format table
[libreriscv.git] / openpower / sv / comparison_table.mdwn
index f4eff592d0465a43108bdfbc7b1bc2d83a4f5afc..67b066be62232f64cfc0aaffa7e458659b11472a 100644 (file)
@@ -1,31 +1,53 @@
-# ISA Comparison Table
+**ISA Comparison Table** - discussion and research at <https://bugs.libre-soc.org/show_bug.cgi?id=893>
 
-| Name        | Num <br />opcodes | Class         | Predicate <br /> Masks | Twin <br /> Predication |  Explicit <br /> Vector regs | 128-bit | Bigint <br /> capability | LDST <br /> Fault-First | Data-dependent <br /> Fail-first | Predicate-<br /> Result |
-|-------------|-------------------|---------------|------------------------|-------------------------|------------------------------|---------|--------------------------|-------------------------|----------------------------------|-------------------------|
-| SVP64       | 5{1}              | Scalable{2}   | yes                    | yes{3}                  | no{4}                        | n/a{5}  | yes{6}                   | yes{7}                  | yes{8}                           | yes{9}                  |
-| VSX         | 700+              | PackedSIMD    | no                     | no                      | yes{10}                      | yes     | no                       | no                      | no                               | no                      |
-| NEON        | ~250{11}          | PredicatedSIMD| yes                    | no                      | yes                          | yes     | no                       | no                      | no                               | no                      |
-| SVE2        | ~1000{12}         | HSCalable{13} | yes                    | no                      | yes                          | yes     | no                       | yes{7}                  | no                               | no                      |
-| AVX-512{14} | ~1000s{15}        | PredicatedSIMD| yes                    | no                      | yes                          | yes     | no                       | no                      | no                               | no                      |
-| RVV{16}     | ~190              | Scalable{17}  | yes                    | no                      | yes                          | yes{18} | no                       | yes                     | no                               | no                      |
+|ISA <br>name              |Num <br>opcodes         |Num <br>intrinsics      |Taxonomy / <br> Class          |setvl <br> scalable|Predicate <br> Masks|Twin <br> Predication|Explicit <br> Vector regs|128-bit <br> ops|Bigint       |LDST <br> Fault-First|Data-dep<br> Fail-first|Pred-<br> Result  |Matrix HW<br> support|DCT/FFT HW<br> support |
+|--------------------------|------------------------|------------------------|-------------------------------|-------------------|--------------------|---------------------|-------------------------|----------------|-------------|---------------------|-----------------------|------------------|---------------------|-----------------------|
+|Draft SVP64               |5 [^svp64_prefix]       |see [^svp64_intrin_cnt] |Scalable [^svp64_scalable]     |yes                |yes                 |yes [^twin_pred]     |no [^svp64_no_vec_regs]  |see [^svp64_128]|yes [^bigint]|yes [^fail_first]    |yes [^data_fail_first] |yes [^pred_result]|yes [^svp64_mat]     | yes[^svp64_fft]       |
+|VSX                       |700+                    |700+? [^vsx_intrin]     |Packed SIMD                    |no                 |no                  |no                   |yes [^vsx_vec_regs]      |yes             |no           |no                   |no                     |no                |yes [^ppc_mma]       | no                    |
+|NEON                      |~250 [^neon_opcodes]    |7088 [^neon_intrin]     |Packed SIMD                    |no                 |no                  |no                   |yes                      |yes             |no           |no                   |no                     |no                |no                   | no                    |
+|SVE2                      |~1000 [^sve2_opcodes]   |6040 [^sve2_intrin]     |Predicated SIMD[^sve2_no_setvl]|no [^sve2_no_setvl]|yes                 |no                   |yes                      |yes             |no           |yes [^fail_first]    |no                     |no                |yes [^sve2_mat]      | no                    |
+|AVX512 [^avx512_wikipedia]|~1000s [^avx512_opcodes]|7256 [^avx512_intrin]   |Predicated SIMD                |no                 |yes                 |no                   |yes                      |yes             |no           |no                   |no                     |no                |yes [^x86_amx]       | no                    |
+|RVV [^rvv_spec]           |~190 [^rvv_opcodes]     |~25000 [^rvv_intrin]    |Scalable [^rvv_scalable]       |yes                |yes                 |no                   |yes                      |yes [^rvv_128]  |no           |yes                  |no                     |no                |no                   | no                    |
+|Aurora SX[^sx_aurora]     |~200 [^aurora_isa]      |unknown [^aurora_intrin]|Scalable [^aurora_scalable]    |yes                |yes                 |no                   |yes                      |no              |no           |no                   |no                     |no                |?                    | no                    |
 
-* {1}: plus EXT001 24-bit prefixing. See [[sv/svp64]]
-* {2}: A 2-Dimensional Scalable Vector ISA with both Horizontal-First and Vertical-First Modes. See [[sv/vector_isa_comparison]]
-* {3}: on specific operations.  See [[opcode_regs_deduped]] for full list
-* {4}: SVP64 provides the Vector register concept on top of the **Scalar** GPR, FPR and CR register files.
-* {5}: SVP64 Vectorises Scalar instructions. If (**optionally**) applied to e.g. VSX Quad-Precision instructions, SVP64 "becomes" 128-bit.
-* {6}: big-integer add is just `sv.adde`. Mul and divide require addition of two scalar operations
-* {7} See [[sv/svp64/appendix]] and [ARM SVE Fault-First](https://alastairreid.github.io/papers/sve-ieee-micro-2017.pdf)
-* {8} Based on LD/ST Fail-first, extended to data. See [[sv/svp64/appendix]]
-* {9} Turns standard ops into a type of "cmp". See [[sv/svp64/appendix]]
-* {10} VSX's Vector Registers are mis-named: they are PackedSIMD.
-* {11} difficult to ascertain, see [NEON/VFP](https://developer.arm.com/documentation/den0018/a/NEON-and-VFP-Instruction-Summary/List-of-all-NEON-and-VFP-instructions).
-  Critically depends on ARM Scalar instructions
-* {12} difficult to exactly ascertain, see ARM Architecture Reference Manual Supplement, DDI 0584.  Critically depends on ARM Scalar instructions.
-* {13}: ARM states that the Scalability is a [Silicon-partner choice](https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/102340_0001_00_en_introduction-to-sve2.pdf?revision=aae96dd2-5334-4ad3-9a47-393086a20fea).
-  this "Scalability independence" is not entirely extended in full to the programmer although ARM requests developers to consider it so, in practice this does not happen.
-* {14}: [Wikipedia](https://en.wikipedia.org/wiki/AVX-512), [Lifecycle of an instruction set](https://media.handmade-seattle.com/tom-forsyth/) including full slides
-* {15}: difficult to exactly ascertain, contains subsets. Critically depends on ISA support from earlier x86 ISA subsets (several more thousand instructions). See [SIMD ISA listing](https://www.officedaytime.com/simd512e/)
-* {16}: [RVV Spec](https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc)
-* {17}: Like the original Cray RVV is a truly scalable Vector ISA (Cray setvl instruction).
-* {18}: like SVP64 it is up to the hardware implementor to choose whether to support 128-bit elements.
+[^svp64_prefix]: plus EXT001 24-bit prefixing using 25% of EXT001 space. See [[sv/svp64]]
+[^svp64_scalable]: A 2-Dimensional Scalable Vector ISA **specifically designed for the Power ISA** with both Horizontal-First and Vertical-First Modes. See [[sv/vector_isa_comparison]]
+[^twin_pred]: on specific operations.  See [[opcode_regs_deduped]] for full list. Key: 2P - Twin Predication, 1P - Single-Predicate
+[^svp64_no_vec_regs]: SVP64 provides a Vector concept on top of the **Scalar** GPR, FPR and CR Fields, extended to 128 entries.
+[^svp64_128]: SVP64 Vectorises Scalar ops. It is up to the **implementor** to choose (**optionally**) whether to apply SVP64 to e.g. VSX Quad-Precision (128-bit) instructions, to create 128-bit Vector ops.
+[^bigint]: big-integer add is just `sv.adde`. For optimal performance Bigint Mul and divide first require addition of two scalar operations (in turn, naturally Vectorised by SVP64). See [[sv/biginteger/analysis]]
+[^fail_first]: See [[sv/svp64/appendix]] and [ARM SVE Fault-First](https://alastairreid.github.io/papers/sve-ieee-micro-2017.pdf)
+[^data_fail_first]: Based on LD/ST Fail-first, extended to data. See [[sv/svp64/appendix]]
+[^pred_result]: Predicate-result effectively turns any standard op into a type of "cmp". See [[sv/svp64/appendix]]
+[^svp64_mat]: Any non-power-of-two Matrices up to 127 FMACs (or other FMA-style op), full triple-loop Schedule. See [[sv/remap]]
+[^svp64_fft]: DCT (Lee) and FFT Full Triple-loops supported, RADIX2-only. Normally only found in VLIW DSPs (TI MSP320, Qualcom Hexagon). See [[sv/remap]]
+[^vsx_vec_regs]: VSX's Vector Registers are mis-named: they are 100% PackedSIMD. AVX-512 is not a Vector ISA either.  See [Flynn's Taxonomy](https://en.wikipedia.org/wiki/Flynn%27s_taxonomy)
+[^ppc_mma]: Power ISA v3.1 contains "Matrix Multiply Assist" (MMA) which due to PackedSIMD is restricted to RADIX2 and requires inline assembler loop-unrolling for non-power-of-two Matrix dimensions
+[^neon_opcodes]: difficult to ascertain, see [NEON/VFP](https://developer.arm.com/documentation/den0018/a/NEON-and-VFP-Instruction-Summary/List-of-all-NEON-and-VFP-instructions).
+    Critically depends on ARM Scalar instructions
+[^sve2_opcodes]: difficult to exactly ascertain, see ARM Architecture Reference Manual Supplement, DDI 0584.  Critically depends on ARM Scalar instructions.
+[^sve2_no_setvl]: ARM states that the Scalability is a [Silicon-partner choice](https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/102340_0001_00_en_introduction-to-sve2.pdf?revision=aae96dd2-5334-4ad3-9a47-393086a20fea).
+    Scalability in the ISA is **not available to the programmer**: there is no `setvl` instruction in SVE2, which is already causing assembler programmer difficulties.
+    [quote](https://gist.github.com/zingaburga/805669eb891c820bd220418ee3f0d6bd#file-sve2-md) **"you may be stuck with only using the bottom 128 bits of the vector, or need to code specifically for each width"**
+[^avx512_wikipedia]: [AVX512 Wikipedia](https://en.wikipedia.org/wiki/AVX-512), [Lifecycle of an instruction set](https://media.handmade-seattle.com/tom-forsyth/) including full slides
+[^avx512_opcodes]: difficult to exactly ascertain, contains subsets. Critically depends on ISA support from earlier x86 ISA subsets (several more thousand instructions). See [SIMD ISA listing](https://www.officedaytime.com/simd512e/)
+[^rvv_spec]: [RVV Spec](https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc)
+[^rvv_opcodes]: RISC-V Vectors are not stand-alone, i.e. like SVE2 and AVX-512 are critically dependent on the Scalar ISA (an additional ~96 instructions for the Scalar RV64GC set, needed for Linux).
+[^rvv_scalable]: Like the original Cray RVV is a truly scalable Vector ISA (Cray setvl instruction).  However, like SVE2, the Maximum Vector length is a Silicon-partner choice, which creates similar limitations that SVP64 does not have.
+    The RISC-V Founders strongly discourage efforts by programmers to find out the Silicon's Maximum Vector Length, as an effort to steer programmers towards Silicon-independent assembler. This requires **all** algorithms to contain a loop construct.
+    MAXVL in SVP64 is a Spec-hard-fixed quantity therefore loop constructs are not necessary 100% of the time.
+[^rvv_128]: like SVP64 it is up to the hardware implementor (Silicon partner) to choose whether to support 128-bit elements.
+[^sx_aurora]: [NEC SX Aurora](https://ftp.libre-soc.org/NEC_SX_Aurora_TSUBASA_VectorEngine-as-manual-v1.2.pdf) is based on the original Cray Vectors
+[^aurora_isa]: [Aurora ISA guide](https://sxauroratsubasa.sakura.ne.jp/documents/guide/pdfs/Aurora_ISA_guide.pdf) Appendix-3 11.1 p508
+[^aurora_scalable]: Like the original Cray Vectors, the ISA Vector Length is independent of the underlying hardware, however Generation 1 has 256 elements per Vector register (3.2.4 p24, Aurora ISA guide)
+[^svp64_intrin_cnt]: If treated as a 1-Dimensional ISA, and designed badly, the 24-bit Prefix expands 200+ scalar instructions to well over a million intrinsics (N~=10^4 **times** M~=10^2).
+    If treated as a 2-Dimensional ISA and designed well, there are far less. N prefix intrinsics **plus** M scalar instruction intrinsics, where N is likely to be of the order of 10^2 and M of the order of 10^2.
+[^vsx_intrin]: [Altivec gcc intrinsics](https://gcc.gnu.org/onlinedocs/gcc/PowerPC-AltiVec_002fVSX-Built-in-Functions.html), contains links to additional VSX intrinsics for ISA 2.05/6/7, 3.0 and 3.1
+[^neon_intrin]: NEON 32-bit 2754 intrinsics, NEON 64-bit 4334 intrinsics.
+[^sve2_intrin]: SVE: 4140 intrinsics, SVE2 1900 intrinsics
+[^avx512_intrin]: Count includes SSE, SSE2, AVX, AVX2 and all AVX512 variants
+[^rvv_intrin]: [RVV intrinsics listing](https://raw.githubusercontent.com/riscv-non-isa/rvv-intrinsic-doc/master/intrinsic_funcs.md) page is 25,000 lines long.
+[^aurora_intrin]: Unknown. estimated to be of the order of length of RVV due to also being a Cray-style Scalable ISA, NEC maintains an [LLVM hard fork](https://github.com/sx-aurora-dev)
+[^sve2_mat]: [Scalable Matrix Optional Extension](https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/scalable-matrix-extension-armv9-a-architecture)
+    the key is an outer-product instruction [SMOPA](https://developer.arm.com/documentation/ddi0602/2022-06/SME-Instructions/SMOPA--Signed-integer-sum-of-outer-products-and-accumulate-?lang=en) which is very hard to tell at a glance if it is power-2 or non-power-2
+[^x86_amx]: [Advanced matrix Extensions](https://en.wikipedia.org/wiki/Advanced_Matrix_Extensions) supports BF16 and INT8 only. Separate regfile, power-of-two "tiles". Not general-purpose at all.