freedreno/ir3: refactor NIR IR handling
[mesa.git] / src / gallium / drivers / freedreno / ir3 / ir3_compiler_nir.c
index caea34c7fd4e4d41dfd81aa2e8a09ba6748e0b4a..0a25d5252a11b15f5a8f1962e57561479430871a 100644 (file)
 #include "util/u_string.h"
 #include "util/u_memory.h"
 #include "util/u_inlines.h"
-#include "tgsi/tgsi_lowering.h"
-#include "tgsi/tgsi_strings.h"
-
-#include "nir/tgsi_to_nir.h"
-#include "glsl/shader_enums.h"
 
 #include "freedreno_util.h"
 
 #include "ir3.h"
 
 
-static struct ir3_instruction * create_immed(struct ir3_block *block, uint32_t val);
-
 struct ir3_compile {
+       struct ir3_compiler *compiler;
+
        const struct tgsi_token *tokens;
        struct nir_shader *s;
 
        struct ir3 *ir;
        struct ir3_shader_variant *so;
 
-       /* bitmask of which samplers are integer: */
-       uint16_t integer_s;
+       struct ir3_block *block;      /* the current block */
+       struct ir3_block *in_block;   /* block created for shader inputs */
 
-       struct ir3_block *block;
+       nir_function_impl *impl;
 
        /* For fragment shaders, from the hw perspective the only
         * actual input is r0.xy position register passed to bary.f.
@@ -92,8 +87,10 @@ struct ir3_compile {
         */
        struct hash_table *addr_ht;
 
-       /* for calculating input/output positions/linkages: */
-       unsigned next_inloc;
+       /* maps nir_block to ir3_block, mostly for the purposes of
+        * figuring out the blocks successors
+        */
+       struct hash_table *block_ht;
 
        /* a4xx (at least patchlevel 0) cannot seem to flat-interpolate
         * so we need to use ldlv.u32 to load the varying directly:
@@ -104,13 +101,14 @@ struct ir3_compile {
         */
        bool levels_add_one;
 
+       /* on a3xx, we need to scale up integer coords for isaml based
+        * on LoD:
+        */
+       bool unminify_coords;
+
        /* for looking up which system value is which */
        unsigned sysval_semantics[8];
 
-       /* list of kill instructions: */
-       struct ir3_instruction *kill[16];
-       unsigned int kill_count;
-
        /* set if we encounter something we can't handle yet, so we
         * can bail cleanly and fallback to TGSI compiler f/e
         */
@@ -118,153 +116,86 @@ struct ir3_compile {
 };
 
 
-static struct nir_shader *to_nir(const struct tgsi_token *tokens)
-{
-       struct nir_shader_compiler_options options = {
-                       .lower_fpow = true,
-                       .lower_fsat = true,
-                       .lower_scmp = true,
-                       .lower_flrp = true,
-                       .native_integers = true,
-       };
-       bool progress;
-
-       struct nir_shader *s = tgsi_to_nir(tokens, &options);
-
-       if (fd_mesa_debug & FD_DBG_OPTMSGS) {
-               debug_printf("----------------------\n");
-               nir_print_shader(s, stdout);
-               debug_printf("----------------------\n");
-       }
-
-       nir_opt_global_to_local(s);
-       nir_convert_to_ssa(s);
-       nir_lower_idiv(s);
-
-       do {
-               progress = false;
-
-               nir_lower_vars_to_ssa(s);
-               nir_lower_alu_to_scalar(s);
-
-               progress |= nir_copy_prop(s);
-               progress |= nir_opt_dce(s);
-               progress |= nir_opt_cse(s);
-               progress |= ir3_nir_lower_if_else(s);
-               progress |= nir_opt_algebraic(s);
-               progress |= nir_opt_constant_folding(s);
-
-       } while (progress);
-
-       nir_remove_dead_variables(s);
-       nir_validate_shader(s);
-
-       if (fd_mesa_debug & FD_DBG_OPTMSGS) {
-               debug_printf("----------------------\n");
-               nir_print_shader(s, stdout);
-               debug_printf("----------------------\n");
-       }
-
-       return s;
-}
-
-/* TODO nir doesn't lower everything for us yet, but ideally it would: */
-static const struct tgsi_token *
-lower_tgsi(const struct tgsi_token *tokens, struct ir3_shader_variant *so)
-{
-       struct tgsi_shader_info info;
-       struct tgsi_lowering_config lconfig = {
-                       .color_two_side = so->key.color_two_side,
-                       .lower_FRC = true,
-       };
-
-       switch (so->type) {
-       case SHADER_FRAGMENT:
-       case SHADER_COMPUTE:
-               lconfig.saturate_s = so->key.fsaturate_s;
-               lconfig.saturate_t = so->key.fsaturate_t;
-               lconfig.saturate_r = so->key.fsaturate_r;
-               break;
-       case SHADER_VERTEX:
-               lconfig.saturate_s = so->key.vsaturate_s;
-               lconfig.saturate_t = so->key.vsaturate_t;
-               lconfig.saturate_r = so->key.vsaturate_r;
-               break;
-       }
+static struct ir3_instruction * create_immed(struct ir3_block *block, uint32_t val);
+static struct ir3_block * get_block(struct ir3_compile *ctx, nir_block *nblock);
 
-       if (!so->shader) {
-               /* hack for standalone compiler which does not have
-                * screen/context:
-                */
-       } else if (ir3_shader_gpuid(so->shader) >= 400) {
-               /* a4xx seems to have *no* sam.p */
-               lconfig.lower_TXP = ~0;  /* lower all txp */
-       } else {
-               /* a3xx just needs to avoid sam.p for 3d tex */
-               lconfig.lower_TXP = (1 << TGSI_TEXTURE_3D);
-       }
-
-       return tgsi_transform_lowering(&lconfig, tokens, &info);
-}
 
 static struct ir3_compile *
-compile_init(struct ir3_shader_variant *so,
-               const struct tgsi_token *tokens)
+compile_init(struct ir3_compiler *compiler,
+               struct ir3_shader_variant *so)
 {
        struct ir3_compile *ctx = rzalloc(NULL, struct ir3_compile);
-       const struct tgsi_token *lowered_tokens;
 
-       if (!so->shader) {
-               /* hack for standalone compiler which does not have
-                * screen/context:
-                */
-       } else if (ir3_shader_gpuid(so->shader) >= 400) {
+       if (compiler->gpu_id >= 400) {
                /* need special handling for "flat" */
                ctx->flat_bypass = true;
                ctx->levels_add_one = false;
+               ctx->unminify_coords = false;
        } else {
                /* no special handling for "flat" */
                ctx->flat_bypass = false;
                ctx->levels_add_one = true;
+               ctx->unminify_coords = true;
        }
 
-       switch (so->type) {
-       case SHADER_FRAGMENT:
-       case SHADER_COMPUTE:
-               ctx->integer_s = so->key.finteger_s;
-               break;
-       case SHADER_VERTEX:
-               ctx->integer_s = so->key.vinteger_s;
-               break;
-       }
-
+       ctx->compiler = compiler;
        ctx->ir = so->ir;
        ctx->so = so;
-       ctx->next_inloc = 8;
        ctx->def_ht = _mesa_hash_table_create(ctx,
                        _mesa_hash_pointer, _mesa_key_pointer_equal);
        ctx->var_ht = _mesa_hash_table_create(ctx,
                        _mesa_hash_pointer, _mesa_key_pointer_equal);
-       ctx->addr_ht = _mesa_hash_table_create(ctx,
+       ctx->block_ht = _mesa_hash_table_create(ctx,
                        _mesa_hash_pointer, _mesa_key_pointer_equal);
 
-       lowered_tokens = lower_tgsi(tokens, so);
-       if (!lowered_tokens)
-               lowered_tokens = tokens;
-       ctx->s = to_nir(lowered_tokens);
+       /* TODO: maybe generate some sort of bitmask of what key
+        * lowers vs what shader has (ie. no need to lower
+        * texture clamp lowering if no texture sample instrs)..
+        * although should be done further up the stack to avoid
+        * creating duplicate variants..
+        */
 
-       if (lowered_tokens != tokens)
-               free((void *)lowered_tokens);
+       if (ir3_key_lowers_nir(&so->key)) {
+               nir_shader *s = nir_shader_clone(ctx, so->shader->nir);
+               ctx->s = ir3_optimize_nir(so->shader, s, &so->key);
+       } else {
+               /* fast-path for shader key that lowers nothing in NIR: */
+               ctx->s = so->shader->nir;
+       }
+
+       if (fd_mesa_debug & FD_DBG_DISASM) {
+               DBG("dump nir%dv%d: type=%d, k={bp=%u,cts=%u,hp=%u}",
+                       so->shader->id, so->id, so->type,
+                       so->key.binning_pass, so->key.color_two_side,
+                       so->key.half_precision);
+               nir_print_shader(ctx->s, stdout);
+       }
 
        so->first_driver_param = so->first_immediate = ctx->s->num_uniforms;
 
-       /* one (vec4) slot for vertex id base: */
-       if (so->type == SHADER_VERTEX)
-               so->first_immediate++;
+       /* Layout of constant registers:
+        *
+        *    num_uniform * vec4  -  user consts
+        *    4 * vec4            -  UBO addresses
+        *    if (vertex shader) {
+        *        N * vec4        -  driver params (IR3_DP_*)
+        *        1 * vec4        -  stream-out addresses
+        *    }
+        *
+        * TODO this could be made more dynamic, to at least skip sections
+        * that we don't need..
+        */
 
        /* reserve 4 (vec4) slots for ubo base addresses: */
        so->first_immediate += 4;
 
+       if (so->type == SHADER_VERTEX) {
+               /* driver params (see ir3_driver_param): */
+               so->first_immediate += IR3_DP_COUNT/4;  /* convert to vec4 */
+               /* one (vec4) slot for stream-output base addresses: */
+               so->first_immediate++;
+       }
+
        return ctx;
 }
 
@@ -290,33 +221,206 @@ compile_free(struct ir3_compile *ctx)
        ralloc_free(ctx);
 }
 
-
+/* global per-array information: */
 struct ir3_array {
        unsigned length, aid;
+};
+
+/* per-block array state: */
+struct ir3_array_value {
+       /* TODO drop length/aid, and just have ptr back to ir3_array */
+       unsigned length, aid;
+       /* initial array element values are phi's, other than for the
+        * entry block.  The phi src's get added later in a resolve step
+        * after we have visited all the blocks, to account for back
+        * edges in the cfg.
+        */
+       struct ir3_instruction **phis;
+       /* current array element values (as block is processed).  When
+        * the array phi's are resolved, it will contain the array state
+        * at exit of block, so successor blocks can use it to add their
+        * phi srcs.
+        */
        struct ir3_instruction *arr[];
 };
 
+/* track array assignments per basic block.  When an array is read
+ * outside of the same basic block, we can use NIR's dominance-frontier
+ * information to figure out where phi nodes are needed.
+ */
+struct ir3_nir_block_data {
+       unsigned foo;
+       /* indexed by array-id (aid): */
+       struct ir3_array_value *arrs[];
+};
+
+static struct ir3_nir_block_data *
+get_block_data(struct ir3_compile *ctx, struct ir3_block *block)
+{
+       if (!block->data) {
+               struct ir3_nir_block_data *bd = ralloc_size(ctx, sizeof(*bd) +
+                               ((ctx->num_arrays + 1) * sizeof(bd->arrs[0])));
+               block->data = bd;
+       }
+       return block->data;
+}
+
 static void
 declare_var(struct ir3_compile *ctx, nir_variable *var)
 {
        unsigned length = glsl_get_length(var->type) * 4;  /* always vec4, at least with ttn */
-       struct ir3_array *arr = ralloc_size(ctx, sizeof(*arr) +
-                       (length * sizeof(arr->arr[0])));
+       struct ir3_array *arr = ralloc(ctx, struct ir3_array);
        arr->length = length;
        arr->aid = ++ctx->num_arrays;
-       /* Some shaders end up reading array elements without first writing..
-        * so initialize things to prevent null instr ptrs later:
-        */
-       for (unsigned i = 0; i < length; i++)
-               arr->arr[i] = create_immed(ctx->block, 0);
        _mesa_hash_table_insert(ctx->var_ht, var, arr);
 }
 
-static struct ir3_array *
+static nir_block *
+nir_block_pred(nir_block *block)
+{
+       assert(block->predecessors->entries < 2);
+       if (block->predecessors->entries == 0)
+               return NULL;
+       return (nir_block *)_mesa_set_next_entry(block->predecessors, NULL)->key;
+}
+
+static struct ir3_array_value *
 get_var(struct ir3_compile *ctx, nir_variable *var)
 {
        struct hash_entry *entry = _mesa_hash_table_search(ctx->var_ht, var);
-       return entry->data;
+       struct ir3_block *block = ctx->block;
+       struct ir3_nir_block_data *bd = get_block_data(ctx, block);
+       struct ir3_array *arr = entry->data;
+
+       if (!bd->arrs[arr->aid]) {
+               struct ir3_array_value *av = ralloc_size(bd, sizeof(*av) +
+                               (arr->length * sizeof(av->arr[0])));
+               struct ir3_array_value *defn = NULL;
+               nir_block *pred_block;
+
+               av->length = arr->length;
+               av->aid = arr->aid;
+
+               /* For loops, we have to consider that we have not visited some
+                * of the blocks who should feed into the phi (ie. back-edges in
+                * the cfg).. for example:
+                *
+                *   loop {
+                *      block { load_var; ... }
+                *      if then block {} else block {}
+                *      block { store_var; ... }
+                *      if then block {} else block {}
+                *      block {...}
+                *   }
+                *
+                * We can skip the phi if we can chase the block predecessors
+                * until finding the block previously defining the array without
+                * crossing a block that has more than one predecessor.
+                *
+                * Otherwise create phi's and resolve them as a post-pass after
+                * all the blocks have been visited (to handle back-edges).
+                */
+
+               for (pred_block = block->nblock;
+                               pred_block && (pred_block->predecessors->entries < 2) && !defn;
+                               pred_block = nir_block_pred(pred_block)) {
+                       struct ir3_block *pblock = get_block(ctx, pred_block);
+                       struct ir3_nir_block_data *pbd = pblock->data;
+                       if (!pbd)
+                               continue;
+                       defn = pbd->arrs[arr->aid];
+               }
+
+               if (defn) {
+                       /* only one possible definer: */
+                       for (unsigned i = 0; i < arr->length; i++)
+                               av->arr[i] = defn->arr[i];
+               } else if (pred_block) {
+                       /* not the first block, and multiple potential definers: */
+                       av->phis = ralloc_size(av, arr->length * sizeof(av->phis[0]));
+
+                       for (unsigned i = 0; i < arr->length; i++) {
+                               struct ir3_instruction *phi;
+
+                               phi = ir3_instr_create2(block, -1, OPC_META_PHI,
+                                               1 + ctx->impl->num_blocks);
+                               ir3_reg_create(phi, 0, 0);         /* dst */
+
+                               /* phi's should go at head of block: */
+                               list_delinit(&phi->node);
+                               list_add(&phi->node, &block->instr_list);
+
+                               av->phis[i] = av->arr[i] = phi;
+                       }
+               } else {
+                       /* Some shaders end up reading array elements without
+                        * first writing.. so initialize things to prevent null
+                        * instr ptrs later:
+                        */
+                       for (unsigned i = 0; i < arr->length; i++)
+                               av->arr[i] = create_immed(block, 0);
+               }
+
+               bd->arrs[arr->aid] = av;
+       }
+
+       return bd->arrs[arr->aid];
+}
+
+static void
+add_array_phi_srcs(struct ir3_compile *ctx, nir_block *nblock,
+               struct ir3_array_value *av, BITSET_WORD *visited)
+{
+       struct ir3_block *block;
+       struct ir3_nir_block_data *bd;
+
+       if (BITSET_TEST(visited, nblock->index))
+               return;
+
+       BITSET_SET(visited, nblock->index);
+
+       block = get_block(ctx, nblock);
+       bd = block->data;
+
+       if (bd && bd->arrs[av->aid]) {
+               struct ir3_array_value *dav = bd->arrs[av->aid];
+               for (unsigned i = 0; i < av->length; i++) {
+                       ir3_reg_create(av->phis[i], 0, IR3_REG_SSA)->instr =
+                                       dav->arr[i];
+               }
+       } else {
+               /* didn't find defn, recurse predecessors: */
+               struct set_entry *entry;
+               set_foreach(nblock->predecessors, entry) {
+                       add_array_phi_srcs(ctx, (nir_block *)entry->key, av, visited);
+               }
+       }
+}
+
+static void
+resolve_array_phis(struct ir3_compile *ctx, struct ir3_block *block)
+{
+       struct ir3_nir_block_data *bd = block->data;
+       unsigned bitset_words = BITSET_WORDS(ctx->impl->num_blocks);
+
+       if (!bd)
+               return;
+
+       /* TODO use nir dom_frontier to help us with this? */
+
+       for (unsigned i = 1; i <= ctx->num_arrays; i++) {
+               struct ir3_array_value *av = bd->arrs[i];
+               BITSET_WORD visited[bitset_words];
+               struct set_entry *entry;
+
+               if (!(av && av->phis))
+                       continue;
+
+               memset(visited, 0, sizeof(visited));
+               set_foreach(block->nblock->predecessors, entry) {
+                       add_array_phi_srcs(ctx, (nir_block *)entry->key, av, visited);
+               }
+       }
 }
 
 /* allocate a n element value array (to be populated by caller) and
@@ -393,7 +497,8 @@ create_addr(struct ir3_block *block, struct ir3_instruction *src)
        instr->regs[1]->flags |= IR3_REG_HALF;
 
        instr = ir3_MOV(block, instr, TYPE_S16);
-       instr->regs[0]->flags |= IR3_REG_ADDR | IR3_REG_HALF;
+       instr->regs[0]->num = regid(REG_A0, 0);
+       instr->regs[0]->flags |= IR3_REG_HALF;
        instr->regs[1]->flags |= IR3_REG_HALF;
 
        return instr;
@@ -406,18 +511,39 @@ static struct ir3_instruction *
 get_addr(struct ir3_compile *ctx, struct ir3_instruction *src)
 {
        struct ir3_instruction *addr;
-       struct hash_entry *entry;
-       entry = _mesa_hash_table_search(ctx->addr_ht, src);
-       if (entry)
-               return entry->data;
 
-       /* TODO do we need to cache per block? */
+       if (!ctx->addr_ht) {
+               ctx->addr_ht = _mesa_hash_table_create(ctx,
+                               _mesa_hash_pointer, _mesa_key_pointer_equal);
+       } else {
+               struct hash_entry *entry;
+               entry = _mesa_hash_table_search(ctx->addr_ht, src);
+               if (entry)
+                       return entry->data;
+       }
+
        addr = create_addr(ctx->block, src);
        _mesa_hash_table_insert(ctx->addr_ht, src, addr);
 
        return addr;
 }
 
+static struct ir3_instruction *
+get_predicate(struct ir3_compile *ctx, struct ir3_instruction *src)
+{
+       struct ir3_block *b = ctx->block;
+       struct ir3_instruction *cond;
+
+       /* NOTE: only cmps.*.* can write p0.x: */
+       cond = ir3_CMPS_S(b, src, 0, create_immed(b, 0), 0);
+       cond->cat2.condition = IR3_COND_NE;
+
+       /* condition always goes in predicate register: */
+       cond->regs[0]->num = regid(REG_P0, 0);
+
+       return cond;
+}
+
 static struct ir3_instruction *
 create_uniform(struct ir3_compile *ctx, unsigned n)
 {
@@ -444,9 +570,8 @@ create_uniform_indirect(struct ir3_compile *ctx, unsigned n,
        mov->cat1.dst_type = TYPE_U32;
        ir3_reg_create(mov, 0, 0);
        ir3_reg_create(mov, n, IR3_REG_CONST | IR3_REG_RELATIV);
-       mov->address = address;
 
-       array_insert(ctx->ir->indirects, mov);
+       ir3_instr_set_address(mov, address);
 
        return mov;
 }
@@ -461,7 +586,7 @@ create_collect(struct ir3_block *block, struct ir3_instruction **arr,
                return NULL;
 
        collect = ir3_instr_create2(block, -1, OPC_META_FI, 1 + arrsz);
-       ir3_reg_create(collect, 0, 0);
+       ir3_reg_create(collect, 0, 0);     /* dst */
        for (unsigned i = 0; i < arrsz; i++)
                ir3_reg_create(collect, 0, IR3_REG_SSA)->instr = arr[i];
 
@@ -484,9 +609,8 @@ create_indirect_load(struct ir3_compile *ctx, unsigned arrsz, unsigned n,
        src->instr = collect;
        src->size  = arrsz;
        src->offset = n;
-       mov->address = address;
 
-       array_insert(ctx->ir->indirects, mov);
+       ir3_instr_set_address(mov, address);
 
        return mov;
 }
@@ -507,35 +631,32 @@ create_indirect_store(struct ir3_compile *ctx, unsigned arrsz, unsigned n,
        dst->size  = arrsz;
        dst->offset = n;
        ir3_reg_create(mov, 0, IR3_REG_SSA)->instr = src;
-       mov->address = address;
        mov->fanin = collect;
 
-       array_insert(ctx->ir->indirects, mov);
+       ir3_instr_set_address(mov, address);
 
        return mov;
 }
 
 static struct ir3_instruction *
-create_input(struct ir3_block *block, struct ir3_instruction *instr,
-               unsigned n)
+create_input(struct ir3_block *block, unsigned n)
 {
        struct ir3_instruction *in;
 
        in = ir3_instr_create(block, -1, OPC_META_INPUT);
        in->inout.block = block;
        ir3_reg_create(in, n, 0);
-       if (instr)
-               ir3_reg_create(in, 0, IR3_REG_SSA)->instr = instr;
 
        return in;
 }
 
 static struct ir3_instruction *
-create_frag_input(struct ir3_compile *ctx, unsigned n, bool use_ldlv)
+create_frag_input(struct ir3_compile *ctx, bool use_ldlv)
 {
        struct ir3_block *block = ctx->block;
        struct ir3_instruction *instr;
-       struct ir3_instruction *inloc = create_immed(block, n);
+       /* actual inloc is assigned and fixed up later: */
+       struct ir3_instruction *inloc = create_immed(block, 0);
 
        if (use_ldlv) {
                instr = ir3_LDLV(block, inloc, 0, create_immed(block, 1), 0);
@@ -557,7 +678,7 @@ create_frag_coord(struct ir3_compile *ctx, unsigned comp)
 
        compile_assert(ctx, !ctx->frag_coord[comp]);
 
-       ctx->frag_coord[comp] = create_input(ctx->block, NULL, 0);
+       ctx->frag_coord[comp] = create_input(ctx->block, 0);
 
        switch (comp) {
        case 0: /* .x */
@@ -596,7 +717,8 @@ create_frag_face(struct ir3_compile *ctx, unsigned comp)
        case 0: /* .x */
                compile_assert(ctx, !ctx->frag_face);
 
-               ctx->frag_face = create_input(block, NULL, 0);
+               ctx->frag_face = create_input(block, 0);
+               ctx->frag_face->regs[0]->flags |= IR3_REG_HALF;
 
                /* for faceness, we always get -1 or 0 (int).. but TGSI expects
                 * positive vs negative float.. and piglit further seems to
@@ -623,15 +745,25 @@ create_frag_face(struct ir3_compile *ctx, unsigned comp)
        }
 }
 
+static struct ir3_instruction *
+create_driver_param(struct ir3_compile *ctx, enum ir3_driver_param dp)
+{
+       /* first four vec4 sysval's reserved for UBOs: */
+       /* NOTE: dp is in scalar, but there can be >4 dp components: */
+       unsigned n = ctx->so->first_driver_param + IR3_DRIVER_PARAM_OFF;
+       unsigned r = regid(n + dp / 4, dp % 4);
+       return create_uniform(ctx, r);
+}
+
 /* helper for instructions that produce multiple consecutive scalar
  * outputs which need to have a split/fanout meta instruction inserted
  */
 static void
 split_dest(struct ir3_block *block, struct ir3_instruction **dst,
-               struct ir3_instruction *src)
+               struct ir3_instruction *src, unsigned n)
 {
        struct ir3_instruction *prev = NULL;
-       for (int i = 0, j = 0; i < 4; i++) {
+       for (int i = 0, j = 0; i < n; i++) {
                struct ir3_instruction *split =
                                ir3_instr_create(block, -1, OPC_META_FO);
                ir3_reg_create(split, 0, IR3_REG_SSA);
@@ -882,9 +1014,15 @@ emit_alu(struct ir3_compile *ctx, nir_alu_instr *alu)
        case nir_op_imax:
                dst[0] = ir3_MAX_S(b, src[0], 0, src[1], 0);
                break;
+       case nir_op_umax:
+               dst[0] = ir3_MAX_U(b, src[0], 0, src[1], 0);
+               break;
        case nir_op_imin:
                dst[0] = ir3_MIN_S(b, src[0], 0, src[1], 0);
                break;
+       case nir_op_umin:
+               dst[0] = ir3_MIN_U(b, src[0], 0, src[1], 0);
+               break;
        case nir_op_imul:
                /*
                 * dst = (al * bl) + (ah * bl << 16) + (al * bh << 16)
@@ -969,6 +1107,33 @@ emit_alu(struct ir3_compile *ctx, nir_alu_instr *alu)
                dst[0] = ir3_SEL_B32(b, src[1], 0, ir3_b2n(b, src[0]), 0, src[2], 0);
                break;
 
+       case nir_op_bit_count:
+               dst[0] = ir3_CBITS_B(b, src[0], 0);
+               break;
+       case nir_op_ifind_msb: {
+               struct ir3_instruction *cmp;
+               dst[0] = ir3_CLZ_S(b, src[0], 0);
+               cmp = ir3_CMPS_S(b, dst[0], 0, create_immed(b, 0), 0);
+               cmp->cat2.condition = IR3_COND_GE;
+               dst[0] = ir3_SEL_B32(b,
+                               ir3_SUB_U(b, create_immed(b, 31), 0, dst[0], 0), 0,
+                               cmp, 0, dst[0], 0);
+               break;
+       }
+       case nir_op_ufind_msb:
+               dst[0] = ir3_CLZ_B(b, src[0], 0);
+               dst[0] = ir3_SEL_B32(b,
+                               ir3_SUB_U(b, create_immed(b, 31), 0, dst[0], 0), 0,
+                               src[0], 0, dst[0], 0);
+               break;
+       case nir_op_find_lsb:
+               dst[0] = ir3_BFREV_B(b, src[0], 0);
+               dst[0] = ir3_CLZ_B(b, dst[0], 0);
+               break;
+       case nir_op_bitfield_reverse:
+               dst[0] = ir3_BFREV_B(b, src[0], 0);
+               break;
+
        default:
                compile_error(ctx, "Unhandled ALU op: %s\n",
                                nir_op_infos[alu->op].name);
@@ -983,8 +1148,9 @@ emit_intrinsic_load_ubo(struct ir3_compile *ctx, nir_intrinsic_instr *intr,
 {
        struct ir3_block *b = ctx->block;
        struct ir3_instruction *addr, *src0, *src1;
+       nir_const_value *const_offset;
        /* UBO addresses are the first driver params: */
-       unsigned ubo = regid(ctx->so->first_driver_param, 0);
+       unsigned ubo = regid(ctx->so->first_driver_param + IR3_UBOS_OFF, 0);
        unsigned off = intr->const_index[0];
 
        /* First src is ubo index, which could either be an immed or not: */
@@ -996,7 +1162,10 @@ emit_intrinsic_load_ubo(struct ir3_compile *ctx, nir_intrinsic_instr *intr,
                addr = create_uniform_indirect(ctx, ubo, get_addr(ctx, src0));
        }
 
-       if (intr->intrinsic == nir_intrinsic_load_ubo_indirect) {
+       const_offset = nir_src_as_const_value(intr->src[1]);
+       if (const_offset) {
+               off += const_offset->u[0];
+       } else {
                /* For load_ubo_indirect, second src is indirect offset: */
                src1 = get_src(ctx, &intr->src[1])[0];
 
@@ -1018,19 +1187,19 @@ emit_intrinsic_load_ubo(struct ir3_compile *ctx, nir_intrinsic_instr *intr,
                struct ir3_instruction *load =
                                ir3_LDG(b, addr, 0, create_immed(b, 1), 0);
                load->cat6.type = TYPE_U32;
-               load->cat6.offset = off + i * 4;    /* byte offset */
+               load->cat6.src_offset = off + i * 4;     /* byte offset */
                dst[i] = load;
        }
 }
 
 /* handles array reads: */
 static void
-emit_intrinisic_load_var(struct ir3_compile *ctx, nir_intrinsic_instr *intr,
+emit_intrinsic_load_var(struct ir3_compile *ctx, nir_intrinsic_instr *intr,
                struct ir3_instruction **dst)
 {
        nir_deref_var *dvar = intr->variables[0];
        nir_deref_array *darr = nir_deref_as_array(dvar->deref.child);
-       struct ir3_array *arr = get_var(ctx, dvar->var);
+       struct ir3_array_value *arr = get_var(ctx, dvar->var);
 
        compile_assert(ctx, dvar->deref.child &&
                (dvar->deref.child->deref_type == nir_deref_type_array));
@@ -1066,11 +1235,11 @@ emit_intrinisic_load_var(struct ir3_compile *ctx, nir_intrinsic_instr *intr,
 
 /* handles array writes: */
 static void
-emit_intrinisic_store_var(struct ir3_compile *ctx, nir_intrinsic_instr *intr)
+emit_intrinsic_store_var(struct ir3_compile *ctx, nir_intrinsic_instr *intr)
 {
        nir_deref_var *dvar = intr->variables[0];
        nir_deref_array *darr = nir_deref_as_array(dvar->deref.child);
-       struct ir3_array *arr = get_var(ctx, dvar->var);
+       struct ir3_array_value *arr = get_var(ctx, dvar->var);
        struct ir3_instruction **src;
 
        compile_assert(ctx, dvar->deref.child &&
@@ -1082,6 +1251,10 @@ emit_intrinisic_store_var(struct ir3_compile *ctx, nir_intrinsic_instr *intr)
        case nir_deref_array_type_direct:
                /* direct access does not require anything special: */
                for (int i = 0; i < intr->num_components; i++) {
+                       /* ttn doesn't generate partial writemasks */
+                       assert(intr->const_index[0] ==
+                              (1 << intr->num_components) - 1);
+
                        unsigned n = darr->base_offset * 4 + i;
                        compile_assert(ctx, n < arr->length);
                        arr->arr[n] = src[i];
@@ -1094,6 +1267,10 @@ emit_intrinisic_store_var(struct ir3_compile *ctx, nir_intrinsic_instr *intr)
                struct ir3_instruction *addr =
                                get_addr(ctx, get_src(ctx, &darr->indirect)[0]);
                for (int i = 0; i < intr->num_components; i++) {
+                       /* ttn doesn't generate partial writemasks */
+                       assert(intr->const_index[0] ==
+                              (1 << intr->num_components) - 1);
+
                        struct ir3_instruction *store;
                        unsigned n = darr->base_offset * 4 + i;
                        compile_assert(ctx, n < arr->length);
@@ -1107,7 +1284,7 @@ emit_intrinisic_store_var(struct ir3_compile *ctx, nir_intrinsic_instr *intr)
                         * store_output_indirect? or move this into
                         * create_indirect_store()?
                         */
-                       for (int j = i; j < arr->length; j += 4) {
+                       for (int j = i; j < arr->length; j += intr->num_components) {
                                struct ir3_instruction *split;
 
                                split = ir3_instr_create(ctx->block, -1, OPC_META_FO);
@@ -1118,6 +1295,13 @@ emit_intrinisic_store_var(struct ir3_compile *ctx, nir_intrinsic_instr *intr)
                                arr->arr[j] = split;
                        }
                }
+               /* fixup fanout/split neighbors: */
+               for (int i = 0; i < arr->length; i++) {
+                       arr->arr[i]->cp.right = (i < (arr->length - 1)) ?
+                                       arr->arr[i+1] : NULL;
+                       arr->arr[i]->cp.left = (i > 0) ?
+                                       arr->arr[i-1] : NULL;
+               }
                break;
        }
        default:
@@ -1127,109 +1311,133 @@ emit_intrinisic_store_var(struct ir3_compile *ctx, nir_intrinsic_instr *intr)
        }
 }
 
-static void add_sysval_input(struct ir3_compile *ctx, unsigned name,
+static void add_sysval_input(struct ir3_compile *ctx, gl_system_value slot,
                struct ir3_instruction *instr)
 {
        struct ir3_shader_variant *so = ctx->so;
        unsigned r = regid(so->inputs_count, 0);
        unsigned n = so->inputs_count++;
 
-       so->inputs[n].semantic = ir3_semantic_name(name, 0);
+       so->inputs[n].sysval = true;
+       so->inputs[n].slot = slot;
        so->inputs[n].compmask = 1;
        so->inputs[n].regid = r;
-       so->inputs[n].interpolate = TGSI_INTERPOLATE_CONSTANT;
+       so->inputs[n].interpolate = INTERP_QUALIFIER_FLAT;
        so->total_in++;
 
-       ctx->block->ninputs = MAX2(ctx->block->ninputs, r + 1);
-       ctx->block->inputs[r] = instr;
+       ctx->ir->ninputs = MAX2(ctx->ir->ninputs, r + 1);
+       ctx->ir->inputs[r] = instr;
 }
 
 static void
-emit_intrinisic(struct ir3_compile *ctx, nir_intrinsic_instr *intr)
+emit_intrinsic(struct ir3_compile *ctx, nir_intrinsic_instr *intr)
 {
        const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
        struct ir3_instruction **dst, **src;
        struct ir3_block *b = ctx->block;
        unsigned idx = intr->const_index[0];
+       nir_const_value *const_offset;
 
        if (info->has_dest) {
                dst = get_dst(ctx, &intr->dest, intr->num_components);
+       } else {
+               dst = NULL;
        }
 
        switch (intr->intrinsic) {
        case nir_intrinsic_load_uniform:
-               for (int i = 0; i < intr->num_components; i++) {
-                       unsigned n = idx * 4 + i;
-                       dst[i] = create_uniform(ctx, n);
-               }
-               break;
-       case nir_intrinsic_load_uniform_indirect:
-               src = get_src(ctx, &intr->src[0]);
-               for (int i = 0; i < intr->num_components; i++) {
-                       unsigned n = idx * 4 + i;
-                       dst[i] = create_uniform_indirect(ctx, n,
-                                       get_addr(ctx, src[0]));
+               const_offset = nir_src_as_const_value(intr->src[0]);
+               if (const_offset) {
+                       idx += const_offset->u[0];
+                       for (int i = 0; i < intr->num_components; i++) {
+                               unsigned n = idx * 4 + i;
+                               dst[i] = create_uniform(ctx, n);
+                       }
+               } else {
+                       src = get_src(ctx, &intr->src[0]);
+                       for (int i = 0; i < intr->num_components; i++) {
+                               unsigned n = idx * 4 + i;
+                               dst[i] = create_uniform_indirect(ctx, n,
+                                               get_addr(ctx, src[0]));
+                       }
+                       /* NOTE: if relative addressing is used, we set
+                        * constlen in the compiler (to worst-case value)
+                        * since we don't know in the assembler what the max
+                        * addr reg value can be:
+                        */
+                       ctx->so->constlen = ctx->s->num_uniforms;
                }
                break;
        case nir_intrinsic_load_ubo:
-       case nir_intrinsic_load_ubo_indirect:
                emit_intrinsic_load_ubo(ctx, intr, dst);
                break;
        case nir_intrinsic_load_input:
-               for (int i = 0; i < intr->num_components; i++) {
-                       unsigned n = idx * 4 + i;
-                       dst[i] = b->inputs[n];
-               }
-               break;
-       case nir_intrinsic_load_input_indirect:
-               src = get_src(ctx, &intr->src[0]);
-               struct ir3_instruction *collect =
-                               create_collect(b, b->inputs, b->ninputs);
-               struct ir3_instruction *addr = get_addr(ctx, src[0]);
-               for (int i = 0; i < intr->num_components; i++) {
-                       unsigned n = idx * 4 + i;
-                       dst[i] = create_indirect_load(ctx, b->ninputs, n, addr, collect);
+               const_offset = nir_src_as_const_value(intr->src[0]);
+               if (const_offset) {
+                       idx += const_offset->u[0];
+                       for (int i = 0; i < intr->num_components; i++) {
+                               unsigned n = idx * 4 + i;
+                               dst[i] = ctx->ir->inputs[n];
+                       }
+               } else {
+                       src = get_src(ctx, &intr->src[0]);
+                       struct ir3_instruction *collect =
+                                       create_collect(b, ctx->ir->inputs, ctx->ir->ninputs);
+                       struct ir3_instruction *addr = get_addr(ctx, src[0]);
+                       for (int i = 0; i < intr->num_components; i++) {
+                               unsigned n = idx * 4 + i;
+                               dst[i] = create_indirect_load(ctx, ctx->ir->ninputs,
+                                               n, addr, collect);
+                       }
                }
                break;
        case nir_intrinsic_load_var:
-               emit_intrinisic_load_var(ctx, intr, dst);
+               emit_intrinsic_load_var(ctx, intr, dst);
                break;
        case nir_intrinsic_store_var:
-               emit_intrinisic_store_var(ctx, intr);
+               emit_intrinsic_store_var(ctx, intr);
                break;
        case nir_intrinsic_store_output:
+               const_offset = nir_src_as_const_value(intr->src[1]);
+               compile_assert(ctx, const_offset != NULL);
+               idx += const_offset->u[0];
+
                src = get_src(ctx, &intr->src[0]);
                for (int i = 0; i < intr->num_components; i++) {
                        unsigned n = idx * 4 + i;
-                       b->outputs[n] = src[i];
+                       ctx->ir->outputs[n] = src[i];
                }
                break;
        case nir_intrinsic_load_base_vertex:
                if (!ctx->basevertex) {
-                       /* first four vec4 sysval's reserved for UBOs: */
-                       unsigned r = regid(ctx->so->first_driver_param + 4, 0);
-                       ctx->basevertex = create_uniform(ctx, r);
-                       add_sysval_input(ctx, TGSI_SEMANTIC_BASEVERTEX,
+                       ctx->basevertex = create_driver_param(ctx, IR3_DP_VTXID_BASE);
+                       add_sysval_input(ctx, SYSTEM_VALUE_BASE_VERTEX,
                                        ctx->basevertex);
                }
                dst[0] = ctx->basevertex;
                break;
        case nir_intrinsic_load_vertex_id_zero_base:
                if (!ctx->vertex_id) {
-                       ctx->vertex_id = create_input(ctx->block, NULL, 0);
-                       add_sysval_input(ctx, TGSI_SEMANTIC_VERTEXID_NOBASE,
+                       ctx->vertex_id = create_input(ctx->block, 0);
+                       add_sysval_input(ctx, SYSTEM_VALUE_VERTEX_ID_ZERO_BASE,
                                        ctx->vertex_id);
                }
                dst[0] = ctx->vertex_id;
                break;
        case nir_intrinsic_load_instance_id:
                if (!ctx->instance_id) {
-                       ctx->instance_id = create_input(ctx->block, NULL, 0);
-                       add_sysval_input(ctx, TGSI_SEMANTIC_INSTANCEID,
+                       ctx->instance_id = create_input(ctx->block, 0);
+                       add_sysval_input(ctx, SYSTEM_VALUE_INSTANCE_ID,
                                        ctx->instance_id);
                }
                dst[0] = ctx->instance_id;
                break;
+       case nir_intrinsic_load_user_clip_plane:
+               for (int i = 0; i < intr->num_components; i++) {
+                       unsigned n = idx * 4 + i;
+                       dst[i] = create_driver_param(ctx, IR3_DP_UCP0_X + n);
+               }
+               break;
        case nir_intrinsic_discard_if:
        case nir_intrinsic_discard: {
                struct ir3_instruction *cond, *kill;
@@ -1243,6 +1451,7 @@ emit_intrinisic(struct ir3_compile *ctx, nir_intrinsic_instr *intr)
                        cond = create_immed(b, 1);
                }
 
+               /* NOTE: only cmps.*.* can write p0.x: */
                cond = ir3_CMPS_S(b, cond, 0, create_immed(b, 0), 0);
                cond->cat2.condition = IR3_COND_NE;
 
@@ -1252,7 +1461,7 @@ emit_intrinisic(struct ir3_compile *ctx, nir_intrinsic_instr *intr)
                kill = ir3_KILL(b, cond, 0);
                array_insert(ctx->ir->predicates, kill);
 
-               ctx->kill[ctx->kill_count++] = kill;
+               array_insert(ctx->ir->keeps, kill);
                ctx->so->has_kill = true;
 
                break;
@@ -1314,12 +1523,14 @@ tex_info(nir_tex_instr *tex, unsigned *flagsp, unsigned *coordsp)
                coords = 3;
                flags |= IR3_INSTR_3D;
                break;
+       default:
+               unreachable("bad sampler_dim");
        }
 
-       if (tex->is_shadow)
+       if (tex->is_shadow && tex->op != nir_texop_lod)
                flags |= IR3_INSTR_S;
 
-       if (tex->is_array)
+       if (tex->is_array && tex->op != nir_texop_lod)
                flags |= IR3_INSTR_A;
 
        *flagsp = flags;
@@ -1336,7 +1547,10 @@ emit_tex(struct ir3_compile *ctx, nir_tex_instr *tex)
        unsigned i, coords, flags;
        unsigned nsrc0 = 0, nsrc1 = 0;
        type_t type;
-       opc_t opc;
+       opc_t opc = 0;
+
+       coord = off = ddx = ddy = NULL;
+       lod = proj = compare = NULL;
 
        /* TODO: might just be one component for gathers? */
        dst = get_dst(ctx, &tex->dest, 4);
@@ -1384,11 +1598,13 @@ emit_tex(struct ir3_compile *ctx, nir_tex_instr *tex)
        case nir_texop_txl:      opc = OPC_SAML;     break;
        case nir_texop_txd:      opc = OPC_SAMGQ;    break;
        case nir_texop_txf:      opc = OPC_ISAML;    break;
+       case nir_texop_lod:      opc = OPC_GETLOD;   break;
        case nir_texop_txf_ms:
        case nir_texop_txs:
-       case nir_texop_lod:
        case nir_texop_tg4:
        case nir_texop_query_levels:
+       case nir_texop_texture_samples:
+       case nir_texop_samples_identical:
                compile_error(ctx, "Unhandled NIR tex type: %d\n", tex->op);
                return;
        }
@@ -1396,11 +1612,17 @@ emit_tex(struct ir3_compile *ctx, nir_tex_instr *tex)
        tex_info(tex, &flags, &coords);
 
        /* scale up integer coords for TXF based on the LOD */
-       if (opc == OPC_ISAML) {
+       if (ctx->unminify_coords && (opc == OPC_ISAML)) {
                assert(has_lod);
                for (i = 0; i < coords; i++)
                        coord[i] = ir3_SHL_B(b, coord[i], 0, lod, 0);
        }
+
+       /* the array coord for cube arrays needs 0.5 added to it */
+       if (tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE && tex->is_array &&
+               opc != OPC_ISAML)
+               coord[3] = ir3_ADD_F(b, coord[3], 0, create_immed(b, fui(0.5)), 0);
+
        /*
         * lay out the first argument in the proper order:
         *  - actual coordinates first
@@ -1424,10 +1646,10 @@ emit_tex(struct ir3_compile *ctx, nir_tex_instr *tex)
                src0[nsrc0++] = create_immed(b, fui(0.5));
        }
 
-       if (tex->is_shadow)
+       if (tex->is_shadow && tex->op != nir_texop_lod)
                src0[nsrc0++] = compare;
 
-       if (tex->is_array)
+       if (tex->is_array && tex->op != nir_texop_lod)
                src0[nsrc0++] = coord[coords];
 
        if (has_proj) {
@@ -1476,18 +1698,34 @@ emit_tex(struct ir3_compile *ctx, nir_tex_instr *tex)
        case nir_type_int:
                type = TYPE_S32;
                break;
-       case nir_type_unsigned:
+       case nir_type_uint:
        case nir_type_bool:
                type = TYPE_U32;
                break;
+       default:
+               unreachable("bad dest_type");
        }
 
+       if (opc == OPC_GETLOD)
+               type = TYPE_U32;
+
        sam = ir3_SAM(b, opc, type, TGSI_WRITEMASK_XYZW,
                        flags, tex->sampler_index, tex->sampler_index,
                        create_collect(b, src0, nsrc0),
                        create_collect(b, src1, nsrc1));
 
-       split_dest(b, dst, sam);
+       split_dest(b, dst, sam, 4);
+
+       /* GETLOD returns results in 4.8 fixed point */
+       if (opc == OPC_GETLOD) {
+               struct ir3_instruction *factor = create_immed(b, fui(1.0 / 256));
+
+               compile_assert(ctx, tex->dest_type == nir_type_float);
+               for (i = 0; i < 2; i++) {
+                       dst[i] = ir3_MUL_F(b, ir3_COV(b, dst[i], TYPE_U32, TYPE_F32), 0,
+                                                          factor, 0);
+               }
+       }
 }
 
 static void
@@ -1504,7 +1742,7 @@ emit_tex_query_levels(struct ir3_compile *ctx, nir_tex_instr *tex)
        /* even though there is only one component, since it ends
         * up in .z rather than .x, we need a split_dest()
         */
-       split_dest(b, dst, sam);
+       split_dest(b, dst, sam, 3);
 
        /* The # of levels comes from getinfo.z. We need to add 1 to it, since
         * the value in TEX_CONST_0 is zero-based.
@@ -1522,6 +1760,12 @@ emit_tex_txs(struct ir3_compile *ctx, nir_tex_instr *tex)
 
        tex_info(tex, &flags, &coords);
 
+       /* Actually we want the number of dimensions, not coordinates. This
+        * distinction only matters for cubes.
+        */
+       if (tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
+               coords = 2;
+
        dst = get_dst(ctx, &tex->dest, 4);
 
        compile_assert(ctx, tex->num_srcs == 1);
@@ -1532,7 +1776,7 @@ emit_tex_txs(struct ir3_compile *ctx, nir_tex_instr *tex)
        sam = ir3_SAM(b, OPC_GETSIZE, TYPE_U32, TGSI_WRITEMASK_XYZW, flags,
                        tex->sampler_index, tex->sampler_index, lod, NULL);
 
-       split_dest(b, dst, sam);
+       split_dest(b, dst, sam, 4);
 
        /* Array size actually ends up in .w rather than .z. This doesn't
         * matter for miplevel 0, but for higher mips the value in z is
@@ -1548,6 +1792,71 @@ emit_tex_txs(struct ir3_compile *ctx, nir_tex_instr *tex)
        }
 }
 
+static void
+emit_phi(struct ir3_compile *ctx, nir_phi_instr *nphi)
+{
+       struct ir3_instruction *phi, **dst;
+
+       /* NOTE: phi's should be lowered to scalar at this point */
+       compile_assert(ctx, nphi->dest.ssa.num_components == 1);
+
+       dst = get_dst(ctx, &nphi->dest, 1);
+
+       phi = ir3_instr_create2(ctx->block, -1, OPC_META_PHI,
+                       1 + exec_list_length(&nphi->srcs));
+       ir3_reg_create(phi, 0, 0);         /* dst */
+       phi->phi.nphi = nphi;
+
+       dst[0] = phi;
+}
+
+/* phi instructions are left partially constructed.  We don't resolve
+ * their srcs until the end of the block, since (eg. loops) one of
+ * the phi's srcs might be defined after the phi due to back edges in
+ * the CFG.
+ */
+static void
+resolve_phis(struct ir3_compile *ctx, struct ir3_block *block)
+{
+       list_for_each_entry (struct ir3_instruction, instr, &block->instr_list, node) {
+               nir_phi_instr *nphi;
+
+               /* phi's only come at start of block: */
+               if (!(is_meta(instr) && (instr->opc == OPC_META_PHI)))
+                       break;
+
+               if (!instr->phi.nphi)
+                       break;
+
+               nphi = instr->phi.nphi;
+               instr->phi.nphi = NULL;
+
+               foreach_list_typed(nir_phi_src, nsrc, node, &nphi->srcs) {
+                       struct ir3_instruction *src = get_src(ctx, &nsrc->src)[0];
+                       ir3_reg_create(instr, 0, IR3_REG_SSA)->instr = src;
+               }
+       }
+
+       resolve_array_phis(ctx, block);
+}
+
+static void
+emit_jump(struct ir3_compile *ctx, nir_jump_instr *jump)
+{
+       switch (jump->type) {
+       case nir_jump_break:
+       case nir_jump_continue:
+               /* I *think* we can simply just ignore this, and use the
+                * successor block link to figure out where we need to
+                * jump to for break/continue
+                */
+               break;
+       default:
+               compile_error(ctx, "Unhandled NIR jump type: %d\n", jump->type);
+               break;
+       }
+}
+
 static void
 emit_instr(struct ir3_compile *ctx, nir_instr *instr)
 {
@@ -1556,7 +1865,7 @@ emit_instr(struct ir3_compile *ctx, nir_instr *instr)
                emit_alu(ctx, nir_instr_as_alu(instr));
                break;
        case nir_instr_type_intrinsic:
-               emit_intrinisic(ctx, nir_instr_as_intrinsic(instr));
+               emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
                break;
        case nir_instr_type_load_const:
                emit_load_const(ctx, nir_instr_as_load_const(instr));
@@ -1581,134 +1890,315 @@ emit_instr(struct ir3_compile *ctx, nir_instr *instr)
                }
                break;
        }
-       case nir_instr_type_call:
-       case nir_instr_type_jump:
        case nir_instr_type_phi:
+               emit_phi(ctx, nir_instr_as_phi(instr));
+               break;
+       case nir_instr_type_jump:
+               emit_jump(ctx, nir_instr_as_jump(instr));
+               break;
+       case nir_instr_type_call:
        case nir_instr_type_parallel_copy:
                compile_error(ctx, "Unhandled NIR instruction type: %d\n", instr->type);
                break;
        }
 }
 
+static struct ir3_block *
+get_block(struct ir3_compile *ctx, nir_block *nblock)
+{
+       struct ir3_block *block;
+       struct hash_entry *entry;
+       entry = _mesa_hash_table_search(ctx->block_ht, nblock);
+       if (entry)
+               return entry->data;
+
+       block = ir3_block_create(ctx->ir);
+       block->nblock = nblock;
+       _mesa_hash_table_insert(ctx->block_ht, nblock, block);
+
+       return block;
+}
+
 static void
-emit_block(struct ir3_compile *ctx, nir_block *block)
+emit_block(struct ir3_compile *ctx, nir_block *nblock)
 {
-       nir_foreach_instr(block, instr) {
+       struct ir3_block *block = get_block(ctx, nblock);
+
+       for (int i = 0; i < ARRAY_SIZE(block->successors); i++) {
+               if (nblock->successors[i]) {
+                       block->successors[i] =
+                               get_block(ctx, nblock->successors[i]);
+               }
+       }
+
+       ctx->block = block;
+       list_addtail(&block->node, &ctx->ir->block_list);
+
+       /* re-emit addr register in each block if needed: */
+       _mesa_hash_table_destroy(ctx->addr_ht, NULL);
+       ctx->addr_ht = NULL;
+
+       nir_foreach_instr(nblock, instr) {
                emit_instr(ctx, instr);
                if (ctx->error)
                        return;
        }
 }
 
+static void emit_cf_list(struct ir3_compile *ctx, struct exec_list *list);
+
 static void
-emit_function(struct ir3_compile *ctx, nir_function_impl *impl)
+emit_if(struct ir3_compile *ctx, nir_if *nif)
+{
+       struct ir3_instruction *condition = get_src(ctx, &nif->condition)[0];
+
+       ctx->block->condition =
+               get_predicate(ctx, ir3_b2n(condition->block, condition));
+
+       emit_cf_list(ctx, &nif->then_list);
+       emit_cf_list(ctx, &nif->else_list);
+}
+
+static void
+emit_loop(struct ir3_compile *ctx, nir_loop *nloop)
 {
-       foreach_list_typed(nir_cf_node, node, node, &impl->body) {
+       emit_cf_list(ctx, &nloop->body);
+}
+
+static void
+emit_cf_list(struct ir3_compile *ctx, struct exec_list *list)
+{
+       foreach_list_typed(nir_cf_node, node, node, list) {
                switch (node->type) {
                case nir_cf_node_block:
                        emit_block(ctx, nir_cf_node_as_block(node));
                        break;
                case nir_cf_node_if:
+                       emit_if(ctx, nir_cf_node_as_if(node));
+                       break;
                case nir_cf_node_loop:
+                       emit_loop(ctx, nir_cf_node_as_loop(node));
+                       break;
                case nir_cf_node_function:
                        compile_error(ctx, "TODO\n");
                        break;
                }
-               if (ctx->error)
-                       return;
        }
 }
 
+/* emit stream-out code.  At this point, the current block is the original
+ * (nir) end block, and nir ensures that all flow control paths terminate
+ * into the end block.  We re-purpose the original end block to generate
+ * the 'if (vtxcnt < maxvtxcnt)' condition, then append the conditional
+ * block holding stream-out write instructions, followed by the new end
+ * block:
+ *
+ *   blockOrigEnd {
+ *      p0.x = (vtxcnt < maxvtxcnt)
+ *      // succs: blockStreamOut, blockNewEnd
+ *   }
+ *   blockStreamOut {
+ *      ... stream-out instructions ...
+ *      // succs: blockNewEnd
+ *   }
+ *   blockNewEnd {
+ *   }
+ */
+static void
+emit_stream_out(struct ir3_compile *ctx)
+{
+       struct ir3_shader_variant *v = ctx->so;
+       struct ir3 *ir = ctx->ir;
+       struct pipe_stream_output_info *strmout =
+                       &ctx->so->shader->stream_output;
+       struct ir3_block *orig_end_block, *stream_out_block, *new_end_block;
+       struct ir3_instruction *vtxcnt, *maxvtxcnt, *cond;
+       struct ir3_instruction *bases[PIPE_MAX_SO_BUFFERS];
+
+       /* create vtxcnt input in input block at top of shader,
+        * so that it is seen as live over the entire duration
+        * of the shader:
+        */
+       vtxcnt = create_input(ctx->in_block, 0);
+       add_sysval_input(ctx, SYSTEM_VALUE_VERTEX_CNT, vtxcnt);
+
+       maxvtxcnt = create_driver_param(ctx, IR3_DP_VTXCNT_MAX);
+
+       /* at this point, we are at the original 'end' block,
+        * re-purpose this block to stream-out condition, then
+        * append stream-out block and new-end block
+        */
+       orig_end_block = ctx->block;
+
+       stream_out_block = ir3_block_create(ir);
+       list_addtail(&stream_out_block->node, &ir->block_list);
+
+       new_end_block = ir3_block_create(ir);
+       list_addtail(&new_end_block->node, &ir->block_list);
+
+       orig_end_block->successors[0] = stream_out_block;
+       orig_end_block->successors[1] = new_end_block;
+       stream_out_block->successors[0] = new_end_block;
+
+       /* setup 'if (vtxcnt < maxvtxcnt)' condition: */
+       cond = ir3_CMPS_S(ctx->block, vtxcnt, 0, maxvtxcnt, 0);
+       cond->regs[0]->num = regid(REG_P0, 0);
+       cond->cat2.condition = IR3_COND_LT;
+
+       /* condition goes on previous block to the conditional,
+        * since it is used to pick which of the two successor
+        * paths to take:
+        */
+       orig_end_block->condition = cond;
+
+       /* switch to stream_out_block to generate the stream-out
+        * instructions:
+        */
+       ctx->block = stream_out_block;
+
+       /* Calculate base addresses based on vtxcnt.  Instructions
+        * generated for bases not used in following loop will be
+        * stripped out in the backend.
+        */
+       for (unsigned i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
+               unsigned stride = strmout->stride[i];
+               struct ir3_instruction *base, *off;
+
+               base = create_uniform(ctx, regid(v->first_driver_param + IR3_TFBOS_OFF, i));
+
+               /* 24-bit should be enough: */
+               off = ir3_MUL_U(ctx->block, vtxcnt, 0,
+                               create_immed(ctx->block, stride * 4), 0);
+
+               bases[i] = ir3_ADD_S(ctx->block, off, 0, base, 0);
+       }
+
+       /* Generate the per-output store instructions: */
+       for (unsigned i = 0; i < strmout->num_outputs; i++) {
+               for (unsigned j = 0; j < strmout->output[i].num_components; j++) {
+                       unsigned c = j + strmout->output[i].start_component;
+                       struct ir3_instruction *base, *out, *stg;
+
+                       base = bases[strmout->output[i].output_buffer];
+                       out = ctx->ir->outputs[regid(strmout->output[i].register_index, c)];
+
+                       stg = ir3_STG(ctx->block, base, 0, out, 0,
+                                       create_immed(ctx->block, 1), 0);
+                       stg->cat6.type = TYPE_U32;
+                       stg->cat6.dst_offset = (strmout->output[i].dst_offset + j) * 4;
+
+                       array_insert(ctx->ir->keeps, stg);
+               }
+       }
+
+       /* and finally switch to the new_end_block: */
+       ctx->block = new_end_block;
+}
+
+static void
+emit_function(struct ir3_compile *ctx, nir_function_impl *impl)
+{
+       emit_cf_list(ctx, &impl->body);
+       emit_block(ctx, impl->end_block);
+
+       /* at this point, we should have a single empty block,
+        * into which we emit the 'end' instruction.
+        */
+       compile_assert(ctx, list_empty(&ctx->block->instr_list));
+
+       /* If stream-out (aka transform-feedback) enabled, emit the
+        * stream-out instructions, followed by a new empty block (into
+        * which the 'end' instruction lands).
+        *
+        * NOTE: it is done in this order, rather than inserting before
+        * we emit end_block, because NIR guarantees that all blocks
+        * flow into end_block, and that end_block has no successors.
+        * So by re-purposing end_block as the first block of stream-
+        * out, we guarantee that all exit paths flow into the stream-
+        * out instructions.
+        */
+       if ((ctx->so->shader->stream_output.num_outputs > 0) &&
+                       !ctx->so->key.binning_pass) {
+               debug_assert(ctx->so->type == SHADER_VERTEX);
+               emit_stream_out(ctx);
+       }
+
+       ir3_END(ctx->block);
+}
+
 static void
 setup_input(struct ir3_compile *ctx, nir_variable *in)
 {
        struct ir3_shader_variant *so = ctx->so;
        unsigned array_len = MAX2(glsl_get_length(in->type), 1);
        unsigned ncomp = glsl_get_components(in->type);
-       /* XXX: map loc slots to semantics */
-       unsigned semantic_name = in->data.location;
-       unsigned semantic_index = in->data.index;
        unsigned n = in->data.driver_location;
+       unsigned slot = in->data.location;
 
-       DBG("; in: %u:%u, len=%ux%u, loc=%u\n",
-                       semantic_name, semantic_index, array_len,
-                       ncomp, n);
+       DBG("; in: slot=%u, len=%ux%u, drvloc=%u",
+                       slot, array_len, ncomp, n);
 
-       so->inputs[n].semantic =
-                       ir3_semantic_name(semantic_name, semantic_index);
+       so->inputs[n].slot = slot;
        so->inputs[n].compmask = (1 << ncomp) - 1;
-       so->inputs[n].inloc = ctx->next_inloc;
-       so->inputs[n].interpolate = 0;
        so->inputs_count = MAX2(so->inputs_count, n + 1);
+       so->inputs[n].interpolate = in->data.interpolation;
 
-       /* the fdN_program_emit() code expects tgsi consts here, so map
-        * things back to tgsi for now:
-        */
-       switch (in->data.interpolation) {
-       case INTERP_QUALIFIER_FLAT:
-               so->inputs[n].interpolate = TGSI_INTERPOLATE_CONSTANT;
-               break;
-       case INTERP_QUALIFIER_NOPERSPECTIVE:
-               so->inputs[n].interpolate = TGSI_INTERPOLATE_LINEAR;
-               break;
-       case INTERP_QUALIFIER_SMOOTH:
-               so->inputs[n].interpolate = TGSI_INTERPOLATE_PERSPECTIVE;
-               break;
-       }
-
-       for (int i = 0; i < ncomp; i++) {
-               struct ir3_instruction *instr = NULL;
-               unsigned idx = (n * 4) + i;
+       if (ctx->so->type == SHADER_FRAGMENT) {
+               for (int i = 0; i < ncomp; i++) {
+                       struct ir3_instruction *instr = NULL;
+                       unsigned idx = (n * 4) + i;
 
-               if (ctx->so->type == SHADER_FRAGMENT) {
-                       if (semantic_name == TGSI_SEMANTIC_POSITION) {
+                       if (slot == VARYING_SLOT_POS) {
                                so->inputs[n].bary = false;
                                so->frag_coord = true;
                                instr = create_frag_coord(ctx, i);
-                       } else if (semantic_name == TGSI_SEMANTIC_FACE) {
+                       } else if (slot == VARYING_SLOT_FACE) {
                                so->inputs[n].bary = false;
                                so->frag_face = true;
                                instr = create_frag_face(ctx, i);
                        } else {
                                bool use_ldlv = false;
 
-                               /* with NIR, we need to infer TGSI_INTERPOLATE_COLOR
-                                * from the semantic name:
+                               /* detect the special case for front/back colors where
+                                * we need to do flat vs smooth shading depending on
+                                * rast state:
                                 */
-                               if ((in->data.interpolation == INTERP_QUALIFIER_NONE) &&
-                                               ((semantic_name == TGSI_SEMANTIC_COLOR) ||
-                                                       (semantic_name == TGSI_SEMANTIC_BCOLOR)))
-                                       so->inputs[n].interpolate = TGSI_INTERPOLATE_COLOR;
+                               if (in->data.interpolation == INTERP_QUALIFIER_NONE) {
+                                       switch (slot) {
+                                       case VARYING_SLOT_COL0:
+                                       case VARYING_SLOT_COL1:
+                                       case VARYING_SLOT_BFC0:
+                                       case VARYING_SLOT_BFC1:
+                                               so->inputs[n].rasterflat = true;
+                                               break;
+                                       default:
+                                               break;
+                                       }
+                               }
 
                                if (ctx->flat_bypass) {
-                                       /* with NIR, we need to infer TGSI_INTERPOLATE_COLOR
-                                        * from the semantic name:
-                                        */
-                                       switch (so->inputs[n].interpolate) {
-                                       case TGSI_INTERPOLATE_COLOR:
-                                               if (!ctx->so->key.rasterflat)
-                                                       break;
-                                               /* fallthrough */
-                                       case TGSI_INTERPOLATE_CONSTANT:
+                                       if ((so->inputs[n].interpolate == INTERP_QUALIFIER_FLAT) ||
+                                                       (so->inputs[n].rasterflat && ctx->so->key.rasterflat))
                                                use_ldlv = true;
-                                               break;
-                                       }
                                }
 
                                so->inputs[n].bary = true;
 
-                               instr = create_frag_input(ctx,
-                                               so->inputs[n].inloc + i - 8, use_ldlv);
+                               instr = create_frag_input(ctx, use_ldlv);
                        }
-               } else {
-                       instr = create_input(ctx->block, NULL, idx);
-               }
 
-               ctx->block->inputs[idx] = instr;
+                       ctx->ir->inputs[idx] = instr;
+               }
+       } else if (ctx->so->type == SHADER_VERTEX) {
+               for (int i = 0; i < ncomp; i++) {
+                       unsigned idx = (n * 4) + i;
+                       ctx->ir->inputs[idx] = create_input(ctx->block, idx);
+               }
+       } else {
+               compile_error(ctx, "unknown shader type: %d\n", ctx->so->type);
        }
 
        if (so->inputs[n].bary || (ctx->so->type == SHADER_VERTEX)) {
-               ctx->next_inloc += ncomp;
                so->total_in += ncomp;
        }
 }
@@ -1719,84 +2209,101 @@ setup_output(struct ir3_compile *ctx, nir_variable *out)
        struct ir3_shader_variant *so = ctx->so;
        unsigned array_len = MAX2(glsl_get_length(out->type), 1);
        unsigned ncomp = glsl_get_components(out->type);
-       /* XXX: map loc slots to semantics */
-       unsigned semantic_name = out->data.location;
-       unsigned semantic_index = out->data.index;
        unsigned n = out->data.driver_location;
+       unsigned slot = out->data.location;
        unsigned comp = 0;
 
-       DBG("; out: %u:%u, len=%ux%u, loc=%u\n",
-                       semantic_name, semantic_index, array_len,
-                       ncomp, n);
+       DBG("; out: slot=%u, len=%ux%u, drvloc=%u",
+                       slot, array_len, ncomp, n);
 
-       if (ctx->so->type == SHADER_VERTEX) {
-               switch (semantic_name) {
-               case TGSI_SEMANTIC_POSITION:
+       if (ctx->so->type == SHADER_FRAGMENT) {
+               switch (slot) {
+               case FRAG_RESULT_DEPTH:
+                       comp = 2;  /* tgsi will write to .z component */
                        so->writes_pos = true;
                        break;
-               case TGSI_SEMANTIC_PSIZE:
-                       so->writes_psize = true;
-                       break;
-               case TGSI_SEMANTIC_COLOR:
-               case TGSI_SEMANTIC_BCOLOR:
-               case TGSI_SEMANTIC_GENERIC:
-               case TGSI_SEMANTIC_FOG:
-               case TGSI_SEMANTIC_TEXCOORD:
+               case FRAG_RESULT_COLOR:
+                       so->color0_mrt = 1;
                        break;
                default:
-                       compile_error(ctx, "unknown VS semantic name: %s\n",
-                                       tgsi_semantic_names[semantic_name]);
+                       if (slot >= FRAG_RESULT_DATA0)
+                               break;
+                       compile_error(ctx, "unknown FS output name: %s\n",
+                                       gl_frag_result_name(slot));
                }
-       } else {
-               switch (semantic_name) {
-               case TGSI_SEMANTIC_POSITION:
-                       comp = 2;  /* tgsi will write to .z component */
+       } else if (ctx->so->type == SHADER_VERTEX) {
+               switch (slot) {
+               case VARYING_SLOT_POS:
                        so->writes_pos = true;
                        break;
-               case TGSI_SEMANTIC_COLOR:
+               case VARYING_SLOT_PSIZ:
+                       so->writes_psize = true;
+                       break;
+               case VARYING_SLOT_COL0:
+               case VARYING_SLOT_COL1:
+               case VARYING_SLOT_BFC0:
+               case VARYING_SLOT_BFC1:
+               case VARYING_SLOT_FOGC:
+               case VARYING_SLOT_CLIP_DIST0:
+               case VARYING_SLOT_CLIP_DIST1:
                        break;
                default:
-                       compile_error(ctx, "unknown FS semantic name: %s\n",
-                                       tgsi_semantic_names[semantic_name]);
+                       if (slot >= VARYING_SLOT_VAR0)
+                               break;
+                       if ((VARYING_SLOT_TEX0 <= slot) && (slot <= VARYING_SLOT_TEX7))
+                               break;
+                       compile_error(ctx, "unknown VS output name: %s\n",
+                                       gl_varying_slot_name(slot));
                }
+       } else {
+               compile_error(ctx, "unknown shader type: %d\n", ctx->so->type);
        }
 
        compile_assert(ctx, n < ARRAY_SIZE(so->outputs));
 
-       so->outputs[n].semantic =
-                       ir3_semantic_name(semantic_name, semantic_index);
+       so->outputs[n].slot = slot;
        so->outputs[n].regid = regid(n, comp);
        so->outputs_count = MAX2(so->outputs_count, n + 1);
 
        for (int i = 0; i < ncomp; i++) {
                unsigned idx = (n * 4) + i;
 
-               ctx->block->outputs[idx] = create_immed(ctx->block, fui(0.0));
+               ctx->ir->outputs[idx] = create_immed(ctx->block, fui(0.0));
        }
 }
 
 static void
 emit_instructions(struct ir3_compile *ctx)
 {
-       unsigned ninputs  = exec_list_length(&ctx->s->inputs) * 4;
-       unsigned noutputs = exec_list_length(&ctx->s->outputs) * 4;
+       unsigned ninputs, noutputs;
+       nir_function_impl *fxn = NULL;
+
+       /* Find the main function: */
+       nir_foreach_function(ctx->s, function) {
+               compile_assert(ctx, strcmp(function->name, "main") == 0);
+               compile_assert(ctx, function->impl);
+               fxn = function->impl;
+               break;
+       }
+
+       ninputs  = exec_list_length(&ctx->s->inputs) * 4;
+       noutputs = exec_list_length(&ctx->s->outputs) * 4;
 
-       /* we need to allocate big enough outputs array so that
-        * we can stuff the kill's at the end.  Likewise for vtx
-        * shaders, we need to leave room for sysvals:
+       /* or vtx shaders, we need to leave room for sysvals:
         */
-       if (ctx->so->type == SHADER_FRAGMENT) {
-               noutputs += ARRAY_SIZE(ctx->kill);
-       } else if (ctx->so->type == SHADER_VERTEX) {
+       if (ctx->so->type == SHADER_VERTEX) {
                ninputs += 8;
        }
 
-       ctx->block = ir3_block_create(ctx->ir, 0, ninputs, noutputs);
+       ctx->ir = ir3_create(ctx->compiler, ninputs, noutputs);
 
-       if (ctx->so->type == SHADER_FRAGMENT) {
-               ctx->block->noutputs -= ARRAY_SIZE(ctx->kill);
-       } else if (ctx->so->type == SHADER_VERTEX) {
-               ctx->block->ninputs -= 8;
+       /* Create inputs in first block: */
+       ctx->block = get_block(ctx, nir_start_block(fxn));
+       ctx->in_block = ctx->block;
+       list_addtail(&ctx->block->node, &ctx->ir->block_list);
+
+       if (ctx->so->type == SHADER_VERTEX) {
+               ctx->ir->ninputs -= 8;
        }
 
        /* for fragment shader, we have a single input register (usually
@@ -1813,27 +2320,26 @@ emit_instructions(struct ir3_compile *ctx)
        }
 
        /* Setup inputs: */
-       foreach_list_typed(nir_variable, var, node, &ctx->s->inputs) {
+       nir_foreach_variable(var, &ctx->s->inputs) {
                setup_input(ctx, var);
        }
 
        /* Setup outputs: */
-       foreach_list_typed(nir_variable, var, node, &ctx->s->outputs) {
+       nir_foreach_variable(var, &ctx->s->outputs) {
                setup_output(ctx, var);
        }
 
        /* Setup variables (which should only be arrays): */
-       foreach_list_typed(nir_variable, var, node, &ctx->s->globals) {
+       nir_foreach_variable(var, &ctx->s->globals) {
                declare_var(ctx, var);
        }
 
-       /* Find the main function and emit the body: */
-       nir_foreach_overload(ctx->s, overload) {
-               compile_assert(ctx, strcmp(overload->function->name, "main") == 0);
-               compile_assert(ctx, overload->impl);
-               emit_function(ctx, overload->impl);
-               if (ctx->error)
-                       return;
+       /* And emit the body: */
+       ctx->impl = fxn;
+       emit_function(ctx, fxn);
+
+       list_for_each_entry (struct ir3_block, block, &ctx->ir->block_list, node) {
+               resolve_phis(ctx, block);
        }
 }
 
@@ -1846,12 +2352,12 @@ static void
 fixup_frag_inputs(struct ir3_compile *ctx)
 {
        struct ir3_shader_variant *so = ctx->so;
-       struct ir3_block *block = ctx->block;
+       struct ir3 *ir = ctx->ir;
        struct ir3_instruction **inputs;
        struct ir3_instruction *instr;
        int n, regid = 0;
 
-       block->ninputs = 0;
+       ir->ninputs = 0;
 
        n  = 4;  /* always have frag_pos */
        n += COND(so->frag_face, 4);
@@ -1863,15 +2369,15 @@ fixup_frag_inputs(struct ir3_compile *ctx)
                /* this ultimately gets assigned to hr0.x so doesn't conflict
                 * with frag_coord/frag_pos..
                 */
-               inputs[block->ninputs++] = ctx->frag_face;
+               inputs[ir->ninputs++] = ctx->frag_face;
                ctx->frag_face->regs[0]->num = 0;
 
                /* remaining channels not used, but let's avoid confusing
                 * other parts that expect inputs to come in groups of vec4
                 */
-               inputs[block->ninputs++] = NULL;
-               inputs[block->ninputs++] = NULL;
-               inputs[block->ninputs++] = NULL;
+               inputs[ir->ninputs++] = NULL;
+               inputs[ir->ninputs++] = NULL;
+               inputs[ir->ninputs++] = NULL;
        }
 
        /* since we don't know where to set the regid for frag_coord,
@@ -1885,47 +2391,43 @@ fixup_frag_inputs(struct ir3_compile *ctx)
                ctx->frag_coord[2]->regs[0]->num = regid++;
                ctx->frag_coord[3]->regs[0]->num = regid++;
 
-               inputs[block->ninputs++] = ctx->frag_coord[0];
-               inputs[block->ninputs++] = ctx->frag_coord[1];
-               inputs[block->ninputs++] = ctx->frag_coord[2];
-               inputs[block->ninputs++] = ctx->frag_coord[3];
+               inputs[ir->ninputs++] = ctx->frag_coord[0];
+               inputs[ir->ninputs++] = ctx->frag_coord[1];
+               inputs[ir->ninputs++] = ctx->frag_coord[2];
+               inputs[ir->ninputs++] = ctx->frag_coord[3];
        }
 
        /* we always have frag_pos: */
        so->pos_regid = regid;
 
        /* r0.x */
-       instr = create_input(block, NULL, block->ninputs);
+       instr = create_input(ctx->in_block, ir->ninputs);
        instr->regs[0]->num = regid++;
-       inputs[block->ninputs++] = instr;
+       inputs[ir->ninputs++] = instr;
        ctx->frag_pos->regs[1]->instr = instr;
 
        /* r0.y */
-       instr = create_input(block, NULL, block->ninputs);
+       instr = create_input(ctx->in_block, ir->ninputs);
        instr->regs[0]->num = regid++;
-       inputs[block->ninputs++] = instr;
+       inputs[ir->ninputs++] = instr;
        ctx->frag_pos->regs[2]->instr = instr;
 
-       block->inputs = inputs;
+       ir->inputs = inputs;
 }
 
 int
-ir3_compile_shader_nir(struct ir3_shader_variant *so,
-               const struct tgsi_token *tokens, struct ir3_shader_key key)
+ir3_compile_shader_nir(struct ir3_compiler *compiler,
+               struct ir3_shader_variant *so)
 {
        struct ir3_compile *ctx;
-       struct ir3_block *block;
+       struct ir3 *ir;
        struct ir3_instruction **inputs;
-       unsigned i, j, actual_in;
+       unsigned i, j, actual_in, inloc;
        int ret = 0, max_bary;
 
        assert(!so->ir);
 
-       so->ir = ir3_create();
-
-       assert(so->ir);
-
-       ctx = compile_init(so, tokens);
+       ctx = compile_init(compiler, so);
        if (!ctx) {
                DBG("INIT failed!");
                ret = -1;
@@ -1940,86 +2442,85 @@ ir3_compile_shader_nir(struct ir3_shader_variant *so,
                goto out;
        }
 
-       block = ctx->block;
-       so->ir->block = block;
+       ir = so->ir = ctx->ir;
 
        /* keep track of the inputs from TGSI perspective.. */
-       inputs = block->inputs;
+       inputs = ir->inputs;
 
        /* but fixup actual inputs for frag shader: */
        if (so->type == SHADER_FRAGMENT)
                fixup_frag_inputs(ctx);
 
        /* at this point, for binning pass, throw away unneeded outputs: */
-       if (key.binning_pass) {
+       if (so->key.binning_pass) {
                for (i = 0, j = 0; i < so->outputs_count; i++) {
-                       unsigned name = sem2name(so->outputs[i].semantic);
-                       unsigned idx = sem2idx(so->outputs[i].semantic);
+                       unsigned slot = so->outputs[i].slot;
 
                        /* throw away everything but first position/psize */
-                       if ((idx == 0) && ((name == TGSI_SEMANTIC_POSITION) ||
-                                       (name == TGSI_SEMANTIC_PSIZE))) {
+                       if ((slot == VARYING_SLOT_POS) || (slot == VARYING_SLOT_PSIZ)) {
                                if (i != j) {
                                        so->outputs[j] = so->outputs[i];
-                                       block->outputs[(j*4)+0] = block->outputs[(i*4)+0];
-                                       block->outputs[(j*4)+1] = block->outputs[(i*4)+1];
-                                       block->outputs[(j*4)+2] = block->outputs[(i*4)+2];
-                                       block->outputs[(j*4)+3] = block->outputs[(i*4)+3];
+                                       ir->outputs[(j*4)+0] = ir->outputs[(i*4)+0];
+                                       ir->outputs[(j*4)+1] = ir->outputs[(i*4)+1];
+                                       ir->outputs[(j*4)+2] = ir->outputs[(i*4)+2];
+                                       ir->outputs[(j*4)+3] = ir->outputs[(i*4)+3];
                                }
                                j++;
                        }
                }
                so->outputs_count = j;
-               block->noutputs = j * 4;
+               ir->noutputs = j * 4;
        }
 
        /* if we want half-precision outputs, mark the output registers
         * as half:
         */
-       if (key.half_precision) {
-               for (i = 0; i < block->noutputs; i++) {
-                       if (!block->outputs[i])
+       if (so->key.half_precision) {
+               for (i = 0; i < ir->noutputs; i++) {
+                       struct ir3_instruction *out = ir->outputs[i];
+                       if (!out)
                                continue;
-                       block->outputs[i]->regs[0]->flags |= IR3_REG_HALF;
-               }
-       }
+                       out->regs[0]->flags |= IR3_REG_HALF;
+                       /* output could be a fanout (ie. texture fetch output)
+                        * in which case we need to propagate the half-reg flag
+                        * up to the definer so that RA sees it:
+                        */
+                       if (is_meta(out) && (out->opc == OPC_META_FO)) {
+                               out = out->regs[1]->instr;
+                               out->regs[0]->flags |= IR3_REG_HALF;
+                       }
 
-       /* at this point, we want the kill's in the outputs array too,
-        * so that they get scheduled (since they have no dst).. we've
-        * already ensured that the array is big enough in push_block():
-        */
-       if (so->type == SHADER_FRAGMENT) {
-               for (i = 0; i < ctx->kill_count; i++)
-                       block->outputs[block->noutputs++] = ctx->kill[i];
+                       if (out->category == 1) {
+                               out->cat1.dst_type = half_type(out->cat1.dst_type);
+                       }
+               }
        }
 
        if (fd_mesa_debug & FD_DBG_OPTMSGS) {
                printf("BEFORE CP:\n");
-               ir3_print(so->ir);
+               ir3_print(ir);
        }
 
-       ir3_block_depth(block);
-
-       ir3_block_cp(block);
+       ir3_cp(ir);
 
        if (fd_mesa_debug & FD_DBG_OPTMSGS) {
                printf("BEFORE GROUPING:\n");
-               ir3_print(so->ir);
+               ir3_print(ir);
        }
 
        /* Group left/right neighbors, inserting mov's where needed to
         * solve conflicts:
         */
-       ir3_block_group(block);
+       ir3_group(ir);
 
-       ir3_block_depth(block);
+       ir3_depth(ir);
 
        if (fd_mesa_debug & FD_DBG_OPTMSGS) {
                printf("AFTER DEPTH:\n");
-               ir3_print(so->ir);
+               ir3_print(ir);
        }
 
-       ret = ir3_block_sched(block);
+       ret = ir3_sched(ir);
        if (ret) {
                DBG("SCHED failed!");
                goto out;
@@ -2027,10 +2528,10 @@ ir3_compile_shader_nir(struct ir3_shader_variant *so,
 
        if (fd_mesa_debug & FD_DBG_OPTMSGS) {
                printf("AFTER SCHED:\n");
-               ir3_print(so->ir);
+               ir3_print(ir);
        }
 
-       ret = ir3_block_ra(block, so->type, so->frag_coord, so->frag_face);
+       ret = ir3_ra(ir, so->type, so->frag_coord, so->frag_face);
        if (ret) {
                DBG("RA failed!");
                goto out;
@@ -2038,54 +2539,67 @@ ir3_compile_shader_nir(struct ir3_shader_variant *so,
 
        if (fd_mesa_debug & FD_DBG_OPTMSGS) {
                printf("AFTER RA:\n");
-               ir3_print(so->ir);
+               ir3_print(ir);
        }
 
-       ir3_block_legalize(block, &so->has_samp, &max_bary);
-
        /* fixup input/outputs: */
        for (i = 0; i < so->outputs_count; i++) {
-               so->outputs[i].regid = block->outputs[i*4]->regs[0]->num;
+               so->outputs[i].regid = ir->outputs[i*4]->regs[0]->num;
                /* preserve hack for depth output.. tgsi writes depth to .z,
                 * but what we give the hw is the scalar register:
                 */
                if ((so->type == SHADER_FRAGMENT) &&
-                       (sem2name(so->outputs[i].semantic) == TGSI_SEMANTIC_POSITION))
+                       (so->outputs[i].slot == FRAG_RESULT_DEPTH))
                        so->outputs[i].regid += 2;
        }
 
        /* Note that some or all channels of an input may be unused: */
        actual_in = 0;
+       inloc = 0;
        for (i = 0; i < so->inputs_count; i++) {
                unsigned j, regid = ~0, compmask = 0;
                so->inputs[i].ncomp = 0;
+               so->inputs[i].inloc = inloc + 8;
                for (j = 0; j < 4; j++) {
                        struct ir3_instruction *in = inputs[(i*4) + j];
-                       if (in) {
+                       if (in && !(in->flags & IR3_INSTR_UNUSED)) {
                                compmask |= (1 << j);
                                regid = in->regs[0]->num - j;
                                actual_in++;
                                so->inputs[i].ncomp++;
+                               if ((so->type == SHADER_FRAGMENT) && so->inputs[i].bary) {
+                                       /* assign inloc: */
+                                       assert(in->regs[1]->flags & IR3_REG_IMMED);
+                                       in->regs[1]->iim_val = inloc++;
+                               }
                        }
                }
+               if ((so->type == SHADER_FRAGMENT) && compmask && so->inputs[i].bary)
+                       so->varying_in++;
                so->inputs[i].regid = regid;
                so->inputs[i].compmask = compmask;
        }
 
-       /* fragment shader always gets full vec4's even if it doesn't
-        * fetch all components, but vertex shader we need to update
-        * with the actual number of components fetch, otherwise thing
-        * will hang due to mismaptch between VFD_DECODE's and
-        * TOTALATTRTOVS
+       /* We need to do legalize after (for frag shader's) the "bary.f"
+        * offsets (inloc) have been assigned.
         */
+       ir3_legalize(ir, &so->has_samp, &max_bary);
+
+       if (fd_mesa_debug & FD_DBG_OPTMSGS) {
+               printf("AFTER LEGALIZE:\n");
+               ir3_print(ir);
+       }
+
+       /* Note that actual_in counts inputs that are not bary.f'd for FS: */
        if (so->type == SHADER_VERTEX)
                so->total_in = actual_in;
        else
-               so->total_in = align(max_bary + 1, 4);
+               so->total_in = max_bary + 1;
 
 out:
        if (ret) {
-               ir3_destroy(so->ir);
+               if (so->ir)
+                       ir3_destroy(so->ir);
                so->ir = NULL;
        }
        compile_free(ctx);