     (big_endian ? "elf32-bigarm" : "elf32-littlearm"))
-  { }
+  const Object_attribute *known_attributes =
+    pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
+
+  // Note: the tag and its argument below are uleb128 values, though
+  // currently-defined values fit in one byte for each.
+  const std::string& sv =
+    known_attributes[elfcpp::Tag_also_compatible_with].string_value();
+  if (sv.size() == 2
+      && sv.data()[0] == elfcpp::Tag_CPU_arch
+      && (sv.data()[1] & 128) != 128)
+   return sv.data()[1];
+
+  // This tag is "safely ignorable", so don't complain if it looks funny.
+  return -1;
+}
 
-  Target*
-  do_instantiate_target()
-  { return new Target_arm<big_endian>(); }
-};
+// Set, or unset, the architecture of the Tag_also_compatible_with attribute.
+// The tag is removed if ARCH is -1.
+// This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c.
+
+template<bool big_endian>
+void
+Target_arm<big_endian>::set_secondary_compatible_arch(
+    Attributes_section_data* pasd,
+    int arch)
+{
+  Object_attribute *known_attributes =
+    pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC);
+
+  if (arch == -1)
+    {
+      known_attributes[elfcpp::Tag_also_compatible_with].set_string_value("");
+      return;
+    }
+
+  // Note: the tag and its argument below are uleb128 values, though
+  // currently-defined values fit in one byte for each.
+  char sv[3];
+  sv[0] = elfcpp::Tag_CPU_arch;
+  gold_assert(arch != 0);
+  sv[1] = arch;
+  sv[2] = '\0';
+
+  known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv);
+}
+
+// Combine two values for Tag_CPU_arch, taking secondary compatibility tags
+// into account.
+// This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c.
+
+template<bool big_endian>
+int
+Target_arm<big_endian>::tag_cpu_arch_combine(
+    const char* name,
+    int oldtag,
+    int* secondary_compat_out,
+    int newtag,
+    int secondary_compat)
+{
+#define T(X) elfcpp::TAG_CPU_ARCH_##X
+  static const int v6t2[] =
+    {
+      T(V6T2),   // PRE_V4.
+      T(V6T2),   // V4.
+      T(V6T2),   // V4T.
+      T(V6T2),   // V5T.
+      T(V6T2),   // V5TE.
+      T(V6T2),   // V5TEJ.
+      T(V6T2),   // V6.
+      T(V7),     // V6KZ.
+      T(V6T2)    // V6T2.
+    };
+  static const int v6k[] =
+    {
+      T(V6K),    // PRE_V4.
+      T(V6K),    // V4.
+      T(V6K),    // V4T.
+      T(V6K),    // V5T.
+      T(V6K),    // V5TE.
+      T(V6K),    // V5TEJ.
+      T(V6K),    // V6.
+      T(V6KZ),   // V6KZ.
+      T(V7),     // V6T2.
+      T(V6K)     // V6K.
+    };
+  static const int v7[] =
+    {
+      T(V7),     // PRE_V4.
+      T(V7),     // V4.
+      T(V7),     // V4T.
+      T(V7),     // V5T.
+      T(V7),     // V5TE.
+      T(V7),     // V5TEJ.
+      T(V7),     // V6.
+      T(V7),     // V6KZ.
+      T(V7),     // V6T2.
+      T(V7),     // V6K.
+      T(V7)      // V7.
+    };
+  static const int v6_m[] =
+    {
+      -1,        // PRE_V4.
+      -1,        // V4.
+      T(V6K),    // V4T.
+      T(V6K),    // V5T.
+      T(V6K),    // V5TE.
+      T(V6K),    // V5TEJ.
+      T(V6K),    // V6.
+      T(V6KZ),   // V6KZ.
+      T(V7),     // V6T2.
+      T(V6K),    // V6K.
+      T(V7),     // V7.
+      T(V6_M)    // V6_M.
+    };
+  static const int v6s_m[] =
+    {
+      -1,        // PRE_V4.
+      -1,        // V4.
+      T(V6K),    // V4T.
+      T(V6K),    // V5T.
+      T(V6K),    // V5TE.
+      T(V6K),    // V5TEJ.
+      T(V6K),    // V6.
+      T(V6KZ),   // V6KZ.
+      T(V7),     // V6T2.
+      T(V6K),    // V6K.
+      T(V7),     // V7.
+      T(V6S_M),  // V6_M.
+      T(V6S_M)   // V6S_M.
+    };
+  static const int v7e_m[] =
+    {
+      -1,      // PRE_V4.
+      -1,      // V4.
+      T(V7E_M),        // V4T.
+      T(V7E_M),        // V5T.
+      T(V7E_M),        // V5TE.
+      T(V7E_M),        // V5TEJ.
+      T(V7E_M),        // V6.
+      T(V7E_M),        // V6KZ.
+      T(V7E_M),        // V6T2.
+      T(V7E_M),        // V6K.
+      T(V7E_M),        // V7.
+      T(V7E_M),        // V6_M.
+      T(V7E_M),        // V6S_M.
+      T(V7E_M) // V7E_M.
+    };
+  static const int v4t_plus_v6_m[] =
+    {
+      -1,              // PRE_V4.
+      -1,              // V4.
+      T(V4T),          // V4T.
+      T(V5T),          // V5T.
+      T(V5TE),         // V5TE.
+      T(V5TEJ),                // V5TEJ.
+      T(V6),           // V6.
+      T(V6KZ),         // V6KZ.
+      T(V6T2),         // V6T2.
+      T(V6K),          // V6K.
+      T(V7),           // V7.
+      T(V6_M),         // V6_M.
+      T(V6S_M),                // V6S_M.
+      T(V7E_M),                // V7E_M.
+      T(V4T_PLUS_V6_M) // V4T plus V6_M.
+    };
+  static const int *comb[] =
+    {
+      v6t2,
+      v6k,
+      v7,
+      v6_m,
+      v6s_m,
+      v7e_m,
+      // Pseudo-architecture.
+      v4t_plus_v6_m
+    };
+
+  // Check we've not got a higher architecture than we know about.
+
+  if (oldtag >= elfcpp::MAX_TAG_CPU_ARCH || newtag >= elfcpp::MAX_TAG_CPU_ARCH)
+    {
+      gold_error(_("%s: unknown CPU architecture"), name);
+      return -1;
+    }
+
+  // Override old tag if we have a Tag_also_compatible_with on the output.
+
+  if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
+      || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
+    oldtag = T(V4T_PLUS_V6_M);
+
+  // And override the new tag if we have a Tag_also_compatible_with on the
+  // input.
+
+  if ((newtag == T(V6_M) && secondary_compat == T(V4T))
+      || (newtag == T(V4T) && secondary_compat == T(V6_M)))
+    newtag = T(V4T_PLUS_V6_M);
+
+  // Architectures before V6KZ add features monotonically.
+  int tagh = std::max(oldtag, newtag);
+  if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ)
+    return tagh;
+
+  int tagl = std::min(oldtag, newtag);
+  int result = comb[tagh - T(V6T2)][tagl];
+
+  // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
+  // as the canonical version.
+  if (result == T(V4T_PLUS_V6_M))
+    {
+      result = T(V4T);
+      *secondary_compat_out = T(V6_M);
+    }
+  else
+    *secondary_compat_out = -1;
+
+  if (result == -1)
+    {
+      gold_error(_("%s: conflicting CPU architectures %d/%d"),
+                name, oldtag, newtag);
+      return -1;
+    }
+
+  return result;
+#undef T
+}
+
+// Helper to print AEABI enum tag value.
+
+template<bool big_endian>
+std::string
+Target_arm<big_endian>::aeabi_enum_name(unsigned int value)
+{
+  static const char *aeabi_enum_names[] =
+    { "", "variable-size", "32-bit", "" };
+  const size_t aeabi_enum_names_size =
+    sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]);
+
+  if (value < aeabi_enum_names_size)
+    return std::string(aeabi_enum_names[value]);
+  else
+    {
+      char buffer[100];
+      sprintf(buffer, "<unknown value %u>", value);
+      return std::string(buffer);
+    }
+}
+
+// Return the string value to store in TAG_CPU_name.
+
+template<bool big_endian>
+std::string
+Target_arm<big_endian>::tag_cpu_name_value(unsigned int value)
+{
+  static const char *name_table[] = {
+    // These aren't real CPU names, but we can't guess
+    // that from the architecture version alone.
+   "Pre v4",
+   "ARM v4",
+   "ARM v4T",
+   "ARM v5T",
+   "ARM v5TE",
+   "ARM v5TEJ",
+   "ARM v6",
+   "ARM v6KZ",
+   "ARM v6T2",
+   "ARM v6K",
+   "ARM v7",
+   "ARM v6-M",
+   "ARM v6S-M",
+   "ARM v7E-M"
+ };
+ const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]);
+
+  if (value < name_table_size)
+    return std::string(name_table[value]);
+  else
+    {
+      char buffer[100];
+      sprintf(buffer, "<unknown CPU value %u>", value);
+      return std::string(buffer);
+    } 
+}
+
+// Merge object attributes from input file called NAME with those of the
+// output.  The input object attributes are in the object pointed by PASD.
+
+template<bool big_endian>
+void
+Target_arm<big_endian>::merge_object_attributes(
+    const char* name,
+    const Attributes_section_data* pasd)
+{
+  // Return if there is no attributes section data.
+  if (pasd == NULL)
+    return;
+
+  // If output has no object attributes, just copy.
+  const int vendor = Object_attribute::OBJ_ATTR_PROC;
+  if (this->attributes_section_data_ == NULL)
+    {
+      this->attributes_section_data_ = new Attributes_section_data(*pasd);
+      Object_attribute* out_attr =
+       this->attributes_section_data_->known_attributes(vendor);
+
+      // We do not output objects with Tag_MPextension_use_legacy - we move
+      //  the attribute's value to Tag_MPextension_use.  */
+      if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0)
+       {
+         if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0
+             && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value()
+               != out_attr[elfcpp::Tag_MPextension_use].int_value())
+           {
+             gold_error(_("%s has both the current and legacy "
+                          "Tag_MPextension_use attributes"),
+                        name);
+           }
+
+         out_attr[elfcpp::Tag_MPextension_use] =
+           out_attr[elfcpp::Tag_MPextension_use_legacy];
+         out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0);
+         out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0);
+       }
+
+      return;
+    }
+
+  const Object_attribute* in_attr = pasd->known_attributes(vendor);
+  Object_attribute* out_attr =
+    this->attributes_section_data_->known_attributes(vendor);
+
+  // This needs to happen before Tag_ABI_FP_number_model is merged.  */
+  if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value()
+      != out_attr[elfcpp::Tag_ABI_VFP_args].int_value())
+    {
+      // Ignore mismatches if the object doesn't use floating point.  */
+      if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() == 0)
+       out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value(
+           in_attr[elfcpp::Tag_ABI_VFP_args].int_value());
+      else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() != 0
+              && parameters->options().warn_mismatch())
+        gold_error(_("%s uses VFP register arguments, output does not"),
+                  name);
+    }
+
+  for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i)
+    {
+      // Merge this attribute with existing attributes.
+      switch (i)
+       {
+       case elfcpp::Tag_CPU_raw_name:
+       case elfcpp::Tag_CPU_name:
+         // These are merged after Tag_CPU_arch.
+         break;
+
+       case elfcpp::Tag_ABI_optimization_goals:
+       case elfcpp::Tag_ABI_FP_optimization_goals:
+         // Use the first value seen.
+         break;
+
+       case elfcpp::Tag_CPU_arch:
+         {
+           unsigned int saved_out_attr = out_attr->int_value();
+           // Merge Tag_CPU_arch and Tag_also_compatible_with.
+           int secondary_compat =
+             this->get_secondary_compatible_arch(pasd);
+           int secondary_compat_out =
+             this->get_secondary_compatible_arch(
+                 this->attributes_section_data_);
+           out_attr[i].set_int_value(
+               tag_cpu_arch_combine(name, out_attr[i].int_value(),
+                                    &secondary_compat_out,
+                                    in_attr[i].int_value(),
+                                    secondary_compat));
+           this->set_secondary_compatible_arch(this->attributes_section_data_,
+                                               secondary_compat_out);
+
+           // Merge Tag_CPU_name and Tag_CPU_raw_name.
+           if (out_attr[i].int_value() == saved_out_attr)
+             ; // Leave the names alone.
+           else if (out_attr[i].int_value() == in_attr[i].int_value())
+             {
+               // The output architecture has been changed to match the
+               // input architecture.  Use the input names.
+               out_attr[elfcpp::Tag_CPU_name].set_string_value(
+                   in_attr[elfcpp::Tag_CPU_name].string_value());
+               out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(
+                   in_attr[elfcpp::Tag_CPU_raw_name].string_value());
+             }
+           else
+             {
+               out_attr[elfcpp::Tag_CPU_name].set_string_value("");
+               out_attr[elfcpp::Tag_CPU_raw_name].set_string_value("");
+             }
+
+           // If we still don't have a value for Tag_CPU_name,
+           // make one up now.  Tag_CPU_raw_name remains blank.
+           if (out_attr[elfcpp::Tag_CPU_name].string_value() == "")
+             {
+               const std::string cpu_name =
+                 this->tag_cpu_name_value(out_attr[i].int_value());
+               // FIXME:  If we see an unknown CPU, this will be set
+               // to "<unknown CPU n>", where n is the attribute value.
+               // This is different from BFD, which leaves the name alone.
+               out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name);
+             }
+         }
+         break;
+
+       case elfcpp::Tag_ARM_ISA_use:
+       case elfcpp::Tag_THUMB_ISA_use:
+       case elfcpp::Tag_WMMX_arch:
+       case elfcpp::Tag_Advanced_SIMD_arch:
+         // ??? Do Advanced_SIMD (NEON) and WMMX conflict?
+       case elfcpp::Tag_ABI_FP_rounding:
+       case elfcpp::Tag_ABI_FP_exceptions:
+       case elfcpp::Tag_ABI_FP_user_exceptions:
+       case elfcpp::Tag_ABI_FP_number_model:
+       case elfcpp::Tag_VFP_HP_extension:
+       case elfcpp::Tag_CPU_unaligned_access:
+       case elfcpp::Tag_T2EE_use:
+       case elfcpp::Tag_Virtualization_use:
+       case elfcpp::Tag_MPextension_use:
+         // Use the largest value specified.
+         if (in_attr[i].int_value() > out_attr[i].int_value())
+           out_attr[i].set_int_value(in_attr[i].int_value());
+         break;
+
+       case elfcpp::Tag_ABI_align8_preserved:
+       case elfcpp::Tag_ABI_PCS_RO_data:
+         // Use the smallest value specified.
+         if (in_attr[i].int_value() < out_attr[i].int_value())
+           out_attr[i].set_int_value(in_attr[i].int_value());
+         break;
+
+       case elfcpp::Tag_ABI_align8_needed:
+         if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0)
+             && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0
+                 || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value()
+                     == 0)))
+           {
+             // This error message should be enabled once all non-conformant
+             // binaries in the toolchain have had the attributes set
+             // properly.
+             // gold_error(_("output 8-byte data alignment conflicts with %s"),
+             //            name);
+           }
+         // Fall through.
+       case elfcpp::Tag_ABI_FP_denormal:
+       case elfcpp::Tag_ABI_PCS_GOT_use:
+         {
+           // These tags have 0 = don't care, 1 = strong requirement,
+           // 2 = weak requirement.
+           static const int order_021[3] = {0, 2, 1};
+
+           // Use the "greatest" from the sequence 0, 2, 1, or the largest
+           // value if greater than 2 (for future-proofing).
+           if ((in_attr[i].int_value() > 2
+                && in_attr[i].int_value() > out_attr[i].int_value())
+               || (in_attr[i].int_value() <= 2
+                   && out_attr[i].int_value() <= 2
+                   && (order_021[in_attr[i].int_value()]
+                       > order_021[out_attr[i].int_value()])))
+             out_attr[i].set_int_value(in_attr[i].int_value());
+         }
+         break;
+
+       case elfcpp::Tag_CPU_arch_profile:
+         if (out_attr[i].int_value() != in_attr[i].int_value())
+           {
+             // 0 will merge with anything.
+             // 'A' and 'S' merge to 'A'.
+             // 'R' and 'S' merge to 'R'.
+             // 'M' and 'A|R|S' is an error.
+             if (out_attr[i].int_value() == 0
+                 || (out_attr[i].int_value() == 'S'
+                     && (in_attr[i].int_value() == 'A'
+                         || in_attr[i].int_value() == 'R')))
+               out_attr[i].set_int_value(in_attr[i].int_value());
+             else if (in_attr[i].int_value() == 0
+                      || (in_attr[i].int_value() == 'S'
+                          && (out_attr[i].int_value() == 'A'
+                              || out_attr[i].int_value() == 'R')))
+               ; // Do nothing.
+             else if (parameters->options().warn_mismatch())
+               {
+                 gold_error
+                   (_("conflicting architecture profiles %c/%c"),
+                    in_attr[i].int_value() ? in_attr[i].int_value() : '0',
+                    out_attr[i].int_value() ? out_attr[i].int_value() : '0');
+               }
+           }
+         break;
+       case elfcpp::Tag_VFP_arch:
+           {
+             static const struct
+             {
+                 int ver;
+                 int regs;
+             } vfp_versions[7] =
+               {
+                 {0, 0},
+                 {1, 16},
+                 {2, 16},
+                 {3, 32},
+                 {3, 16},
+                 {4, 32},
+                 {4, 16}
+               };
+
+             // Values greater than 6 aren't defined, so just pick the
+             // biggest.
+             if (in_attr[i].int_value() > 6
+                 && in_attr[i].int_value() > out_attr[i].int_value())
+               {
+                 *out_attr = *in_attr;
+                 break;
+               }
+             // The output uses the superset of input features
+             // (ISA version) and registers.
+             int ver = std::max(vfp_versions[in_attr[i].int_value()].ver,
+                                vfp_versions[out_attr[i].int_value()].ver);
+             int regs = std::max(vfp_versions[in_attr[i].int_value()].regs,
+                                 vfp_versions[out_attr[i].int_value()].regs);
+             // This assumes all possible supersets are also a valid
+             // options.
+             int newval;
+             for (newval = 6; newval > 0; newval--)
+               {
+                 if (regs == vfp_versions[newval].regs
+                     && ver == vfp_versions[newval].ver)
+                   break;
+               }
+             out_attr[i].set_int_value(newval);
+           }
+         break;
+       case elfcpp::Tag_PCS_config:
+         if (out_attr[i].int_value() == 0)
+           out_attr[i].set_int_value(in_attr[i].int_value());
+         else if (in_attr[i].int_value() != 0
+                  && out_attr[i].int_value() != 0
+                  && parameters->options().warn_mismatch())
+           {
+             // It's sometimes ok to mix different configs, so this is only
+             // a warning.
+             gold_warning(_("%s: conflicting platform configuration"), name);
+           }
+         break;
+       case elfcpp::Tag_ABI_PCS_R9_use:
+         if (in_attr[i].int_value() != out_attr[i].int_value()
+             && out_attr[i].int_value() != elfcpp::AEABI_R9_unused
+             && in_attr[i].int_value() != elfcpp::AEABI_R9_unused
+             && parameters->options().warn_mismatch())
+           {
+             gold_error(_("%s: conflicting use of R9"), name);
+           }
+         if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused)
+           out_attr[i].set_int_value(in_attr[i].int_value());
+         break;
+       case elfcpp::Tag_ABI_PCS_RW_data:
+         if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel
+             && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
+                 != elfcpp::AEABI_R9_SB)
+             && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value()
+                 != elfcpp::AEABI_R9_unused)
+             && parameters->options().warn_mismatch())
+           {
+             gold_error(_("%s: SB relative addressing conflicts with use "
+                          "of R9"),
+                          name);
+           }
+         // Use the smallest value specified.
+         if (in_attr[i].int_value() < out_attr[i].int_value())
+           out_attr[i].set_int_value(in_attr[i].int_value());
+         break;
+       case elfcpp::Tag_ABI_PCS_wchar_t:
+         // FIXME: Make it possible to turn off this warning.
+         if (out_attr[i].int_value()
+             && in_attr[i].int_value()
+             && out_attr[i].int_value() != in_attr[i].int_value()
+             && parameters->options().warn_mismatch())
+           {
+             gold_warning(_("%s uses %u-byte wchar_t yet the output is to "
+                            "use %u-byte wchar_t; use of wchar_t values "
+                            "across objects may fail"),
+                          name, in_attr[i].int_value(),
+                          out_attr[i].int_value());
+           }
+         else if (in_attr[i].int_value() && !out_attr[i].int_value())
+           out_attr[i].set_int_value(in_attr[i].int_value());
+         break;
+       case elfcpp::Tag_ABI_enum_size:
+         if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused)
+           {
+             if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused
+                 || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide)
+               {
+                 // The existing object is compatible with anything.
+                 // Use whatever requirements the new object has.
+                 out_attr[i].set_int_value(in_attr[i].int_value());
+               }
+             // FIXME: Make it possible to turn off this warning.
+             else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide
+                      && out_attr[i].int_value() != in_attr[i].int_value()
+                      && parameters->options().warn_mismatch())
+               {
+                 unsigned int in_value = in_attr[i].int_value();
+                 unsigned int out_value = out_attr[i].int_value();
+                 gold_warning(_("%s uses %s enums yet the output is to use "
+                                "%s enums; use of enum values across objects "
+                                "may fail"),
+                              name,
+                              this->aeabi_enum_name(in_value).c_str(),
+                              this->aeabi_enum_name(out_value).c_str());
+               }
+           }
+         break;
+       case elfcpp::Tag_ABI_VFP_args:
+         // Aready done.
+         break;
+       case elfcpp::Tag_ABI_WMMX_args:
+         if (in_attr[i].int_value() != out_attr[i].int_value()
+             && parameters->options().warn_mismatch())
+           {
+             gold_error(_("%s uses iWMMXt register arguments, output does "
+                          "not"),
+                        name);
+           }
+         break;
+       case Object_attribute::Tag_compatibility:
+         // Merged in target-independent code.
+         break;
+       case elfcpp::Tag_ABI_HardFP_use:
+         // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP).
+         if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2)
+             || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1))
+           out_attr[i].set_int_value(3);
+         else if (in_attr[i].int_value() > out_attr[i].int_value())
+           out_attr[i].set_int_value(in_attr[i].int_value());
+         break;
+       case elfcpp::Tag_ABI_FP_16bit_format:
+         if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0)
+           {
+             if (in_attr[i].int_value() != out_attr[i].int_value()
+                 && parameters->options().warn_mismatch())
+               gold_error(_("fp16 format mismatch between %s and output"),
+                          name);
+           }
+         if (in_attr[i].int_value() != 0)
+           out_attr[i].set_int_value(in_attr[i].int_value());
+         break;
+
+       case elfcpp::Tag_DIV_use:
+         // This tag is set to zero if we can use UDIV and SDIV in Thumb
+         // mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
+         // SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
+         // CPU.  We will merge as follows: If the input attribute's value
+         // is one then the output attribute's value remains unchanged.  If
+         // the input attribute's value is zero or two then if the output
+         // attribute's value is one the output value is set to the input
+         // value, otherwise the output value must be the same as the
+         // inputs.  */ 
+         if (in_attr[i].int_value() != 1 && out_attr[i].int_value() != 1) 
+           { 
+             if (in_attr[i].int_value() != out_attr[i].int_value())
+               {
+                 gold_error(_("DIV usage mismatch between %s and output"),
+                            name);
+               }
+           } 
+
+         if (in_attr[i].int_value() != 1)
+           out_attr[i].set_int_value(in_attr[i].int_value()); 
+         
+         break;
+
+       case elfcpp::Tag_MPextension_use_legacy:
+         // We don't output objects with Tag_MPextension_use_legacy - we
+         // move the value to Tag_MPextension_use.
+         if (in_attr[i].int_value() != 0
+             && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0)
+           {
+             if (in_attr[elfcpp::Tag_MPextension_use].int_value()
+                 != in_attr[i].int_value())
+               {
+                 gold_error(_("%s has has both the current and legacy "
+                              "Tag_MPextension_use attributes"), 
+                            name);
+               }
+           }
+
+         if (in_attr[i].int_value()
+             > out_attr[elfcpp::Tag_MPextension_use].int_value())
+           out_attr[elfcpp::Tag_MPextension_use] = in_attr[i];
+
+         break;
+
+       case elfcpp::Tag_nodefaults:
+         // This tag is set if it exists, but the value is unused (and is
+         // typically zero).  We don't actually need to do anything here -
+         // the merge happens automatically when the type flags are merged
+         // below.
+         break;
+       case elfcpp::Tag_also_compatible_with:
+         // Already done in Tag_CPU_arch.
+         break;
+       case elfcpp::Tag_conformance:
+         // Keep the attribute if it matches.  Throw it away otherwise.
+         // No attribute means no claim to conform.
+         if (in_attr[i].string_value() != out_attr[i].string_value())
+           out_attr[i].set_string_value("");
+         break;
+
+       default:
+         {
+           const char* err_object = NULL;
+
+           // The "known_obj_attributes" table does contain some undefined
+           // attributes.  Ensure that there are unused.
+           if (out_attr[i].int_value() != 0
+               || out_attr[i].string_value() != "")
+             err_object = "output";
+           else if (in_attr[i].int_value() != 0
+                    || in_attr[i].string_value() != "")
+             err_object = name;
+
+           if (err_object != NULL
+               && parameters->options().warn_mismatch())
+             {
+               // Attribute numbers >=64 (mod 128) can be safely ignored.
+               if ((i & 127) < 64)
+                 gold_error(_("%s: unknown mandatory EABI object attribute "
+                              "%d"),
+                            err_object, i);
+               else
+                 gold_warning(_("%s: unknown EABI object attribute %d"),
+                              err_object, i);
+             }
+
+           // Only pass on attributes that match in both inputs.
+           if (!in_attr[i].matches(out_attr[i]))
+             {
+               out_attr[i].set_int_value(0);
+               out_attr[i].set_string_value("");
+             }
+         }
+       }
+
+      // If out_attr was copied from in_attr then it won't have a type yet.
+      if (in_attr[i].type() && !out_attr[i].type())
+       out_attr[i].set_type(in_attr[i].type());
+    }
+
+  // Merge Tag_compatibility attributes and any common GNU ones.
+  this->attributes_section_data_->merge(name, pasd);
+
+  // Check for any attributes not known on ARM.
+  typedef Vendor_object_attributes::Other_attributes Other_attributes;
+  const Other_attributes* in_other_attributes = pasd->other_attributes(vendor);
+  Other_attributes::const_iterator in_iter = in_other_attributes->begin();
+  Other_attributes* out_other_attributes =
+    this->attributes_section_data_->other_attributes(vendor);
+  Other_attributes::iterator out_iter = out_other_attributes->begin();
+
+  while (in_iter != in_other_attributes->end()
+        || out_iter != out_other_attributes->end())
+    {
+      const char* err_object = NULL;
+      int err_tag = 0;
+
+      // The tags for each list are in numerical order.
+      // If the tags are equal, then merge.
+      if (out_iter != out_other_attributes->end()
+         && (in_iter == in_other_attributes->end()
+             || in_iter->first > out_iter->first))
+       {
+         // This attribute only exists in output.  We can't merge, and we
+         // don't know what the tag means, so delete it.
+         err_object = "output";
+         err_tag = out_iter->first;
+         int saved_tag = out_iter->first;
+         delete out_iter->second;
+         out_other_attributes->erase(out_iter); 
+         out_iter = out_other_attributes->upper_bound(saved_tag);
+       }
+      else if (in_iter != in_other_attributes->end()
+              && (out_iter != out_other_attributes->end()
+                  || in_iter->first < out_iter->first))
+       {
+         // This attribute only exists in input. We can't merge, and we
+         // don't know what the tag means, so ignore it.
+         err_object = name;
+         err_tag = in_iter->first;
+         ++in_iter;
+       }
+      else // The tags are equal.
+       {
+         // As present, all attributes in the list are unknown, and
+         // therefore can't be merged meaningfully.
+         err_object = "output";
+         err_tag = out_iter->first;
+
+         //  Only pass on attributes that match in both inputs.
+         if (!in_iter->second->matches(*(out_iter->second)))
+           {
+             // No match.  Delete the attribute.
+             int saved_tag = out_iter->first;
+             delete out_iter->second;
+             out_other_attributes->erase(out_iter);
+             out_iter = out_other_attributes->upper_bound(saved_tag);
+           }
+         else
+           {
+             // Matched.  Keep the attribute and move to the next.
+             ++out_iter;
+             ++in_iter;
+           }
+       }
+
+      if (err_object && parameters->options().warn_mismatch())
+       {
+         // Attribute numbers >=64 (mod 128) can be safely ignored.  */
+         if ((err_tag & 127) < 64)
+           {
+             gold_error(_("%s: unknown mandatory EABI object attribute %d"),
+                        err_object, err_tag);
+           }
+         else
+           {
+             gold_warning(_("%s: unknown EABI object attribute %d"),
+                          err_object, err_tag);
+           }
+       }
+    }
+}
+
+// Stub-generation methods for Target_arm.
+
+// Make a new Arm_input_section object.
+
+template<bool big_endian>
+Arm_input_section<big_endian>*
+Target_arm<big_endian>::new_arm_input_section(
+    Relobj* relobj,
+    unsigned int shndx)
+{
+  Section_id sid(relobj, shndx);
+
+  Arm_input_section<big_endian>* arm_input_section =
+    new Arm_input_section<big_endian>(relobj, shndx);
+  arm_input_section->init();
+
+  // Register new Arm_input_section in map for look-up.
+  std::pair<typename Arm_input_section_map::iterator, bool> ins =
+    this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section));
+
+  // Make sure that it we have not created another Arm_input_section
+  // for this input section already.
+  gold_assert(ins.second);
+
+  return arm_input_section; 
+}
+
+// Find the Arm_input_section object corresponding to the SHNDX-th input
+// section of RELOBJ.
+
+template<bool big_endian>
+Arm_input_section<big_endian>*
+Target_arm<big_endian>::find_arm_input_section(
+    Relobj* relobj,
+    unsigned int shndx) const
+{
+  Section_id sid(relobj, shndx);
+  typename Arm_input_section_map::const_iterator p =
+    this->arm_input_section_map_.find(sid);
+  return (p != this->arm_input_section_map_.end()) ? p->second : NULL;
+}
+
+// Make a new stub table.
+
+template<bool big_endian>
+Stub_table<big_endian>*
+Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner)
+{
+  Stub_table<big_endian>* stub_table =
+    new Stub_table<big_endian>(owner);
+  this->stub_tables_.push_back(stub_table);
+
+  stub_table->set_address(owner->address() + owner->data_size());
+  stub_table->set_file_offset(owner->offset() + owner->data_size());
+  stub_table->finalize_data_size();
+
+  return stub_table;
+}
+
+// Scan a relocation for stub generation.
+
+template<bool big_endian>
+void
+Target_arm<big_endian>::scan_reloc_for_stub(
+    const Relocate_info<32, big_endian>* relinfo,
+    unsigned int r_type,
+    const Sized_symbol<32>* gsym,
+    unsigned int r_sym,
+    const Symbol_value<32>* psymval,
+    elfcpp::Elf_types<32>::Elf_Swxword addend,
+    Arm_address address)
+{
+  typedef typename Target_arm<big_endian>::Relocate Relocate;
+
+  const Arm_relobj<big_endian>* arm_relobj =
+    Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
+
+  bool target_is_thumb;
+  Symbol_value<32> symval;
+  if (gsym != NULL)
+    {
+      // This is a global symbol.  Determine if we use PLT and if the
+      // final target is THUMB.
+      if (gsym->use_plt_offset(Relocate::reloc_is_non_pic(r_type)))
+       {
+         // This uses a PLT, change the symbol value.
+         symval.set_output_value(this->plt_section()->address()
+                                 + gsym->plt_offset());
+         psymval = &symval;
+         target_is_thumb = false;
+       }
+      else if (gsym->is_undefined())
+       // There is no need to generate a stub symbol is undefined.
+       return;
+      else
+       {
+         target_is_thumb =
+           ((gsym->type() == elfcpp::STT_ARM_TFUNC)
+            || (gsym->type() == elfcpp::STT_FUNC
+                && !gsym->is_undefined()
+                && ((psymval->value(arm_relobj, 0) & 1) != 0)));
+       }
+    }
+  else
+    {
+      // This is a local symbol.  Determine if the final target is THUMB.
+      target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym);
+    }
+
+  // Strip LSB if this points to a THUMB target.
+  const Arm_reloc_property* reloc_property =
+    arm_reloc_property_table->get_implemented_static_reloc_property(r_type);
+  gold_assert(reloc_property != NULL);
+  if (target_is_thumb
+      && reloc_property->uses_thumb_bit()
+      && ((psymval->value(arm_relobj, 0) & 1) != 0))
+    {
+      Arm_address stripped_value =
+       psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1);
+      symval.set_output_value(stripped_value);
+      psymval = &symval;
+    } 
+
+  // Get the symbol value.
+  Symbol_value<32>::Value value = psymval->value(arm_relobj, 0);
+
+  // Owing to pipelining, the PC relative branches below actually skip
+  // two instructions when the branch offset is 0.
+  Arm_address destination;
+  switch (r_type)
+    {
+    case elfcpp::R_ARM_CALL:
+    case elfcpp::R_ARM_JUMP24:
+    case elfcpp::R_ARM_PLT32:
+      // ARM branches.
+      destination = value + addend + 8;
+      break;
+    case elfcpp::R_ARM_THM_CALL:
+    case elfcpp::R_ARM_THM_XPC22:
+    case elfcpp::R_ARM_THM_JUMP24:
+    case elfcpp::R_ARM_THM_JUMP19:
+      // THUMB branches.
+      destination = value + addend + 4;
+      break;
+    default:
+      gold_unreachable();
+    }
+
+  Reloc_stub* stub = NULL;
+  Stub_type stub_type =
+    Reloc_stub::stub_type_for_reloc(r_type, address, destination,
+                                   target_is_thumb);
+  if (stub_type != arm_stub_none)
+    {
+      // Try looking up an existing stub from a stub table.
+      Stub_table<big_endian>* stub_table = 
+       arm_relobj->stub_table(relinfo->data_shndx);
+      gold_assert(stub_table != NULL);
+   
+      // Locate stub by destination.
+      Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend);
+
+      // Create a stub if there is not one already
+      stub = stub_table->find_reloc_stub(stub_key);
+      if (stub == NULL)
+       {
+         // create a new stub and add it to stub table.
+         stub = this->stub_factory().make_reloc_stub(stub_type);
+         stub_table->add_reloc_stub(stub, stub_key);
+       }
+
+      // Record the destination address.
+      stub->set_destination_address(destination
+                                   | (target_is_thumb ? 1 : 0));
+    }
+
+  // For Cortex-A8, we need to record a relocation at 4K page boundary.
+  if (this->fix_cortex_a8_
+      && (r_type == elfcpp::R_ARM_THM_JUMP24
+         || r_type == elfcpp::R_ARM_THM_JUMP19
+         || r_type == elfcpp::R_ARM_THM_CALL
+         || r_type == elfcpp::R_ARM_THM_XPC22)
+      && (address & 0xfffU) == 0xffeU)
+    {
+      // Found a candidate.  Note we haven't checked the destination is
+      // within 4K here: if we do so (and don't create a record) we can't
+      // tell that a branch should have been relocated when scanning later.
+      this->cortex_a8_relocs_info_[address] =
+       new Cortex_a8_reloc(stub, r_type,
+                           destination | (target_is_thumb ? 1 : 0));
+    }
+}
+
+// This function scans a relocation sections for stub generation.
+// The template parameter Relocate must be a class type which provides
+// a single function, relocate(), which implements the machine
+// specific part of a relocation.
+
+// BIG_ENDIAN is the endianness of the data.  SH_TYPE is the section type:
+// SHT_REL or SHT_RELA.
+
+// PRELOCS points to the relocation data.  RELOC_COUNT is the number
+// of relocs.  OUTPUT_SECTION is the output section.
+// NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
+// mapped to output offsets.
+
+// VIEW is the section data, VIEW_ADDRESS is its memory address, and
+// VIEW_SIZE is the size.  These refer to the input section, unless
+// NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
+// the output section.
+
+template<bool big_endian>
+template<int sh_type>
+void inline
+Target_arm<big_endian>::scan_reloc_section_for_stubs(
+    const Relocate_info<32, big_endian>* relinfo,
+    const unsigned char* prelocs,
+    size_t reloc_count,
+    Output_section* output_section,
+    bool needs_special_offset_handling,
+    const unsigned char* view,
+    elfcpp::Elf_types<32>::Elf_Addr view_address,
+    section_size_type)
+{
+  typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype;
+  const int reloc_size =
+    Reloc_types<sh_type, 32, big_endian>::reloc_size;
+
+  Arm_relobj<big_endian>* arm_object =
+    Arm_relobj<big_endian>::as_arm_relobj(relinfo->object);
+  unsigned int local_count = arm_object->local_symbol_count();
+
+  Comdat_behavior comdat_behavior = CB_UNDETERMINED;
+
+  for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
+    {
+      Reltype reloc(prelocs);
+
+      typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
+      unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
+      unsigned int r_type = elfcpp::elf_r_type<32>(r_info);
+
+      r_type = this->get_real_reloc_type(r_type);
+
+      // Only a few relocation types need stubs.
+      if ((r_type != elfcpp::R_ARM_CALL)
+         && (r_type != elfcpp::R_ARM_JUMP24)
+         && (r_type != elfcpp::R_ARM_PLT32)
+         && (r_type != elfcpp::R_ARM_THM_CALL)
+         && (r_type != elfcpp::R_ARM_THM_XPC22)
+         && (r_type != elfcpp::R_ARM_THM_JUMP24)
+         && (r_type != elfcpp::R_ARM_THM_JUMP19)
+         && (r_type != elfcpp::R_ARM_V4BX))
+       continue;
+
+      section_offset_type offset =
+       convert_to_section_size_type(reloc.get_r_offset());
+
+      if (needs_special_offset_handling)
+       {
+         offset = output_section->output_offset(relinfo->object,
+                                                relinfo->data_shndx,
+                                                offset);
+         if (offset == -1)
+           continue;
+       }
+
+      // Create a v4bx stub if --fix-v4bx-interworking is used.
+      if (r_type == elfcpp::R_ARM_V4BX)
+       {
+         if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING)
+           {
+             // Get the BX instruction.
+             typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
+             const Valtype* wv =
+               reinterpret_cast<const Valtype*>(view + offset);
+             elfcpp::Elf_types<32>::Elf_Swxword insn =
+               elfcpp::Swap<32, big_endian>::readval(wv);
+             const uint32_t reg = (insn & 0xf);
+
+             if (reg < 0xf)
+               {
+                 // Try looking up an existing stub from a stub table.
+                 Stub_table<big_endian>* stub_table =
+                   arm_object->stub_table(relinfo->data_shndx);
+                 gold_assert(stub_table != NULL);
+
+                 if (stub_table->find_arm_v4bx_stub(reg) == NULL)
+                   {
+                     // create a new stub and add it to stub table.
+                     Arm_v4bx_stub* stub =
+                       this->stub_factory().make_arm_v4bx_stub(reg);
+                     gold_assert(stub != NULL);
+                     stub_table->add_arm_v4bx_stub(stub);
+                   }
+               }
+           }
+         continue;
+       }
+
+      // Get the addend.
+      Stub_addend_reader<sh_type, big_endian> stub_addend_reader;
+      elfcpp::Elf_types<32>::Elf_Swxword addend =
+       stub_addend_reader(r_type, view + offset, reloc);
+
+      const Sized_symbol<32>* sym;
+
+      Symbol_value<32> symval;
+      const Symbol_value<32> *psymval;
+      if (r_sym < local_count)
+       {
+         sym = NULL;
+         psymval = arm_object->local_symbol(r_sym);
+
+          // If the local symbol belongs to a section we are discarding,
+          // and that section is a debug section, try to find the
+          // corresponding kept section and map this symbol to its
+          // counterpart in the kept section.  The symbol must not 
+          // correspond to a section we are folding.
+         bool is_ordinary;
+         unsigned int shndx = psymval->input_shndx(&is_ordinary);
+         if (is_ordinary
+             && shndx != elfcpp::SHN_UNDEF
+             && !arm_object->is_section_included(shndx) 
+              && !(relinfo->symtab->is_section_folded(arm_object, shndx)))
+           {
+             if (comdat_behavior == CB_UNDETERMINED)
+               {
+                 std::string name =
+                   arm_object->section_name(relinfo->data_shndx);
+                 comdat_behavior = get_comdat_behavior(name.c_str());
+               }
+             if (comdat_behavior == CB_PRETEND)
+               {
+                  bool found;
+                 typename elfcpp::Elf_types<32>::Elf_Addr value =
+                   arm_object->map_to_kept_section(shndx, &found);
+                 if (found)
+                   symval.set_output_value(value + psymval->input_value());
+                  else
+                    symval.set_output_value(0);
+               }
+             else
+               {
+                  symval.set_output_value(0);
+               }
+             symval.set_no_output_symtab_entry();
+             psymval = &symval;
+           }
+       }
+      else
+       {
+         const Symbol* gsym = arm_object->global_symbol(r_sym);
+         gold_assert(gsym != NULL);
+         if (gsym->is_forwarder())
+           gsym = relinfo->symtab->resolve_forwards(gsym);
+
+         sym = static_cast<const Sized_symbol<32>*>(gsym);
+         if (sym->has_symtab_index())
+           symval.set_output_symtab_index(sym->symtab_index());
+         else
+           symval.set_no_output_symtab_entry();
+
+         // We need to compute the would-be final value of this global
+         // symbol.
+         const Symbol_table* symtab = relinfo->symtab;
+         const Sized_symbol<32>* sized_symbol =
+           symtab->get_sized_symbol<32>(gsym);
+         Symbol_table::Compute_final_value_status status;
+         Arm_address value =
+           symtab->compute_final_value<32>(sized_symbol, &status);
+
+         // Skip this if the symbol has not output section.
+         if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
+           continue;
+
+         symval.set_output_value(value);
+         psymval = &symval;
+       }
+
+      // If symbol is a section symbol, we don't know the actual type of
+      // destination.  Give up.
+      if (psymval->is_section_symbol())
+       continue;
+
+      this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
+                               addend, view_address + offset);
+    }
+}
+
+// Scan an input section for stub generation.
+
+template<bool big_endian>
+void
+Target_arm<big_endian>::scan_section_for_stubs(
+    const Relocate_info<32, big_endian>* relinfo,
+    unsigned int sh_type,
+    const unsigned char* prelocs,
+    size_t reloc_count,
+    Output_section* output_section,
+    bool needs_special_offset_handling,
+    const unsigned char* view,
+    Arm_address view_address,
+    section_size_type view_size)
+{
+  if (sh_type == elfcpp::SHT_REL)
+    this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>(
+       relinfo,
+       prelocs,
+       reloc_count,
+       output_section,
+       needs_special_offset_handling,
+       view,
+       view_address,
+       view_size);
+  else if (sh_type == elfcpp::SHT_RELA)
+    // We do not support RELA type relocations yet.  This is provided for
+    // completeness.
+    this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
+       relinfo,
+       prelocs,
+       reloc_count,
+       output_section,
+       needs_special_offset_handling,
+       view,
+       view_address,
+       view_size);
+  else
+    gold_unreachable();
+}
+
+// Group input sections for stub generation.
+//
+// We goup input sections in an output sections so that the total size,
+// including any padding space due to alignment is smaller than GROUP_SIZE
+// unless the only input section in group is bigger than GROUP_SIZE already.
+// Then an ARM stub table is created to follow the last input section
+// in group.  For each group an ARM stub table is created an is placed
+// after the last group.  If STUB_ALWATS_AFTER_BRANCH is false, we further
+// extend the group after the stub table.
+
+template<bool big_endian>
+void
+Target_arm<big_endian>::group_sections(
+    Layout* layout,
+    section_size_type group_size,
+    bool stubs_always_after_branch)
+{
+  // Group input sections and insert stub table
+  Layout::Section_list section_list;
+  layout->get_allocated_sections(&section_list);
+  for (Layout::Section_list::const_iterator p = section_list.begin();
+       p != section_list.end();
+       ++p)
+    {
+      Arm_output_section<big_endian>* output_section =
+       Arm_output_section<big_endian>::as_arm_output_section(*p);
+      output_section->group_sections(group_size, stubs_always_after_branch,
+                                    this);
+    }
+}
+
+// Relaxation hook.  This is where we do stub generation.
+
+template<bool big_endian>
+bool
+Target_arm<big_endian>::do_relax(
+    int pass,
+    const Input_objects* input_objects,
+    Symbol_table* symtab,
+    Layout* layout)
+{
+  // No need to generate stubs if this is a relocatable link.
+  gold_assert(!parameters->options().relocatable());
+
+  // If this is the first pass, we need to group input sections into
+  // stub groups.
+  bool done_exidx_fixup = false;
+  typedef typename Stub_table_list::iterator Stub_table_iterator;
+  if (pass == 1)
+    {
+      // Determine the stub group size.  The group size is the absolute
+      // value of the parameter --stub-group-size.  If --stub-group-size
+      // is passed a negative value, we restict stubs to be always after
+      // the stubbed branches.
+      int32_t stub_group_size_param =
+       parameters->options().stub_group_size();
+      bool stubs_always_after_branch = stub_group_size_param < 0;
+      section_size_type stub_group_size = abs(stub_group_size_param);
+
+      if (stub_group_size == 1)
+       {
+         // Default value.
+         // Thumb branch range is +-4MB has to be used as the default
+         // maximum size (a given section can contain both ARM and Thumb
+         // code, so the worst case has to be taken into account).  If we are
+         // fixing cortex-a8 errata, the branch range has to be even smaller,
+         // since wide conditional branch has a range of +-1MB only.
+         //
+         // This value is 48K less than that, which allows for 4096
+         // 12-byte stubs.  If we exceed that, then we will fail to link.
+         // The user will have to relink with an explicit group size
+         // option.
+           stub_group_size = 4145152;
+       }
+
+      // The Cortex-A8 erratum fix depends on stubs not being in the same 4K
+      // page as the first half of a 32-bit branch straddling two 4K pages.
+      // This is a crude way of enforcing that.  In addition, long conditional
+      // branches of THUMB-2 have a range of +-1M.  If we are fixing cortex-A8
+      // erratum, limit the group size to  (1M - 12k) to avoid unreachable
+      // cortex-A8 stubs from long conditional branches.
+      if (this->fix_cortex_a8_)
+       {
+         stubs_always_after_branch = true;
+         const section_size_type cortex_a8_group_size = 1024 * (1024 - 12);
+         stub_group_size = std::max(stub_group_size, cortex_a8_group_size);
+       }
+
+      group_sections(layout, stub_group_size, stubs_always_after_branch);
+     
+      // Also fix .ARM.exidx section coverage.
+      Output_section* os = layout->find_output_section(".ARM.exidx");
+      if (os != NULL && os->type() == elfcpp::SHT_ARM_EXIDX)
+       {
+         Arm_output_section<big_endian>* exidx_output_section =
+           Arm_output_section<big_endian>::as_arm_output_section(os);
+         this->fix_exidx_coverage(layout, exidx_output_section, symtab);
+         done_exidx_fixup = true;
+       }
+    }
+  else
+    {
+      // If this is not the first pass, addresses and file offsets have
+      // been reset at this point, set them here.
+      for (Stub_table_iterator sp = this->stub_tables_.begin();
+          sp != this->stub_tables_.end();
+          ++sp)
+       {
+         Arm_input_section<big_endian>* owner = (*sp)->owner();
+         off_t off = align_address(owner->original_size(),
+                                   (*sp)->addralign());
+         (*sp)->set_address_and_file_offset(owner->address() + off,
+                                            owner->offset() + off);
+       }
+    }
+
+  // The Cortex-A8 stubs are sensitive to layout of code sections.  At the
+  // beginning of each relaxation pass, just blow away all the stubs.
+  // Alternatively, we could selectively remove only the stubs and reloc
+  // information for code sections that have moved since the last pass.
+  // That would require more book-keeping.
+  if (this->fix_cortex_a8_)
+    {
+      // Clear all Cortex-A8 reloc information.
+      for (typename Cortex_a8_relocs_info::const_iterator p =
+            this->cortex_a8_relocs_info_.begin();
+          p != this->cortex_a8_relocs_info_.end();
+          ++p)
+       delete p->second;
+      this->cortex_a8_relocs_info_.clear();
+
+      // Remove all Cortex-A8 stubs.
+      for (Stub_table_iterator sp = this->stub_tables_.begin();
+          sp != this->stub_tables_.end();
+          ++sp)
+       (*sp)->remove_all_cortex_a8_stubs();
+    }
+  
+  // Scan relocs for relocation stubs
+  for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
+       op != input_objects->relobj_end();
+       ++op)
+    {
+      Arm_relobj<big_endian>* arm_relobj =
+       Arm_relobj<big_endian>::as_arm_relobj(*op);
+      arm_relobj->scan_sections_for_stubs(this, symtab, layout);
+    }
+
+  // Check all stub tables to see if any of them have their data sizes
+  // or addresses alignments changed.  These are the only things that
+  // matter.
+  bool any_stub_table_changed = false;
+  Unordered_set<const Output_section*> sections_needing_adjustment;
+  for (Stub_table_iterator sp = this->stub_tables_.begin();
+       (sp != this->stub_tables_.end()) && !any_stub_table_changed;
+       ++sp)
+    {
+      if ((*sp)->update_data_size_and_addralign())
+       {
+         // Update data size of stub table owner.
+         Arm_input_section<big_endian>* owner = (*sp)->owner();
+         uint64_t address = owner->address();
+         off_t offset = owner->offset();
+         owner->reset_address_and_file_offset();
+         owner->set_address_and_file_offset(address, offset);
+
+         sections_needing_adjustment.insert(owner->output_section());
+         any_stub_table_changed = true;
+       }
+    }
+
+  // Output_section_data::output_section() returns a const pointer but we
+  // need to update output sections, so we record all output sections needing
+  // update above and scan the sections here to find out what sections need
+  // to be updated.
+  for(Layout::Section_list::const_iterator p = layout->section_list().begin();
+      p != layout->section_list().end();
+      ++p)
+    {
+      if (sections_needing_adjustment.find(*p)
+         != sections_needing_adjustment.end())
+       (*p)->set_section_offsets_need_adjustment();
+    }
+
+  // Stop relaxation if no EXIDX fix-up and no stub table change.
+  bool continue_relaxation = done_exidx_fixup || any_stub_table_changed;
+
+  // Finalize the stubs in the last relaxation pass.
+  if (!continue_relaxation)
+    {
+      for (Stub_table_iterator sp = this->stub_tables_.begin();
+          (sp != this->stub_tables_.end()) && !any_stub_table_changed;
+           ++sp)
+       (*sp)->finalize_stubs();
+
+      // Update output local symbol counts of objects if necessary.
+      for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
+          op != input_objects->relobj_end();
+          ++op)
+       {
+         Arm_relobj<big_endian>* arm_relobj =
+           Arm_relobj<big_endian>::as_arm_relobj(*op);
+
+         // Update output local symbol counts.  We need to discard local
+         // symbols defined in parts of input sections that are discarded by
+         // relaxation.
+         if (arm_relobj->output_local_symbol_count_needs_update())
+           arm_relobj->update_output_local_symbol_count();
+       }
+    }
+
+  return continue_relaxation;
+}
+
+// Relocate a stub.
+
+template<bool big_endian>
+void
+Target_arm<big_endian>::relocate_stub(
+    Stub* stub,
+    const Relocate_info<32, big_endian>* relinfo,
+    Output_section* output_section,
+    unsigned char* view,
+    Arm_address address,
+    section_size_type view_size)
+{
+  Relocate relocate;
+  const Stub_template* stub_template = stub->stub_template();
+  for (size_t i = 0; i < stub_template->reloc_count(); i++)
+    {
+      size_t reloc_insn_index = stub_template->reloc_insn_index(i);
+      const Insn_template* insn = &stub_template->insns()[reloc_insn_index];
+
+      unsigned int r_type = insn->r_type();
+      section_size_type reloc_offset = stub_template->reloc_offset(i);
+      section_size_type reloc_size = insn->size();
+      gold_assert(reloc_offset + reloc_size <= view_size);
+
+      // This is the address of the stub destination.
+      Arm_address target = stub->reloc_target(i) + insn->reloc_addend();
+      Symbol_value<32> symval;
+      symval.set_output_value(target);
+
+      // Synthesize a fake reloc just in case.  We don't have a symbol so
+      // we use 0.
+      unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size];
+      memset(reloc_buffer, 0, sizeof(reloc_buffer));
+      elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer);
+      reloc_write.put_r_offset(reloc_offset);
+      reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type));
+      elfcpp::Rel<32, big_endian> rel(reloc_buffer);
+
+      relocate.relocate(relinfo, this, output_section,
+                       this->fake_relnum_for_stubs, rel, r_type,
+                       NULL, &symval, view + reloc_offset,
+                       address + reloc_offset, reloc_size);
+    }
+}
+
+// Determine whether an object attribute tag takes an integer, a
+// string or both.
+
+template<bool big_endian>
+int
+Target_arm<big_endian>::do_attribute_arg_type(int tag) const
+{
+  if (tag == Object_attribute::Tag_compatibility)
+    return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
+           | Object_attribute::ATTR_TYPE_FLAG_STR_VAL);
+  else if (tag == elfcpp::Tag_nodefaults)
+    return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL
+           | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT);
+  else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name)
+    return Object_attribute::ATTR_TYPE_FLAG_STR_VAL;
+  else if (tag < 32)
+    return Object_attribute::ATTR_TYPE_FLAG_INT_VAL;
+  else
+    return ((tag & 1) != 0
+           ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL
+           : Object_attribute::ATTR_TYPE_FLAG_INT_VAL);
+}
+
+// Reorder attributes.
+//
+// The ABI defines that Tag_conformance should be emitted first, and that
+// Tag_nodefaults should be second (if either is defined).  This sets those
+// two positions, and bumps up the position of all the remaining tags to
+// compensate.
+
+template<bool big_endian>
+int
+Target_arm<big_endian>::do_attributes_order(int num) const
+{
+  // Reorder the known object attributes in output.  We want to move
+  // Tag_conformance to position 4 and Tag_conformance to position 5
+  // and shift eveything between 4 .. Tag_conformance - 1 to make room.
+  if (num == 4)
+    return elfcpp::Tag_conformance;
+  if (num == 5)
+    return elfcpp::Tag_nodefaults;
+  if ((num - 2) < elfcpp::Tag_nodefaults)
+    return num - 2;
+  if ((num - 1) < elfcpp::Tag_conformance)
+    return num - 1;
+  return num;
+}
+
+// Scan a span of THUMB code for Cortex-A8 erratum.
+
+template<bool big_endian>
+void
+Target_arm<big_endian>::scan_span_for_cortex_a8_erratum(
+    Arm_relobj<big_endian>* arm_relobj,
+    unsigned int shndx,
+    section_size_type span_start,
+    section_size_type span_end,
+    const unsigned char* view,
+    Arm_address address)
+{
+  // Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
+  //
+  // The opcode is BLX.W, BL.W, B.W, Bcc.W
+  // The branch target is in the same 4KB region as the
+  // first half of the branch.
+  // The instruction before the branch is a 32-bit
+  // length non-branch instruction.
+  section_size_type i = span_start;
+  bool last_was_32bit = false;
+  bool last_was_branch = false;
+  while (i < span_end)
+    {
+      typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
+      const Valtype* wv = reinterpret_cast<const Valtype*>(view + i);
+      uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv);
+      bool is_blx = false, is_b = false;
+      bool is_bl = false, is_bcc = false;
+
+      bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000;
+      if (insn_32bit)
+       {
+         // Load the rest of the insn (in manual-friendly order).
+         insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1);
+
+         // Encoding T4: B<c>.W.
+         is_b = (insn & 0xf800d000U) == 0xf0009000U;
+         // Encoding T1: BL<c>.W.
+         is_bl = (insn & 0xf800d000U) == 0xf000d000U;
+                 // Encoding T2: BLX<c>.W.
+                 is_blx = (insn & 0xf800d000U) == 0xf000c000U;
+         // Encoding T3: B<c>.W (not permitted in IT block).
+         is_bcc = ((insn & 0xf800d000U) == 0xf0008000U
+                   && (insn & 0x07f00000U) != 0x03800000U);
+       }
+
+      bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
+                          
+      // If this instruction is a 32-bit THUMB branch that crosses a 4K
+      // page boundary and it follows 32-bit non-branch instruction,
+      // we need to work around.
+      if (is_32bit_branch
+         && ((address + i) & 0xfffU) == 0xffeU
+         && last_was_32bit
+         && !last_was_branch)
+       {
+         // Check to see if there is a relocation stub for this branch.
+         bool force_target_arm = false;
+         bool force_target_thumb = false;
+         const Cortex_a8_reloc* cortex_a8_reloc = NULL;
+         Cortex_a8_relocs_info::const_iterator p =
+           this->cortex_a8_relocs_info_.find(address + i);
+
+         if (p != this->cortex_a8_relocs_info_.end())
+           {
+             cortex_a8_reloc = p->second;
+             bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0;
+
+             if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
+                 && !target_is_thumb)
+               force_target_arm = true;
+             else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL
+                      && target_is_thumb)
+               force_target_thumb = true;
+           }
+
+         off_t offset;
+         Stub_type stub_type = arm_stub_none;
+
+         // Check if we have an offending branch instruction.
+         uint16_t upper_insn = (insn >> 16) & 0xffffU;
+         uint16_t lower_insn = insn & 0xffffU;
+         typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
+
+         if (cortex_a8_reloc != NULL
+             && cortex_a8_reloc->reloc_stub() != NULL)
+           // We've already made a stub for this instruction, e.g.
+           // it's a long branch or a Thumb->ARM stub.  Assume that
+           // stub will suffice to work around the A8 erratum (see
+           // setting of always_after_branch above).
+           ;
+         else if (is_bcc)
+           {
+             offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn,
+                                                             lower_insn);
+             stub_type = arm_stub_a8_veneer_b_cond;
+           }
+         else if (is_b || is_bl || is_blx)
+           {
+             offset = RelocFuncs::thumb32_branch_offset(upper_insn,
+                                                        lower_insn);
+             if (is_blx)
+               offset &= ~3;
+
+             stub_type = (is_blx
+                          ? arm_stub_a8_veneer_blx
+                          : (is_bl
+                             ? arm_stub_a8_veneer_bl
+                             : arm_stub_a8_veneer_b));
+           }
+
+         if (stub_type != arm_stub_none)
+           {
+             Arm_address pc_for_insn = address + i + 4;
+
+             // The original instruction is a BL, but the target is
+             // an ARM instruction.  If we were not making a stub,
+             // the BL would have been converted to a BLX.  Use the
+             // BLX stub instead in that case.
+             if (this->may_use_blx() && force_target_arm
+                 && stub_type == arm_stub_a8_veneer_bl)
+               {
+                 stub_type = arm_stub_a8_veneer_blx;
+                 is_blx = true;
+                 is_bl = false;
+               }
+             // Conversely, if the original instruction was
+             // BLX but the target is Thumb mode, use the BL stub.
+             else if (force_target_thumb
+                      && stub_type == arm_stub_a8_veneer_blx)
+               {
+                 stub_type = arm_stub_a8_veneer_bl;
+                 is_blx = false;
+                 is_bl = true;
+               }
+
+             if (is_blx)
+               pc_for_insn &= ~3;
+
+              // If we found a relocation, use the proper destination,
+             // not the offset in the (unrelocated) instruction.
+             // Note this is always done if we switched the stub type above.
+              if (cortex_a8_reloc != NULL)
+                offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn);
+
+              Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1);
+
+             // Add a new stub if destination address in in the same page.
+              if (((address + i) & ~0xfffU) == (target & ~0xfffU))
+                {
+                 Cortex_a8_stub* stub =
+                   this->stub_factory_.make_cortex_a8_stub(stub_type,
+                                                           arm_relobj, shndx,
+                                                           address + i,
+                                                           target, insn);
+                 Stub_table<big_endian>* stub_table =
+                   arm_relobj->stub_table(shndx);
+                 gold_assert(stub_table != NULL);
+                 stub_table->add_cortex_a8_stub(address + i, stub);
+                }
+            }
+        }
+
+      i += insn_32bit ? 4 : 2;
+      last_was_32bit = insn_32bit;
+      last_was_branch = is_32bit_branch;
+    }
+}
+
+// Apply the Cortex-A8 workaround.
+
+template<bool big_endian>
+void
+Target_arm<big_endian>::apply_cortex_a8_workaround(
+    const Cortex_a8_stub* stub,
+    Arm_address stub_address,
+    unsigned char* insn_view,
+    Arm_address insn_address)
+{
+  typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype;
+  Valtype* wv = reinterpret_cast<Valtype*>(insn_view);
+  Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv);
+  Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1);
+  off_t branch_offset = stub_address - (insn_address + 4);
+
+  typedef struct Arm_relocate_functions<big_endian> RelocFuncs;
+  switch (stub->stub_template()->type())
+    {
+    case arm_stub_a8_veneer_b_cond:
+      // For a conditional branch, we re-write it to be a uncondition
+      // branch to the stub.  We use the THUMB-2 encoding here.
+      upper_insn = 0xf000U;
+      lower_insn = 0xb800U;
+      // Fall through
+    case arm_stub_a8_veneer_b:
+    case arm_stub_a8_veneer_bl:
+    case arm_stub_a8_veneer_blx:
+      if ((lower_insn & 0x5000U) == 0x4000U)
+       // For a BLX instruction, make sure that the relocation is
+       // rounded up to a word boundary.  This follows the semantics of
+       // the instruction which specifies that bit 1 of the target
+       // address will come from bit 1 of the base address.
+       branch_offset = (branch_offset + 2) & ~3;
+
+      // Put BRANCH_OFFSET back into the insn.
+      gold_assert(!utils::has_overflow<25>(branch_offset));
+      upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset);
+      lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset);
+      break;
+
+    default:
+      gold_unreachable();
+    }
+
+  // Put the relocated value back in the object file:
+  elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn);
+  elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn);
+}
+
+template<bool big_endian>
+class Target_selector_arm : public Target_selector
+{
+ public:
+  Target_selector_arm()
+    : Target_selector(elfcpp::EM_ARM, 32, big_endian,
+                     (big_endian ? "elf32-bigarm" : "elf32-littlearm"))
+  { }
+
+  Target*
+  do_instantiate_target()
+  { return new Target_arm<big_endian>(); }
+};
+
+// Fix .ARM.exidx section coverage.
+
+template<bool big_endian>
+void
+Target_arm<big_endian>::fix_exidx_coverage(
+    Layout* layout,
+    Arm_output_section<big_endian>* exidx_section,
+    Symbol_table* symtab)
+{
+  // We need to look at all the input sections in output in ascending
+  // order of of output address.  We do that by building a sorted list
+  // of output sections by addresses.  Then we looks at the output sections
+  // in order.  The input sections in an output section are already sorted
+  // by addresses within the output section.
+
+  typedef std::set<Output_section*, output_section_address_less_than>
+      Sorted_output_section_list;
+  Sorted_output_section_list sorted_output_sections;
+  Layout::Section_list section_list;
+  layout->get_allocated_sections(&section_list);
+  for (Layout::Section_list::const_iterator p = section_list.begin();
+       p != section_list.end();
+       ++p)
+    {
+      // We only care about output sections that contain executable code.
+      if (((*p)->flags() & elfcpp::SHF_EXECINSTR) != 0)
+       sorted_output_sections.insert(*p);
+    }
+
+  // Go over the output sections in ascending order of output addresses.
+  typedef typename Arm_output_section<big_endian>::Text_section_list
+      Text_section_list;
+  Text_section_list sorted_text_sections;
+  for(typename Sorted_output_section_list::iterator p =
+       sorted_output_sections.begin();
+      p != sorted_output_sections.end();
+      ++p)
+    {
+      Arm_output_section<big_endian>* arm_output_section =
+       Arm_output_section<big_endian>::as_arm_output_section(*p);
+      arm_output_section->append_text_sections_to_list(&sorted_text_sections);
+    } 
+
+  exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab,
+                                   merge_exidx_entries());
+}
 
 Target_selector_arm<false> target_selector_arm;
 Target_selector_arm<true> target_selector_armbe;