*** empty log message ***
[binutils-gdb.git] / gold / dwarf_reader.cc
index d07e3e731ff265fef85e634d7115d0f9e57ec297..4062fe67c3157377b5429f53244b8b3f2ee67923 100644 (file)
@@ -1,6 +1,6 @@
 // dwarf_reader.cc -- parse dwarf2/3 debug information
 
-// Copyright 2007 Free Software Foundation, Inc.
+// Copyright 2007, 2008, 2009 Free Software Foundation, Inc.
 // Written by Ian Lance Taylor <iant@google.com>.
 
 // This file is part of gold.
 
 #include "gold.h"
 
+#include <algorithm>
+#include <vector>
+
 #include "elfcpp_swap.h"
 #include "dwarf.h"
 #include "object.h"
 #include "parameters.h"
 #include "reloc.h"
 #include "dwarf_reader.h"
-
-namespace {
-
-// Read an unsigned LEB128 number.  Each byte contains 7 bits of
-// information, plus one bit saying whether the number continues or
-// not.
-
-uint64_t
-read_unsigned_LEB_128(const unsigned char* buffer, size_t* len)
-{
-  uint64_t result = 0;
-  size_t num_read = 0;
-  unsigned int shift = 0;
-  unsigned char byte;
-
-  do
-    {
-      byte = *buffer++;
-      num_read++;
-      result |= (static_cast<uint64_t>(byte & 0x7f)) << shift;
-      shift += 7;
-    }
-  while (byte & 0x80);
-
-  *len = num_read;
-
-  return result;
-}
-
-// Read a signed LEB128 number.  These are like regular LEB128
-// numbers, except the last byte may have a sign bit set.
-
-int64_t
-read_signed_LEB_128(const unsigned char* buffer, size_t* len)
-{
-  int64_t result = 0;
-  int shift = 0;
-  size_t num_read = 0;
-  unsigned char byte;
-
-  do
-    {
-      byte = *buffer++;
-      num_read++;
-      result |= (static_cast<uint64_t>(byte & 0x7f) << shift);
-      shift += 7;
-    }
-  while (byte & 0x80);
-
-  if ((shift < 8 * static_cast<int>(sizeof(result))) && (byte & 0x40))
-    result |= -((static_cast<int64_t>(1)) << shift);
-  *len = num_read;
-  return result;
-}
-
-} // End anonymous namespace.
-
+#include "int_encoding.h"
 
 namespace gold {
 
-// This is the format of a DWARF2/3 line state machine that we process
-// opcodes using.  There is no need for anything outside the lineinfo
-// processor to know how this works.
-
 struct LineStateMachine
 {
   int file_num;
@@ -118,17 +61,19 @@ ResetLineStateMachine(struct LineStateMachine* lsm, bool default_is_stmt)
 }
 
 template<int size, bool big_endian>
-Sized_dwarf_line_info<size, big_endian>::Sized_dwarf_line_info(Object* object)
+Sized_dwarf_line_info<size, big_endian>::Sized_dwarf_line_info(Object* object,
+                                                               unsigned int read_shndx)
   : data_valid_(false), buffer_(NULL), symtab_buffer_(NULL),
     directories_(), files_(), current_header_index_(-1)
 {
   unsigned int debug_shndx;
   for (debug_shndx = 0; debug_shndx < object->shnum(); ++debug_shndx)
+    // FIXME: do this more efficiently: section_name() isn't super-fast
     if (object->section_name(debug_shndx) == ".debug_line")
       {
-        off_t buffer_size;
-        this->buffer_ = object->section_contents(
-            debug_shndx, &buffer_size, false);
+        section_size_type buffer_size;
+        this->buffer_ = object->section_contents(debug_shndx, &buffer_size,
+                                                false);
         this->buffer_end_ = this->buffer_ + buffer_size;
         break;
       }
@@ -171,7 +116,7 @@ Sized_dwarf_line_info<size, big_endian>::Sized_dwarf_line_info(Object* object)
   // Now that we have successfully read all the data, parse the debug
   // info.
   this->data_valid_ = true;
-  this->read_line_mappings();
+  this->read_line_mappings(object, read_shndx);
 }
 
 // Read the DWARF header.
@@ -181,7 +126,7 @@ const unsigned char*
 Sized_dwarf_line_info<size, big_endian>::read_header_prolog(
     const unsigned char* lineptr)
 {
-  uint32_t initial_length = elfcpp::Swap<32, big_endian>::readval(lineptr);
+  uint32_t initial_length = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
   lineptr += 4;
 
   // In DWARF2/3, if the initial length is all 1 bits, then the offset
@@ -189,7 +134,7 @@ Sized_dwarf_line_info<size, big_endian>::read_header_prolog(
   if (initial_length == 0xffffffff)
     {
       header_.offset_size = 8;
-      initial_length = elfcpp::Swap<64, big_endian>::readval(lineptr);
+      initial_length = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
       lineptr += 8;
     }
   else
@@ -199,13 +144,13 @@ Sized_dwarf_line_info<size, big_endian>::read_header_prolog(
 
   gold_assert(lineptr + header_.total_length <= buffer_end_);
 
-  header_.version = elfcpp::Swap<16, big_endian>::readval(lineptr);
+  header_.version = elfcpp::Swap_unaligned<16, big_endian>::readval(lineptr);
   lineptr += 2;
 
   if (header_.offset_size == 4)
-    header_.prologue_length = elfcpp::Swap<32, big_endian>::readval(lineptr);
+    header_.prologue_length = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
   else
-    header_.prologue_length = elfcpp::Swap<64, big_endian>::readval(lineptr);
+    header_.prologue_length = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
   lineptr += header_.offset_size;
 
   header_.min_insn_length = *lineptr;
@@ -390,7 +335,7 @@ Sized_dwarf_line_info<size, big_endian>::process_one_opcode(
     case elfcpp::DW_LNS_fixed_advance_pc:
       {
         int advance_address;
-        advance_address = elfcpp::Swap<16, big_endian>::readval(start);
+        advance_address = elfcpp::Swap_unaligned<16, big_endian>::readval(start);
         oplen += 2;
         lsm->address += advance_address;
       }
@@ -418,13 +363,17 @@ Sized_dwarf_line_info<size, big_endian>::process_one_opcode(
         switch (extended_op)
           {
           case elfcpp::DW_LNE_end_sequence:
+            // This means that the current byte is the one immediately
+            // after a set of instructions.  Record the current line
+            // for up to one less than the current address.
+            lsm->line_num = -1;
             lsm->end_sequence = true;
             *len = oplen;
             return true;
 
           case elfcpp::DW_LNE_set_address:
             {
-              lsm->address = elfcpp::Swap<size, big_endian>::readval(start);
+              lsm->address = elfcpp::Swap_unaligned<size, big_endian>::readval(start);
               typename Reloc_map::const_iterator it
                   = reloc_map_.find(start - this->buffer_);
               if (it != reloc_map_.end())
@@ -491,7 +440,8 @@ Sized_dwarf_line_info<size, big_endian>::process_one_opcode(
 
 template<int size, bool big_endian>
 unsigned const char*
-Sized_dwarf_line_info<size, big_endian>::read_lines(unsigned const char* lineptr)
+Sized_dwarf_line_info<size, big_endian>::read_lines(unsigned const char* lineptr,
+                                                    unsigned int shndx)
 {
   struct LineStateMachine lsm;
 
@@ -513,7 +463,8 @@ Sized_dwarf_line_info<size, big_endian>::read_lines(unsigned const char* lineptr
         {
           size_t oplength;
           bool add_line = this->process_one_opcode(lineptr, &lsm, &oplength);
-          if (add_line)
+          if (add_line
+              && (shndx == -1U || lsm.shndx == -1U || shndx == lsm.shndx))
             {
               Offset_to_lineno_entry entry
                   = { lsm.address, this->current_header_index_,
@@ -532,21 +483,23 @@ Sized_dwarf_line_info<size, big_endian>::read_lines(unsigned const char* lineptr
 template<int size, bool big_endian>
 unsigned int
 Sized_dwarf_line_info<size, big_endian>::symbol_section(
+    Object* object,
     unsigned int sym,
-    typename elfcpp::Elf_types<size>::Elf_Addr* value)
+    typename elfcpp::Elf_types<size>::Elf_Addr* value,
+    bool* is_ordinary)
 {
   const int symsize = elfcpp::Elf_sizes<size>::sym_size;
   gold_assert(sym * symsize < this->symtab_buffer_size_);
   elfcpp::Sym<size, big_endian> elfsym(this->symtab_buffer_ + sym * symsize);
   *value = elfsym.get_st_value();
-  return elfsym.get_st_shndx();
+  return object->adjust_sym_shndx(sym, elfsym.get_st_shndx(), is_ordinary);
 }
 
 // Read the relocations into a Reloc_map.
 
 template<int size, bool big_endian>
 void
-Sized_dwarf_line_info<size, big_endian>::read_relocs()
+Sized_dwarf_line_info<size, big_endian>::read_relocs(Object* object)
 {
   if (this->symtab_buffer_ == NULL)
     return;
@@ -556,8 +509,16 @@ Sized_dwarf_line_info<size, big_endian>::read_relocs()
   while ((reloc_offset = this->track_relocs_.next_offset()) != -1)
     {
       const unsigned int sym = this->track_relocs_.next_symndx();
-      const unsigned int shndx = this->symbol_section(sym, &value);
-      this->reloc_map_[reloc_offset] = std::make_pair(shndx, value);
+
+      bool is_ordinary;
+      const unsigned int shndx = this->symbol_section(object, sym, &value,
+                                                     &is_ordinary);
+
+      // There is no reason to record non-ordinary section indexes, or
+      // SHN_UNDEF, because they will never match the real section.
+      if (is_ordinary && shndx != elfcpp::SHN_UNDEF)
+       this->reloc_map_[reloc_offset] = std::make_pair(shndx, value);
+
       this->track_relocs_.advance(reloc_offset + 1);
     }
 }
@@ -566,17 +527,18 @@ Sized_dwarf_line_info<size, big_endian>::read_relocs()
 
 template<int size, bool big_endian>
 void
-Sized_dwarf_line_info<size, big_endian>::read_line_mappings()
+Sized_dwarf_line_info<size, big_endian>::read_line_mappings(Object* object,
+                                                           unsigned int shndx)
 {
   gold_assert(this->data_valid_ == true);
 
-  read_relocs();
+  this->read_relocs(object);
   while (this->buffer_ < this->buffer_end_)
     {
       const unsigned char* lineptr = this->buffer_;
       lineptr = this->read_header_prolog(lineptr);
       lineptr = this->read_header_tables(lineptr);
-      lineptr = this->read_lines(lineptr);
+      lineptr = this->read_lines(lineptr, shndx);
       this->buffer_ = lineptr;
     }
 
@@ -602,6 +564,120 @@ Sized_dwarf_line_info<size, big_endian>::input_is_relobj()
   return this->symtab_buffer_ != NULL;
 }
 
+// Given an Offset_to_lineno_entry vector, and an offset, figure out
+// if the offset points into a function according to the vector (see
+// comments below for the algorithm).  If it does, return an iterator
+// into the vector that points to the line-number that contains that
+// offset.  If not, it returns vector::end().
+
+static std::vector<Offset_to_lineno_entry>::const_iterator
+offset_to_iterator(const std::vector<Offset_to_lineno_entry>* offsets,
+                   off_t offset)
+{
+  const Offset_to_lineno_entry lookup_key = { offset, 0, 0, 0 };
+
+  // lower_bound() returns the smallest offset which is >= lookup_key.
+  // If no offset in offsets is >= lookup_key, returns end().
+  std::vector<Offset_to_lineno_entry>::const_iterator it
+      = std::lower_bound(offsets->begin(), offsets->end(), lookup_key);
+
+  // This code is easiest to understand with a concrete example.
+  // Here's a possible offsets array:
+  // {{offset = 3211, header_num = 0, file_num = 1, line_num = 16},  // 0
+  //  {offset = 3224, header_num = 0, file_num = 1, line_num = 20},  // 1
+  //  {offset = 3226, header_num = 0, file_num = 1, line_num = 22},  // 2
+  //  {offset = 3231, header_num = 0, file_num = 1, line_num = 25},  // 3
+  //  {offset = 3232, header_num = 0, file_num = 1, line_num = -1},  // 4
+  //  {offset = 3232, header_num = 0, file_num = 1, line_num = 65},  // 5
+  //  {offset = 3235, header_num = 0, file_num = 1, line_num = 66},  // 6
+  //  {offset = 3236, header_num = 0, file_num = 1, line_num = -1},  // 7
+  //  {offset = 5764, header_num = 0, file_num = 1, line_num = 47},  // 8
+  //  {offset = 5765, header_num = 0, file_num = 1, line_num = 48},  // 9
+  //  {offset = 5767, header_num = 0, file_num = 1, line_num = 49},  // 10
+  //  {offset = 5768, header_num = 0, file_num = 1, line_num = 50},  // 11
+  //  {offset = 5773, header_num = 0, file_num = 1, line_num = -1},  // 12
+  //  {offset = 5787, header_num = 1, file_num = 1, line_num = 19},  // 13
+  //  {offset = 5790, header_num = 1, file_num = 1, line_num = 20},  // 14
+  //  {offset = 5793, header_num = 1, file_num = 1, line_num = 67},  // 15
+  //  {offset = 5793, header_num = 1, file_num = 1, line_num = -1},  // 16
+  //  {offset = 5795, header_num = 1, file_num = 1, line_num = 68},  // 17
+  //  {offset = 5798, header_num = 1, file_num = 1, line_num = -1},  // 18
+  // The entries with line_num == -1 mark the end of a function: the
+  // associated offset is one past the last instruction in the
+  // function.  This can correspond to the beginning of the next
+  // function (as is true for offset 3232); alternately, there can be
+  // a gap between the end of one function and the start of the next
+  // (as is true for some others, most obviously from 3236->5764).
+  //
+  // Case 1: lookup_key has offset == 10.  lower_bound returns
+  //         offsets[0].  Since it's not an exact match and we're
+  //         at the beginning of offsets, we return end() (invalid).
+  // Case 2: lookup_key has offset 10000.  lower_bound returns
+  //         offset[19] (end()).  We return end() (invalid).
+  // Case 3: lookup_key has offset == 3211.  lower_bound matches
+  //         offsets[0] exactly, and that's the entry we return.
+  // Case 4: lookup_key has offset == 3232.  lower_bound returns
+  //         offsets[4].  That's an exact match, but indicates
+  //         end-of-function.  We check if offsets[5] is also an
+  //         exact match but not end-of-function.  It is, so we
+  //         return offsets[5].
+  // Case 5: lookup_key has offset == 3214.  lower_bound returns
+  //         offsets[1].  Since it's not an exact match, we back
+  //         up to the offset that's < lookup_key, offsets[0].
+  //         We note offsets[0] is a valid entry (not end-of-function),
+  //         so that's the entry we return.
+  // Case 6: lookup_key has offset == 4000.  lower_bound returns
+  //         offsets[8].  Since it's not an exact match, we back
+  //         up to offsets[7].  Since offsets[7] indicates
+  //         end-of-function, we know lookup_key is between
+  //         functions, so we return end() (not a valid offset).
+  // Case 7: lookup_key has offset == 5794.  lower_bound returns
+  //         offsets[17].  Since it's not an exact match, we back
+  //         up to offsets[15].  Note we back up to the *first*
+  //         entry with offset 5793, not just offsets[17-1].
+  //         We note offsets[15] is a valid entry, so we return it.
+  //         If offsets[15] had had line_num == -1, we would have
+  //         checked offsets[16].  The reason for this is that
+  //         15 and 16 can be in an arbitrary order, since we sort
+  //         only by offset.  (Note it doesn't help to use line_number
+  //         as a secondary sort key, since sometimes we want the -1
+  //         to be first and sometimes we want it to be last.)
+
+  // This deals with cases (1) and (2).
+  if ((it == offsets->begin() && offset < it->offset)
+      || it == offsets->end())
+    return offsets->end();
+
+  // This deals with cases (3) and (4).
+  if (offset == it->offset)
+    {
+      while (it != offsets->end()
+             && it->offset == offset
+             && it->line_num == -1)
+        ++it;
+      if (it == offsets->end() || it->offset != offset)
+        return offsets->end();
+      else
+        return it;
+    }
+
+  // This handles the first part of case (7) -- we back up to the
+  // *first* entry that has the offset that's behind us.
+  gold_assert(it != offsets->begin());
+  std::vector<Offset_to_lineno_entry>::const_iterator range_end = it;
+  --it;
+  const off_t range_value = it->offset;
+  while (it != offsets->begin() && (it-1)->offset == range_value)
+    --it;
+
+  // This handles cases (5), (6), and (7): if any entry in the
+  // equal_range [it, range_end) has a line_num != -1, it's a valid
+  // match.  If not, we're not in a function.
+  for (; it != range_end; ++it)
+    if (it->line_num != -1)
+      return it;
+  return offsets->end();
+}
 
 // Return a string for a file name and line number.
 
@@ -613,7 +689,6 @@ Sized_dwarf_line_info<size, big_endian>::do_addr2line(unsigned int shndx,
   if (this->data_valid_ == false)
     return "";
 
-  const Offset_to_lineno_entry lookup_key = { offset, 0, 0, 0 };
   const std::vector<Offset_to_lineno_entry>* offsets;
   // If we do not have reloc information, then our input is a .so or
   // some similar data structure where all the information is held in
@@ -626,17 +701,9 @@ Sized_dwarf_line_info<size, big_endian>::do_addr2line(unsigned int shndx,
     return "";
 
   typename std::vector<Offset_to_lineno_entry>::const_iterator it
-      = std::lower_bound(offsets->begin(), offsets->end(), lookup_key);
-
-  // If we found an exact match, great, otherwise find the last entry
-  // before the passed-in offset.
-  if (it->offset > offset)
-    {
-      if (it == offsets->begin())
-        return "";
-      --it;
-      gold_assert(it->offset < offset);
-    }
+      = offset_to_iterator(offsets, offset);
+  if (it == offsets->end())
+    return "";
 
   // Convert the file_num + line_num into a string.
   std::string ret;
@@ -673,40 +740,120 @@ Sized_dwarf_line_info<size, big_endian>::do_addr2line(unsigned int shndx,
 
 // Dwarf_line_info routines.
 
-// Note: this routine instantiates the appropriate
-// Sized_dwarf_line_info templates for this config, so we don't have
-// to have a separte instantiation section for them.
+static unsigned int next_generation_count = 0;
+
+struct Addr2line_cache_entry
+{
+  Object* object;
+  unsigned int shndx;
+  Dwarf_line_info* dwarf_line_info;
+  unsigned int generation_count;
+  unsigned int access_count;
+
+  Addr2line_cache_entry(Object* o, unsigned int s, Dwarf_line_info* d)
+      : object(o), shndx(s), dwarf_line_info(d),
+        generation_count(next_generation_count), access_count(0)
+  {
+    if (next_generation_count < (1U << 31))
+      ++next_generation_count;
+  }
+};
+// We expect this cache to be small, so don't bother with a hashtable
+// or priority queue or anything: just use a simple vector.
+static std::vector<Addr2line_cache_entry> addr2line_cache;
 
 std::string
 Dwarf_line_info::one_addr2line(Object* object,
-                               unsigned int shndx, off_t offset)
+                               unsigned int shndx, off_t offset,
+                               size_t cache_size)
 {
-  if (parameters->get_size() == 32 && !parameters->is_big_endian())
+  Dwarf_line_info* lineinfo = NULL;
+  std::vector<Addr2line_cache_entry>::iterator it;
+
+  // First, check the cache.  If we hit, update the counts.
+  for (it = addr2line_cache.begin(); it != addr2line_cache.end(); ++it)
+    {
+      if (it->object == object && it->shndx == shndx)
+        {
+          lineinfo = it->dwarf_line_info;
+          it->generation_count = next_generation_count;
+          // We cap generation_count at 2^31 -1 to avoid overflow.
+          if (next_generation_count < (1U << 31))
+            ++next_generation_count;
+          // We cap access_count at 31 so 2^access_count doesn't overflow
+          if (it->access_count < 31)
+            ++it->access_count;
+          break;
+        }
+    }
+
+  // If we don't hit the cache, create a new object and insert into the
+  // cache.
+  if (lineinfo == NULL)
+  {
+    switch (parameters->size_and_endianness())
+      {
 #ifdef HAVE_TARGET_32_LITTLE
-    return Sized_dwarf_line_info<32, false>(object).addr2line(shndx, offset);
-#else
-    gold_unreachable();
+        case Parameters::TARGET_32_LITTLE:
+          lineinfo = new Sized_dwarf_line_info<32, false>(object, shndx); break;
 #endif
-  else if (parameters->get_size() == 32 && parameters->is_big_endian())
 #ifdef HAVE_TARGET_32_BIG
-    return Sized_dwarf_line_info<32, true>(object).addr2line(shndx, offset);
-#else
-    gold_unreachable();
+        case Parameters::TARGET_32_BIG:
+          lineinfo = new Sized_dwarf_line_info<32, true>(object, shndx); break;
 #endif
-  else if (parameters->get_size() == 64 && !parameters->is_big_endian())
 #ifdef HAVE_TARGET_64_LITTLE
-    return Sized_dwarf_line_info<64, false>(object).addr2line(shndx, offset);
-#else
-    gold_unreachable();
+        case Parameters::TARGET_64_LITTLE:
+          lineinfo = new Sized_dwarf_line_info<64, false>(object, shndx); break;
 #endif
-  else if (parameters->get_size() == 64 && parameters->is_big_endian())
-#ifdef HAVE_TARGET_64_BIT
-    return Sized_dwarf_line_info<64, true>(object).addr2line(shndx, offset);
-#else
-    gold_unreachable();
+#ifdef HAVE_TARGET_64_BIG
+        case Parameters::TARGET_64_BIG:
+          lineinfo = new Sized_dwarf_line_info<64, true>(object, shndx); break;
 #endif
-  else
-    gold_unreachable();
+        default:
+          gold_unreachable();
+      }
+    addr2line_cache.push_back(Addr2line_cache_entry(object, shndx, lineinfo));
+  }
+
+  // Now that we have our object, figure out the answer
+  std::string retval = lineinfo->addr2line(shndx, offset);
+
+  // Finally, if our cache has grown too big, delete old objects.  We
+  // assume the common (probably only) case is deleting only one object.
+  // We use a pretty simple scheme to evict: function of LRU and MFU.
+  while (addr2line_cache.size() > cache_size)
+    {
+      unsigned int lowest_score = ~0U;
+      std::vector<Addr2line_cache_entry>::iterator lowest
+          = addr2line_cache.end();
+      for (it = addr2line_cache.begin(); it != addr2line_cache.end(); ++it)
+        {
+          const unsigned int score = (it->generation_count
+                                      + (1U << it->access_count));
+          if (score < lowest_score)
+            {
+              lowest_score = score;
+              lowest = it;
+            }
+        }
+      if (lowest != addr2line_cache.end())
+        {
+          delete lowest->dwarf_line_info;
+          addr2line_cache.erase(lowest);
+        }
+    }
+
+  return retval;
+}
+
+void
+Dwarf_line_info::clear_addr2line_cache()
+{
+  for (std::vector<Addr2line_cache_entry>::iterator it = addr2line_cache.begin();
+       it != addr2line_cache.end();
+       ++it)
+    delete it->dwarf_line_info;
+  addr2line_cache.clear();
 }
 
 #ifdef HAVE_TARGET_32_LITTLE