nir: Allow var_mem_global in nir_lower_vars_to_explicit_types
[mesa.git] / src / compiler / glsl / lower_instructions.cpp
index fc87605c43f86caa0ccb5273af7cafe70ffcb5c6..c549d16d2acef5b0e9acede33bd89bd43391a2b6 100644 (file)
@@ -54,8 +54,8 @@
  * want to recognize add(op0, neg(op1)) or the other way around to
  * produce a subtract anyway.
  *
- * DIV_TO_MUL_RCP and INT_DIV_TO_MUL_RCP:
- * --------------------------------------
+ * FDIV_TO_MUL_RCP, DDIV_TO_MUL_RCP, and INT_DIV_TO_MUL_RCP:
+ * ---------------------------------------------------------
  * Breaks an ir_binop_div expression down to op0 * (rcp(op1)).
  *
  * Many GPUs don't have a divide instruction (945 and 965 included),
  * reciprocal.  By breaking the operation down, constant reciprocals
  * can get constant folded.
  *
- * DIV_TO_MUL_RCP only lowers floating point division; INT_DIV_TO_MUL_RCP
- * handles the integer case, converting to and from floating point so that
- * RCP is possible.
+ * FDIV_TO_MUL_RCP lowers single-precision and half-precision
+ * floating point division;
+ * DDIV_TO_MUL_RCP only lowers double-precision floating point division.
+ * DIV_TO_MUL_RCP is a convenience macro that sets both flags.
+ * INT_DIV_TO_MUL_RCP handles the integer case, converting to and from floating
+ * point so that RCP is possible.
  *
  * EXP_TO_EXP2 and LOG_TO_LOG2:
  * ----------------------------
 #include "ir.h"
 #include "ir_builder.h"
 #include "ir_optimization.h"
+#include "util/half_float.h"
 
 using namespace ir_builder;
 
@@ -160,6 +164,21 @@ private:
    void dtrunc_to_dfrac(ir_expression *);
    void dsign_to_csel(ir_expression *);
    void bit_count_to_math(ir_expression *);
+   void extract_to_shifts(ir_expression *);
+   void insert_to_shifts(ir_expression *);
+   void reverse_to_shifts(ir_expression *ir);
+   void find_lsb_to_float_cast(ir_expression *ir);
+   void find_msb_to_float_cast(ir_expression *ir);
+   void imul_high_to_mul(ir_expression *ir);
+   void sqrt_to_abs_sqrt(ir_expression *ir);
+   void mul64_to_mul_and_mul_high(ir_expression *ir);
+
+   ir_expression *_carry(operand a, operand b);
+
+   static ir_constant *_imm_fp(void *mem_ctx,
+                               const glsl_type *type,
+                               double f,
+                               unsigned vector_elements=1);
 };
 
 } /* anonymous namespace */
@@ -182,6 +201,7 @@ void
 lower_instructions_visitor::sub_to_add_neg(ir_expression *ir)
 {
    ir->operation = ir_binop_add;
+   ir->init_num_operands();
    ir->operands[1] = new(ir) ir_expression(ir_unop_neg, ir->operands[1]->type,
                                           ir->operands[1], NULL);
    this->progress = true;
@@ -190,7 +210,7 @@ lower_instructions_visitor::sub_to_add_neg(ir_expression *ir)
 void
 lower_instructions_visitor::div_to_mul_rcp(ir_expression *ir)
 {
-   assert(ir->operands[1]->type->is_float() || ir->operands[1]->type->is_double());
+   assert(ir->operands[1]->type->is_float_16_32_64());
 
    /* New expression for the 1.0 / op1 */
    ir_rvalue *expr;
@@ -200,6 +220,7 @@ lower_instructions_visitor::div_to_mul_rcp(ir_expression *ir)
 
    /* op0 / op1 -> op0 * (1.0 / op1) */
    ir->operation = ir_binop_mul;
+   ir->init_num_operands();
    ir->operands[1] = expr;
 
    this->progress = true;
@@ -208,7 +229,7 @@ lower_instructions_visitor::div_to_mul_rcp(ir_expression *ir)
 void
 lower_instructions_visitor::int_div_to_mul_rcp(ir_expression *ir)
 {
-   assert(ir->operands[1]->type->is_integer());
+   assert(ir->operands[1]->type->is_integer_32());
 
    /* Be careful with integer division -- we need to do it as a
     * float and re-truncate, since rcp(n > 1) of an integer would
@@ -250,6 +271,7 @@ lower_instructions_visitor::int_div_to_mul_rcp(ir_expression *ir)
       ir->operation = ir_unop_i2u;
       ir->operands[0] = new(ir) ir_expression(ir_unop_f2i, op0);
    }
+   ir->init_num_operands();
    ir->operands[1] = NULL;
 
    this->progress = true;
@@ -258,9 +280,10 @@ lower_instructions_visitor::int_div_to_mul_rcp(ir_expression *ir)
 void
 lower_instructions_visitor::exp_to_exp2(ir_expression *ir)
 {
-   ir_constant *log2_e = new(ir) ir_constant(float(M_LOG2E));
+   ir_constant *log2_e = _imm_fp(ir, ir->type, M_LOG2E);
 
    ir->operation = ir_unop_exp2;
+   ir->init_num_operands();
    ir->operands[0] = new(ir) ir_expression(ir_binop_mul, ir->operands[0]->type,
                                           ir->operands[0], log2_e);
    this->progress = true;
@@ -274,6 +297,7 @@ lower_instructions_visitor::pow_to_exp2(ir_expression *ir)
                            ir->operands[0]);
 
    ir->operation = ir_unop_exp2;
+   ir->init_num_operands();
    ir->operands[0] = new(ir) ir_expression(ir_binop_mul, ir->operands[1]->type,
                                           ir->operands[1], log2_x);
    ir->operands[1] = NULL;
@@ -284,9 +308,10 @@ void
 lower_instructions_visitor::log_to_log2(ir_expression *ir)
 {
    ir->operation = ir_binop_mul;
+   ir->init_num_operands();
    ir->operands[0] = new(ir) ir_expression(ir_unop_log2, ir->operands[0]->type,
                                           ir->operands[0], NULL);
-   ir->operands[1] = new(ir) ir_constant(float(1.0 / M_LOG2E));
+   ir->operands[1] = _imm_fp(ir, ir->operands[0]->type, 1.0 / M_LOG2E);
    this->progress = true;
 }
 
@@ -302,10 +327,10 @@ lower_instructions_visitor::mod_to_floor(ir_expression *ir)
 
    ir_assignment *const assign_x =
       new(ir) ir_assignment(new(ir) ir_dereference_variable(x),
-                            ir->operands[0], NULL);
+                            ir->operands[0]);
    ir_assignment *const assign_y =
       new(ir) ir_assignment(new(ir) ir_dereference_variable(y),
-                            ir->operands[1], NULL);
+                            ir->operands[1]);
 
    this->base_ir->insert_before(assign_x);
    this->base_ir->insert_before(assign_y);
@@ -318,7 +343,8 @@ lower_instructions_visitor::mod_to_floor(ir_expression *ir)
    /* Don't generate new IR that would need to be lowered in an additional
     * pass.
     */
-   if (lowering(DIV_TO_MUL_RCP) && (ir->type->is_float() || ir->type->is_double()))
+   if ((lowering(FDIV_TO_MUL_RCP) && ir->type->is_float_16_32()) ||
+       (lowering(DDIV_TO_MUL_RCP) && ir->type->is_double()))
       div_to_mul_rcp(div_expr);
 
    ir_expression *const floor_expr =
@@ -333,6 +359,7 @@ lower_instructions_visitor::mod_to_floor(ir_expression *ir)
                             floor_expr);
 
    ir->operation = ir_binop_sub;
+   ir->init_num_operands();
    ir->operands[0] = new(ir) ir_dereference_variable(x);
    ir->operands[1] = mul_expr;
    this->progress = true;
@@ -346,13 +373,21 @@ lower_instructions_visitor::ldexp_to_arith(ir_expression *ir)
     * into
     *
     *    extracted_biased_exp = rshift(bitcast_f2i(abs(x)), exp_shift);
-    *    resulting_biased_exp = extracted_biased_exp + exp;
+    *    resulting_biased_exp = min(extracted_biased_exp + exp, 255);
     *
-    *    if (resulting_biased_exp < 1 || x == 0.0f) {
-    *       return copysign(0.0, x);
+    *    if (extracted_biased_exp >= 255)
+    *       return x; // +/-inf, NaN
+    *
+    *    sign_mantissa = bitcast_f2u(x) & sign_mantissa_mask;
+    *
+    *    if (min(resulting_biased_exp, extracted_biased_exp) < 1)
+    *       resulting_biased_exp = 0;
+    *    if (resulting_biased_exp >= 255 ||
+    *        min(resulting_biased_exp, extracted_biased_exp) < 1) {
+    *       sign_mantissa &= sign_mask;
     *    }
     *
-    *    return bitcast_u2f((bitcast_f2u(x) & sign_mantissa_mask) |
+    *    return bitcast_u2f(sign_mantissa |
     *                       lshift(i2u(resulting_biased_exp), exp_shift));
     *
     * which we can't actually implement as such, since the GLSL IR doesn't
@@ -360,46 +395,58 @@ lower_instructions_visitor::ldexp_to_arith(ir_expression *ir)
     * using conditional-select:
     *
     *    extracted_biased_exp = rshift(bitcast_f2i(abs(x)), exp_shift);
-    *    resulting_biased_exp = extracted_biased_exp + exp;
+    *    resulting_biased_exp = min(extracted_biased_exp + exp, 255);
     *
-    *    is_not_zero_or_underflow = logic_and(nequal(x, 0.0f),
-    *                                         gequal(resulting_biased_exp, 1);
-    *    x = csel(is_not_zero_or_underflow, x, copysign(0.0f, x));
-    *    resulting_biased_exp = csel(is_not_zero_or_underflow,
-    *                                resulting_biased_exp, 0);
+    *    sign_mantissa = bitcast_f2u(x) & sign_mantissa_mask;
     *
-    *    return bitcast_u2f((bitcast_f2u(x) & sign_mantissa_mask) |
-    *                       lshift(i2u(resulting_biased_exp), exp_shift));
+    *    flush_to_zero = lequal(min(resulting_biased_exp, extracted_biased_exp), 0);
+    *    resulting_biased_exp = csel(flush_to_zero, 0, resulting_biased_exp)
+    *    zero_mantissa = logic_or(flush_to_zero,
+    *                             gequal(resulting_biased_exp, 255));
+    *    sign_mantissa = csel(zero_mantissa, sign_mantissa & sign_mask, sign_mantissa);
+    *
+    *    result = sign_mantissa |
+    *             lshift(i2u(resulting_biased_exp), exp_shift));
+    *
+    *    return csel(extracted_biased_exp >= 255, x, bitcast_u2f(result));
+    *
+    * The definition of ldexp in the GLSL spec says:
+    *
+    *    "If this product is too large to be represented in the
+    *     floating-point type, the result is undefined."
+    *
+    * However, the definition of ldexp in the GLSL ES spec does not contain
+    * this sentence, so we do need to handle overflow correctly.
+    *
+    * There is additional language limiting the defined range of exp, but this
+    * is merely to allow implementations that store 2^exp in a temporary
+    * variable.
     */
 
    const unsigned vec_elem = ir->type->vector_elements;
 
    /* Types */
    const glsl_type *ivec = glsl_type::get_instance(GLSL_TYPE_INT, vec_elem, 1);
+   const glsl_type *uvec = glsl_type::get_instance(GLSL_TYPE_UINT, vec_elem, 1);
    const glsl_type *bvec = glsl_type::get_instance(GLSL_TYPE_BOOL, vec_elem, 1);
 
-   /* Constants */
-   ir_constant *zeroi = ir_constant::zero(ir, ivec);
-
-   ir_constant *sign_mask = new(ir) ir_constant(0x80000000u, vec_elem);
-
-   ir_constant *exp_shift = new(ir) ir_constant(23, vec_elem);
-   ir_constant *exp_width = new(ir) ir_constant(8, vec_elem);
-
    /* Temporary variables */
    ir_variable *x = new(ir) ir_variable(ir->type, "x", ir_var_temporary);
    ir_variable *exp = new(ir) ir_variable(ivec, "exp", ir_var_temporary);
-
-   ir_variable *zero_sign_x = new(ir) ir_variable(ir->type, "zero_sign_x",
-                                                  ir_var_temporary);
+   ir_variable *result = new(ir) ir_variable(uvec, "result", ir_var_temporary);
 
    ir_variable *extracted_biased_exp =
       new(ir) ir_variable(ivec, "extracted_biased_exp", ir_var_temporary);
    ir_variable *resulting_biased_exp =
       new(ir) ir_variable(ivec, "resulting_biased_exp", ir_var_temporary);
 
-   ir_variable *is_not_zero_or_underflow =
-      new(ir) ir_variable(bvec, "is_not_zero_or_underflow", ir_var_temporary);
+   ir_variable *sign_mantissa =
+      new(ir) ir_variable(uvec, "sign_mantissa", ir_var_temporary);
+
+   ir_variable *flush_to_zero =
+      new(ir) ir_variable(bvec, "flush_to_zero", ir_var_temporary);
+   ir_variable *zero_mantissa =
+      new(ir) ir_variable(bvec, "zero_mantissa", ir_var_temporary);
 
    ir_instruction &i = *base_ir;
 
@@ -412,45 +459,82 @@ lower_instructions_visitor::ldexp_to_arith(ir_expression *ir)
    /* Extract the biased exponent from <x>. */
    i.insert_before(extracted_biased_exp);
    i.insert_before(assign(extracted_biased_exp,
-                          rshift(bitcast_f2i(abs(x)), exp_shift)));
+                          rshift(bitcast_f2i(abs(x)),
+                                 new(ir) ir_constant(23, vec_elem))));
 
+   /* The definition of ldexp in the GLSL 4.60 spec says:
+    *
+    *    "If exp is greater than +128 (single-precision) or +1024
+    *     (double-precision), the value returned is undefined. If exp is less
+    *     than -126 (single-precision) or -1022 (double-precision), the value
+    *     returned may be flushed to zero."
+    *
+    * So we do not have to guard against the possibility of addition overflow,
+    * which could happen when exp is close to INT_MAX. Addition underflow
+    * cannot happen (the worst case is 0 + (-INT_MAX)).
+    */
    i.insert_before(resulting_biased_exp);
    i.insert_before(assign(resulting_biased_exp,
-                          add(extracted_biased_exp, exp)));
+                          min2(add(extracted_biased_exp, exp),
+                               new(ir) ir_constant(255, vec_elem))));
 
-   /* Test if result is ±0.0, subnormal, or underflow by checking if the
-    * resulting biased exponent would be less than 0x1. If so, the result is
-    * 0.0 with the sign of x. (Actually, invert the conditions so that
-    * immediate values are the second arguments, which is better for i965)
-    */
-   i.insert_before(zero_sign_x);
-   i.insert_before(assign(zero_sign_x,
-                          bitcast_u2f(bit_and(bitcast_f2u(x), sign_mask))));
+   i.insert_before(sign_mantissa);
+   i.insert_before(assign(sign_mantissa,
+                          bit_and(bitcast_f2u(x),
+                                  new(ir) ir_constant(0x807fffffu, vec_elem))));
 
-   i.insert_before(is_not_zero_or_underflow);
-   i.insert_before(assign(is_not_zero_or_underflow,
-                          logic_and(nequal(x, new(ir) ir_constant(0.0f, vec_elem)),
-                                    gequal(resulting_biased_exp,
-                                           new(ir) ir_constant(0x1, vec_elem)))));
-   i.insert_before(assign(x, csel(is_not_zero_or_underflow,
-                                  x, zero_sign_x)));
+   /* We flush to zero if the original or resulting biased exponent is 0,
+    * indicating a +/-0.0 or subnormal input or output.
+    *
+    * The mantissa is set to 0 if the resulting biased exponent is 255, since
+    * an overflow should produce a +/-inf result.
+    *
+    * Note that NaN inputs are handled separately.
+    */
+   i.insert_before(flush_to_zero);
+   i.insert_before(assign(flush_to_zero,
+                          lequal(min2(resulting_biased_exp,
+                                      extracted_biased_exp),
+                                 ir_constant::zero(ir, ivec))));
    i.insert_before(assign(resulting_biased_exp,
-                          csel(is_not_zero_or_underflow,
-                               resulting_biased_exp, zeroi)));
+                          csel(flush_to_zero,
+                               ir_constant::zero(ir, ivec),
+                               resulting_biased_exp)));
+
+   i.insert_before(zero_mantissa);
+   i.insert_before(assign(zero_mantissa,
+                          logic_or(flush_to_zero,
+                                   equal(resulting_biased_exp,
+                                         new(ir) ir_constant(255, vec_elem)))));
+   i.insert_before(assign(sign_mantissa,
+                          csel(zero_mantissa,
+                               bit_and(sign_mantissa,
+                                       new(ir) ir_constant(0x80000000u, vec_elem)),
+                               sign_mantissa)));
 
-   /* We could test for overflows by checking if the resulting biased exponent
-    * would be greater than 0xFE. Turns out we don't need to because the GLSL
-    * spec says:
-    *
-    *    "If this product is too large to be represented in the
-    *     floating-point type, the result is undefined."
+   /* Don't generate new IR that would need to be lowered in an additional
+    * pass.
     */
+   i.insert_before(result);
+   if (!lowering(INSERT_TO_SHIFTS)) {
+      i.insert_before(assign(result,
+                             bitfield_insert(sign_mantissa,
+                                             i2u(resulting_biased_exp),
+                                             new(ir) ir_constant(23u, vec_elem),
+                                             new(ir) ir_constant(8u, vec_elem))));
+   } else {
+      i.insert_before(assign(result,
+                             bit_or(sign_mantissa,
+                                    lshift(i2u(resulting_biased_exp),
+                                           new(ir) ir_constant(23, vec_elem)))));
+   }
 
-   ir_constant *exp_shift_clone = exp_shift->clone(ir, NULL);
-   ir->operation = ir_unop_bitcast_i2f;
-   ir->operands[0] = bitfield_insert(bitcast_f2i(x), resulting_biased_exp,
-                                     exp_shift_clone, exp_width);
-   ir->operands[1] = NULL;
+   ir->operation = ir_triop_csel;
+   ir->init_num_operands();
+   ir->operands[0] = gequal(extracted_biased_exp,
+                            new(ir) ir_constant(255, vec_elem));
+   ir->operands[1] = new(ir) ir_dereference_variable(x);
+   ir->operands[2] = bitcast_u2f(result);
 
    this->progress = true;
 }
@@ -572,6 +656,7 @@ lower_instructions_visitor::dldexp_to_arith(ir_expression *ir)
    }
 
    ir->operation = ir_quadop_vector;
+   ir->init_num_operands();
    ir->operands[0] = results[0];
    ir->operands[1] = results[1];
    ir->operands[2] = results[2];
@@ -648,6 +733,7 @@ lower_instructions_visitor::dfrexp_sig_to_arith(ir_expression *ir)
 
    /* Put the dvec back together */
    ir->operation = ir_quadop_vector;
+   ir->init_num_operands();
    ir->operands[0] = results[0];
    ir->operands[1] = results[1];
    ir->operands[2] = results[2];
@@ -701,6 +787,7 @@ lower_instructions_visitor::dfrexp_exp_to_arith(ir_expression *ir)
 
    /* For non-zero inputs, shift the exponent down and apply bias. */
    ir->operation = ir_triop_csel;
+   ir->init_num_operands();
    ir->operands[0] = new(ir) ir_dereference_variable(is_not_zero);
    ir->operands[1] = add(exponent_bias, u2i(rshift(high_words, exponent_shift)));
    ir->operands[2] = izero;
@@ -721,6 +808,7 @@ lower_instructions_visitor::carry_to_arith(ir_expression *ir)
 
    ir_rvalue *x_clone = ir->operands[0]->clone(ir, NULL);
    ir->operation = ir_unop_i2u;
+   ir->init_num_operands();
    ir->operands[0] = b2i(less(add(ir->operands[0], ir->operands[1]), x_clone));
    ir->operands[1] = NULL;
 
@@ -738,6 +826,7 @@ lower_instructions_visitor::borrow_to_arith(ir_expression *ir)
     */
 
    ir->operation = ir_unop_i2u;
+   ir->init_num_operands();
    ir->operands[0] = b2i(less(ir->operands[0], ir->operands[1]));
    ir->operands[1] = NULL;
 
@@ -754,10 +843,12 @@ lower_instructions_visitor::sat_to_clamp(ir_expression *ir)
     */
 
    ir->operation = ir_binop_min;
+   ir->init_num_operands();
+
+   ir_constant *zero = _imm_fp(ir, ir->operands[0]->type, 0.0);
    ir->operands[0] = new(ir) ir_expression(ir_binop_max, ir->operands[0]->type,
-                                           ir->operands[0],
-                                           new(ir) ir_constant(0.0f));
-   ir->operands[1] = new(ir) ir_constant(1.0f);
+                                           ir->operands[0], zero);
+   ir->operands[1] = _imm_fp(ir, ir->operands[0]->type, 1.0);
 
    this->progress = true;
 }
@@ -784,6 +875,7 @@ lower_instructions_visitor::double_dot_to_fma(ir_expression *ir)
    }
 
    ir->operation = ir_triop_fma;
+   ir->init_num_operands();
    ir->operands[0] = swizzle(ir->operands[0], 0, 1);
    ir->operands[1] = swizzle(ir->operands[1], 0, 1);
    ir->operands[2] = new(ir) ir_dereference_variable(temp);
@@ -810,6 +902,7 @@ lower_instructions_visitor::double_lrp(ir_expression *ir)
    }
 
    ir->operation = ir_triop_fma;
+   ir->init_num_operands();
    ir->operands[0] = swizzle(op2, swizval, op0->type->vector_elements);
    ir->operands[2] = mul(sub(one, op2->clone(ir, NULL)), op0);
 
@@ -834,6 +927,7 @@ lower_instructions_visitor::dceil_to_dfrac(ir_expression *ir)
    i.insert_before(assign(frtemp, fract(ir->operands[0])));
 
    ir->operation = ir_binop_add;
+   ir->init_num_operands();
    ir->operands[0] = sub(ir->operands[0]->clone(ir, NULL), frtemp);
    ir->operands[1] = csel(nequal(frtemp, zero), one, zero->clone(ir, NULL));
 
@@ -848,6 +942,7 @@ lower_instructions_visitor::dfloor_to_dfrac(ir_expression *ir)
     * result = sub(x, frtemp);
     */
    ir->operation = ir_binop_sub;
+   ir->init_num_operands();
    ir->operands[1] = fract(ir->operands[0]->clone(ir, NULL));
 
    this->progress = true;
@@ -887,6 +982,7 @@ lower_instructions_visitor::dround_even_to_dfrac(ir_expression *ir)
    i.insert_before(assign(t2, sub(temp, frtemp)));
 
    ir->operation = ir_triop_csel;
+   ir->init_num_operands();
    ir->operands[0] = equal(fract(ir->operands[0]->clone(ir, NULL)),
                            p5->clone(ir, NULL));
    ir->operands[1] = csel(equal(fract(mul(t2, p5->clone(ir, NULL))),
@@ -922,6 +1018,7 @@ lower_instructions_visitor::dtrunc_to_dfrac(ir_expression *ir)
    i.insert_before(assign(temp, sub(arg->clone(ir, NULL), frtemp)));
 
    ir->operation = ir_triop_csel;
+   ir->init_num_operands();
    ir->operands[0] = gequal(arg->clone(ir, NULL), zero);
    ir->operands[1] = new (ir) ir_dereference_variable(temp);
    ir->operands[2] = add(temp,
@@ -945,6 +1042,7 @@ lower_instructions_visitor::dsign_to_csel(ir_expression *ir)
    ir_constant *neg_one = new(ir) ir_constant(-1.0, arg->type->vector_elements);
 
    ir->operation = ir_triop_csel;
+   ir->init_num_operands();
    ir->operands[0] = less(arg->clone(ir, NULL),
                           zero->clone(ir, NULL));
    ir->operands[1] = neg_one;
@@ -994,6 +1092,7 @@ lower_instructions_visitor::bit_count_to_math(ir_expression *ir)
 
    /* int(((temp + (temp >> 4) & 0xF0F0F0Fu) * 0x1010101u) >> 24); */
    ir->operation = ir_unop_u2i;
+   ir->init_num_operands();
    ir->operands[0] = rshift(mul(bit_and(add(temp, rshift(temp, c4)), c0F0F0F0F),
                                 c01010101),
                             c24);
@@ -1001,6 +1100,660 @@ lower_instructions_visitor::bit_count_to_math(ir_expression *ir)
    this->progress = true;
 }
 
+void
+lower_instructions_visitor::extract_to_shifts(ir_expression *ir)
+{
+   ir_variable *bits =
+      new(ir) ir_variable(ir->operands[0]->type, "bits", ir_var_temporary);
+
+   base_ir->insert_before(bits);
+   base_ir->insert_before(assign(bits, ir->operands[2]));
+
+   if (ir->operands[0]->type->base_type == GLSL_TYPE_UINT) {
+      ir_constant *c1 =
+         new(ir) ir_constant(1u, ir->operands[0]->type->vector_elements);
+      ir_constant *c32 =
+         new(ir) ir_constant(32u, ir->operands[0]->type->vector_elements);
+      ir_constant *cFFFFFFFF =
+         new(ir) ir_constant(0xFFFFFFFFu, ir->operands[0]->type->vector_elements);
+
+      /* At least some hardware treats (x << y) as (x << (y%32)).  This means
+       * we'd get a mask of 0 when bits is 32.  Special case it.
+       *
+       * mask = bits == 32 ? 0xffffffff : (1u << bits) - 1u;
+       */
+      ir_expression *mask = csel(equal(bits, c32),
+                                 cFFFFFFFF,
+                                 sub(lshift(c1, bits), c1->clone(ir, NULL)));
+
+      /* Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
+       *
+       *    If bits is zero, the result will be zero.
+       *
+       * Since (1 << 0) - 1 == 0, we don't need to bother with the conditional
+       * select as in the signed integer case.
+       *
+       * (value >> offset) & mask;
+       */
+      ir->operation = ir_binop_bit_and;
+      ir->init_num_operands();
+      ir->operands[0] = rshift(ir->operands[0], ir->operands[1]);
+      ir->operands[1] = mask;
+      ir->operands[2] = NULL;
+   } else {
+      ir_constant *c0 =
+         new(ir) ir_constant(int(0), ir->operands[0]->type->vector_elements);
+      ir_constant *c32 =
+         new(ir) ir_constant(int(32), ir->operands[0]->type->vector_elements);
+      ir_variable *temp =
+         new(ir) ir_variable(ir->operands[0]->type, "temp", ir_var_temporary);
+
+      /* temp = 32 - bits; */
+      base_ir->insert_before(temp);
+      base_ir->insert_before(assign(temp, sub(c32, bits)));
+
+      /* expr = value << (temp - offset)) >> temp; */
+      ir_expression *expr =
+         rshift(lshift(ir->operands[0], sub(temp, ir->operands[1])), temp);
+
+      /* Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
+       *
+       *    If bits is zero, the result will be zero.
+       *
+       * Due to the (x << (y%32)) behavior mentioned before, the (value <<
+       * (32-0)) doesn't "erase" all of the data as we would like, so finish
+       * up with:
+       *
+       * (bits == 0) ? 0 : e;
+       */
+      ir->operation = ir_triop_csel;
+      ir->init_num_operands();
+      ir->operands[0] = equal(c0, bits);
+      ir->operands[1] = c0->clone(ir, NULL);
+      ir->operands[2] = expr;
+   }
+
+   this->progress = true;
+}
+
+void
+lower_instructions_visitor::insert_to_shifts(ir_expression *ir)
+{
+   ir_constant *c1;
+   ir_constant *c32;
+   ir_constant *cFFFFFFFF;
+   ir_variable *offset =
+      new(ir) ir_variable(ir->operands[0]->type, "offset", ir_var_temporary);
+   ir_variable *bits =
+      new(ir) ir_variable(ir->operands[0]->type, "bits", ir_var_temporary);
+   ir_variable *mask =
+      new(ir) ir_variable(ir->operands[0]->type, "mask", ir_var_temporary);
+
+   if (ir->operands[0]->type->base_type == GLSL_TYPE_INT) {
+      c1 = new(ir) ir_constant(int(1), ir->operands[0]->type->vector_elements);
+      c32 = new(ir) ir_constant(int(32), ir->operands[0]->type->vector_elements);
+      cFFFFFFFF = new(ir) ir_constant(int(0xFFFFFFFF), ir->operands[0]->type->vector_elements);
+   } else {
+      assert(ir->operands[0]->type->base_type == GLSL_TYPE_UINT);
+
+      c1 = new(ir) ir_constant(1u, ir->operands[0]->type->vector_elements);
+      c32 = new(ir) ir_constant(32u, ir->operands[0]->type->vector_elements);
+      cFFFFFFFF = new(ir) ir_constant(0xFFFFFFFFu, ir->operands[0]->type->vector_elements);
+   }
+
+   base_ir->insert_before(offset);
+   base_ir->insert_before(assign(offset, ir->operands[2]));
+
+   base_ir->insert_before(bits);
+   base_ir->insert_before(assign(bits, ir->operands[3]));
+
+   /* At least some hardware treats (x << y) as (x << (y%32)).  This means
+    * we'd get a mask of 0 when bits is 32.  Special case it.
+    *
+    * mask = (bits == 32 ? 0xffffffff : (1u << bits) - 1u) << offset;
+    *
+    * Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
+    *
+    *    The result will be undefined if offset or bits is negative, or if the
+    *    sum of offset and bits is greater than the number of bits used to
+    *    store the operand.
+    *
+    * Since it's undefined, there are a couple other ways this could be
+    * implemented.  The other way that was considered was to put the csel
+    * around the whole thing:
+    *
+    *    final_result = bits == 32 ? insert : ... ;
+    */
+   base_ir->insert_before(mask);
+
+   base_ir->insert_before(assign(mask, csel(equal(bits, c32),
+                                            cFFFFFFFF,
+                                            lshift(sub(lshift(c1, bits),
+                                                       c1->clone(ir, NULL)),
+                                                   offset))));
+
+   /* (base & ~mask) | ((insert << offset) & mask) */
+   ir->operation = ir_binop_bit_or;
+   ir->init_num_operands();
+   ir->operands[0] = bit_and(ir->operands[0], bit_not(mask));
+   ir->operands[1] = bit_and(lshift(ir->operands[1], offset), mask);
+   ir->operands[2] = NULL;
+   ir->operands[3] = NULL;
+
+   this->progress = true;
+}
+
+void
+lower_instructions_visitor::reverse_to_shifts(ir_expression *ir)
+{
+   /* For more details, see:
+    *
+    * http://graphics.stanford.edu/~seander/bithacks.html#ReverseParallel
+    */
+   ir_constant *c1 =
+      new(ir) ir_constant(1u, ir->operands[0]->type->vector_elements);
+   ir_constant *c2 =
+      new(ir) ir_constant(2u, ir->operands[0]->type->vector_elements);
+   ir_constant *c4 =
+      new(ir) ir_constant(4u, ir->operands[0]->type->vector_elements);
+   ir_constant *c8 =
+      new(ir) ir_constant(8u, ir->operands[0]->type->vector_elements);
+   ir_constant *c16 =
+      new(ir) ir_constant(16u, ir->operands[0]->type->vector_elements);
+   ir_constant *c33333333 =
+      new(ir) ir_constant(0x33333333u, ir->operands[0]->type->vector_elements);
+   ir_constant *c55555555 =
+      new(ir) ir_constant(0x55555555u, ir->operands[0]->type->vector_elements);
+   ir_constant *c0F0F0F0F =
+      new(ir) ir_constant(0x0F0F0F0Fu, ir->operands[0]->type->vector_elements);
+   ir_constant *c00FF00FF =
+      new(ir) ir_constant(0x00FF00FFu, ir->operands[0]->type->vector_elements);
+   ir_variable *temp =
+      new(ir) ir_variable(glsl_type::uvec(ir->operands[0]->type->vector_elements),
+                          "temp", ir_var_temporary);
+   ir_instruction &i = *base_ir;
+
+   i.insert_before(temp);
+
+   if (ir->operands[0]->type->base_type == GLSL_TYPE_UINT) {
+      i.insert_before(assign(temp, ir->operands[0]));
+   } else {
+      assert(ir->operands[0]->type->base_type == GLSL_TYPE_INT);
+      i.insert_before(assign(temp, i2u(ir->operands[0])));
+   }
+
+   /* Swap odd and even bits.
+    *
+    * temp = ((temp >> 1) & 0x55555555u) | ((temp & 0x55555555u) << 1);
+    */
+   i.insert_before(assign(temp, bit_or(bit_and(rshift(temp, c1), c55555555),
+                                       lshift(bit_and(temp, c55555555->clone(ir, NULL)),
+                                              c1->clone(ir, NULL)))));
+   /* Swap consecutive pairs.
+    *
+    * temp = ((temp >> 2) & 0x33333333u) | ((temp & 0x33333333u) << 2);
+    */
+   i.insert_before(assign(temp, bit_or(bit_and(rshift(temp, c2), c33333333),
+                                       lshift(bit_and(temp, c33333333->clone(ir, NULL)),
+                                              c2->clone(ir, NULL)))));
+
+   /* Swap nibbles.
+    *
+    * temp = ((temp >> 4) & 0x0F0F0F0Fu) | ((temp & 0x0F0F0F0Fu) << 4);
+    */
+   i.insert_before(assign(temp, bit_or(bit_and(rshift(temp, c4), c0F0F0F0F),
+                                       lshift(bit_and(temp, c0F0F0F0F->clone(ir, NULL)),
+                                              c4->clone(ir, NULL)))));
+
+   /* The last step is, basically, bswap.  Swap the bytes, then swap the
+    * words.  When this code is run through GCC on x86, it does generate a
+    * bswap instruction.
+    *
+    * temp = ((temp >> 8) & 0x00FF00FFu) | ((temp & 0x00FF00FFu) << 8);
+    * temp = ( temp >> 16              ) | ( temp                << 16);
+    */
+   i.insert_before(assign(temp, bit_or(bit_and(rshift(temp, c8), c00FF00FF),
+                                       lshift(bit_and(temp, c00FF00FF->clone(ir, NULL)),
+                                              c8->clone(ir, NULL)))));
+
+   if (ir->operands[0]->type->base_type == GLSL_TYPE_UINT) {
+      ir->operation = ir_binop_bit_or;
+      ir->init_num_operands();
+      ir->operands[0] = rshift(temp, c16);
+      ir->operands[1] = lshift(temp, c16->clone(ir, NULL));
+   } else {
+      ir->operation = ir_unop_u2i;
+      ir->init_num_operands();
+      ir->operands[0] = bit_or(rshift(temp, c16),
+                               lshift(temp, c16->clone(ir, NULL)));
+   }
+
+   this->progress = true;
+}
+
+void
+lower_instructions_visitor::find_lsb_to_float_cast(ir_expression *ir)
+{
+   /* For more details, see:
+    *
+    * http://graphics.stanford.edu/~seander/bithacks.html#ZerosOnRightFloatCast
+    */
+   const unsigned elements = ir->operands[0]->type->vector_elements;
+   ir_constant *c0 = new(ir) ir_constant(unsigned(0), elements);
+   ir_constant *cminus1 = new(ir) ir_constant(int(-1), elements);
+   ir_constant *c23 = new(ir) ir_constant(int(23), elements);
+   ir_constant *c7F = new(ir) ir_constant(int(0x7F), elements);
+   ir_variable *temp =
+      new(ir) ir_variable(glsl_type::ivec(elements), "temp", ir_var_temporary);
+   ir_variable *lsb_only =
+      new(ir) ir_variable(glsl_type::uvec(elements), "lsb_only", ir_var_temporary);
+   ir_variable *as_float =
+      new(ir) ir_variable(glsl_type::vec(elements), "as_float", ir_var_temporary);
+   ir_variable *lsb =
+      new(ir) ir_variable(glsl_type::ivec(elements), "lsb", ir_var_temporary);
+
+   ir_instruction &i = *base_ir;
+
+   i.insert_before(temp);
+
+   if (ir->operands[0]->type->base_type == GLSL_TYPE_INT) {
+      i.insert_before(assign(temp, ir->operands[0]));
+   } else {
+      assert(ir->operands[0]->type->base_type == GLSL_TYPE_UINT);
+      i.insert_before(assign(temp, u2i(ir->operands[0])));
+   }
+
+   /* The int-to-float conversion is lossless because (value & -value) is
+    * either a power of two or zero.  We don't use the result in the zero
+    * case.  The uint() cast is necessary so that 0x80000000 does not
+    * generate a negative value.
+    *
+    * uint lsb_only = uint(value & -value);
+    * float as_float = float(lsb_only);
+    */
+   i.insert_before(lsb_only);
+   i.insert_before(assign(lsb_only, i2u(bit_and(temp, neg(temp)))));
+
+   i.insert_before(as_float);
+   i.insert_before(assign(as_float, u2f(lsb_only)));
+
+   /* This is basically an open-coded frexp.  Implementations that have a
+    * native frexp instruction would be better served by that.  This is
+    * optimized versus a full-featured open-coded implementation in two ways:
+    *
+    * - We don't care about a correct result from subnormal numbers (including
+    *   0.0), so the raw exponent can always be safely unbiased.
+    *
+    * - The value cannot be negative, so it does not need to be masked off to
+    *   extract the exponent.
+    *
+    * int lsb = (floatBitsToInt(as_float) >> 23) - 0x7f;
+    */
+   i.insert_before(lsb);
+   i.insert_before(assign(lsb, sub(rshift(bitcast_f2i(as_float), c23), c7F)));
+
+   /* Use lsb_only in the comparison instead of temp so that the & (far above)
+    * can possibly generate the result without an explicit comparison.
+    *
+    * (lsb_only == 0) ? -1 : lsb;
+    *
+    * Since our input values are all integers, the unbiased exponent must not
+    * be negative.  It will only be negative (-0x7f, in fact) if lsb_only is
+    * 0.  Instead of using (lsb_only == 0), we could use (lsb >= 0).  Which is
+    * better is likely GPU dependent.  Either way, the difference should be
+    * small.
+    */
+   ir->operation = ir_triop_csel;
+   ir->init_num_operands();
+   ir->operands[0] = equal(lsb_only, c0);
+   ir->operands[1] = cminus1;
+   ir->operands[2] = new(ir) ir_dereference_variable(lsb);
+
+   this->progress = true;
+}
+
+void
+lower_instructions_visitor::find_msb_to_float_cast(ir_expression *ir)
+{
+   /* For more details, see:
+    *
+    * http://graphics.stanford.edu/~seander/bithacks.html#ZerosOnRightFloatCast
+    */
+   const unsigned elements = ir->operands[0]->type->vector_elements;
+   ir_constant *c0 = new(ir) ir_constant(int(0), elements);
+   ir_constant *cminus1 = new(ir) ir_constant(int(-1), elements);
+   ir_constant *c23 = new(ir) ir_constant(int(23), elements);
+   ir_constant *c7F = new(ir) ir_constant(int(0x7F), elements);
+   ir_constant *c000000FF = new(ir) ir_constant(0x000000FFu, elements);
+   ir_constant *cFFFFFF00 = new(ir) ir_constant(0xFFFFFF00u, elements);
+   ir_variable *temp =
+      new(ir) ir_variable(glsl_type::uvec(elements), "temp", ir_var_temporary);
+   ir_variable *as_float =
+      new(ir) ir_variable(glsl_type::vec(elements), "as_float", ir_var_temporary);
+   ir_variable *msb =
+      new(ir) ir_variable(glsl_type::ivec(elements), "msb", ir_var_temporary);
+
+   ir_instruction &i = *base_ir;
+
+   i.insert_before(temp);
+
+   if (ir->operands[0]->type->base_type == GLSL_TYPE_UINT) {
+      i.insert_before(assign(temp, ir->operands[0]));
+   } else {
+      assert(ir->operands[0]->type->base_type == GLSL_TYPE_INT);
+
+      /* findMSB(uint(abs(some_int))) almost always does the right thing.
+       * There are two problem values:
+       *
+       * * 0x80000000.  Since abs(0x80000000) == 0x80000000, findMSB returns
+       *   31.  However, findMSB(int(0x80000000)) == 30.
+       *
+       * * 0xffffffff.  Since abs(0xffffffff) == 1, findMSB returns
+       *   31.  Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
+       *
+       *    For a value of zero or negative one, -1 will be returned.
+       *
+       * For all negative number cases, including 0x80000000 and 0xffffffff,
+       * the correct value is obtained from findMSB if instead of negating the
+       * (already negative) value the logical-not is used.  A conditonal
+       * logical-not can be achieved in two instructions.
+       */
+      ir_variable *as_int =
+         new(ir) ir_variable(glsl_type::ivec(elements), "as_int", ir_var_temporary);
+      ir_constant *c31 = new(ir) ir_constant(int(31), elements);
+
+      i.insert_before(as_int);
+      i.insert_before(assign(as_int, ir->operands[0]));
+      i.insert_before(assign(temp, i2u(expr(ir_binop_bit_xor,
+                                            as_int,
+                                            rshift(as_int, c31)))));
+   }
+
+   /* The int-to-float conversion is lossless because bits are conditionally
+    * masked off the bottom of temp to ensure the value has at most 24 bits of
+    * data or is zero.  We don't use the result in the zero case.  The uint()
+    * cast is necessary so that 0x80000000 does not generate a negative value.
+    *
+    * float as_float = float(temp > 255 ? temp & ~255 : temp);
+    */
+   i.insert_before(as_float);
+   i.insert_before(assign(as_float, u2f(csel(greater(temp, c000000FF),
+                                             bit_and(temp, cFFFFFF00),
+                                             temp))));
+
+   /* This is basically an open-coded frexp.  Implementations that have a
+    * native frexp instruction would be better served by that.  This is
+    * optimized versus a full-featured open-coded implementation in two ways:
+    *
+    * - We don't care about a correct result from subnormal numbers (including
+    *   0.0), so the raw exponent can always be safely unbiased.
+    *
+    * - The value cannot be negative, so it does not need to be masked off to
+    *   extract the exponent.
+    *
+    * int msb = (floatBitsToInt(as_float) >> 23) - 0x7f;
+    */
+   i.insert_before(msb);
+   i.insert_before(assign(msb, sub(rshift(bitcast_f2i(as_float), c23), c7F)));
+
+   /* Use msb in the comparison instead of temp so that the subtract can
+    * possibly generate the result without an explicit comparison.
+    *
+    * (msb < 0) ? -1 : msb;
+    *
+    * Since our input values are all integers, the unbiased exponent must not
+    * be negative.  It will only be negative (-0x7f, in fact) if temp is 0.
+    */
+   ir->operation = ir_triop_csel;
+   ir->init_num_operands();
+   ir->operands[0] = less(msb, c0);
+   ir->operands[1] = cminus1;
+   ir->operands[2] = new(ir) ir_dereference_variable(msb);
+
+   this->progress = true;
+}
+
+ir_expression *
+lower_instructions_visitor::_carry(operand a, operand b)
+{
+   if (lowering(CARRY_TO_ARITH))
+      return i2u(b2i(less(add(a, b),
+                          a.val->clone(ralloc_parent(a.val), NULL))));
+   else
+      return carry(a, b);
+}
+
+ir_constant *
+lower_instructions_visitor::_imm_fp(void *mem_ctx,
+                                    const glsl_type *type,
+                                    double f,
+                                    unsigned vector_elements)
+{
+   switch (type->base_type) {
+   case GLSL_TYPE_FLOAT:
+      return new(mem_ctx) ir_constant((float) f, vector_elements);
+   case GLSL_TYPE_DOUBLE:
+      return new(mem_ctx) ir_constant((double) f, vector_elements);
+   case GLSL_TYPE_FLOAT16:
+      return new(mem_ctx) ir_constant(float16_t(f), vector_elements);
+   default:
+      assert(!"unknown float type for immediate");
+      return NULL;
+   }
+}
+
+void
+lower_instructions_visitor::imul_high_to_mul(ir_expression *ir)
+{
+   /*   ABCD
+    * * EFGH
+    * ======
+    * (GH * CD) + (GH * AB) << 16 + (EF * CD) << 16 + (EF * AB) << 32
+    *
+    * In GLSL, (a * b) becomes
+    *
+    * uint m1 = (a & 0x0000ffffu) * (b & 0x0000ffffu);
+    * uint m2 = (a & 0x0000ffffu) * (b >> 16);
+    * uint m3 = (a >> 16)         * (b & 0x0000ffffu);
+    * uint m4 = (a >> 16)         * (b >> 16);
+    *
+    * uint c1;
+    * uint c2;
+    * uint lo_result;
+    * uint hi_result;
+    *
+    * lo_result = uaddCarry(m1, m2 << 16, c1);
+    * hi_result = m4 + c1;
+    * lo_result = uaddCarry(lo_result, m3 << 16, c2);
+    * hi_result = hi_result + c2;
+    * hi_result = hi_result + (m2 >> 16) + (m3 >> 16);
+    */
+   const unsigned elements = ir->operands[0]->type->vector_elements;
+   ir_variable *src1 =
+      new(ir) ir_variable(glsl_type::uvec(elements), "src1", ir_var_temporary);
+   ir_variable *src1h =
+      new(ir) ir_variable(glsl_type::uvec(elements), "src1h", ir_var_temporary);
+   ir_variable *src1l =
+      new(ir) ir_variable(glsl_type::uvec(elements), "src1l", ir_var_temporary);
+   ir_variable *src2 =
+      new(ir) ir_variable(glsl_type::uvec(elements), "src2", ir_var_temporary);
+   ir_variable *src2h =
+      new(ir) ir_variable(glsl_type::uvec(elements), "src2h", ir_var_temporary);
+   ir_variable *src2l =
+      new(ir) ir_variable(glsl_type::uvec(elements), "src2l", ir_var_temporary);
+   ir_variable *t1 =
+      new(ir) ir_variable(glsl_type::uvec(elements), "t1", ir_var_temporary);
+   ir_variable *t2 =
+      new(ir) ir_variable(glsl_type::uvec(elements), "t2", ir_var_temporary);
+   ir_variable *lo =
+      new(ir) ir_variable(glsl_type::uvec(elements), "lo", ir_var_temporary);
+   ir_variable *hi =
+      new(ir) ir_variable(glsl_type::uvec(elements), "hi", ir_var_temporary);
+   ir_variable *different_signs = NULL;
+   ir_constant *c0000FFFF = new(ir) ir_constant(0x0000FFFFu, elements);
+   ir_constant *c16 = new(ir) ir_constant(16u, elements);
+
+   ir_instruction &i = *base_ir;
+
+   i.insert_before(src1);
+   i.insert_before(src2);
+   i.insert_before(src1h);
+   i.insert_before(src2h);
+   i.insert_before(src1l);
+   i.insert_before(src2l);
+
+   if (ir->operands[0]->type->base_type == GLSL_TYPE_UINT) {
+      i.insert_before(assign(src1, ir->operands[0]));
+      i.insert_before(assign(src2, ir->operands[1]));
+   } else {
+      assert(ir->operands[0]->type->base_type == GLSL_TYPE_INT);
+
+      ir_variable *itmp1 =
+         new(ir) ir_variable(glsl_type::ivec(elements), "itmp1", ir_var_temporary);
+      ir_variable *itmp2 =
+         new(ir) ir_variable(glsl_type::ivec(elements), "itmp2", ir_var_temporary);
+      ir_constant *c0 = new(ir) ir_constant(int(0), elements);
+
+      i.insert_before(itmp1);
+      i.insert_before(itmp2);
+      i.insert_before(assign(itmp1, ir->operands[0]));
+      i.insert_before(assign(itmp2, ir->operands[1]));
+
+      different_signs =
+         new(ir) ir_variable(glsl_type::bvec(elements), "different_signs",
+                             ir_var_temporary);
+
+      i.insert_before(different_signs);
+      i.insert_before(assign(different_signs, expr(ir_binop_logic_xor,
+                                                   less(itmp1, c0),
+                                                   less(itmp2, c0->clone(ir, NULL)))));
+
+      i.insert_before(assign(src1, i2u(abs(itmp1))));
+      i.insert_before(assign(src2, i2u(abs(itmp2))));
+   }
+
+   i.insert_before(assign(src1l, bit_and(src1, c0000FFFF)));
+   i.insert_before(assign(src2l, bit_and(src2, c0000FFFF->clone(ir, NULL))));
+   i.insert_before(assign(src1h, rshift(src1, c16)));
+   i.insert_before(assign(src2h, rshift(src2, c16->clone(ir, NULL))));
+
+   i.insert_before(lo);
+   i.insert_before(hi);
+   i.insert_before(t1);
+   i.insert_before(t2);
+
+   i.insert_before(assign(lo, mul(src1l, src2l)));
+   i.insert_before(assign(t1, mul(src1l, src2h)));
+   i.insert_before(assign(t2, mul(src1h, src2l)));
+   i.insert_before(assign(hi, mul(src1h, src2h)));
+
+   i.insert_before(assign(hi, add(hi, _carry(lo, lshift(t1, c16->clone(ir, NULL))))));
+   i.insert_before(assign(lo,            add(lo, lshift(t1, c16->clone(ir, NULL)))));
+
+   i.insert_before(assign(hi, add(hi, _carry(lo, lshift(t2, c16->clone(ir, NULL))))));
+   i.insert_before(assign(lo,            add(lo, lshift(t2, c16->clone(ir, NULL)))));
+
+   if (different_signs == NULL) {
+      assert(ir->operands[0]->type->base_type == GLSL_TYPE_UINT);
+
+      ir->operation = ir_binop_add;
+      ir->init_num_operands();
+      ir->operands[0] = add(hi, rshift(t1, c16->clone(ir, NULL)));
+      ir->operands[1] = rshift(t2, c16->clone(ir, NULL));
+   } else {
+      assert(ir->operands[0]->type->base_type == GLSL_TYPE_INT);
+
+      i.insert_before(assign(hi, add(add(hi, rshift(t1, c16->clone(ir, NULL))),
+                                     rshift(t2, c16->clone(ir, NULL)))));
+
+      /* For channels where different_signs is set we have to perform a 64-bit
+       * negation.  This is *not* the same as just negating the high 32-bits.
+       * Consider -3 * 2.  The high 32-bits is 0, but the desired result is
+       * -1, not -0!  Recall -x == ~x + 1.
+       */
+      ir_variable *neg_hi =
+         new(ir) ir_variable(glsl_type::ivec(elements), "neg_hi", ir_var_temporary);
+      ir_constant *c1 = new(ir) ir_constant(1u, elements);
+
+      i.insert_before(neg_hi);
+      i.insert_before(assign(neg_hi, add(bit_not(u2i(hi)),
+                                         u2i(_carry(bit_not(lo), c1)))));
+
+      ir->operation = ir_triop_csel;
+      ir->init_num_operands();
+      ir->operands[0] = new(ir) ir_dereference_variable(different_signs);
+      ir->operands[1] = new(ir) ir_dereference_variable(neg_hi);
+      ir->operands[2] = u2i(hi);
+   }
+}
+
+void
+lower_instructions_visitor::sqrt_to_abs_sqrt(ir_expression *ir)
+{
+   ir->operands[0] = new(ir) ir_expression(ir_unop_abs, ir->operands[0]);
+   this->progress = true;
+}
+
+void
+lower_instructions_visitor::mul64_to_mul_and_mul_high(ir_expression *ir)
+{
+   /* Lower 32x32-> 64 to
+    *    msb = imul_high(x_lo, y_lo)
+    *    lsb = mul(x_lo, y_lo)
+    */
+   const unsigned elements = ir->operands[0]->type->vector_elements;
+
+   const ir_expression_operation operation =
+      ir->type->base_type == GLSL_TYPE_UINT64 ? ir_unop_pack_uint_2x32
+                                              : ir_unop_pack_int_2x32;
+
+   const glsl_type *var_type = ir->type->base_type == GLSL_TYPE_UINT64
+                               ? glsl_type::uvec(elements)
+                               : glsl_type::ivec(elements);
+
+   const glsl_type *ret_type = ir->type->base_type == GLSL_TYPE_UINT64
+                               ? glsl_type::uvec2_type
+                               : glsl_type::ivec2_type;
+
+   ir_instruction &i = *base_ir;
+
+   ir_variable *msb =
+      new(ir) ir_variable(var_type, "msb", ir_var_temporary);
+   ir_variable *lsb =
+      new(ir) ir_variable(var_type, "lsb", ir_var_temporary);
+   ir_variable *x =
+      new(ir) ir_variable(var_type, "x", ir_var_temporary);
+   ir_variable *y =
+      new(ir) ir_variable(var_type, "y", ir_var_temporary);
+
+   i.insert_before(x);
+   i.insert_before(assign(x, ir->operands[0]));
+   i.insert_before(y);
+   i.insert_before(assign(y, ir->operands[1]));
+   i.insert_before(msb);
+   i.insert_before(lsb);
+
+   i.insert_before(assign(msb, imul_high(x, y)));
+   i.insert_before(assign(lsb, mul(x, y)));
+
+   ir_rvalue *result[4] = {NULL};
+   for (unsigned elem = 0; elem < elements; elem++) {
+      ir_rvalue *val = new(ir) ir_expression(ir_quadop_vector, ret_type,
+                                             swizzle(lsb, elem, 1),
+                                             swizzle(msb, elem, 1), NULL, NULL);
+      result[elem] = expr(operation, val);
+   }
+
+   ir->operation = ir_quadop_vector;
+   ir->init_num_operands();
+   ir->operands[0] = result[0];
+   ir->operands[1] = result[1];
+   ir->operands[2] = result[2];
+   ir->operands[3] = result[3];
+
+   this->progress = true;
+}
+
 ir_visitor_status
 lower_instructions_visitor::visit_leave(ir_expression *ir)
 {
@@ -1019,10 +1772,10 @@ lower_instructions_visitor::visit_leave(ir_expression *ir)
       break;
 
    case ir_binop_div:
-      if (ir->operands[1]->type->is_integer() && lowering(INT_DIV_TO_MUL_RCP))
+      if (ir->operands[1]->type->is_integer_32() && lowering(INT_DIV_TO_MUL_RCP))
         int_div_to_mul_rcp(ir);
-      else if ((ir->operands[1]->type->is_float() ||
-                ir->operands[1]->type->is_double()) && lowering(DIV_TO_MUL_RCP))
+      else if ((ir->operands[1]->type->is_float_16_32() && lowering(FDIV_TO_MUL_RCP)) ||
+               (ir->operands[1]->type->is_double() && lowering(DDIV_TO_MUL_RCP)))
         div_to_mul_rcp(ir);
       break;
 
@@ -1037,7 +1790,7 @@ lower_instructions_visitor::visit_leave(ir_expression *ir)
       break;
 
    case ir_binop_mod:
-      if (lowering(MOD_TO_FLOOR) && (ir->type->is_float() || ir->type->is_double()))
+      if (lowering(MOD_TO_FLOOR) && ir->type->is_float_16_32_64())
         mod_to_floor(ir);
       break;
 
@@ -1108,6 +1861,51 @@ lower_instructions_visitor::visit_leave(ir_expression *ir)
          bit_count_to_math(ir);
       break;
 
+   case ir_triop_bitfield_extract:
+      if (lowering(EXTRACT_TO_SHIFTS))
+         extract_to_shifts(ir);
+      break;
+
+   case ir_quadop_bitfield_insert:
+      if (lowering(INSERT_TO_SHIFTS))
+         insert_to_shifts(ir);
+      break;
+
+   case ir_unop_bitfield_reverse:
+      if (lowering(REVERSE_TO_SHIFTS))
+         reverse_to_shifts(ir);
+      break;
+
+   case ir_unop_find_lsb:
+      if (lowering(FIND_LSB_TO_FLOAT_CAST))
+         find_lsb_to_float_cast(ir);
+      break;
+
+   case ir_unop_find_msb:
+      if (lowering(FIND_MSB_TO_FLOAT_CAST))
+         find_msb_to_float_cast(ir);
+      break;
+
+   case ir_binop_imul_high:
+      if (lowering(IMUL_HIGH_TO_MUL))
+         imul_high_to_mul(ir);
+      break;
+
+   case ir_binop_mul:
+      if (lowering(MUL64_TO_MUL_AND_MUL_HIGH) &&
+          (ir->type->base_type == GLSL_TYPE_INT64 ||
+           ir->type->base_type == GLSL_TYPE_UINT64) &&
+          (ir->operands[0]->type->base_type == GLSL_TYPE_INT ||
+           ir->operands[1]->type->base_type == GLSL_TYPE_UINT))
+         mul64_to_mul_and_mul_high(ir);
+      break;
+
+   case ir_unop_rsq:
+   case ir_unop_sqrt:
+      if (lowering(SQRT_TO_ABS_SQRT))
+         sqrt_to_abs_sqrt(ir);
+      break;
+
    default:
       return visit_continue;
    }