gallivm: Special bri-linear computation path for unmodified rho.
[mesa.git] / src / gallium / auxiliary / gallivm / lp_bld_sample.c
index 0fd014ab9b3632d6db2b061c35e6da52da59a9bd..43ea8b1a1408d51785f232db7ffd4ae81b6f4d49 100644 (file)
 #include "pipe/p_state.h"
 #include "util/u_format.h"
 #include "util/u_math.h"
-#include "lp_bld_debug.h"
-#include "lp_bld_const.h"
 #include "lp_bld_arit.h"
-#include "lp_bld_type.h"
+#include "lp_bld_const.h"
+#include "lp_bld_debug.h"
+#include "lp_bld_printf.h"
+#include "lp_bld_flow.h"
 #include "lp_bld_sample.h"
+#include "lp_bld_swizzle.h"
+#include "lp_bld_type.h"
+
+
+/*
+ * Bri-linear factor. Use zero or any other number less than one to force
+ * tri-linear filtering.
+ */
+#define BRILINEAR_FACTOR 2
+
+
+/**
+ * Does the given texture wrap mode allow sampling the texture border color?
+ * XXX maybe move this into gallium util code.
+ */
+boolean
+lp_sampler_wrap_mode_uses_border_color(unsigned mode,
+                                       unsigned min_img_filter,
+                                       unsigned mag_img_filter)
+{
+   switch (mode) {
+   case PIPE_TEX_WRAP_REPEAT:
+   case PIPE_TEX_WRAP_CLAMP_TO_EDGE:
+   case PIPE_TEX_WRAP_MIRROR_REPEAT:
+   case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_EDGE:
+      return FALSE;
+   case PIPE_TEX_WRAP_CLAMP:
+   case PIPE_TEX_WRAP_MIRROR_CLAMP:
+      if (min_img_filter == PIPE_TEX_FILTER_NEAREST &&
+          mag_img_filter == PIPE_TEX_FILTER_NEAREST) {
+         return FALSE;
+      } else {
+         return TRUE;
+      }
+   case PIPE_TEX_WRAP_CLAMP_TO_BORDER:
+   case PIPE_TEX_WRAP_MIRROR_CLAMP_TO_BORDER:
+      return TRUE;
+   default:
+      assert(0 && "unexpected wrap mode");
+      return FALSE;
+   }
+}
 
 
 /**
@@ -82,40 +125,49 @@ lp_sampler_static_state(struct lp_sampler_static_state *state,
    state->swizzle_a         = view->swizzle_a;
 
    state->target            = texture->target;
-   state->pot_width         = util_is_pot(texture->width0);
-   state->pot_height        = util_is_pot(texture->height0);
-   state->pot_depth         = util_is_pot(texture->depth0);
+   state->pot_width         = util_is_power_of_two(texture->width0);
+   state->pot_height        = util_is_power_of_two(texture->height0);
+   state->pot_depth         = util_is_power_of_two(texture->depth0);
 
    state->wrap_s            = sampler->wrap_s;
    state->wrap_t            = sampler->wrap_t;
    state->wrap_r            = sampler->wrap_r;
    state->min_img_filter    = sampler->min_img_filter;
    state->mag_img_filter    = sampler->mag_img_filter;
-   if (view->last_level) {
+
+   if (view->last_level && sampler->max_lod > 0.0f) {
       state->min_mip_filter = sampler->min_mip_filter;
    } else {
       state->min_mip_filter = PIPE_TEX_MIPFILTER_NONE;
    }
 
+   if (state->min_mip_filter != PIPE_TEX_MIPFILTER_NONE) {
+      if (sampler->lod_bias != 0.0f) {
+         state->lod_bias_non_zero = 1;
+      }
+
+      /* If min_lod == max_lod we can greatly simplify mipmap selection.
+       * This is a case that occurs during automatic mipmap generation.
+       */
+      if (sampler->min_lod == sampler->max_lod) {
+         state->min_max_lod_equal = 1;
+      } else {
+         if (sampler->min_lod > 0.0f) {
+            state->apply_min_lod = 1;
+         }
+
+         if (sampler->max_lod < (float)view->last_level) {
+            state->apply_max_lod = 1;
+         }
+      }
+   }
+
    state->compare_mode      = sampler->compare_mode;
    if (sampler->compare_mode != PIPE_TEX_COMPARE_NONE) {
       state->compare_func   = sampler->compare_func;
    }
 
    state->normalized_coords = sampler->normalized_coords;
-   state->lod_bias          = sampler->lod_bias;
-   if (!view->last_level &&
-       sampler->min_img_filter == sampler->mag_img_filter) {
-      state->min_lod        = 0.0f;
-      state->max_lod        = 0.0f;
-   } else {
-      state->min_lod        = MAX2(sampler->min_lod, 0.0f);
-      state->max_lod        = sampler->max_lod;
-   }
-   state->border_color[0]   = sampler->border_color[0];
-   state->border_color[1]   = sampler->border_color[1];
-   state->border_color[2]   = sampler->border_color[2];
-   state->border_color[3]   = sampler->border_color[3];
 
    /*
     * FIXME: Handle the remainder of pipe_sampler_view.
@@ -123,6 +175,895 @@ lp_sampler_static_state(struct lp_sampler_static_state *state,
 }
 
 
+/**
+ * Generate code to compute coordinate gradient (rho).
+ * \param ddx  partial derivatives of (s, t, r, q) with respect to X
+ * \param ddy  partial derivatives of (s, t, r, q) with respect to Y
+ *
+ * XXX: The resulting rho is scalar, so we ignore all but the first element of
+ * derivatives that are passed by the shader.
+ */
+static LLVMValueRef
+lp_build_rho(struct lp_build_sample_context *bld,
+             const LLVMValueRef ddx[4],
+             const LLVMValueRef ddy[4])
+{
+   struct lp_build_context *float_size_bld = &bld->float_size_bld;
+   struct lp_build_context *float_bld = &bld->float_bld;
+   const unsigned dims = bld->dims;
+   LLVMTypeRef i32t = LLVMInt32Type();
+   LLVMValueRef index0 = LLVMConstInt(i32t, 0, 0);
+   LLVMValueRef index1 = LLVMConstInt(i32t, 1, 0);
+   LLVMValueRef index2 = LLVMConstInt(i32t, 2, 0);
+   LLVMValueRef dsdx, dsdy, dtdx, dtdy, drdx, drdy;
+   LLVMValueRef rho_x, rho_y;
+   LLVMValueRef rho_vec;
+   LLVMValueRef float_size;
+   LLVMValueRef rho;
+
+   dsdx = LLVMBuildExtractElement(bld->builder, ddx[0], index0, "dsdx");
+   dsdy = LLVMBuildExtractElement(bld->builder, ddy[0], index0, "dsdy");
+
+   if (dims <= 1) {
+      rho_x = dsdx;
+      rho_y = dsdy;
+   }
+   else {
+      rho_x = float_size_bld->undef;
+      rho_y = float_size_bld->undef;
+
+      rho_x = LLVMBuildInsertElement(bld->builder, rho_x, dsdx, index0, "");
+      rho_y = LLVMBuildInsertElement(bld->builder, rho_y, dsdy, index0, "");
+
+      dtdx = LLVMBuildExtractElement(bld->builder, ddx[1], index0, "dtdx");
+      dtdy = LLVMBuildExtractElement(bld->builder, ddy[1], index0, "dtdy");
+
+      rho_x = LLVMBuildInsertElement(bld->builder, rho_x, dtdx, index1, "");
+      rho_y = LLVMBuildInsertElement(bld->builder, rho_y, dtdy, index1, "");
+
+      if (dims >= 3) {
+         drdx = LLVMBuildExtractElement(bld->builder, ddx[2], index0, "drdx");
+         drdy = LLVMBuildExtractElement(bld->builder, ddy[2], index0, "drdy");
+
+         rho_x = LLVMBuildInsertElement(bld->builder, rho_x, drdx, index2, "");
+         rho_y = LLVMBuildInsertElement(bld->builder, rho_y, drdy, index2, "");
+      }
+   }
+
+   rho_x = lp_build_abs(float_size_bld, rho_x);
+   rho_y = lp_build_abs(float_size_bld, rho_y);
+
+   rho_vec = lp_build_max(float_size_bld, rho_x, rho_y);
+
+   float_size = lp_build_int_to_float(float_size_bld, bld->int_size);
+
+   rho_vec = lp_build_mul(float_size_bld, rho_vec, float_size);
+
+   if (dims <= 1) {
+      rho = rho_vec;
+   }
+   else {
+      if (dims >= 2) {
+         LLVMValueRef rho_s, rho_t, rho_r;
+
+         rho_s = LLVMBuildExtractElement(bld->builder, rho_vec, index0, "");
+         rho_t = LLVMBuildExtractElement(bld->builder, rho_vec, index1, "");
+
+         rho = lp_build_max(float_bld, rho_s, rho_t);
+
+         if (dims >= 3) {
+            rho_r = LLVMBuildExtractElement(bld->builder, rho_vec, index0, "");
+            rho = lp_build_max(float_bld, rho, rho_r);
+         }
+      }
+   }
+
+   return rho;
+}
+
+
+/*
+ * Bri-linear lod computation
+ *
+ * Use a piece-wise linear approximation of log2 such that:
+ * - round to nearest, for values in the neighborhood of -1, 0, 1, 2, etc.
+ * - linear approximation for values in the neighborhood of 0.5, 1.5., etc,
+ *   with the steepness specified in 'factor'
+ * - exact result for 0.5, 1.5, etc.
+ *
+ *
+ *   1.0 -              /----*
+ *                     /
+ *                    /
+ *                   /
+ *   0.5 -          *
+ *                 /
+ *                /
+ *               /
+ *   0.0 - *----/
+ *
+ *         |                 |
+ *        2^0               2^1
+ *
+ * This is a technique also commonly used in hardware:
+ * - http://ixbtlabs.com/articles2/gffx/nv40-rx800-3.html
+ *
+ * TODO: For correctness, this should only be applied when texture is known to
+ * have regular mipmaps, i.e., mipmaps derived from the base level.
+ *
+ * TODO: This could be done in fixed point, where applicable.
+ */
+static void
+lp_build_brilinear_lod(struct lp_build_context *bld,
+                       LLVMValueRef lod,
+                       double factor,
+                       LLVMValueRef *out_lod_ipart,
+                       LLVMValueRef *out_lod_fpart)
+{
+   LLVMValueRef lod_fpart;
+   double pre_offset = (factor - 0.5)/factor - 0.5;
+   double post_offset = 1 - factor;
+
+   if (0) {
+      lp_build_printf(bld->builder, "lod = %f\n", lod);
+   }
+
+   lod = lp_build_add(bld, lod,
+                      lp_build_const_vec(bld->type, pre_offset));
+
+   lp_build_ifloor_fract(bld, lod, out_lod_ipart, &lod_fpart);
+
+   lod_fpart = lp_build_mul(bld, lod_fpart,
+                            lp_build_const_vec(bld->type, factor));
+
+   lod_fpart = lp_build_add(bld, lod_fpart,
+                            lp_build_const_vec(bld->type, post_offset));
+
+   /*
+    * It's not necessary to clamp lod_fpart since:
+    * - the above expression will never produce numbers greater than one.
+    * - the mip filtering branch is only taken if lod_fpart is positive
+    */
+
+   *out_lod_fpart = lod_fpart;
+
+   if (0) {
+      lp_build_printf(bld->builder, "lod_ipart = %i\n", *out_lod_ipart);
+      lp_build_printf(bld->builder, "lod_fpart = %f\n\n", *out_lod_fpart);
+   }
+}
+
+
+/*
+ * Combined log2 and brilinear lod computation.
+ *
+ * It's in all identical to calling lp_build_fast_log2() and
+ * lp_build_brilinear_lod() above, but by combining we can compute the interger
+ * and fractional part independently.
+ */
+static void
+lp_build_brilinear_rho(struct lp_build_context *bld,
+                       LLVMValueRef rho,
+                       double factor,
+                       LLVMValueRef *out_lod_ipart,
+                       LLVMValueRef *out_lod_fpart)
+{
+   LLVMValueRef lod_ipart;
+   LLVMValueRef lod_fpart;
+
+   const double pre_factor = (2*factor - 0.5)/(M_SQRT2*factor);
+   const double post_offset = 1 - 2*factor;
+
+   assert(bld->type.floating);
+
+   assert(lp_check_value(bld->type, rho));
+
+   /*
+    * The pre factor will make the intersections with the exact powers of two
+    * happen precisely where we want then to be, which means that the integer
+    * part will not need any post adjustments.
+    */
+   rho = lp_build_mul(bld, rho,
+                      lp_build_const_vec(bld->type, pre_factor));
+
+   /* ipart = ifloor(log2(rho)) */
+   lod_ipart = lp_build_extract_exponent(bld, rho, 0);
+
+   /* fpart = rho / 2**ipart */
+   lod_fpart = lp_build_extract_mantissa(bld, rho);
+
+   lod_fpart = lp_build_mul(bld, lod_fpart,
+                            lp_build_const_vec(bld->type, factor));
+
+   lod_fpart = lp_build_add(bld, lod_fpart,
+                            lp_build_const_vec(bld->type, post_offset));
+
+   /*
+    * Like lp_build_brilinear_lod, it's not necessary to clamp lod_fpart since:
+    * - the above expression will never produce numbers greater than one.
+    * - the mip filtering branch is only taken if lod_fpart is positive
+    */
+
+   *out_lod_ipart = lod_ipart;
+   *out_lod_fpart = lod_fpart;
+}
+
+
+/**
+ * Generate code to compute texture level of detail (lambda).
+ * \param ddx  partial derivatives of (s, t, r, q) with respect to X
+ * \param ddy  partial derivatives of (s, t, r, q) with respect to Y
+ * \param lod_bias  optional float vector with the shader lod bias
+ * \param explicit_lod  optional float vector with the explicit lod
+ * \param width  scalar int texture width
+ * \param height  scalar int texture height
+ * \param depth  scalar int texture depth
+ *
+ * XXX: The resulting lod is scalar, so ignore all but the first element of
+ * derivatives, lod_bias, etc that are passed by the shader.
+ */
+void
+lp_build_lod_selector(struct lp_build_sample_context *bld,
+                      unsigned unit,
+                      const LLVMValueRef ddx[4],
+                      const LLVMValueRef ddy[4],
+                      LLVMValueRef lod_bias, /* optional */
+                      LLVMValueRef explicit_lod, /* optional */
+                      unsigned mip_filter,
+                      LLVMValueRef *out_lod_ipart,
+                      LLVMValueRef *out_lod_fpart)
+
+{
+   struct lp_build_context *float_bld = &bld->float_bld;
+   LLVMValueRef lod;
+
+   *out_lod_ipart = bld->int_bld.zero;
+   *out_lod_fpart = bld->float_bld.zero;
+
+   if (bld->static_state->min_max_lod_equal) {
+      /* User is forcing sampling from a particular mipmap level.
+       * This is hit during mipmap generation.
+       */
+      LLVMValueRef min_lod =
+         bld->dynamic_state->min_lod(bld->dynamic_state, bld->builder, unit);
+
+      lod = min_lod;
+   }
+   else {
+      LLVMValueRef sampler_lod_bias =
+         bld->dynamic_state->lod_bias(bld->dynamic_state, bld->builder, unit);
+      LLVMValueRef index0 = LLVMConstInt(LLVMInt32Type(), 0, 0);
+
+      if (explicit_lod) {
+         lod = LLVMBuildExtractElement(bld->builder, explicit_lod,
+                                       index0, "");
+      }
+      else {
+         LLVMValueRef rho;
+
+         rho = lp_build_rho(bld, ddx, ddy);
+
+         /*
+          * Compute lod = log2(rho)
+          */
+
+         if (!lod_bias &&
+             !bld->static_state->lod_bias_non_zero &&
+             !bld->static_state->apply_max_lod &&
+             !bld->static_state->apply_min_lod) {
+            /*
+             * Special case when there are no post-log2 adjustments, which
+             * saves instructions but keeping the integer and fractional lod
+             * computations separate from the start.
+             */
+
+            if (mip_filter == PIPE_TEX_MIPFILTER_NONE ||
+                mip_filter == PIPE_TEX_MIPFILTER_NEAREST) {
+               *out_lod_ipart = lp_build_ilog2(float_bld, rho);
+               *out_lod_fpart = bld->float_bld.zero;
+               return;
+            }
+            if (mip_filter == PIPE_TEX_MIPFILTER_LINEAR &&
+                BRILINEAR_FACTOR > 1.0) {
+               lp_build_brilinear_rho(float_bld, rho, BRILINEAR_FACTOR,
+                                      out_lod_ipart, out_lod_fpart);
+               return;
+            }
+         }
+
+         if (0) {
+            lod = lp_build_log2(float_bld, rho);
+         }
+         else {
+            lod = lp_build_fast_log2(float_bld, rho);
+         }
+
+         /* add shader lod bias */
+         if (lod_bias) {
+            lod_bias = LLVMBuildExtractElement(bld->builder, lod_bias,
+                                               index0, "");
+            lod = LLVMBuildFAdd(bld->builder, lod, lod_bias, "shader_lod_bias");
+         }
+      }
+
+      /* add sampler lod bias */
+      if (bld->static_state->lod_bias_non_zero)
+         lod = LLVMBuildFAdd(bld->builder, lod, sampler_lod_bias, "sampler_lod_bias");
+
+
+      /* clamp lod */
+      if (bld->static_state->apply_max_lod) {
+         LLVMValueRef max_lod =
+            bld->dynamic_state->max_lod(bld->dynamic_state, bld->builder, unit);
+
+         lod = lp_build_min(float_bld, lod, max_lod);
+      }
+      if (bld->static_state->apply_min_lod) {
+         LLVMValueRef min_lod =
+            bld->dynamic_state->min_lod(bld->dynamic_state, bld->builder, unit);
+
+         lod = lp_build_max(float_bld, lod, min_lod);
+      }
+   }
+
+   if (mip_filter == PIPE_TEX_MIPFILTER_LINEAR) {
+      if (BRILINEAR_FACTOR > 1.0) {
+         lp_build_brilinear_lod(float_bld, lod, BRILINEAR_FACTOR,
+                                out_lod_ipart, out_lod_fpart);
+      }
+      else {
+         lp_build_ifloor_fract(float_bld, lod, out_lod_ipart, out_lod_fpart);
+      }
+
+      lp_build_name(*out_lod_fpart, "lod_fpart");
+   }
+   else {
+      *out_lod_ipart = lp_build_iround(float_bld, lod);
+   }
+
+   lp_build_name(*out_lod_ipart, "lod_ipart");
+
+   return;
+}
+
+
+/**
+ * For PIPE_TEX_MIPFILTER_NEAREST, convert float LOD to integer
+ * mipmap level index.
+ * Note: this is all scalar code.
+ * \param lod  scalar float texture level of detail
+ * \param level_out  returns integer 
+ */
+void
+lp_build_nearest_mip_level(struct lp_build_sample_context *bld,
+                           unsigned unit,
+                           LLVMValueRef lod_ipart,
+                           LLVMValueRef *level_out)
+{
+   struct lp_build_context *int_bld = &bld->int_bld;
+   LLVMValueRef last_level, level;
+
+   LLVMValueRef zero = LLVMConstInt(LLVMInt32Type(), 0, 0);
+
+   last_level = bld->dynamic_state->last_level(bld->dynamic_state,
+                                               bld->builder, unit);
+
+   /* convert float lod to integer */
+   level = lod_ipart;
+
+   /* clamp level to legal range of levels */
+   *level_out = lp_build_clamp(int_bld, level, zero, last_level);
+}
+
+
+/**
+ * For PIPE_TEX_MIPFILTER_LINEAR, convert float LOD to integer to
+ * two (adjacent) mipmap level indexes.  Later, we'll sample from those
+ * two mipmap levels and interpolate between them.
+ */
+void
+lp_build_linear_mip_levels(struct lp_build_sample_context *bld,
+                           unsigned unit,
+                           LLVMValueRef lod_ipart,
+                           LLVMValueRef *lod_fpart_inout,
+                           LLVMValueRef *level0_out,
+                           LLVMValueRef *level1_out)
+{
+   LLVMBuilderRef builder = bld->builder;
+   struct lp_build_context *int_bld = &bld->int_bld;
+   struct lp_build_context *float_bld = &bld->float_bld;
+   LLVMValueRef last_level;
+   LLVMValueRef clamp_min;
+   LLVMValueRef clamp_max;
+
+   *level0_out = lod_ipart;
+   *level1_out = lp_build_add(int_bld, lod_ipart, int_bld->one);
+
+   last_level = bld->dynamic_state->last_level(bld->dynamic_state,
+                                               bld->builder, unit);
+
+   /*
+    * Clamp both lod_ipart and lod_ipart + 1 to [0, last_level], with the
+    * minimum number of comparisons, and zeroing lod_fpart in the extreme
+    * ends in the process.
+    */
+
+   /* lod_ipart < 0 */
+   clamp_min = LLVMBuildICmp(builder, LLVMIntSLT,
+                             lod_ipart, int_bld->zero,
+                             "clamp_lod_to_zero");
+
+   *level0_out = LLVMBuildSelect(builder, clamp_min,
+                                 int_bld->zero, *level0_out, "");
+
+   *level1_out = LLVMBuildSelect(builder, clamp_min,
+                                 int_bld->zero, *level1_out, "");
+
+   *lod_fpart_inout = LLVMBuildSelect(builder, clamp_min,
+                                      float_bld->zero, *lod_fpart_inout, "");
+
+   /* lod_ipart >= last_level */
+   clamp_max = LLVMBuildICmp(builder, LLVMIntSGE,
+                             lod_ipart, last_level,
+                             "clamp_lod_to_last");
+
+   *level0_out = LLVMBuildSelect(builder, clamp_max,
+                                 last_level, *level0_out, "");
+
+   *level1_out = LLVMBuildSelect(builder, clamp_max,
+                                 last_level, *level1_out, "");
+
+   *lod_fpart_inout = LLVMBuildSelect(builder, clamp_max,
+                                      float_bld->zero, *lod_fpart_inout, "");
+
+   lp_build_name(*level0_out, "sampler%u_miplevel0", unit);
+   lp_build_name(*level1_out, "sampler%u_miplevel1", unit);
+   lp_build_name(*lod_fpart_inout, "sampler%u_mipweight", unit);
+}
+
+
+/**
+ * Return pointer to a single mipmap level.
+ * \param data_array  array of pointers to mipmap levels
+ * \param level  integer mipmap level
+ */
+LLVMValueRef
+lp_build_get_mipmap_level(struct lp_build_sample_context *bld,
+                          LLVMValueRef level)
+{
+   LLVMValueRef indexes[2], data_ptr;
+   indexes[0] = LLVMConstInt(LLVMInt32Type(), 0, 0);
+   indexes[1] = level;
+   data_ptr = LLVMBuildGEP(bld->builder, bld->data_array, indexes, 2, "");
+   data_ptr = LLVMBuildLoad(bld->builder, data_ptr, "");
+   return data_ptr;
+}
+
+
+LLVMValueRef
+lp_build_get_const_mipmap_level(struct lp_build_sample_context *bld,
+                                int level)
+{
+   LLVMValueRef lvl = LLVMConstInt(LLVMInt32Type(), level, 0);
+   return lp_build_get_mipmap_level(bld, lvl);
+}
+
+
+/**
+ * Codegen equivalent for u_minify().
+ * Return max(1, base_size >> level);
+ */
+static LLVMValueRef
+lp_build_minify(struct lp_build_context *bld,
+                LLVMValueRef base_size,
+                LLVMValueRef level)
+{
+   assert(lp_check_value(bld->type, base_size));
+   assert(lp_check_value(bld->type, level));
+
+   if (level == bld->zero) {
+      /* if we're using mipmap level zero, no minification is needed */
+      return base_size;
+   }
+   else {
+      LLVMValueRef size =
+         LLVMBuildLShr(bld->builder, base_size, level, "minify");
+      assert(bld->type.sign);
+      size = lp_build_max(bld, size, bld->one);
+      return size;
+   }
+}
+
+
+/**
+ * Dereference stride_array[mipmap_level] array to get a stride.
+ * Return stride as a vector.
+ */
+static LLVMValueRef
+lp_build_get_level_stride_vec(struct lp_build_sample_context *bld,
+                              LLVMValueRef stride_array, LLVMValueRef level)
+{
+   LLVMValueRef indexes[2], stride;
+   indexes[0] = LLVMConstInt(LLVMInt32Type(), 0, 0);
+   indexes[1] = level;
+   stride = LLVMBuildGEP(bld->builder, stride_array, indexes, 2, "");
+   stride = LLVMBuildLoad(bld->builder, stride, "");
+   stride = lp_build_broadcast_scalar(&bld->int_coord_bld, stride);
+   return stride;
+}
+
+
+/**
+ * When sampling a mipmap, we need to compute the width, height, depth
+ * of the source levels from the level indexes.  This helper function
+ * does that.
+ */
+void
+lp_build_mipmap_level_sizes(struct lp_build_sample_context *bld,
+                            LLVMValueRef ilevel,
+                            LLVMValueRef *out_size,
+                            LLVMValueRef *row_stride_vec,
+                            LLVMValueRef *img_stride_vec)
+{
+   const unsigned dims = bld->dims;
+   LLVMValueRef ilevel_vec;
+
+   ilevel_vec = lp_build_broadcast_scalar(&bld->int_size_bld, ilevel);
+
+   /*
+    * Compute width, height, depth at mipmap level 'ilevel'
+    */
+   *out_size = lp_build_minify(&bld->int_size_bld, bld->int_size, ilevel_vec);
+
+   if (dims >= 2) {
+      *row_stride_vec = lp_build_get_level_stride_vec(bld,
+                                                      bld->row_stride_array,
+                                                      ilevel);
+      if (dims == 3 || bld->static_state->target == PIPE_TEXTURE_CUBE) {
+         *img_stride_vec = lp_build_get_level_stride_vec(bld,
+                                                         bld->img_stride_array,
+                                                         ilevel);
+      }
+   }
+}
+
+
+/**
+ * Extract and broadcast texture size.
+ *
+ * @param size_type   type of the texture size vector (either
+ *                    bld->int_size_type or bld->float_size_type)
+ * @param coord_type  type of the texture size vector (either
+ *                    bld->int_coord_type or bld->coord_type)
+ * @param int_size    vector with the integer texture size (width, height,
+ *                    depth)
+ */
+void
+lp_build_extract_image_sizes(struct lp_build_sample_context *bld,
+                             struct lp_type size_type,
+                             struct lp_type coord_type,
+                             LLVMValueRef size,
+                             LLVMValueRef *out_width,
+                             LLVMValueRef *out_height,
+                             LLVMValueRef *out_depth)
+{
+   const unsigned dims = bld->dims;
+   LLVMTypeRef i32t = LLVMInt32Type();
+
+   *out_width = lp_build_extract_broadcast(bld->builder,
+                                           size_type,
+                                           coord_type,
+                                           size,
+                                           LLVMConstInt(i32t, 0, 0));
+   if (dims >= 2) {
+      *out_height = lp_build_extract_broadcast(bld->builder,
+                                               size_type,
+                                               coord_type,
+                                               size,
+                                               LLVMConstInt(i32t, 1, 0));
+      if (dims == 3) {
+         *out_depth = lp_build_extract_broadcast(bld->builder,
+                                                 size_type,
+                                                 coord_type,
+                                                 size,
+                                                 LLVMConstInt(i32t, 2, 0));
+      }
+   }
+}
+
+
+/**
+ * Unnormalize coords.
+ *
+ * @param int_size  vector with the integer texture size (width, height, depth)
+ */
+void
+lp_build_unnormalized_coords(struct lp_build_sample_context *bld,
+                             LLVMValueRef flt_size,
+                             LLVMValueRef *s,
+                             LLVMValueRef *t,
+                             LLVMValueRef *r)
+{
+   const unsigned dims = bld->dims;
+   LLVMValueRef width;
+   LLVMValueRef height;
+   LLVMValueRef depth;
+
+   lp_build_extract_image_sizes(bld,
+                                bld->float_size_type,
+                                bld->coord_type,
+                                flt_size,
+                                &width,
+                                &height,
+                                &depth);
+
+   /* s = s * width, t = t * height */
+   *s = lp_build_mul(&bld->coord_bld, *s, width);
+   if (dims >= 2) {
+      *t = lp_build_mul(&bld->coord_bld, *t, height);
+      if (dims >= 3) {
+         *r = lp_build_mul(&bld->coord_bld, *r, depth);
+      }
+   }
+}
+
+
+/** Helper used by lp_build_cube_lookup() */
+static LLVMValueRef
+lp_build_cube_ima(struct lp_build_context *coord_bld, LLVMValueRef coord)
+{
+   /* ima = -0.5 / abs(coord); */
+   LLVMValueRef negHalf = lp_build_const_vec(coord_bld->type, -0.5);
+   LLVMValueRef absCoord = lp_build_abs(coord_bld, coord);
+   LLVMValueRef ima = lp_build_div(coord_bld, negHalf, absCoord);
+   return ima;
+}
+
+
+/**
+ * Helper used by lp_build_cube_lookup()
+ * \param sign  scalar +1 or -1
+ * \param coord  float vector
+ * \param ima  float vector
+ */
+static LLVMValueRef
+lp_build_cube_coord(struct lp_build_context *coord_bld,
+                    LLVMValueRef sign, int negate_coord,
+                    LLVMValueRef coord, LLVMValueRef ima)
+{
+   /* return negate(coord) * ima * sign + 0.5; */
+   LLVMValueRef half = lp_build_const_vec(coord_bld->type, 0.5);
+   LLVMValueRef res;
+
+   assert(negate_coord == +1 || negate_coord == -1);
+
+   if (negate_coord == -1) {
+      coord = lp_build_negate(coord_bld, coord);
+   }
+
+   res = lp_build_mul(coord_bld, coord, ima);
+   if (sign) {
+      sign = lp_build_broadcast_scalar(coord_bld, sign);
+      res = lp_build_mul(coord_bld, res, sign);
+   }
+   res = lp_build_add(coord_bld, res, half);
+
+   return res;
+}
+
+
+/** Helper used by lp_build_cube_lookup()
+ * Return (major_coord >= 0) ? pos_face : neg_face;
+ */
+static LLVMValueRef
+lp_build_cube_face(struct lp_build_sample_context *bld,
+                   LLVMValueRef major_coord,
+                   unsigned pos_face, unsigned neg_face)
+{
+   LLVMValueRef cmp = LLVMBuildFCmp(bld->builder, LLVMRealUGE,
+                                    major_coord,
+                                    bld->float_bld.zero, "");
+   LLVMValueRef pos = LLVMConstInt(LLVMInt32Type(), pos_face, 0);
+   LLVMValueRef neg = LLVMConstInt(LLVMInt32Type(), neg_face, 0);
+   LLVMValueRef res = LLVMBuildSelect(bld->builder, cmp, pos, neg, "");
+   return res;
+}
+
+
+
+/**
+ * Generate code to do cube face selection and compute per-face texcoords.
+ */
+void
+lp_build_cube_lookup(struct lp_build_sample_context *bld,
+                     LLVMValueRef s,
+                     LLVMValueRef t,
+                     LLVMValueRef r,
+                     LLVMValueRef *face,
+                     LLVMValueRef *face_s,
+                     LLVMValueRef *face_t)
+{
+   struct lp_build_context *float_bld = &bld->float_bld;
+   struct lp_build_context *coord_bld = &bld->coord_bld;
+   LLVMValueRef rx, ry, rz;
+   LLVMValueRef arx, ary, arz;
+   LLVMValueRef c25 = LLVMConstReal(LLVMFloatType(), 0.25);
+   LLVMValueRef arx_ge_ary, arx_ge_arz;
+   LLVMValueRef ary_ge_arx, ary_ge_arz;
+   LLVMValueRef arx_ge_ary_arz, ary_ge_arx_arz;
+   LLVMValueRef rx_pos, ry_pos, rz_pos;
+
+   assert(bld->coord_bld.type.length == 4);
+
+   /*
+    * Use the average of the four pixel's texcoords to choose the face.
+    */
+   rx = lp_build_mul(float_bld, c25,
+                     lp_build_sum_vector(&bld->coord_bld, s));
+   ry = lp_build_mul(float_bld, c25,
+                     lp_build_sum_vector(&bld->coord_bld, t));
+   rz = lp_build_mul(float_bld, c25,
+                     lp_build_sum_vector(&bld->coord_bld, r));
+
+   arx = lp_build_abs(float_bld, rx);
+   ary = lp_build_abs(float_bld, ry);
+   arz = lp_build_abs(float_bld, rz);
+
+   /*
+    * Compare sign/magnitude of rx,ry,rz to determine face
+    */
+   arx_ge_ary = LLVMBuildFCmp(bld->builder, LLVMRealUGE, arx, ary, "");
+   arx_ge_arz = LLVMBuildFCmp(bld->builder, LLVMRealUGE, arx, arz, "");
+   ary_ge_arx = LLVMBuildFCmp(bld->builder, LLVMRealUGE, ary, arx, "");
+   ary_ge_arz = LLVMBuildFCmp(bld->builder, LLVMRealUGE, ary, arz, "");
+
+   arx_ge_ary_arz = LLVMBuildAnd(bld->builder, arx_ge_ary, arx_ge_arz, "");
+   ary_ge_arx_arz = LLVMBuildAnd(bld->builder, ary_ge_arx, ary_ge_arz, "");
+
+   rx_pos = LLVMBuildFCmp(bld->builder, LLVMRealUGE, rx, float_bld->zero, "");
+   ry_pos = LLVMBuildFCmp(bld->builder, LLVMRealUGE, ry, float_bld->zero, "");
+   rz_pos = LLVMBuildFCmp(bld->builder, LLVMRealUGE, rz, float_bld->zero, "");
+
+   {
+      struct lp_build_flow_context *flow_ctx;
+      struct lp_build_if_state if_ctx;
+
+      flow_ctx = lp_build_flow_create(bld->builder);
+      lp_build_flow_scope_begin(flow_ctx);
+
+      *face_s = bld->coord_bld.undef;
+      *face_t = bld->coord_bld.undef;
+      *face = bld->int_bld.undef;
+
+      lp_build_name(*face_s, "face_s");
+      lp_build_name(*face_t, "face_t");
+      lp_build_name(*face, "face");
+
+      lp_build_flow_scope_declare(flow_ctx, face_s);
+      lp_build_flow_scope_declare(flow_ctx, face_t);
+      lp_build_flow_scope_declare(flow_ctx, face);
+
+      lp_build_if(&if_ctx, flow_ctx, bld->builder, arx_ge_ary_arz);
+      {
+         /* +/- X face */
+         LLVMValueRef sign = lp_build_sgn(float_bld, rx);
+         LLVMValueRef ima = lp_build_cube_ima(coord_bld, s);
+         *face_s = lp_build_cube_coord(coord_bld, sign, +1, r, ima);
+         *face_t = lp_build_cube_coord(coord_bld, NULL, +1, t, ima);
+         *face = lp_build_cube_face(bld, rx,
+                                    PIPE_TEX_FACE_POS_X,
+                                    PIPE_TEX_FACE_NEG_X);
+      }
+      lp_build_else(&if_ctx);
+      {
+         struct lp_build_flow_context *flow_ctx2;
+         struct lp_build_if_state if_ctx2;
+
+         LLVMValueRef face_s2 = bld->coord_bld.undef;
+         LLVMValueRef face_t2 = bld->coord_bld.undef;
+         LLVMValueRef face2 = bld->int_bld.undef;
+
+         flow_ctx2 = lp_build_flow_create(bld->builder);
+         lp_build_flow_scope_begin(flow_ctx2);
+         lp_build_flow_scope_declare(flow_ctx2, &face_s2);
+         lp_build_flow_scope_declare(flow_ctx2, &face_t2);
+         lp_build_flow_scope_declare(flow_ctx2, &face2);
+
+         ary_ge_arx_arz = LLVMBuildAnd(bld->builder, ary_ge_arx, ary_ge_arz, "");
+
+         lp_build_if(&if_ctx2, flow_ctx2, bld->builder, ary_ge_arx_arz);
+         {
+            /* +/- Y face */
+            LLVMValueRef sign = lp_build_sgn(float_bld, ry);
+            LLVMValueRef ima = lp_build_cube_ima(coord_bld, t);
+            face_s2 = lp_build_cube_coord(coord_bld, NULL, -1, s, ima);
+            face_t2 = lp_build_cube_coord(coord_bld, sign, -1, r, ima);
+            face2 = lp_build_cube_face(bld, ry,
+                                       PIPE_TEX_FACE_POS_Y,
+                                       PIPE_TEX_FACE_NEG_Y);
+         }
+         lp_build_else(&if_ctx2);
+         {
+            /* +/- Z face */
+            LLVMValueRef sign = lp_build_sgn(float_bld, rz);
+            LLVMValueRef ima = lp_build_cube_ima(coord_bld, r);
+            face_s2 = lp_build_cube_coord(coord_bld, sign, -1, s, ima);
+            face_t2 = lp_build_cube_coord(coord_bld, NULL, +1, t, ima);
+            face2 = lp_build_cube_face(bld, rz,
+                                       PIPE_TEX_FACE_POS_Z,
+                                       PIPE_TEX_FACE_NEG_Z);
+         }
+         lp_build_endif(&if_ctx2);
+         lp_build_flow_scope_end(flow_ctx2);
+         lp_build_flow_destroy(flow_ctx2);
+         *face_s = face_s2;
+         *face_t = face_t2;
+         *face = face2;
+      }
+
+      lp_build_endif(&if_ctx);
+      lp_build_flow_scope_end(flow_ctx);
+      lp_build_flow_destroy(flow_ctx);
+   }
+}
+
+
+/**
+ * Compute the partial offset of a pixel block along an arbitrary axis.
+ *
+ * @param coord   coordinate in pixels
+ * @param stride  number of bytes between rows of successive pixel blocks
+ * @param block_length  number of pixels in a pixels block along the coordinate
+ *                      axis
+ * @param out_offset    resulting relative offset of the pixel block in bytes
+ * @param out_subcoord  resulting sub-block pixel coordinate
+ */
+void
+lp_build_sample_partial_offset(struct lp_build_context *bld,
+                               unsigned block_length,
+                               LLVMValueRef coord,
+                               LLVMValueRef stride,
+                               LLVMValueRef *out_offset,
+                               LLVMValueRef *out_subcoord)
+{
+   LLVMValueRef offset;
+   LLVMValueRef subcoord;
+
+   if (block_length == 1) {
+      subcoord = bld->zero;
+   }
+   else {
+      /*
+       * Pixel blocks have power of two dimensions. LLVM should convert the
+       * rem/div to bit arithmetic.
+       * TODO: Verify this.
+       * It does indeed BUT it does transform it to scalar (and back) when doing so
+       * (using roughly extract, shift/and, mov, unpack) (llvm 2.7).
+       * The generated code looks seriously unfunny and is quite expensive.
+       */
+#if 0
+      LLVMValueRef block_width = lp_build_const_int_vec(bld->type, block_length);
+      subcoord = LLVMBuildURem(bld->builder, coord, block_width, "");
+      coord    = LLVMBuildUDiv(bld->builder, coord, block_width, "");
+#else
+      unsigned logbase2 = util_unsigned_logbase2(block_length);
+      LLVMValueRef block_shift = lp_build_const_int_vec(bld->type, logbase2);
+      LLVMValueRef block_mask = lp_build_const_int_vec(bld->type, block_length - 1);
+      subcoord = LLVMBuildAnd(bld->builder, coord, block_mask, "");
+      coord = LLVMBuildLShr(bld->builder, coord, block_shift, "");
+#endif
+   }
+
+   offset = lp_build_mul(bld, coord, stride);
+
+   assert(out_offset);
+   assert(out_subcoord);
+
+   *out_offset = offset;
+   *out_subcoord = subcoord;
+}
+
+
 /**
  * Compute the offset of a pixel block.
  *
@@ -144,48 +1085,35 @@ lp_build_sample_offset(struct lp_build_context *bld,
 {
    LLVMValueRef x_stride;
    LLVMValueRef offset;
-   LLVMValueRef i;
-   LLVMValueRef j;
-
-   /*
-    * Describe the coordinates in terms of pixel blocks.
-    *
-    * TODO: pixel blocks are power of two. LLVM should convert rem/div to
-    * bit arithmetic. Verify this.
-    */
-
-   if (format_desc->block.width == 1) {
-      i = bld->zero;
-   }
-   else {
-      LLVMValueRef block_width = lp_build_const_int_vec(bld->type, format_desc->block.width);
-      i = LLVMBuildURem(bld->builder, x, block_width, "");
-      x = LLVMBuildUDiv(bld->builder, x, block_width, "");
-   }
-
-   if (format_desc->block.height == 1) {
-      j = bld->zero;
-   }
-   else {
-      LLVMValueRef block_height = lp_build_const_int_vec(bld->type, format_desc->block.height);
-      j = LLVMBuildURem(bld->builder, y, block_height, "");
-      y = LLVMBuildUDiv(bld->builder, y, block_height, "");
-   }
 
    x_stride = lp_build_const_vec(bld->type, format_desc->block.bits/8);
-   offset = lp_build_mul(bld, x, x_stride);
+
+   lp_build_sample_partial_offset(bld,
+                                  format_desc->block.width,
+                                  x, x_stride,
+                                  &offset, out_i);
 
    if (y && y_stride) {
-      LLVMValueRef y_offset = lp_build_mul(bld, y, y_stride);
+      LLVMValueRef y_offset;
+      lp_build_sample_partial_offset(bld,
+                                     format_desc->block.height,
+                                     y, y_stride,
+                                     &y_offset, out_j);
       offset = lp_build_add(bld, offset, y_offset);
    }
+   else {
+      *out_j = bld->zero;
+   }
 
    if (z && z_stride) {
-      LLVMValueRef z_offset = lp_build_mul(bld, z, z_stride);
+      LLVMValueRef z_offset;
+      LLVMValueRef k;
+      lp_build_sample_partial_offset(bld,
+                                     1, /* pixel blocks are always 2D */
+                                     z, z_stride,
+                                     &z_offset, &k);
       offset = lp_build_add(bld, offset, z_offset);
    }
 
    *out_offset = offset;
-   *out_i = i;
-   *out_j = j;
 }