(no commit message)
[libreriscv.git] / openpower / sv / cr_int_predication.mdwn
index 1ee91bdf1b7f22996d6a55bc4178c6090accc285..d66dfc507253e0bd5c39750b1c4031b444bb98a6 100644 (file)
@@ -14,16 +14,37 @@ See:
 
 Rationale:
 
-Condition Registers are conceptually perfect for use as predicate masks, the only problem being that typical Vector ISAs have quite comprehensive mask-based instructions: set-before-first, popcount and much more.  In fact many Vector ISAs can use Vectors *as* masks, consequently the entire Vector ISA is available for use in creating masks.  This is not practical for SV given the premise to minimise adding of instructions.
-
-With the scalar OpenPOWER v3.0B ISA having already popcnt, cntlz and others normally seen in Vector Mask operations it makes sense to allow *both* scalar integers *and* CR-Vectors to be predicate masks.  That in turn means that much more comprehensive interaction between CRs and scalar Integers is required.
-
-The opportunity is therefore taken to also augment CR logical arithmetic as well, using a mask-based paradigm that takes into consideration multiple bits of each CR (eq/lt/gt/ov).  By contrast
-v3.0B Scalar CR instructions (crand, crxor) only allow a single bit calculation.
+Condition Registers are conceptually perfect for use as predicate masks,
+the only problem being that typical Vector ISAs have quite comprehensive
+mask-based instructions: set-before-first, popcount and much more.
+In fact many Vector ISAs can use Vectors *as* masks, consequently the
+entire Vector ISA is usually available for use in creating masks (one
+exception being AVX512 which has a dedicated Mask regfile and opcodes).
+Duplication of such operations (popcount etc) is not practical for SV
+given the strategy of leveraging pre-existing Scalar instructions in a
+minimalist way.
+
+With the scalar OpenPOWER v3.0B ISA having already popcnt, cntlz and
+others normally seen in Vector Mask operations it makes sense to allow
+*both* scalar integers *and* CR-Vectors to be predicate masks.  That in
+turn means that much more comprehensive interaction between CRs and scalar
+Integers is required, because with the CR Predication Modes designating
+CR *Fields* (not CR bits) as Predicate Elements, fast transfers between
+CR *Fields* and the Integer Register File is needed.
+
+The opportunity is therefore taken to also augment CR logical arithmetic
+as well, using a mask-based paradigm that takes into consideration
+multiple bits of each CR Field (eq/lt/gt/ov).  By contrast v3.0B Scalar
+CR instructions (crand, crxor) only allow a single bit calculation, and
+both mtcr and mfcr are CR-orientated rather than CR *Field* orientated.
+
+Also strangely there is no v3.0 instruction for directly moving CR Fields,
+only CR *bits*, so that is corrected here with `mcrfm`. The opportunity
+is taken to allow inversion of CR Field bits, when copied.
 
 Basic concept:
 
-* CR-based instructions that perform simple AND/OR/XOR from any four bits
+* CR-based instructions that perform simple AND/OR from any four bits
   of a CR field to create a single bit value (0/1) in an integer register
 * Inverse of the same, taking a single bit value (0/1) from an integer
   register to selectively target any four bits of a given CR Field
@@ -46,35 +67,36 @@ Side-effects:
 
 (Twin) Predication interactions:
 
-* INT twin predication with zeroing is a way to copy an integer into CRs without necessarily needing the INT register (RA).  if it is, it is effectively ANDed (or negate-and-ANDed) with the INT Predicate
-* CR twin predication with zeroing is likewise a way to interact with the incoming integer
+* INT twin predication with zeroing is a way to copy an integer into
+  CRs without necessarily needing the INT register (RA).  if it is, it is
+  effectively ANDed (or negate-and-ANDed) with the INT Predicate
+* CR twin predication with zeroing is likewise a way to interact with
+  the incoming integer
 
-this gets particularly powerful if data-dependent predication is also enabled.  further explanation is below.
+this gets particularly powerful if data-dependent predication is also
+enabled.  further explanation is below.
 
 # Bit ordering.
 
-IBM chose MSB0 for the OpenPOWER v3.0B specification.  This makes things slightly hair-raising and the relationship between the CR and the CR Field
-numbers is not clearly defined.  To make it clear we define a new
-term, `CR{n}`.
-`CR{n}` refers to `CR0` when `n=0` and consequently, for CR0-7, is defined, in v3.0B pseudocode, as:
-
-     CR{7-n} = CR[32+n*4:35+n*4]
-
-Also note that for SVP64 the relationship for the sequential
-numbering of elements is to the CR **fields** within
-the CR Register, not to individual bits within the CR register.
+Please see [[svp64/appendix]] regarding CR bit ordering and for
+the definition of `CR{n}`
 
 # Instruction form and pseudocode
 
-**DRAFT** Instruction format (use of MAJOR 19 not approved):
+**DRAFT** Instruction format (use of MAJOR 19 not approved by
+OPF ISA WG):
 
 |0-5|6-10 |11|12-15|16-18|19-20|21-25  |26-30  |31|name      |
 |---|---- |--|-----|-----|-----|-----  |-----  |--|----      |
 |19 |RT   |  |mask |BFA  |     |XO[0:4]|XO[5:9]|/ |          |
-|19 |RT   |M |mask |BFA  | 0 0 |XO[0:4]|0 mode |Rc|crrweird  |
-|19 |RA   |/ |mask |BF   | 0 1 |XO[0:4]|0 mode |/ |mtcrweird |
-|19 |BFT//|M |mask |BFA  | 1 0 |XO[0:4]|0 mode |/ |crweird   |
-|19 |BF   |/ |mask |BFA  | 1 1 |XO[0:4]|0 mode |/ |crweirder |
+|19 |     |  |     |     |     |1 //// |00011  |  |rsvd      |
+|19 |RT   |M |mask |BFA  | 0 0 |1 mode |00011  |Rc|crrweird  |
+|19 |RT   |M |mask |BFA  | 0 1 |1 mode |00011  |Rc|mfcrweird |
+|19 |RA   |M |mask |BF   | 0 0 |0 mode |00011  |1 |mtcrrweird |
+|19 |RA   |M |mask |BF   | 0 1 |0 mode |00011  |0 |mtcrweird |
+|19 |BT   |M |mask |BFA  | 0 1 |0 mode |00011  |1 |crweirder |
+|19 |BF //|M |mask |BFA  | 1 1 |0 mode |00011  |0 |crweird   |
+|19 |BF //|M |mask |BFA  | 1 1 |0 mode |00011  |1 |mcrfm     |
 
 **crrweird**
 
@@ -82,7 +104,7 @@ mode is encoded in XO and is 4 bits
 
 bit 19=0, bit 20=0
 
-    crrweird: RT, BFA, mask.mode
+    crrweird: RT, BFA, M, mask.mode
 
     creg = CR{BFA}
     n0 = mask[0] & (mode[0] == creg[0])
@@ -94,14 +116,66 @@ bit 19=0, bit 20=0
     If Rc:
         CR0 = analyse(RT)
 
-When used with SVP64 Prefixing this is a [[openpower/sv/normal]] SVP64 type operation and as
-such can use Rc=1 and RC1 Data-dependent Mode capability
+When used with SVP64 Prefixing this is a [[openpower/sv/normal]]
+SVP64 type operation and as such can use Rc=1 and RC1 Data-dependent
+Mode capability
+
+Also as noted below, element-width override bits normally used
+on the source is instead used to allow multiple results to be packed
+sequentially into the destination. *Destination elwidth overrides still apply*.
+
+**mfcrrweird**
+
+mode is encoded in XO and is 4 bits
+
+bit 19=0, bit 20=0
+
+    mfcrrweird: RT, BFA, mask.mode
+
+    creg = CR{BFA}
+    n0 = mask[0] & (mode[0] == creg[0])
+    n1 = mask[1] & (mode[1] == creg[1])
+    n2 = mask[2] & (mode[2] == creg[2])
+    n3 = mask[3] & (mode[3] == creg[3])
+    result = n0||n1||n2||n3
+    RT[60:63] = result # MSB0 numbering, 63 is LSB
+    If Rc:
+        CR0 = analyse(RT)
+
+When used with SVP64 Prefixing this is a [[openpower/sv/normal]]
+SVP64 type operation and as such can use Rc=1 and RC1 Data-dependent
+Mode capability.
+
+Also as noted below, element-width override bits normally used
+on the source is instead used to allow multiple results to be packed
+into the destination.  *Destination elwidth overrides still apply*
+
+**mtcrrweird**
+
+mode is encoded in XO and is 4 bits
+
+bit 19=0, bit 20=0
+
+    mtcrrweird: BF, RA, M, mask.mode
+
+    n0 = mask[0] & (mode[0] == RA[63])
+    n1 = mask[1] & (mode[1] == RA[62])
+    n2 = mask[2] & (mode[2] == RA[61])
+    n3 = mask[3] & (mode[3] == RA[60])
+    result = n0 || n1 || n2 || n3
+    if M:
+        result |= CR{BF} & ~mask
+    CR{BF} = result
+
+When used with SVP64 Prefixing this is a [[openpower/sv/normal]]
+SVP64 type operation and as such can use RC1 Data-dependent
+Mode capability
 
 **mtcrweird**
 
 bit 19=0, bit 20=1
 
-    mtcrweird: BF, RA, mask.mode
+    mtcrweird: BF, RA, M, mask.mode
 
     reg = (RA|0)
     lsb = reg[63] # MSB0 numbering
@@ -109,28 +183,74 @@ bit 19=0, bit 20=1
     n1 = mask[1] & (mode[1] == lsb)
     n2 = mask[2] & (mode[2] == lsb)
     n3 = mask[3] & (mode[3] == lsb)
-    CR{BF} = n0 || n1 || n2 || n3
+    result = n0 || n1 || n2 || n3
+    if M:
+        result |= CR{BF} & ~mask
+    CR{BF} = result
+
+Note that when M=1 this operation is a Read-Modify-Write on the CR Field
+BF. Masked-out bits of the 4-bit CR Field BF will not be changed when
+M=1. Correspondingly when M=0 this operation is an overwrite: no read
+of BF is required because the masked-out bits of the BF CR Field are
+set to zero.
 
-When used with SVP64 Prefixing this is a [[openpower/sv/cr_ops]] SVP64 type operation that has
-3-bit Data-dependent and 3-bit Predicate-result capability
-(BT is 3 bits)
+When used with SVP64 Prefixing this is a [[openpower/sv/cr_ops]] SVP64
+type operation that has 3-bit Data-dependent and 3-bit Predicate-result
+capability (BF is 3 bits)
 
 **crweird**
 
-bit 19=1, bit 20=0
+bit 19=1, bit 20=0, bit 30=0
 
-    crweird: BF, BFA, mask.mode
+    crweird: BF, BFA, M, mask.mode
 
     creg = CR{BFA}
     n0 = mask[0] & (mode[0] == creg[0])
     n1 = mask[1] & (mode[1] == creg[1])
     n2 = mask[2] & (mode[2] == creg[2])
     n3 = mask[3] & (mode[3] == creg[3])
-    CR{BF} = n0 || n1 || n2 || n3
+    result = n0 || n1 || n2 || n3
+    if M:
+        result |= CR{BF} & ~mask
+    CR{BF} = result
+
+Note that when M=1 this operation is a Read-Modify-Write on the CR Field
+BF. Masked-out bits of the 4-bit CR Field BF will not be changed when
+M=1. Correspondingly when M=0 this operation is an overwrite: no read
+of BF is required because the masked-out bits of the BF CR Field are
+set to zero.
 
-When used with SVP64 Prefixing this is a [[openpower/sv/cr_ops]] SVP64 type operation that has
-3-bit Data-dependent and 3-bit Predicate-result capability
-(BT is 3 bits)
+When used with SVP64 Prefixing this is a [[openpower/sv/cr_ops]] SVP64
+type operation that has 3-bit Data-dependent and 3-bit Predicate-result
+capability (BF is 3 bits)
+
+**mcrfm** - Move CR Field, masked.
+
+bit 19=1, bit 20=0, bit 30=1
+
+    mcrfm: BF, BFA, M, mask.mode
+
+    result = mask & CR{BFA}
+    if M:
+        result |= CR{BF} & ~mask
+    result ^= mode
+    CR{BF} = result
+
+Note that when M=1 this operation is a Read-Modify-Write on the CR Field
+BF. Masked-out bits of the 4-bit CR Field BF will not be changed when
+M=1. Correspondingly when M=0 this operation is an overwrite: no read
+of BF is required because the masked-out bits of the BF CR Field are
+set to zero.
+
+When used with SVP64 Prefixing this is a [[openpower/sv/cr_ops]] SVP64
+type operation that has 3-bit Data-dependent and 3-bit Predicate-result
+capability (BF is 3 bits)
+
+*Programmer's note: `mode` being XORed onto the result provides
+considerable flexibility. individual bits of BFA may be copied inverted
+to BF by ensuring that `mask` and `mode` have the same bit set.  Also,
+individual bits in BF may be set to 1 by ensuring that the required bit of
+`mask` is set to zero and the same bit in `mode` is set to 1*
 
 **crweirder**
 
@@ -148,31 +268,35 @@ bit 19=1, bit 20=1
     result = n0|n1|n2|n3 if M else n0&n1&n2&n3
     CR{BF}[bit] = result
 
-When used with SVP64 Prefixing this is a [[openpower/sv/cr_ops]] SVP64 type operation that has
-5-bit Data-dependent and 5-bit Predicate-result capability
-(BFT is 5 bits)
+When used with SVP64 Prefixing this is a [[openpower/sv/cr_ops]] SVP64
+type operation that has 5-bit Data-dependent and 5-bit Predicate-result
+capability (BFT is 5 bits)
 
 **Example Pseudo-ops:**
 
-    mtcri BFA, mode    mtcrweird r0, BFA, 0b1111.~mode
-    mtcrset BFA, mask  mtcrweird r0, BFA, mask.0b0000
-    mtcrclr BFA, mask  mtcrweird r0, BFA, mask.0b1111
+    mtcri BF, mode    mtcrweird BF, r0, 0, 0b1111.~mode
+    mtcrset BF, mask  mtcrweird BF, r0, 1, mask.0b0000
+    mtcrclr BF, mask  mtcrweird BF, r0, 1, mask.0b1111
 
 # Vectorised versions
 
-The name "weird" refers to a minor violation of SV rules when it comes to deriving the Vectorised versions of these instructions.
+The name "weird" refers to a minor violation of SV rules when it comes
+to deriving the Vectorised versions of these instructions.
 
-Normally the progression of the SV for-loop would move on to the next register.
-Instead however in the scalar case these instructions **remain in the same register** and insert or transfer between **bits** of the scalar integer source or destination.
+Normally the progression of the SV for-loop would move on to the
+next register.  Instead however in the scalar case these instructions
+**remain in the same register** and insert or transfer between **bits**
+of the scalar integer source or destination.
 
 Further useful violation of the normal SV Elwidth override rules allows
-for packing of multiple CR test results into an Integer Element. Note
-that the CR (source operand) elwidth field is utilised to determine the bit-
-packing size (1/2/4/8 with remaining bits within the Integer element
-set to zero) whilst the INT (dest operand) elwidth field still sets
-the Integer element size as usual (8/16/32/default)
+for packing (or unpacking) of multiple CR test results into (or out of)
+an Integer Element. Note that the CR (source operand) elwidth field is
+utilised to determine the bit- packing size (1/2/4/8 with remaining
+bits within the Integer element set to zero) whilst the INT (dest
+operand) elwidth field still sets the Integer element size as usual
+(8/16/32/default)
 
-    crrweird: RT, BB, mask.mode
+**crrweird: RT, BB, mask.mode**
 
     for i in range(VL):
         if BB.isvec:
@@ -217,13 +341,77 @@ Note that:
   of the INT Elements, the packing arrangement depending on both
   elwidth override settings.
 
+**mfcrrweird: RT, BFA, mask.mode**
+
+Unlike `crrweird` the results are 4-bit wide, so the packing
+will begin to spill over to other destination elements.  8 results per
+destination at 4-bits each still fits into destination elwidth at 32-bit,
+but for 16-bit and 8-bit obviously this does not fit, and must split
+across to the next element
+
+When for example destination elwidth is 16-bit (0b10) the following packing
+occurs:
+
+- SVRM bits 6:7 equal to 0b00 - one 4-bit result element packed into the
+  first 4-bits of the 16-bit destination element (in the first 4 LSBs)
+- SVRM bits 6:7 equal to 0b01 - two 4-bit result elements packed into the
+  first 8-bits of the 16-bit destination element (in the first 8 LSBs)
+- SVRM bits 6:7 equal to 0b10 - four 4-bit result elements packed into each
+  16-bit destination element
+- SVRM bits 6:7 equal to 0b11 - eight 4-bit result elements, the first four
+  of which are packed into the first 16-bit destination element, the
+  second four of which are packed into the second 16-bit destination element.
+
+Pseudocode example: note that dest elwidth overrides affect the
+packing of results. BB.elwidth in effect requests how many 4-bit
+result elements would like to be packed, but RT.elwidth determines
+the limit. Any parts of the destination elements not containing
+results are set to zero.
+
+    for i in range(VL):
+        if BB.isvec:
+            creg = CR{BB+i}
+        else:
+            creg = CR{BB}
+        n0 = mask[0] & (mode[0] == creg[0])
+        n1 = mask[1] & (mode[1] == creg[1])
+        n2 = mask[2] & (mode[2] == creg[2])
+        n3 = mask[3] & (mode[3] == creg[3])
+        result = n0||n1||n2||n3 # 4-bit result
+        if RT.isvec:
+            # RT.elwidth override can affect the packing
+            bwid = {0b00:64, 0b01:8, 0b10:16, 0b11:32}[RT.elwidth]
+            t4, t8 = min(4, bwid//2), min(8, bwid//2)
+            # yes, really, the CR's elwidth field determines
+            # the bit-packing into the INT!
+            if BB.elwidth == 0b00:
+                # pack 1 result into 64-bit registers
+                idx, boff = i, 0
+            if BB.elwidth == 0b01:
+                # pack 2 results sequentially into INT registers
+                idx, boff = i//2, i%2
+            if BB.elwidth == 0b10:
+                # pack 4 results sequentially into INT registers
+                idx, boff = i//t4, i%t4
+            if BB.elwidth == 0b11:
+                # pack 8 results sequentially into INT registers
+                idx, boff = i//t8, i%t8
+        else:
+            # exceeding VL=16 is UNDEFINED
+            idx, boff = 0, i
+        iregs[RT+idx][60-boff*4:63-boff*4] = result
+
+
+
 # v3.1 setbc instructions
 
-there are additional setb conditional instructions in v3.1 (p129)
+There are additional setb conditional instructions in v3.1 (p129)
 
     RT = (CR[BI] == 1) ? 1 : 0
 
-which also negate that, and also return -1 / 0.  these are similar to crweird but not the same purpose.  most notable is that crweird acts on CR fields rather than the entire 32 bit CR.
+which also negate that, and also return -1 / 0.  these are similar to
+crweird but not the same purpose.  most notable is that crweird acts on
+CR fields rather than the entire 32 bit CR.
 
 # Predication Examples
 
@@ -232,11 +420,10 @@ Take the following example:
     r10 = 0b00010
     sv.mtcrweird/dm=r10/dz cr8.v, 0, 0b0011.0000
 
-Here, RA is zero, so the source input is zero. The destination
-is CR Field 8, and the destination predicate mask indicates
-to target the first two elements.  Destination predicate zeroing is
-enabled, and the destination predicate is only set in the 2nd bit.
-mask is 0b0011, mode is all zeros.
+Here, RA is zero, so the source input is zero. The destination is CR Field
+8, and the destination predicate mask indicates to target the first two
+elements.  Destination predicate zeroing is enabled, and the destination
+predicate is only set in the 2nd bit.  mask is 0b0011, mode is all zeros.
 
 Let us first consider what should go into element 0 (CR Field 8):
 
@@ -254,11 +441,11 @@ Now the second element, CR Field 9 (CR9):
 * Therefore, CR9 is set (using LSB0 ordering) to 0b0011, i.e. to mask.
 
 It should be clear that this instruction uses bits of the integer
-predicate to decide whether to set CR Fields to `(mask & ~mode)`
-or to zero.  Thus, in effect, it is the integer predicate that has
-been copied into the CR Fields.
-
-By using twin predication, zeroing, and inversion (sm=~r3, dm=r10) for example, it becomes possible to combine two Integers together in
-order to set bits in CR Fields.
-Likewise there are dozens of ways that CR Predicates can be used, on the
-same sv.mtcrweird instruction.
+predicate to decide whether to set CR Fields to `(mask & ~mode)` or
+to zero.  Thus, in effect, it is the integer predicate that has been
+copied into the CR Fields.
+
+By using twin predication, zeroing, and inversion (sm=~r3, dm=r10) for
+example, it becomes possible to combine two Integers together in order
+to set bits in CR Fields.  Likewise there are dozens of ways that CR
+Predicates can be used, on the same sv.mtcrweird instruction.