(no commit message)
[libreriscv.git] / openpower / sv / setvl.mdwn
index e2d2f3de7e6f775f63c5e389ac50f4d6ac9b5b81..6bd770b5fe113b81ad5a5f0c6522c418aa200fb6 100644 (file)
@@ -6,8 +6,10 @@ See links:
 
 * <http://lists.libre-soc.org/pipermail/libre-soc-dev/2020-November/001366.html>
 * <https://bugs.libre-soc.org/show_bug.cgi?id=535>
+* <https://bugs.libre-soc.org/show_bug.cgi?id=587>
 * <https://bugs.libre-soc.org/show_bug.cgi?id=568> TODO
 * <https://github.com/riscv/riscv-v-spec/blob/master/v-spec.adoc#vsetvlivsetvl-instructions>
+* old page [[simple_v_extension/specification/sv.setvl]]
 
 Use of setvl results in changes to the MVL, VL and STATE SPRs. see [[sv/sprs]]♧
 
@@ -16,43 +18,83 @@ Use of setvl results in changes to the MVL, VL and STATE SPRs. see [[sv/sprs]]
 SV's Vector Engine is based on Cray-style Variable-length Vectorisation,
 just like RVV.  However unlike RVV, SV sits on top of the standard Scalar
 regfiles: there is no separate Vector register numbering.  Therefore, also
-unlike RVV, SV does not have hard-coded "Lanes".  The relevant parameter
+unlike RVV, SV does not have hard-coded "Lanes": microarchitects
+may use *ordinary* in-order, out-of-order, or superscalar designs
+as the basis for SV. By contrast, the relevant parameter
 in RVV is "MAXVL" and this is architecturally hard-coded into RVV systems,
 anywhere from 1 to tens of thousands of Lanes in supercomputers.
 
-SV is more like how MMX used to sit on top of the x86 FP regfile.  Therefore
-when Vector operations are performed, the question has to be asked, "well,
-how much of the regfile do you want to allocate to this operation?" because if it is too small an amount performance may be affected, and if too large then other registers would overlap and cause data  corruption, or even if allocated correctly would require spill to memory.
-
-The answer effectively needs to be parameterised.  Hence: MAXVL
-(MVL) is set from an immediate, so that the compiler may decide, statically, a guaranteed resource allocation according to the needs of the application.
-
-Other than being able to set MVL, SV's VL (Vector Length) works just like RVV's VL, with one minor twist.  RVV permits the `setvl` instruction to set VL to an arbitrary value.  Given that RVV only works on Vector Loops, this is fine and part of its value and design.  However, SV sits on top of the standard register files.  When MVL=VL=2, a Vector Add on `r3` will perform two Scalar Adds: one on `r3` and one on `r4`.
-
-Thus there is the opportunity to set VL to an explicit value (within the limits of MVL) with the reasonable expectation that if two operations are requested (by setting VL=2) then two operations are guaranteed.  This avoids the need for a loop (with not-insignificant use of the regfiles for counters), simply two
-instructions:
+SV is more like how MMX used to sit on top of the x86 FP regfile.
+Therefore when Vector operations are performed, the question has to
+be asked, "well, how much of the regfile do you want to allocate to
+this operation?" because if it is too small an amount performance may
+be affected, and if too large then other registers would overlap and
+cause data  corruption, or even if allocated correctly would require
+spill to memory.
+
+The answer effectively needs to be parameterised.  Hence: MAXVL (MVL)
+is set from an immediate, so that the compiler may decide, statically, a
+guaranteed resource allocation according to the needs of the application.
+
+While RVV's MAXVL was a hw limit, SV's MVL is simply a loop
+optimization. It does not carry side-effects for the arch, though for
+a specific cpu it may affect hw unit usage.
+
+Other than being able to set MVL, SV's VL (Vector Length) works just like
+RVV's VL, with one minor twist.  RVV permits the `setvl` instruction to
+set VL to an arbitrary explicit value.  Within the limit of MVL, VL
+**MUST** be set to the requested value. Given that RVV only works on Vector Loops,
+this is fine and part of its value and design.  However, SV sits on top
+of the standard register files.  When MVL=VL=2, a Vector Add on `r3`
+will perform two Scalar Adds: one on `r3` and one on `r4`.
+
+Thus there is the opportunity to set VL to an explicit value (within the
+limits of MVL) with the reasonable expectation that if two operations
+are requested (by setting VL=2) then two operations are guaranteed.
+This avoids the need for a loop (with not-insignificant use of the
+regfiles for counters), simply two instructions:
 
     setvli r0, MVL=64, VL=64
-    ld r0.v, 0(r30) # load 64 registers from memory
+    ld r0.v, 0(r30) # load exactly 64 registers from memory
+
+Page Faults etc. aside this is *guaranteed* 100% without fail to perform
+64 unit-strided LDs starting from the address pointed to by r30 and put
+the contents into r0 through r63.  Thus it becomes a "LOAD-MULTI". Twin
+Predication could even be used to only load relevant registers from
+the stack.  This *only works if VL is set to the requested value* rather
+than, as in RVV, allowing the hardware to set VL to an arbitrary value
+(caveat being, limited to not exceed MVL)
 
-Page Faults etc. aside this is *guaranteed* 100% without fail to perform 64 unit-strided LDs starting from the address pointed to by r30 and put the contents into r0 through r63.  Thus it becomes a "LOAD-MULTI". Twin Predication could even be used to only load relevant registers from the stack.  This *only works if VL is set to the requested value* (caveat being, limited to not exceed MVL)
+Also available is the option to set VL from CTR (`VL = MIN(CTR, MVL)`.
+In combination with SVP64 [[sv/branches]] this can save one instruction
+inside critical inner loops.
 
 # Format
 
-*(Allocation of opcode TBD pending OPF ISA WG approval)*
+*(Allocation of opcode TBD pending OPF ISA WG approval)*,
+using EXT22 temporarily and fitting into the
+[[sv/bitmanip]] space
 
 Form: SVL-Form (see [[isatables/fields.text]])
 
-| 0.5|6.10|11.15|16..23  | 24.25  | 26...30 |31|  name   |
-| -- | -- | --- | ------ | ------ | ------- |--| ------- |
-| 19 | RT | RA  | SVi // | vs ms  | XO[0:4] |Rc| setvl   |
+| 0.5|6.10|11.15|16..21| 22...25    | 26.30 |31|  name   |
+| -- | -- | --- | ---- |----------- | ----- |--| ------- |
+|OPCD| RT | RA  | SVi  |cv ms vs vf | 11110 |Rc| setvl   |
 
-Note that the immediate (`SVi`) spans 7 bits (16 to 22), and that bit 22 and 23 is reserved and must be zero.  Setting bit 22 or 23 causes an illegal exception.
+Note that the immediate (`SVi`) spans 7 bits (16 to 22)
 
-`ms` - bit 25 - allows for setting of MVL.  `vs` - bit 24 - allows for
-setting of VL.
+* `cv` - bit 22 - reads CTR instead of RA 
+* `ms` - bit 23 - allows for setting of MVL.
+* `vs` - bit 24 - allows for setting of VL.
+* `vf` - bit 25 - sets "Vertical First Mode".
 
-Note that in immediate setting mode VL and MVL start from **one** i.e. that an immediate value of zero will result in VL/MVL being set to 1.  0b111111 results in VL/MVL being set to 64. This is because setting VL/MVL to 1 results in "scalar identity" behaviour, where setting VL/MVL to 0 would result in all Vector operations becoming `nop`.  If this is truly desired (nop behaviour) then setting VL and MVL to zero is to be done via the [[SV SPRs|sv/sprs]]
+Note that in immediate setting mode VL and MVL start from **one**
+i.e. that an immediate value of zero will result in VL/MVL being set to 1.
+0b111111 results in VL/MVL being set to 64. This is because setting
+VL/MVL to 1 results in "scalar identity" behaviour, where setting VL/MVL
+to 0 would result in all Vector operations becoming `nop`.  If this is
+truly desired (nop behaviour) then setting VL and MVL to zero is to be
+done via the [[SVSTATE SPR|sv/sprs]]
 
 Note that setmvli is a pseudo-op, based on RA/RT=0, and setvli likewise
 
@@ -61,70 +103,196 @@ Note that setmvli is a pseudo-op, based on RA/RT=0, and setvli likewise
 
 Additional pseudo-op for obtaining VL without modifying it:
 
-    getvl r5       : setvl r5, r0, vs=0, ms=0
+    getvl r5       : setvl r5, r0, vf=0, vs=0, ms=0
+
+For Vertical-First mode, a pseudo-op for explicit incrementing
+of srcstep and dststep:
+
+    svstep.        : setvl. 0, 0, vf=1, vs=0, ms=0
+
+Note that whilst it is possible to set both MVL and VL from the same
+immediate, it is not possible to set them to different immediates in
+the same instruction.  That would require two instructions.
+
+# setmvlhi
+
+In Vertical-First Mode the minimum expectation is that one scalar
+element may be executed by each instruction. There are however
+circumstances where it may be possible to execute more than one
+element per instruction (srcstep elements 0-3 for example)
+but leaving it up to hardware to
+determine a "safe minimum amount" where memory corruption does
+not occur may not be practical (or is simply very costly).
+
+Therefore, setmvlhi may specify, as determined by the compiler,
+exactly what that quantity is.  Unlike VL, which is an amount
+that, when requested, **must** be executed, VFhint may be set
+by the hardware to an amount that the hardware is capable of.
+In other words: setmvlhi requests a hint size, bur hardware chooses
+the actual hint.
+
+The reason for this cooperative negotiation between hardware and
+software is that whilst the compiler may have information about
+memory hazards that must be avoided which hardware cannot
+know about, the hardware knows the maximum batch size
+it can execute in parallel but the compiler is unaware of
+the variance in that batch size on different implementations.
+Thus, hardware sets VLHint to the minimum of the requested
+amount and the hardware limit. Simple implementations always
+set VLHint to 1.
+
+Critical to note are two things:
+
+1. VFhint must not be set by hardware to an amount that
+exceeds either MVL or the requested amount, and must set
+VFhint to at least 1 element.
+2. svstep will increment srcstep and dststep by VFhint,
+therefore when hardware says it can perform N element
+operations, hardware **MUST** perform N operations
+for every single instruction. 
 
-Note that whilst it is possible to set both MVL and VL from the same immediate, it is not possible to set them to different immediates in the same instruction.  That would require two instructions. 
+Form: SVL-Form (see [[isatables/fields.text]])
+
+| 0.5|6.10|11.15|16..21|22 | 23...25  | 26.30 |31|  name    |
+| -- | -- | --- | ---- |---| -------- | ----- |--| -------- |
+|OPCD| RT | MVL | SVi  |MVL| ms vs vf | 10110 |Rc| setmvlhi  |
+
+# Vertical First Mode
+
+Vertical First is effectively like an implicit single bit predicate
+applied to every SVP64 instruction.  **ONLY** one element in each
+SVP64 Vector instruction is executed; srcstep and dststep do **not**
+increment, and the Program Counter progresses **immediately* to
+the next instruction just as it would for any standard scalar v3.0B
+instruction.
+
+An explicit mode of setvl is called which can move srcstep and
+dststep on to the next element, still respecting predicate
+masks.  
+
+In other words, where normal SVP64 Vectorisation acts "horizontally"
+by looping first through 0 to VL-1 and only then moving the PC
+to the next instruction, Vertical-First moves the PC onwards
+(vertically) through multiple instructions **with the same
+srcstep and dststep**, then an explict instruction used to
+advance srcstep/dststep, and an outer loop is expected to be
+used (branch instruction) which completes a series of
+Vector operations.
+
+```svstep``` mode is enabled when vf=1, vs=0 and ms=0. 
+When Rc=1 it is possible to determine when any level of
+loops reach an end condition, or if VL has been reached. The immediate can
+be reinterpreted as indicating which SVSTATE (0-3)
+should be tested and placed into CR0.
+
+* setvl immediate = 1: only VL testing is enabled. CR0.SO is set
+  to 1 when either srcstep or dststep reach VL
+* setvl immediate = 2: also include inner middle and outer
+  loop end conditions from SVSTATE0 into CR.EQ CR.LE CR.GT
+* setvl immediate = 3: test SVSTATE1
+* setvl immediate = 4: test SVSTATE2
+* setvl immediate = 5: test SVSTATE3
+
+Testing any end condition of any loop of any REMAP state allows branches to be used to create loops.
+
+*Programmers should be aware that VL, srcstep and dststep are global in nature.
+Nested looping with different schedules is perfectly possible, as is
+calling of functions, however SVSTATE (and any associated SVSTATE) should be stored on the stack.*
 
 # Pseudocode
 
     // instruction fields:
     rd = get_rt_field();         // bits 6..10
     ra = get_ra_field();         // bits 11..15
+    vc = get_vc_field();         // bit 22
+    vf = get_vf_field();         // bit 23
     vs = get_vs_field();         // bit 24
     ms = get_ms_field();         // bit 25
     Rc = get_Rc_field();         // bit 31
-    // add one. MVL/VL=1..64 not 0..63
-    vlimmed = get_immed_field()+1; //  16..22
-
-    // set VL (or not).
-    // 3 options: from SPR, from immed, from ra
-    if vs {
-       // VL to be sourced from fields/regs
-       if ra != 0 {
-           VL = GPR[ra]  
-       } else {
-           VL = vlimmed
-       }
-    } else {
-       // VL not to change (except if MVL is reduced)
-       // read from SPRs
-       VL = SPR[SV_VL]
-    }
 
-    // set MVL (or not).
-    // 2 options: from SPR, from immed
-    if ms {
-       MVL = vlimmed
+    if vf and not vs and not ms {
+        // increment src/dest step mode
+        // NOTE! this is in no way complete! predication is not included
+        // and neither is SUB-VL mode
+        srcstep = SPR[SV].srcstep
+        dststep = SPR[SV].dststep
+        VL = SPR[SV].VL
+        srcstep++
+        dststep++
+        rollover = (srcstep == VL or dststep == VL)
+        if rollover:
+            // Reset srcstep, dststep, and also exit "Vertical First" mode
+            srcstep = 0
+            dststep = 0
+            MSR[6] = 0
+        SPR[SV].srcstep = srcstep
+        SPR[SV].dststep = dststep
+
+        // write CR? helps for doing Vertical loops, detects end
+        // of Vector Elements
+        if Rc {
+            // update CR to indicate that srcstep/dststep "rolled over"
+            CR0.eq = rollover
+        }
     } else {
-       // MVL not to change, read from SPRs
-       MVL = SPR[SV_MVL]
-    }
-
-    // calculate (limit) VL
-    VL = min(VL, MVL)
-
-    // store VL, MVL
-    SPR[SV_VL] = VL
-    SPR[SV_MVL] = MVL
-
-    // write rd
-    if rt != 0 {
-        // rt is not zero
-        regs[rt] = VL;
-    }
-    // write CR?
-    if Rc {
-        // update CR from VL (not rt)
-        CR0.eq = (VL == 0)
-        ...
-        ...
+        // add one. MVL/VL=1..64 not 0..63
+        vlimmed = get_immed_field()+1; //  16..22
+
+        // set VL (or not).
+        // 4 options: from SPR, from immed, from ra, from CTR
+        if vs {
+           // VL to be sourced from fields/regs
+           if vc {
+               VL = CTR
+           } else if ra != 0 {
+               VL = GPR[ra]
+           } else {
+               VL = vlimmed
+           }
+        } else {
+           // VL not to change (except if MVL is reduced)
+           // read from SPRs
+           VL = SPR[SV_VL]
+        }
+
+        // set MVL (or not).
+        // 2 options: from SPR, from immed
+        if ms {
+           MVL = vlimmed
+        } else {
+           // MVL not to change, read from SPRs
+           MVL = SPR[SV_MVL]
+        }
+
+        // calculate (limit) VL
+        VL = min(VL, MVL)
+
+        // store VL, MVL
+        SVSTATE.VL = VL
+        SVSTATE.MVL = MVL
+
+        // write rd
+        if rt != 0 {
+            // rt is not zero
+            regs[rt] = VL;
+        }
+        // write CR?
+        if Rc {
+            // update CR from VL (not rt)
+            CR0.eq = (VL == 0)
+            ...
+            ...
+        }
+        // write Vertical-First mode
+        SVSTATE.vf = vf
     }
 
 # Examples
 
 ## Core concept loop
 
-    loop:
+```
+loop:
     setvl a3, a0, MVL=8    #  update a3 with vl
                            # (# of elements this iteration)
                            # set MVL to 8
@@ -132,6 +300,7 @@ Note that whilst it is possible to set both MVL and VL from the same immediate,
     # ...
     sub a0, a0, a3   # Decrement count by vl
     bnez a0, loop    # Any more?
+```
 
 ## Loop using Rc=1
 
@@ -146,3 +315,56 @@ Note that whilst it is possible to set both MVL and VL from the same immediate,
       bne cr0, loop
     end:
       blr
+
+## setmvlhi double loop
+
+Two elements per inner loop are executed per instruction. This assumes
+that underlying hardware, when `setmvlhi` requests a parallelism hint of 2
+actually sets a parallelism hint of 2.
+
+This example, in c, would be:
+
+```
+long *r4;
+for (i=0; i < CTR; i++)
+{
+    r4[i+2] += r4[i]
+}
+```
+
+where, clearly, it is not possible to do more
+than 2 elements in parallel at a time: attempting
+to do so would result in data corruption. The compiler
+may be able to determine memory aliases and inform
+hardware at runtime of the maximum safe parallelism
+limit.
+
+Whilst this example could be simplified to simply set VL=2,
+or exploit the fact that overlapping adds have well-defined
+behaviour, this has not been done, here, for illustrative purposes
+in order to demonstrate setmvhli and Vertical-First Mode.
+
+Note, crucially, how r4, r32 and r20 are **NOT** incremented
+inside the inner loop.  The MAXVL reservation is still 8,
+i.e. as srcstep and dststep advance (by 2 elements at a time)
+registers r20-r27 will be used for the first LD, and
+registers r32-39 for the second LD.  `r4+srcstep*8` will be used
+as the elstrided offset for LDs.
+
+```
+   setmvlhi  8, 2 # MVL=8, VFHint=2
+loop:
+    setvl  r1, CTR, vf=1 # VL=r1=MAX(MVL, CTR), VF=1
+    mulli  r1, r1, 8     # multiply by int width
+loopinner:
+    sv.ld r20.v, r4(0) # load VLhint elements (max 2)
+    addi r2, r4, 16    # 2 elements ahead
+    sv.ld r32.v, r2(0) # load VLhint elements (max 2)
+    sv.add r32.v, r20.v, r32.v # x[i+2] += x[i]
+    sv.st r32.v, r2(0) # store VLhint elements
+    svstep.            # srcstep += VLhint
+    bnz loopinner      # repeat until srcstep=VL
+    # now done VL elements, move to next batch
+    add r4, r4, r1     # move r4 pointer forward
+    sv.bnz/ctr loop    # decrement CTR by VL
+```