nir: Allow var_mem_global in nir_lower_vars_to_explicit_types
[mesa.git] / src / compiler / glsl / lower_instructions.cpp
index 0c1408911d2164d41e303403723ec6a4e85658b2..c549d16d2acef5b0e9acede33bd89bd43391a2b6 100644 (file)
@@ -63,7 +63,8 @@
  * reciprocal.  By breaking the operation down, constant reciprocals
  * can get constant folded.
  *
- * FDIV_TO_MUL_RCP only lowers single-precision floating point division;
+ * FDIV_TO_MUL_RCP lowers single-precision and half-precision
+ * floating point division;
  * DDIV_TO_MUL_RCP only lowers double-precision floating point division.
  * DIV_TO_MUL_RCP is a convenience macro that sets both flags.
  * INT_DIV_TO_MUL_RCP handles the integer case, converting to and from floating
 #include "ir.h"
 #include "ir_builder.h"
 #include "ir_optimization.h"
+#include "util/half_float.h"
 
 using namespace ir_builder;
 
@@ -169,8 +171,14 @@ private:
    void find_msb_to_float_cast(ir_expression *ir);
    void imul_high_to_mul(ir_expression *ir);
    void sqrt_to_abs_sqrt(ir_expression *ir);
+   void mul64_to_mul_and_mul_high(ir_expression *ir);
 
    ir_expression *_carry(operand a, operand b);
+
+   static ir_constant *_imm_fp(void *mem_ctx,
+                               const glsl_type *type,
+                               double f,
+                               unsigned vector_elements=1);
 };
 
 } /* anonymous namespace */
@@ -202,7 +210,7 @@ lower_instructions_visitor::sub_to_add_neg(ir_expression *ir)
 void
 lower_instructions_visitor::div_to_mul_rcp(ir_expression *ir)
 {
-   assert(ir->operands[1]->type->is_float() || ir->operands[1]->type->is_double());
+   assert(ir->operands[1]->type->is_float_16_32_64());
 
    /* New expression for the 1.0 / op1 */
    ir_rvalue *expr;
@@ -221,7 +229,7 @@ lower_instructions_visitor::div_to_mul_rcp(ir_expression *ir)
 void
 lower_instructions_visitor::int_div_to_mul_rcp(ir_expression *ir)
 {
-   assert(ir->operands[1]->type->is_integer());
+   assert(ir->operands[1]->type->is_integer_32());
 
    /* Be careful with integer division -- we need to do it as a
     * float and re-truncate, since rcp(n > 1) of an integer would
@@ -272,7 +280,7 @@ lower_instructions_visitor::int_div_to_mul_rcp(ir_expression *ir)
 void
 lower_instructions_visitor::exp_to_exp2(ir_expression *ir)
 {
-   ir_constant *log2_e = new(ir) ir_constant(float(M_LOG2E));
+   ir_constant *log2_e = _imm_fp(ir, ir->type, M_LOG2E);
 
    ir->operation = ir_unop_exp2;
    ir->init_num_operands();
@@ -303,7 +311,7 @@ lower_instructions_visitor::log_to_log2(ir_expression *ir)
    ir->init_num_operands();
    ir->operands[0] = new(ir) ir_expression(ir_unop_log2, ir->operands[0]->type,
                                           ir->operands[0], NULL);
-   ir->operands[1] = new(ir) ir_constant(float(1.0 / M_LOG2E));
+   ir->operands[1] = _imm_fp(ir, ir->operands[0]->type, 1.0 / M_LOG2E);
    this->progress = true;
 }
 
@@ -319,10 +327,10 @@ lower_instructions_visitor::mod_to_floor(ir_expression *ir)
 
    ir_assignment *const assign_x =
       new(ir) ir_assignment(new(ir) ir_dereference_variable(x),
-                            ir->operands[0], NULL);
+                            ir->operands[0]);
    ir_assignment *const assign_y =
       new(ir) ir_assignment(new(ir) ir_dereference_variable(y),
-                            ir->operands[1], NULL);
+                            ir->operands[1]);
 
    this->base_ir->insert_before(assign_x);
    this->base_ir->insert_before(assign_y);
@@ -335,7 +343,7 @@ lower_instructions_visitor::mod_to_floor(ir_expression *ir)
    /* Don't generate new IR that would need to be lowered in an additional
     * pass.
     */
-   if ((lowering(FDIV_TO_MUL_RCP) && ir->type->is_float()) ||
+   if ((lowering(FDIV_TO_MUL_RCP) && ir->type->is_float_16_32()) ||
        (lowering(DDIV_TO_MUL_RCP) && ir->type->is_double()))
       div_to_mul_rcp(div_expr);
 
@@ -365,13 +373,21 @@ lower_instructions_visitor::ldexp_to_arith(ir_expression *ir)
     * into
     *
     *    extracted_biased_exp = rshift(bitcast_f2i(abs(x)), exp_shift);
-    *    resulting_biased_exp = extracted_biased_exp + exp;
+    *    resulting_biased_exp = min(extracted_biased_exp + exp, 255);
+    *
+    *    if (extracted_biased_exp >= 255)
+    *       return x; // +/-inf, NaN
+    *
+    *    sign_mantissa = bitcast_f2u(x) & sign_mantissa_mask;
     *
-    *    if (resulting_biased_exp < 1 || x == 0.0f) {
-    *       return copysign(0.0, x);
+    *    if (min(resulting_biased_exp, extracted_biased_exp) < 1)
+    *       resulting_biased_exp = 0;
+    *    if (resulting_biased_exp >= 255 ||
+    *        min(resulting_biased_exp, extracted_biased_exp) < 1) {
+    *       sign_mantissa &= sign_mask;
     *    }
     *
-    *    return bitcast_u2f((bitcast_f2u(x) & sign_mantissa_mask) |
+    *    return bitcast_u2f(sign_mantissa |
     *                       lshift(i2u(resulting_biased_exp), exp_shift));
     *
     * which we can't actually implement as such, since the GLSL IR doesn't
@@ -379,45 +395,58 @@ lower_instructions_visitor::ldexp_to_arith(ir_expression *ir)
     * using conditional-select:
     *
     *    extracted_biased_exp = rshift(bitcast_f2i(abs(x)), exp_shift);
-    *    resulting_biased_exp = extracted_biased_exp + exp;
+    *    resulting_biased_exp = min(extracted_biased_exp + exp, 255);
     *
-    *    is_not_zero_or_underflow = logic_and(nequal(x, 0.0f),
-    *                                         gequal(resulting_biased_exp, 1);
-    *    x = csel(is_not_zero_or_underflow, x, copysign(0.0f, x));
-    *    resulting_biased_exp = csel(is_not_zero_or_underflow,
-    *                                resulting_biased_exp, 0);
+    *    sign_mantissa = bitcast_f2u(x) & sign_mantissa_mask;
     *
-    *    return bitcast_u2f((bitcast_f2u(x) & sign_mantissa_mask) |
-    *                       lshift(i2u(resulting_biased_exp), exp_shift));
+    *    flush_to_zero = lequal(min(resulting_biased_exp, extracted_biased_exp), 0);
+    *    resulting_biased_exp = csel(flush_to_zero, 0, resulting_biased_exp)
+    *    zero_mantissa = logic_or(flush_to_zero,
+    *                             gequal(resulting_biased_exp, 255));
+    *    sign_mantissa = csel(zero_mantissa, sign_mantissa & sign_mask, sign_mantissa);
+    *
+    *    result = sign_mantissa |
+    *             lshift(i2u(resulting_biased_exp), exp_shift));
+    *
+    *    return csel(extracted_biased_exp >= 255, x, bitcast_u2f(result));
+    *
+    * The definition of ldexp in the GLSL spec says:
+    *
+    *    "If this product is too large to be represented in the
+    *     floating-point type, the result is undefined."
+    *
+    * However, the definition of ldexp in the GLSL ES spec does not contain
+    * this sentence, so we do need to handle overflow correctly.
+    *
+    * There is additional language limiting the defined range of exp, but this
+    * is merely to allow implementations that store 2^exp in a temporary
+    * variable.
     */
 
    const unsigned vec_elem = ir->type->vector_elements;
 
    /* Types */
    const glsl_type *ivec = glsl_type::get_instance(GLSL_TYPE_INT, vec_elem, 1);
+   const glsl_type *uvec = glsl_type::get_instance(GLSL_TYPE_UINT, vec_elem, 1);
    const glsl_type *bvec = glsl_type::get_instance(GLSL_TYPE_BOOL, vec_elem, 1);
 
-   /* Constants */
-   ir_constant *zeroi = ir_constant::zero(ir, ivec);
-
-   ir_constant *sign_mask = new(ir) ir_constant(0x80000000u, vec_elem);
-
-   ir_constant *exp_shift = new(ir) ir_constant(23, vec_elem);
-
    /* Temporary variables */
    ir_variable *x = new(ir) ir_variable(ir->type, "x", ir_var_temporary);
    ir_variable *exp = new(ir) ir_variable(ivec, "exp", ir_var_temporary);
-
-   ir_variable *zero_sign_x = new(ir) ir_variable(ir->type, "zero_sign_x",
-                                                  ir_var_temporary);
+   ir_variable *result = new(ir) ir_variable(uvec, "result", ir_var_temporary);
 
    ir_variable *extracted_biased_exp =
       new(ir) ir_variable(ivec, "extracted_biased_exp", ir_var_temporary);
    ir_variable *resulting_biased_exp =
       new(ir) ir_variable(ivec, "resulting_biased_exp", ir_var_temporary);
 
-   ir_variable *is_not_zero_or_underflow =
-      new(ir) ir_variable(bvec, "is_not_zero_or_underflow", ir_var_temporary);
+   ir_variable *sign_mantissa =
+      new(ir) ir_variable(uvec, "sign_mantissa", ir_var_temporary);
+
+   ir_variable *flush_to_zero =
+      new(ir) ir_variable(bvec, "flush_to_zero", ir_var_temporary);
+   ir_variable *zero_mantissa =
+      new(ir) ir_variable(bvec, "zero_mantissa", ir_var_temporary);
 
    ir_instruction &i = *base_ir;
 
@@ -430,61 +459,83 @@ lower_instructions_visitor::ldexp_to_arith(ir_expression *ir)
    /* Extract the biased exponent from <x>. */
    i.insert_before(extracted_biased_exp);
    i.insert_before(assign(extracted_biased_exp,
-                          rshift(bitcast_f2i(abs(x)), exp_shift)));
+                          rshift(bitcast_f2i(abs(x)),
+                                 new(ir) ir_constant(23, vec_elem))));
 
+   /* The definition of ldexp in the GLSL 4.60 spec says:
+    *
+    *    "If exp is greater than +128 (single-precision) or +1024
+    *     (double-precision), the value returned is undefined. If exp is less
+    *     than -126 (single-precision) or -1022 (double-precision), the value
+    *     returned may be flushed to zero."
+    *
+    * So we do not have to guard against the possibility of addition overflow,
+    * which could happen when exp is close to INT_MAX. Addition underflow
+    * cannot happen (the worst case is 0 + (-INT_MAX)).
+    */
    i.insert_before(resulting_biased_exp);
    i.insert_before(assign(resulting_biased_exp,
-                          add(extracted_biased_exp, exp)));
-
-   /* Test if result is ±0.0, subnormal, or underflow by checking if the
-    * resulting biased exponent would be less than 0x1. If so, the result is
-    * 0.0 with the sign of x. (Actually, invert the conditions so that
-    * immediate values are the second arguments, which is better for i965)
-    */
-   i.insert_before(zero_sign_x);
-   i.insert_before(assign(zero_sign_x,
-                          bitcast_u2f(bit_and(bitcast_f2u(x), sign_mask))));
+                          min2(add(extracted_biased_exp, exp),
+                               new(ir) ir_constant(255, vec_elem))));
 
-   i.insert_before(is_not_zero_or_underflow);
-   i.insert_before(assign(is_not_zero_or_underflow,
-                          logic_and(nequal(x, new(ir) ir_constant(0.0f, vec_elem)),
-                                    gequal(resulting_biased_exp,
-                                           new(ir) ir_constant(0x1, vec_elem)))));
-   i.insert_before(assign(x, csel(is_not_zero_or_underflow,
-                                  x, zero_sign_x)));
-   i.insert_before(assign(resulting_biased_exp,
-                          csel(is_not_zero_or_underflow,
-                               resulting_biased_exp, zeroi)));
+   i.insert_before(sign_mantissa);
+   i.insert_before(assign(sign_mantissa,
+                          bit_and(bitcast_f2u(x),
+                                  new(ir) ir_constant(0x807fffffu, vec_elem))));
 
-   /* We could test for overflows by checking if the resulting biased exponent
-    * would be greater than 0xFE. Turns out we don't need to because the GLSL
-    * spec says:
+   /* We flush to zero if the original or resulting biased exponent is 0,
+    * indicating a +/-0.0 or subnormal input or output.
     *
-    *    "If this product is too large to be represented in the
-    *     floating-point type, the result is undefined."
+    * The mantissa is set to 0 if the resulting biased exponent is 255, since
+    * an overflow should produce a +/-inf result.
+    *
+    * Note that NaN inputs are handled separately.
     */
-
-   ir_constant *exp_shift_clone = exp_shift->clone(ir, NULL);
+   i.insert_before(flush_to_zero);
+   i.insert_before(assign(flush_to_zero,
+                          lequal(min2(resulting_biased_exp,
+                                      extracted_biased_exp),
+                                 ir_constant::zero(ir, ivec))));
+   i.insert_before(assign(resulting_biased_exp,
+                          csel(flush_to_zero,
+                               ir_constant::zero(ir, ivec),
+                               resulting_biased_exp)));
+
+   i.insert_before(zero_mantissa);
+   i.insert_before(assign(zero_mantissa,
+                          logic_or(flush_to_zero,
+                                   equal(resulting_biased_exp,
+                                         new(ir) ir_constant(255, vec_elem)))));
+   i.insert_before(assign(sign_mantissa,
+                          csel(zero_mantissa,
+                               bit_and(sign_mantissa,
+                                       new(ir) ir_constant(0x80000000u, vec_elem)),
+                               sign_mantissa)));
 
    /* Don't generate new IR that would need to be lowered in an additional
     * pass.
     */
+   i.insert_before(result);
    if (!lowering(INSERT_TO_SHIFTS)) {
-      ir_constant *exp_width = new(ir) ir_constant(8, vec_elem);
-      ir->operation = ir_unop_bitcast_i2f;
-      ir->init_num_operands();
-      ir->operands[0] = bitfield_insert(bitcast_f2i(x), resulting_biased_exp,
-                                        exp_shift_clone, exp_width);
-      ir->operands[1] = NULL;
+      i.insert_before(assign(result,
+                             bitfield_insert(sign_mantissa,
+                                             i2u(resulting_biased_exp),
+                                             new(ir) ir_constant(23u, vec_elem),
+                                             new(ir) ir_constant(8u, vec_elem))));
    } else {
-      ir_constant *sign_mantissa_mask = new(ir) ir_constant(0x807fffffu, vec_elem);
-      ir->operation = ir_unop_bitcast_u2f;
-      ir->init_num_operands();
-      ir->operands[0] = bit_or(bit_and(bitcast_f2u(x), sign_mantissa_mask),
-                               lshift(i2u(resulting_biased_exp), exp_shift_clone));
-      ir->operands[1] = NULL;
+      i.insert_before(assign(result,
+                             bit_or(sign_mantissa,
+                                    lshift(i2u(resulting_biased_exp),
+                                           new(ir) ir_constant(23, vec_elem)))));
    }
 
+   ir->operation = ir_triop_csel;
+   ir->init_num_operands();
+   ir->operands[0] = gequal(extracted_biased_exp,
+                            new(ir) ir_constant(255, vec_elem));
+   ir->operands[1] = new(ir) ir_dereference_variable(x);
+   ir->operands[2] = bitcast_u2f(result);
+
    this->progress = true;
 }
 
@@ -793,10 +844,11 @@ lower_instructions_visitor::sat_to_clamp(ir_expression *ir)
 
    ir->operation = ir_binop_min;
    ir->init_num_operands();
+
+   ir_constant *zero = _imm_fp(ir, ir->operands[0]->type, 0.0);
    ir->operands[0] = new(ir) ir_expression(ir_binop_max, ir->operands[0]->type,
-                                           ir->operands[0],
-                                           new(ir) ir_constant(0.0f));
-   ir->operands[1] = new(ir) ir_constant(1.0f);
+                                           ir->operands[0], zero);
+   ir->operands[1] = _imm_fp(ir, ir->operands[0]->type, 1.0);
 
    this->progress = true;
 }
@@ -1471,6 +1523,25 @@ lower_instructions_visitor::_carry(operand a, operand b)
       return carry(a, b);
 }
 
+ir_constant *
+lower_instructions_visitor::_imm_fp(void *mem_ctx,
+                                    const glsl_type *type,
+                                    double f,
+                                    unsigned vector_elements)
+{
+   switch (type->base_type) {
+   case GLSL_TYPE_FLOAT:
+      return new(mem_ctx) ir_constant((float) f, vector_elements);
+   case GLSL_TYPE_DOUBLE:
+      return new(mem_ctx) ir_constant((double) f, vector_elements);
+   case GLSL_TYPE_FLOAT16:
+      return new(mem_ctx) ir_constant(float16_t(f), vector_elements);
+   default:
+      assert(!"unknown float type for immediate");
+      return NULL;
+   }
+}
+
 void
 lower_instructions_visitor::imul_high_to_mul(ir_expression *ir)
 {
@@ -1623,6 +1694,66 @@ lower_instructions_visitor::sqrt_to_abs_sqrt(ir_expression *ir)
    this->progress = true;
 }
 
+void
+lower_instructions_visitor::mul64_to_mul_and_mul_high(ir_expression *ir)
+{
+   /* Lower 32x32-> 64 to
+    *    msb = imul_high(x_lo, y_lo)
+    *    lsb = mul(x_lo, y_lo)
+    */
+   const unsigned elements = ir->operands[0]->type->vector_elements;
+
+   const ir_expression_operation operation =
+      ir->type->base_type == GLSL_TYPE_UINT64 ? ir_unop_pack_uint_2x32
+                                              : ir_unop_pack_int_2x32;
+
+   const glsl_type *var_type = ir->type->base_type == GLSL_TYPE_UINT64
+                               ? glsl_type::uvec(elements)
+                               : glsl_type::ivec(elements);
+
+   const glsl_type *ret_type = ir->type->base_type == GLSL_TYPE_UINT64
+                               ? glsl_type::uvec2_type
+                               : glsl_type::ivec2_type;
+
+   ir_instruction &i = *base_ir;
+
+   ir_variable *msb =
+      new(ir) ir_variable(var_type, "msb", ir_var_temporary);
+   ir_variable *lsb =
+      new(ir) ir_variable(var_type, "lsb", ir_var_temporary);
+   ir_variable *x =
+      new(ir) ir_variable(var_type, "x", ir_var_temporary);
+   ir_variable *y =
+      new(ir) ir_variable(var_type, "y", ir_var_temporary);
+
+   i.insert_before(x);
+   i.insert_before(assign(x, ir->operands[0]));
+   i.insert_before(y);
+   i.insert_before(assign(y, ir->operands[1]));
+   i.insert_before(msb);
+   i.insert_before(lsb);
+
+   i.insert_before(assign(msb, imul_high(x, y)));
+   i.insert_before(assign(lsb, mul(x, y)));
+
+   ir_rvalue *result[4] = {NULL};
+   for (unsigned elem = 0; elem < elements; elem++) {
+      ir_rvalue *val = new(ir) ir_expression(ir_quadop_vector, ret_type,
+                                             swizzle(lsb, elem, 1),
+                                             swizzle(msb, elem, 1), NULL, NULL);
+      result[elem] = expr(operation, val);
+   }
+
+   ir->operation = ir_quadop_vector;
+   ir->init_num_operands();
+   ir->operands[0] = result[0];
+   ir->operands[1] = result[1];
+   ir->operands[2] = result[2];
+   ir->operands[3] = result[3];
+
+   this->progress = true;
+}
+
 ir_visitor_status
 lower_instructions_visitor::visit_leave(ir_expression *ir)
 {
@@ -1641,9 +1772,9 @@ lower_instructions_visitor::visit_leave(ir_expression *ir)
       break;
 
    case ir_binop_div:
-      if (ir->operands[1]->type->is_integer() && lowering(INT_DIV_TO_MUL_RCP))
+      if (ir->operands[1]->type->is_integer_32() && lowering(INT_DIV_TO_MUL_RCP))
         int_div_to_mul_rcp(ir);
-      else if ((ir->operands[1]->type->is_float() && lowering(FDIV_TO_MUL_RCP)) ||
+      else if ((ir->operands[1]->type->is_float_16_32() && lowering(FDIV_TO_MUL_RCP)) ||
                (ir->operands[1]->type->is_double() && lowering(DDIV_TO_MUL_RCP)))
         div_to_mul_rcp(ir);
       break;
@@ -1659,7 +1790,7 @@ lower_instructions_visitor::visit_leave(ir_expression *ir)
       break;
 
    case ir_binop_mod:
-      if (lowering(MOD_TO_FLOOR) && (ir->type->is_float() || ir->type->is_double()))
+      if (lowering(MOD_TO_FLOOR) && ir->type->is_float_16_32_64())
         mod_to_floor(ir);
       break;
 
@@ -1760,6 +1891,15 @@ lower_instructions_visitor::visit_leave(ir_expression *ir)
          imul_high_to_mul(ir);
       break;
 
+   case ir_binop_mul:
+      if (lowering(MUL64_TO_MUL_AND_MUL_HIGH) &&
+          (ir->type->base_type == GLSL_TYPE_INT64 ||
+           ir->type->base_type == GLSL_TYPE_UINT64) &&
+          (ir->operands[0]->type->base_type == GLSL_TYPE_INT ||
+           ir->operands[1]->type->base_type == GLSL_TYPE_UINT))
+         mul64_to_mul_and_mul_high(ir);
+      break;
+
    case ir_unop_rsq:
    case ir_unop_sqrt:
       if (lowering(SQRT_TO_ABS_SQRT))