etnaviv: update Android build files
[mesa.git] / src / gallium / drivers / radeonsi / gfx10_shader_ngg.c
index f5774b217ef1804dd7ec5b7685ec03d22b21cd3e..63439733507e2dfe3349b4089c6a180f2ceb3476 100644 (file)
 #include "sid.h"
 
 #include "util/u_memory.h"
+#include "util/u_prim.h"
+#include "ac_llvm_cull.h"
 
 static LLVMValueRef get_wave_id_in_tg(struct si_shader_context *ctx)
 {
-       return si_unpack_param(ctx, ctx->param_merged_wave_info, 24, 4);
+       return si_unpack_param(ctx, ctx->merged_wave_info, 24, 4);
+}
+
+static LLVMValueRef get_tgsize(struct si_shader_context *ctx)
+{
+       return si_unpack_param(ctx, ctx->merged_wave_info, 28, 4);
+}
+
+static LLVMValueRef get_thread_id_in_tg(struct si_shader_context *ctx)
+{
+       LLVMBuilderRef builder = ctx->ac.builder;
+       LLVMValueRef tmp;
+       tmp = LLVMBuildMul(builder, get_wave_id_in_tg(ctx),
+                          LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, false), "");
+       return LLVMBuildAdd(builder, tmp, ac_get_thread_id(&ctx->ac), "");
 }
 
 static LLVMValueRef ngg_get_vtx_cnt(struct si_shader_context *ctx)
 {
-       return ac_build_bfe(&ctx->ac, ctx->gs_tg_info,
-                           LLVMConstInt(ctx->ac.i32, 12, false),
-                           LLVMConstInt(ctx->ac.i32, 9, false),
-                           false);
+       return si_unpack_param(ctx, ctx->gs_tg_info, 12, 9);
 }
 
 static LLVMValueRef ngg_get_prim_cnt(struct si_shader_context *ctx)
 {
-       return ac_build_bfe(&ctx->ac, ctx->gs_tg_info,
-                           LLVMConstInt(ctx->ac.i32, 22, false),
-                           LLVMConstInt(ctx->ac.i32, 9, false),
-                           false);
+       return si_unpack_param(ctx, ctx->gs_tg_info, 22, 9);
+}
+
+static LLVMValueRef ngg_get_ordered_id(struct si_shader_context *ctx)
+{
+       return si_unpack_param(ctx, ctx->gs_tg_info, 0, 12);
+}
+
+static LLVMValueRef ngg_get_query_buf(struct si_shader_context *ctx)
+{
+       LLVMValueRef buf_ptr = ac_get_arg(&ctx->ac, ctx->rw_buffers);
+
+       return ac_build_load_to_sgpr(&ctx->ac, buf_ptr,
+                                    LLVMConstInt(ctx->ac.i32, GFX10_GS_QUERY_BUF, false));
+}
+
+static LLVMValueRef ngg_get_initial_edgeflag(struct si_shader_context *ctx, unsigned index)
+{
+       if (ctx->type == PIPE_SHADER_VERTEX) {
+               LLVMValueRef tmp;
+               tmp = LLVMBuildLShr(ctx->ac.builder,
+                                   ac_get_arg(&ctx->ac, ctx->args.gs_invocation_id),
+                                   LLVMConstInt(ctx->ac.i32, 8 + index, false), "");
+               return LLVMBuildTrunc(ctx->ac.builder, tmp, ctx->ac.i1, "");
+       }
+       return ctx->ac.i1false;
 }
 
-/* Send GS Alloc Req message from the first wave of the group to SPI.
- * Message payload is:
- * - bits 0..10: vertices in group
- * - bits 12..22: primitives in group
+/**
+ * Return the number of vertices as a constant in \p num_vertices,
+ * and return a more precise value as LLVMValueRef from the function.
  */
-static void build_sendmsg_gs_alloc_req(struct si_shader_context *ctx,
-                                      LLVMValueRef vtx_cnt,
-                                      LLVMValueRef prim_cnt)
+static LLVMValueRef ngg_get_vertices_per_prim(struct si_shader_context *ctx,
+                                             unsigned *num_vertices)
+{
+       const struct si_shader_info *info = &ctx->shader->selector->info;
+
+       if (ctx->type == PIPE_SHADER_VERTEX) {
+               if (info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD]) {
+                       /* Blits always use axis-aligned rectangles with 3 vertices. */
+                       *num_vertices = 3;
+                       return LLVMConstInt(ctx->ac.i32, 3, 0);
+               } else {
+                       /* We always build up all three indices for the prim export
+                        * independent of the primitive type. The additional garbage
+                        * data shouldn't hurt. This number doesn't matter with
+                        * NGG passthrough.
+                        */
+                       *num_vertices = 3;
+
+                       /* Extract OUTPRIM field. */
+                       LLVMValueRef num = si_unpack_param(ctx, ctx->vs_state_bits, 2, 2);
+                       return LLVMBuildAdd(ctx->ac.builder, num, ctx->ac.i32_1, "");
+               }
+       } else {
+               assert(ctx->type == PIPE_SHADER_TESS_EVAL);
+
+               if (info->properties[TGSI_PROPERTY_TES_POINT_MODE])
+                       *num_vertices = 1;
+               else if (info->properties[TGSI_PROPERTY_TES_PRIM_MODE] == PIPE_PRIM_LINES)
+                       *num_vertices = 2;
+               else
+                       *num_vertices = 3;
+
+               return LLVMConstInt(ctx->ac.i32, *num_vertices, false);
+       }
+}
+
+bool gfx10_ngg_export_prim_early(struct si_shader *shader)
+{
+       struct si_shader_selector *sel = shader->selector;
+
+       assert(shader->key.as_ngg && !shader->key.as_es);
+
+       return sel->type != PIPE_SHADER_GEOMETRY &&
+              !sel->info.writes_edgeflag;
+}
+
+void gfx10_ngg_build_sendmsg_gs_alloc_req(struct si_shader_context *ctx)
+{
+       ac_build_sendmsg_gs_alloc_req(&ctx->ac, get_wave_id_in_tg(ctx),
+                                     ngg_get_vtx_cnt(ctx),
+                                     ngg_get_prim_cnt(ctx));
+}
+
+void gfx10_ngg_build_export_prim(struct si_shader_context *ctx,
+                                LLVMValueRef user_edgeflags[3],
+                                LLVMValueRef prim_passthrough)
 {
        LLVMBuilderRef builder = ctx->ac.builder;
+
+       if (gfx10_is_ngg_passthrough(ctx->shader) ||
+           ctx->shader->key.opt.ngg_culling) {
+               ac_build_ifcc(&ctx->ac, si_is_gs_thread(ctx), 6001);
+               {
+                       struct ac_ngg_prim prim = {};
+
+                       if (prim_passthrough)
+                               prim.passthrough = prim_passthrough;
+                       else
+                               prim.passthrough = ac_get_arg(&ctx->ac, ctx->gs_vtx01_offset);
+
+                       /* This is only used with NGG culling, which returns the NGG
+                        * passthrough prim export encoding.
+                        */
+                       if (ctx->shader->selector->info.writes_edgeflag) {
+                               unsigned all_bits_no_edgeflags = ~SI_NGG_PRIM_EDGE_FLAG_BITS;
+                               LLVMValueRef edgeflags = LLVMConstInt(ctx->ac.i32, all_bits_no_edgeflags, 0);
+
+                               unsigned num_vertices;
+                               ngg_get_vertices_per_prim(ctx, &num_vertices);
+
+                               for (unsigned i = 0; i < num_vertices; i++) {
+                                       unsigned shift = 9 + i*10;
+                                       LLVMValueRef edge;
+
+                                       edge = LLVMBuildLoad(builder, user_edgeflags[i], "");
+                                       edge = LLVMBuildZExt(builder, edge, ctx->ac.i32, "");
+                                       edge = LLVMBuildShl(builder, edge, LLVMConstInt(ctx->ac.i32, shift, 0), "");
+                                       edgeflags = LLVMBuildOr(builder, edgeflags, edge, "");
+                               }
+                               prim.passthrough = LLVMBuildAnd(builder, prim.passthrough, edgeflags, "");
+                       }
+
+                       ac_build_export_prim(&ctx->ac, &prim);
+               }
+               ac_build_endif(&ctx->ac, 6001);
+               return;
+       }
+
+       ac_build_ifcc(&ctx->ac, si_is_gs_thread(ctx), 6001);
+       {
+               struct ac_ngg_prim prim = {};
+
+               ngg_get_vertices_per_prim(ctx, &prim.num_vertices);
+
+               prim.isnull = ctx->ac.i1false;
+               prim.index[0] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 0, 16);
+               prim.index[1] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 16, 16);
+               prim.index[2] = si_unpack_param(ctx, ctx->gs_vtx23_offset, 0, 16);
+
+               for (unsigned i = 0; i < prim.num_vertices; ++i) {
+                       prim.edgeflag[i] = ngg_get_initial_edgeflag(ctx, i);
+
+                       if (ctx->shader->selector->info.writes_edgeflag) {
+                               LLVMValueRef edge;
+
+                               edge = LLVMBuildLoad(ctx->ac.builder, user_edgeflags[i], "");
+                               edge = LLVMBuildAnd(ctx->ac.builder, prim.edgeflag[i], edge, "");
+                               prim.edgeflag[i] = edge;
+                       }
+               }
+
+               ac_build_export_prim(&ctx->ac, &prim);
+       }
+       ac_build_endif(&ctx->ac, 6001);
+}
+
+static void build_streamout_vertex(struct si_shader_context *ctx,
+                                  LLVMValueRef *so_buffer, LLVMValueRef *wg_offset_dw,
+                                  unsigned stream, LLVMValueRef offset_vtx,
+                                  LLVMValueRef vertexptr)
+{
+       struct si_shader_info *info = &ctx->shader->selector->info;
+       struct pipe_stream_output_info *so = &ctx->shader->selector->so;
+       LLVMBuilderRef builder = ctx->ac.builder;
+       LLVMValueRef offset[4] = {};
        LLVMValueRef tmp;
 
+       for (unsigned buffer = 0; buffer < 4; ++buffer) {
+               if (!wg_offset_dw[buffer])
+                       continue;
+
+               tmp = LLVMBuildMul(builder, offset_vtx,
+                                  LLVMConstInt(ctx->ac.i32, so->stride[buffer], false), "");
+               tmp = LLVMBuildAdd(builder, wg_offset_dw[buffer], tmp, "");
+               offset[buffer] = LLVMBuildShl(builder, tmp, LLVMConstInt(ctx->ac.i32, 2, false), "");
+       }
+
+       for (unsigned i = 0; i < so->num_outputs; ++i) {
+               if (so->output[i].stream != stream)
+                       continue;
+
+               unsigned reg = so->output[i].register_index;
+               struct si_shader_output_values out;
+               out.semantic_name = info->output_semantic_name[reg];
+               out.semantic_index = info->output_semantic_index[reg];
+
+               for (unsigned comp = 0; comp < 4; comp++) {
+                       tmp = ac_build_gep0(&ctx->ac, vertexptr,
+                                           LLVMConstInt(ctx->ac.i32, 4 * reg + comp, false));
+                       out.values[comp] = LLVMBuildLoad(builder, tmp, "");
+                       out.vertex_stream[comp] =
+                               (info->output_streams[reg] >> (2 * comp)) & 3;
+               }
+
+               si_llvm_streamout_store_output(ctx, so_buffer, offset, &so->output[i], &out);
+       }
+}
+
+struct ngg_streamout {
+       LLVMValueRef num_vertices;
+
+       /* per-thread data */
+       LLVMValueRef prim_enable[4]; /* i1 per stream */
+       LLVMValueRef vertices[3]; /* [N x i32] addrspace(LDS)* */
+
+       /* Output */
+       LLVMValueRef emit[4]; /* per-stream emitted primitives (only valid for used streams) */
+};
+
+/**
+ * Build streamout logic.
+ *
+ * Implies a barrier.
+ *
+ * Writes number of emitted primitives to gs_ngg_scratch[4:8].
+ *
+ * Clobbers gs_ngg_scratch[8:].
+ */
+static void build_streamout(struct si_shader_context *ctx,
+                           struct ngg_streamout *nggso)
+{
+       struct si_shader_info *info = &ctx->shader->selector->info;
+       struct pipe_stream_output_info *so = &ctx->shader->selector->so;
+       LLVMBuilderRef builder = ctx->ac.builder;
+       LLVMValueRef buf_ptr = ac_get_arg(&ctx->ac, ctx->rw_buffers);
+       LLVMValueRef tid = get_thread_id_in_tg(ctx);
+       LLVMValueRef tmp, tmp2;
+       LLVMValueRef i32_2 = LLVMConstInt(ctx->ac.i32, 2, false);
+       LLVMValueRef i32_4 = LLVMConstInt(ctx->ac.i32, 4, false);
+       LLVMValueRef i32_8 = LLVMConstInt(ctx->ac.i32, 8, false);
+       LLVMValueRef so_buffer[4] = {};
+       unsigned max_num_vertices = 1 + (nggso->vertices[1] ? 1 : 0) +
+                                       (nggso->vertices[2] ? 1 : 0);
+       LLVMValueRef prim_stride_dw[4] = {};
+       LLVMValueRef prim_stride_dw_vgpr = LLVMGetUndef(ctx->ac.i32);
+       int stream_for_buffer[4] = { -1, -1, -1, -1 };
+       unsigned bufmask_for_stream[4] = {};
+       bool isgs = ctx->type == PIPE_SHADER_GEOMETRY;
+       unsigned scratch_emit_base = isgs ? 4 : 0;
+       LLVMValueRef scratch_emit_basev = isgs ? i32_4 : ctx->ac.i32_0;
+       unsigned scratch_offset_base = isgs ? 8 : 4;
+       LLVMValueRef scratch_offset_basev = isgs ? i32_8 : i32_4;
+
+       ac_llvm_add_target_dep_function_attr(ctx->main_fn, "amdgpu-gds-size", 256);
+
+       /* Determine the mapping of streamout buffers to vertex streams. */
+       for (unsigned i = 0; i < so->num_outputs; ++i) {
+               unsigned buf = so->output[i].output_buffer;
+               unsigned stream = so->output[i].stream;
+               assert(stream_for_buffer[buf] < 0 || stream_for_buffer[buf] == stream);
+               stream_for_buffer[buf] = stream;
+               bufmask_for_stream[stream] |= 1 << buf;
+       }
+
+       for (unsigned buffer = 0; buffer < 4; ++buffer) {
+               if (stream_for_buffer[buffer] == -1)
+                       continue;
+
+               assert(so->stride[buffer]);
+
+               tmp = LLVMConstInt(ctx->ac.i32, so->stride[buffer], false);
+               prim_stride_dw[buffer] = LLVMBuildMul(builder, tmp, nggso->num_vertices, "");
+               prim_stride_dw_vgpr = ac_build_writelane(
+                       &ctx->ac, prim_stride_dw_vgpr, prim_stride_dw[buffer],
+                       LLVMConstInt(ctx->ac.i32, buffer, false));
+
+               so_buffer[buffer] = ac_build_load_to_sgpr(
+                       &ctx->ac, buf_ptr,
+                       LLVMConstInt(ctx->ac.i32, SI_VS_STREAMOUT_BUF0 + buffer, false));
+       }
+
        tmp = LLVMBuildICmp(builder, LLVMIntEQ, get_wave_id_in_tg(ctx), ctx->ac.i32_0, "");
-       ac_build_ifcc(&ctx->ac, tmp, 5020);
+       ac_build_ifcc(&ctx->ac, tmp, 5200);
+       {
+               LLVMTypeRef gdsptr = LLVMPointerType(ctx->ac.i32, AC_ADDR_SPACE_GDS);
+               LLVMValueRef gdsbase = LLVMBuildIntToPtr(builder, ctx->ac.i32_0, gdsptr, "");
+
+               /* Advance the streamout offsets in GDS. */
+               LLVMValueRef offsets_vgpr = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, "");
+               LLVMValueRef generated_by_stream_vgpr = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, "");
+
+               tmp = LLVMBuildICmp(builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), i32_4, "");
+               ac_build_ifcc(&ctx->ac, tmp, 5210);
+               {
+                       if (isgs) {
+                               tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tid);
+                               tmp = LLVMBuildLoad(builder, tmp, "");
+                       } else {
+                               tmp = ac_build_writelane(&ctx->ac, ctx->ac.i32_0,
+                                               ngg_get_prim_cnt(ctx), ctx->ac.i32_0);
+                       }
+                       LLVMBuildStore(builder, tmp, generated_by_stream_vgpr);
+
+                       unsigned swizzle[4];
+                       int unused_stream = -1;
+                       for (unsigned stream = 0; stream < 4; ++stream) {
+                               if (!info->num_stream_output_components[stream]) {
+                                       unused_stream = stream;
+                                       break;
+                               }
+                       }
+                       for (unsigned buffer = 0; buffer < 4; ++buffer) {
+                               if (stream_for_buffer[buffer] >= 0) {
+                                       swizzle[buffer] = stream_for_buffer[buffer];
+                               } else {
+                                       assert(unused_stream >= 0);
+                                       swizzle[buffer] = unused_stream;
+                               }
+                       }
+
+                       tmp = ac_build_quad_swizzle(&ctx->ac, tmp,
+                               swizzle[0], swizzle[1], swizzle[2], swizzle[3]);
+                       tmp = LLVMBuildMul(builder, tmp, prim_stride_dw_vgpr, "");
+
+                       LLVMValueRef args[] = {
+                               LLVMBuildIntToPtr(builder, ngg_get_ordered_id(ctx), gdsptr, ""),
+                               tmp,
+                               ctx->ac.i32_0, // ordering
+                               ctx->ac.i32_0, // scope
+                               ctx->ac.i1false, // isVolatile
+                               LLVMConstInt(ctx->ac.i32, 4 << 24, false), // OA index
+                               ctx->ac.i1true, // wave release
+                               ctx->ac.i1true, // wave done
+                       };
+                       tmp = ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.ds.ordered.add",
+                                                ctx->ac.i32, args, ARRAY_SIZE(args), 0);
+
+                       /* Keep offsets in a VGPR for quick retrieval via readlane by
+                        * the first wave for bounds checking, and also store in LDS
+                        * for retrieval by all waves later. */
+                       LLVMBuildStore(builder, tmp, offsets_vgpr);
+
+                       tmp2 = LLVMBuildAdd(builder, ac_get_thread_id(&ctx->ac),
+                                           scratch_offset_basev, "");
+                       tmp2 = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tmp2);
+                       LLVMBuildStore(builder, tmp, tmp2);
+               }
+               ac_build_endif(&ctx->ac, 5210);
+
+               /* Determine the max emit per buffer. This is done via the SALU, in part
+                * because LLVM can't generate divide-by-multiply if we try to do this
+                * via VALU with one lane per buffer.
+                */
+               LLVMValueRef max_emit[4] = {};
+               for (unsigned buffer = 0; buffer < 4; ++buffer) {
+                       if (stream_for_buffer[buffer] == -1)
+                               continue;
+
+                       LLVMValueRef bufsize_dw =
+                               LLVMBuildLShr(builder,
+                                       LLVMBuildExtractElement(builder, so_buffer[buffer], i32_2, ""),
+                                       i32_2, "");
+
+                       tmp = LLVMBuildLoad(builder, offsets_vgpr, "");
+                       LLVMValueRef offset_dw =
+                               ac_build_readlane(&ctx->ac, tmp,
+                                               LLVMConstInt(ctx->ac.i32, buffer, false));
 
-       tmp = LLVMBuildShl(builder, prim_cnt, LLVMConstInt(ctx->ac.i32, 12, false),"");
-       tmp = LLVMBuildOr(builder, tmp, vtx_cnt, "");
-       ac_build_sendmsg(&ctx->ac, AC_SENDMSG_GS_ALLOC_REQ, tmp);
+                       tmp = LLVMBuildSub(builder, bufsize_dw, offset_dw, "");
+                       tmp = LLVMBuildUDiv(builder, tmp, prim_stride_dw[buffer], "");
+
+                       tmp2 = LLVMBuildICmp(builder, LLVMIntULT, bufsize_dw, offset_dw, "");
+                       max_emit[buffer] = LLVMBuildSelect(builder, tmp2, ctx->ac.i32_0, tmp, "");
+               }
+
+               /* Determine the number of emitted primitives per stream and fixup the
+                * GDS counter if necessary.
+                *
+                * This is complicated by the fact that a single stream can emit to
+                * multiple buffers (but luckily not vice versa).
+                */
+               LLVMValueRef emit_vgpr = ctx->ac.i32_0;
+
+               for (unsigned stream = 0; stream < 4; ++stream) {
+                       if (!info->num_stream_output_components[stream])
+                               continue;
+
+                       tmp = LLVMBuildLoad(builder, generated_by_stream_vgpr, "");
+                       LLVMValueRef generated =
+                               ac_build_readlane(&ctx->ac, tmp,
+                                                 LLVMConstInt(ctx->ac.i32, stream, false));
+
+                       LLVMValueRef emit = generated;
+                       for (unsigned buffer = 0; buffer < 4; ++buffer) {
+                               if (stream_for_buffer[buffer] == stream)
+                                       emit = ac_build_umin(&ctx->ac, emit, max_emit[buffer]);
+                       }
+
+                       emit_vgpr = ac_build_writelane(&ctx->ac, emit_vgpr, emit,
+                                                      LLVMConstInt(ctx->ac.i32, stream, false));
+
+                       /* Fixup the offset using a plain GDS atomic if we overflowed. */
+                       tmp = LLVMBuildICmp(builder, LLVMIntULT, emit, generated, "");
+                       ac_build_ifcc(&ctx->ac, tmp, 5221); /* scalar branch */
+                       tmp = LLVMBuildLShr(builder,
+                                           LLVMConstInt(ctx->ac.i32, bufmask_for_stream[stream], false),
+                                           ac_get_thread_id(&ctx->ac), "");
+                       tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
+                       ac_build_ifcc(&ctx->ac, tmp, 5222);
+                       {
+                               tmp = LLVMBuildSub(builder, generated, emit, "");
+                               tmp = LLVMBuildMul(builder, tmp, prim_stride_dw_vgpr, "");
+                               tmp2 = LLVMBuildGEP(builder, gdsbase, &tid, 1, "");
+                               LLVMBuildAtomicRMW(builder, LLVMAtomicRMWBinOpSub, tmp2, tmp,
+                                                  LLVMAtomicOrderingMonotonic, false);
+                       }
+                       ac_build_endif(&ctx->ac, 5222);
+                       ac_build_endif(&ctx->ac, 5221);
+               }
+
+               tmp = LLVMBuildICmp(builder, LLVMIntULT, ac_get_thread_id(&ctx->ac), i32_4, "");
+               ac_build_ifcc(&ctx->ac, tmp, 5225);
+               {
+                       tmp = LLVMBuildAdd(builder, ac_get_thread_id(&ctx->ac),
+                                          scratch_emit_basev, "");
+                       tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tmp);
+                       LLVMBuildStore(builder, emit_vgpr, tmp);
+               }
+               ac_build_endif(&ctx->ac, 5225);
+       }
+       ac_build_endif(&ctx->ac, 5200);
+
+       /* Determine the workgroup-relative per-thread / primitive offset into
+        * the streamout buffers */
+       struct ac_wg_scan primemit_scan[4] = {};
+
+       if (isgs) {
+               for (unsigned stream = 0; stream < 4; ++stream) {
+                       if (!info->num_stream_output_components[stream])
+                               continue;
+
+                       primemit_scan[stream].enable_exclusive = true;
+                       primemit_scan[stream].op = nir_op_iadd;
+                       primemit_scan[stream].src = nggso->prim_enable[stream];
+                       primemit_scan[stream].scratch =
+                               ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch,
+                                       LLVMConstInt(ctx->ac.i32, 12 + 8 * stream, false));
+                       primemit_scan[stream].waveidx = get_wave_id_in_tg(ctx);
+                       primemit_scan[stream].numwaves = get_tgsize(ctx);
+                       primemit_scan[stream].maxwaves = 8;
+                       ac_build_wg_scan_top(&ctx->ac, &primemit_scan[stream]);
+               }
+       }
+
+       ac_build_s_barrier(&ctx->ac);
+
+       /* Fetch the per-buffer offsets and per-stream emit counts in all waves. */
+       LLVMValueRef wgoffset_dw[4] = {};
+
+       {
+               LLVMValueRef scratch_vgpr;
+
+               tmp = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, ac_get_thread_id(&ctx->ac));
+               scratch_vgpr = LLVMBuildLoad(builder, tmp, "");
+
+               for (unsigned buffer = 0; buffer < 4; ++buffer) {
+                       if (stream_for_buffer[buffer] >= 0) {
+                               wgoffset_dw[buffer] = ac_build_readlane(
+                                       &ctx->ac, scratch_vgpr,
+                                       LLVMConstInt(ctx->ac.i32, scratch_offset_base + buffer, false));
+                       }
+               }
+
+               for (unsigned stream = 0; stream < 4; ++stream) {
+                       if (info->num_stream_output_components[stream]) {
+                               nggso->emit[stream] = ac_build_readlane(
+                                       &ctx->ac, scratch_vgpr,
+                                       LLVMConstInt(ctx->ac.i32, scratch_emit_base + stream, false));
+                       }
+               }
+       }
+
+       /* Write out primitive data */
+       for (unsigned stream = 0; stream < 4; ++stream) {
+               if (!info->num_stream_output_components[stream])
+                       continue;
+
+               if (isgs) {
+                       ac_build_wg_scan_bottom(&ctx->ac, &primemit_scan[stream]);
+               } else {
+                       primemit_scan[stream].result_exclusive = tid;
+               }
+
+               tmp = LLVMBuildICmp(builder, LLVMIntULT,
+                                   primemit_scan[stream].result_exclusive,
+                                   nggso->emit[stream], "");
+               tmp = LLVMBuildAnd(builder, tmp, nggso->prim_enable[stream], "");
+               ac_build_ifcc(&ctx->ac, tmp, 5240);
+               {
+                       LLVMValueRef offset_vtx =
+                               LLVMBuildMul(builder, primemit_scan[stream].result_exclusive,
+                                            nggso->num_vertices, "");
+
+                       for (unsigned i = 0; i < max_num_vertices; ++i) {
+                               tmp = LLVMBuildICmp(builder, LLVMIntULT,
+                                                   LLVMConstInt(ctx->ac.i32, i, false),
+                                                   nggso->num_vertices, "");
+                               ac_build_ifcc(&ctx->ac, tmp, 5241);
+                               build_streamout_vertex(ctx, so_buffer, wgoffset_dw,
+                                                      stream, offset_vtx, nggso->vertices[i]);
+                               ac_build_endif(&ctx->ac, 5241);
+                               offset_vtx = LLVMBuildAdd(builder, offset_vtx, ctx->ac.i32_1, "");
+                       }
+               }
+               ac_build_endif(&ctx->ac, 5240);
+       }
+}
+
+/* LDS layout of ES vertex data for NGG culling. */
+enum {
+       /* Byte 0: Boolean ES thread accepted (unculled) flag, and later the old
+        *         ES thread ID. After vertex compaction, compacted ES threads
+        *         store the old thread ID here to copy input VGPRs from uncompacted
+        *         ES threads.
+        * Byte 1: New ES thread ID, loaded by GS to prepare the prim export value.
+        * Byte 2: TES rel patch ID
+        * Byte 3: Unused
+        */
+       lds_byte0_accept_flag = 0,
+       lds_byte0_old_thread_id = 0,
+       lds_byte1_new_thread_id,
+       lds_byte2_tes_rel_patch_id,
+       lds_byte3_unused,
+
+       lds_packed_data = 0, /* lds_byteN_... */
+
+       lds_pos_x,
+       lds_pos_y,
+       lds_pos_z,
+       lds_pos_w,
+       lds_pos_x_div_w,
+       lds_pos_y_div_w,
+       /* If VS: */
+       lds_vertex_id,
+       lds_instance_id, /* optional */
+       /* If TES: */
+       lds_tes_u = lds_vertex_id,
+       lds_tes_v = lds_instance_id,
+       lds_tes_patch_id, /* optional */
+};
+
+static LLVMValueRef si_build_gep_i8(struct si_shader_context *ctx,
+                                   LLVMValueRef ptr, unsigned byte_index)
+{
+       assert(byte_index < 4);
+       LLVMTypeRef pi8 = LLVMPointerType(ctx->ac.i8, AC_ADDR_SPACE_LDS);
+       LLVMValueRef index = LLVMConstInt(ctx->ac.i32, byte_index, 0);
+
+       return LLVMBuildGEP(ctx->ac.builder,
+                           LLVMBuildPointerCast(ctx->ac.builder, ptr, pi8, ""),
+                           &index, 1, "");
+}
+
+static unsigned ngg_nogs_vertex_size(struct si_shader *shader)
+{
+       unsigned lds_vertex_size = 0;
+
+       /* The edgeflag is always stored in the last element that's also
+        * used for padding to reduce LDS bank conflicts. */
+       if (shader->selector->so.num_outputs)
+               lds_vertex_size = 4 * shader->selector->info.num_outputs + 1;
+       if (shader->selector->info.writes_edgeflag)
+               lds_vertex_size = MAX2(lds_vertex_size, 1);
+
+       /* LDS size for passing data from GS to ES.
+        * GS stores Primitive IDs into LDS at the address corresponding
+        * to the ES thread of the provoking vertex. All ES threads
+        * load and export PrimitiveID for their thread.
+        */
+       if (shader->selector->type == PIPE_SHADER_VERTEX &&
+           shader->key.mono.u.vs_export_prim_id)
+               lds_vertex_size = MAX2(lds_vertex_size, 1);
+
+       if (shader->key.opt.ngg_culling) {
+               if (shader->selector->type == PIPE_SHADER_VERTEX) {
+                       STATIC_ASSERT(lds_instance_id + 1 == 9);
+                       lds_vertex_size = MAX2(lds_vertex_size, 9);
+               } else {
+                       assert(shader->selector->type == PIPE_SHADER_TESS_EVAL);
+
+                       if (shader->selector->info.uses_primid ||
+                           shader->key.mono.u.vs_export_prim_id) {
+                               STATIC_ASSERT(lds_tes_patch_id + 2 == 11);
+                               lds_vertex_size = MAX2(lds_vertex_size, 11);
+                       } else {
+                               STATIC_ASSERT(lds_tes_v + 1 == 9);
+                               lds_vertex_size = MAX2(lds_vertex_size, 9);
+                       }
+               }
+       }
+
+       return lds_vertex_size;
+}
+
+/**
+ * Returns an `[N x i32] addrspace(LDS)*` pointing at contiguous LDS storage
+ * for the vertex outputs.
+ */
+static LLVMValueRef ngg_nogs_vertex_ptr(struct si_shader_context *ctx,
+                                       LLVMValueRef vtxid)
+{
+       /* The extra dword is used to avoid LDS bank conflicts. */
+       unsigned vertex_size = ngg_nogs_vertex_size(ctx->shader);
+       LLVMTypeRef ai32 = LLVMArrayType(ctx->ac.i32, vertex_size);
+       LLVMTypeRef pai32 = LLVMPointerType(ai32, AC_ADDR_SPACE_LDS);
+       LLVMValueRef tmp = LLVMBuildBitCast(ctx->ac.builder, ctx->esgs_ring, pai32, "");
+       return LLVMBuildGEP(ctx->ac.builder, tmp, &vtxid, 1, "");
+}
+
+static LLVMValueRef si_insert_input_v4i32(struct si_shader_context *ctx,
+                                         LLVMValueRef ret, struct ac_arg param,
+                                         unsigned return_index)
+{
+       LLVMValueRef v = ac_get_arg(&ctx->ac, param);
+
+       for (unsigned i = 0; i < 4; i++) {
+               ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
+                                          ac_llvm_extract_elem(&ctx->ac, v, i),
+                                          return_index + i, "");
+       }
+       return ret;
+}
+
+static void load_bitmasks_2x64(struct si_shader_context *ctx,
+                              LLVMValueRef lds_ptr, unsigned dw_offset,
+                              LLVMValueRef mask[2], LLVMValueRef *total_bitcount)
+{
+       LLVMBuilderRef builder = ctx->ac.builder;
+       LLVMValueRef ptr64 = LLVMBuildPointerCast(builder, lds_ptr,
+                                                 LLVMPointerType(LLVMArrayType(ctx->ac.i64, 2),
+                                                                 AC_ADDR_SPACE_LDS), "");
+       for (unsigned i = 0; i < 2; i++) {
+               LLVMValueRef index = LLVMConstInt(ctx->ac.i32, dw_offset / 2 + i, 0);
+               mask[i] = LLVMBuildLoad(builder, ac_build_gep0(&ctx->ac, ptr64, index), "");
+       }
+
+       /* We get better code if we don't use the 128-bit bitcount. */
+       *total_bitcount = LLVMBuildAdd(builder, ac_build_bit_count(&ctx->ac, mask[0]),
+                                      ac_build_bit_count(&ctx->ac, mask[1]), "");
+}
+
+/**
+ * Given a total thread count, update total and per-wave thread counts in input SGPRs
+ * and return the per-wave thread count.
+ *
+ * \param new_num_threads    Total thread count on the input, per-wave thread count on the output.
+ * \param tg_info           tg_info SGPR value
+ * \param tg_info_num_bits   the bit size of thread count field in tg_info
+ * \param tg_info_shift      the bit offset of the thread count field in tg_info
+ * \param wave_info          merged_wave_info SGPR value
+ * \param wave_info_num_bits the bit size of thread count field in merged_wave_info
+ * \param wave_info_shift    the bit offset of the thread count field in merged_wave_info
+ */
+static void update_thread_counts(struct si_shader_context *ctx,
+                                LLVMValueRef *new_num_threads,
+                                LLVMValueRef *tg_info,
+                                unsigned tg_info_num_bits,
+                                unsigned tg_info_shift,
+                                LLVMValueRef *wave_info,
+                                unsigned wave_info_num_bits,
+                                unsigned wave_info_shift)
+{
+       LLVMBuilderRef builder = ctx->ac.builder;
+
+       /* Update the total thread count. */
+       unsigned tg_info_mask = ~(u_bit_consecutive(0, tg_info_num_bits) << tg_info_shift);
+       *tg_info = LLVMBuildAnd(builder, *tg_info,
+                               LLVMConstInt(ctx->ac.i32, tg_info_mask, 0), "");
+       *tg_info = LLVMBuildOr(builder, *tg_info,
+                              LLVMBuildShl(builder, *new_num_threads,
+                                           LLVMConstInt(ctx->ac.i32, tg_info_shift, 0), ""), "");
+
+       /* Update the per-wave thread count. */
+       LLVMValueRef prev_threads = LLVMBuildMul(builder, get_wave_id_in_tg(ctx),
+                                                LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, 0), "");
+       *new_num_threads = LLVMBuildSub(builder, *new_num_threads, prev_threads, "");
+       *new_num_threads = ac_build_imax(&ctx->ac, *new_num_threads, ctx->ac.i32_0);
+       *new_num_threads = ac_build_imin(&ctx->ac, *new_num_threads,
+                                       LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, 0));
+       unsigned wave_info_mask = ~(u_bit_consecutive(0, wave_info_num_bits) << wave_info_shift);
+       *wave_info = LLVMBuildAnd(builder, *wave_info,
+                                 LLVMConstInt(ctx->ac.i32, wave_info_mask, 0), "");
+       *wave_info = LLVMBuildOr(builder, *wave_info,
+                                LLVMBuildShl(builder, *new_num_threads,
+                                             LLVMConstInt(ctx->ac.i32, wave_info_shift, 0), ""), "");
+}
+
+/**
+ * Cull primitives for NGG VS or TES, then compact vertices, which happens
+ * before the VS or TES main function. Return values for the main function.
+ * Also return the position, which is passed to the shader as an input,
+ * so that we don't compute it twice.
+ */
+void gfx10_emit_ngg_culling_epilogue_4x_wave32(struct ac_shader_abi *abi,
+                                              unsigned max_outputs,
+                                              LLVMValueRef *addrs)
+{
+       struct si_shader_context *ctx = si_shader_context_from_abi(abi);
+       struct si_shader *shader = ctx->shader;
+       struct si_shader_selector *sel = shader->selector;
+       struct si_shader_info *info = &sel->info;
+       LLVMBuilderRef builder = ctx->ac.builder;
+
+       assert(shader->key.opt.ngg_culling);
+       assert(shader->key.as_ngg);
+       assert(sel->type == PIPE_SHADER_VERTEX ||
+              (sel->type == PIPE_SHADER_TESS_EVAL && !shader->key.as_es));
+
+       LLVMValueRef position[4] = {};
+       for (unsigned i = 0; i < info->num_outputs; i++) {
+               switch (info->output_semantic_name[i]) {
+               case TGSI_SEMANTIC_POSITION:
+                       for (unsigned j = 0; j < 4; j++) {
+                               position[j] = LLVMBuildLoad(ctx->ac.builder,
+                                                           addrs[4 * i + j], "");
+                       }
+                       break;
+               }
+       }
+       assert(position[0]);
+
+       /* Store Position.XYZW into LDS. */
+       LLVMValueRef es_vtxptr = ngg_nogs_vertex_ptr(ctx, get_thread_id_in_tg(ctx));
+       for (unsigned chan = 0; chan < 4; chan++) {
+               LLVMBuildStore(builder, ac_to_integer(&ctx->ac, position[chan]),
+                               ac_build_gep0(&ctx->ac, es_vtxptr,
+                                             LLVMConstInt(ctx->ac.i32, lds_pos_x + chan, 0)));
+       }
+       /* Store Position.XY / W into LDS. */
+       for (unsigned chan = 0; chan < 2; chan++) {
+               LLVMValueRef val = ac_build_fdiv(&ctx->ac, position[chan], position[3]);
+               LLVMBuildStore(builder, ac_to_integer(&ctx->ac, val),
+                               ac_build_gep0(&ctx->ac, es_vtxptr,
+                                             LLVMConstInt(ctx->ac.i32, lds_pos_x_div_w + chan, 0)));
+       }
+
+       /* Store VertexID and InstanceID. ES threads will have to load them
+        * from LDS after vertex compaction and use them instead of their own
+        * system values.
+        */
+       bool uses_instance_id = false;
+       bool uses_tes_prim_id = false;
+       LLVMValueRef packed_data = ctx->ac.i32_0;
+
+       if (ctx->type == PIPE_SHADER_VERTEX) {
+               uses_instance_id = sel->info.uses_instanceid ||
+                                  shader->key.part.vs.prolog.instance_divisor_is_one ||
+                                  shader->key.part.vs.prolog.instance_divisor_is_fetched;
+
+               LLVMBuildStore(builder, ctx->abi.vertex_id,
+                              ac_build_gep0(&ctx->ac, es_vtxptr,
+                                            LLVMConstInt(ctx->ac.i32, lds_vertex_id, 0)));
+               if (uses_instance_id) {
+                       LLVMBuildStore(builder, ctx->abi.instance_id,
+                                      ac_build_gep0(&ctx->ac, es_vtxptr,
+                                                    LLVMConstInt(ctx->ac.i32, lds_instance_id, 0)));
+               }
+       } else {
+               uses_tes_prim_id = sel->info.uses_primid ||
+                                  shader->key.mono.u.vs_export_prim_id;
+
+               assert(ctx->type == PIPE_SHADER_TESS_EVAL);
+               LLVMBuildStore(builder, ac_to_integer(&ctx->ac, ac_get_arg(&ctx->ac, ctx->tes_u)),
+                              ac_build_gep0(&ctx->ac, es_vtxptr,
+                                            LLVMConstInt(ctx->ac.i32, lds_tes_u, 0)));
+               LLVMBuildStore(builder, ac_to_integer(&ctx->ac, ac_get_arg(&ctx->ac, ctx->tes_v)),
+                              ac_build_gep0(&ctx->ac, es_vtxptr,
+                                            LLVMConstInt(ctx->ac.i32, lds_tes_v, 0)));
+               packed_data = LLVMBuildShl(builder, ac_get_arg(&ctx->ac, ctx->tes_rel_patch_id),
+                                          LLVMConstInt(ctx->ac.i32, lds_byte2_tes_rel_patch_id * 8, 0), "");
+               if (uses_tes_prim_id) {
+                       LLVMBuildStore(builder, ac_get_arg(&ctx->ac, ctx->args.tes_patch_id),
+                                      ac_build_gep0(&ctx->ac, es_vtxptr,
+                                                    LLVMConstInt(ctx->ac.i32, lds_tes_patch_id, 0)));
+               }
+       }
+       /* Initialize the packed data. */
+       LLVMBuildStore(builder, packed_data,
+                      ac_build_gep0(&ctx->ac, es_vtxptr,
+                                    LLVMConstInt(ctx->ac.i32, lds_packed_data, 0)));
+       ac_build_endif(&ctx->ac, ctx->merged_wrap_if_label);
+
+       LLVMValueRef tid = ac_get_thread_id(&ctx->ac);
+
+       /* Initialize the last 3 gs_ngg_scratch dwords to 0, because we may have less
+        * than 4 waves, but we always read all 4 values. This is where the thread
+        * bitmasks of unculled threads will be stored.
+        *
+        * gs_ngg_scratch layout: esmask[0..3]
+        */
+       ac_build_ifcc(&ctx->ac,
+                     LLVMBuildICmp(builder, LLVMIntULT, get_thread_id_in_tg(ctx),
+                                   LLVMConstInt(ctx->ac.i32, 3, 0), ""), 16101);
+       {
+               LLVMValueRef index = LLVMBuildAdd(builder, tid, ctx->ac.i32_1, "");
+               LLVMBuildStore(builder, ctx->ac.i32_0,
+                              ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, index));
+       }
+       ac_build_endif(&ctx->ac, 16101);
+       ac_build_s_barrier(&ctx->ac);
+
+       /* The hardware requires that there are no holes between unculled vertices,
+        * which means we have to pack ES threads, i.e. reduce the ES thread count
+        * and move ES input VGPRs to lower threads. The upside is that varyings
+        * are only fetched and computed for unculled vertices.
+        *
+        * Vertex compaction in GS threads:
+        *
+        * Part 1: Compute the surviving vertex mask in GS threads:
+        * - Compute 4 32-bit surviving vertex masks in LDS. (max 4 waves)
+        *   - In GS, notify ES threads whether the vertex survived.
+        *   - Barrier
+        *   - ES threads will create the mask and store it in LDS.
+        * - Barrier
+        * - Each GS thread loads the vertex masks from LDS.
+        *
+        * Part 2: Compact ES threads in GS threads:
+        * - Compute the prefix sum for all 3 vertices from the masks. These are the new
+        *   thread IDs for each vertex within the primitive.
+        * - Write the value of the old thread ID into the LDS address of the new thread ID.
+        *   The ES thread will load the old thread ID and use it to load the position, VertexID,
+        *   and InstanceID.
+        * - Update vertex indices and null flag in the GS input VGPRs.
+        * - Barrier
+        *
+        * Part 3: Update inputs GPRs
+        * - For all waves, update per-wave thread counts in input SGPRs.
+        * - In ES threads, update the ES input VGPRs (VertexID, InstanceID, TES inputs).
+        */
+
+       LLVMValueRef vtxindex[3];
+       if (shader->key.opt.ngg_culling & SI_NGG_CULL_GS_FAST_LAUNCH_ALL) {
+               /* For the GS fast launch, the VS prologs simply puts the Vertex IDs
+                * into these VGPRs.
+                */
+               vtxindex[0] = ac_get_arg(&ctx->ac, ctx->gs_vtx01_offset);
+               vtxindex[1] = ac_get_arg(&ctx->ac, ctx->gs_vtx23_offset);
+               vtxindex[2] = ac_get_arg(&ctx->ac, ctx->gs_vtx45_offset);
+       } else {
+               vtxindex[0] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 0, 16);
+               vtxindex[1] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 16, 16);
+               vtxindex[2] = si_unpack_param(ctx, ctx->gs_vtx23_offset, 0, 16);
+       };
+       LLVMValueRef gs_vtxptr[] = {
+               ngg_nogs_vertex_ptr(ctx, vtxindex[0]),
+               ngg_nogs_vertex_ptr(ctx, vtxindex[1]),
+               ngg_nogs_vertex_ptr(ctx, vtxindex[2]),
+       };
+       es_vtxptr = ngg_nogs_vertex_ptr(ctx, get_thread_id_in_tg(ctx));
+
+       LLVMValueRef gs_accepted = ac_build_alloca(&ctx->ac, ctx->ac.i32, "");
+
+       /* Do culling in GS threads. */
+       ac_build_ifcc(&ctx->ac, si_is_gs_thread(ctx), 16002);
+       {
+               /* Load positions. */
+               LLVMValueRef pos[3][4] = {};
+               for (unsigned vtx = 0; vtx < 3; vtx++) {
+                       for (unsigned chan = 0; chan < 4; chan++) {
+                               unsigned index;
+                               if (chan == 0 || chan == 1)
+                                       index = lds_pos_x_div_w + chan;
+                               else if (chan == 3)
+                                       index = lds_pos_w;
+                               else
+                                       continue;
+
+                               LLVMValueRef addr = ac_build_gep0(&ctx->ac, gs_vtxptr[vtx],
+                                                                 LLVMConstInt(ctx->ac.i32, index, 0));
+                               pos[vtx][chan] = LLVMBuildLoad(builder, addr, "");
+                               pos[vtx][chan] = ac_to_float(&ctx->ac, pos[vtx][chan]);
+                       }
+               }
+
+               /* Load the viewport state for small prim culling. */
+               LLVMValueRef vp = ac_build_load_invariant(&ctx->ac,
+                                                         ac_get_arg(&ctx->ac, ctx->small_prim_cull_info),
+                                                         ctx->ac.i32_0);
+               vp = LLVMBuildBitCast(builder, vp, ctx->ac.v4f32, "");
+               LLVMValueRef vp_scale[2], vp_translate[2];
+               vp_scale[0] = ac_llvm_extract_elem(&ctx->ac, vp, 0);
+               vp_scale[1] = ac_llvm_extract_elem(&ctx->ac, vp, 1);
+               vp_translate[0] = ac_llvm_extract_elem(&ctx->ac, vp, 2);
+               vp_translate[1] = ac_llvm_extract_elem(&ctx->ac, vp, 3);
+
+               /* Get the small prim filter precision. */
+               LLVMValueRef small_prim_precision = si_unpack_param(ctx, ctx->vs_state_bits, 7, 4);
+               small_prim_precision = LLVMBuildOr(builder, small_prim_precision,
+                                                  LLVMConstInt(ctx->ac.i32, 0x70, 0), "");
+               small_prim_precision = LLVMBuildShl(builder, small_prim_precision,
+                                                   LLVMConstInt(ctx->ac.i32, 23, 0), "");
+               small_prim_precision = LLVMBuildBitCast(builder, small_prim_precision, ctx->ac.f32, "");
+
+               /* Execute culling code. */
+               struct ac_cull_options options = {};
+               options.cull_front = shader->key.opt.ngg_culling & SI_NGG_CULL_FRONT_FACE;
+               options.cull_back = shader->key.opt.ngg_culling & SI_NGG_CULL_BACK_FACE;
+               options.cull_view_xy = shader->key.opt.ngg_culling & SI_NGG_CULL_VIEW_SMALLPRIMS;
+               options.cull_small_prims = options.cull_view_xy;
+               options.cull_zero_area = options.cull_front || options.cull_back;
+               options.cull_w = true;
+
+               /* Tell ES threads whether their vertex survived. */
+               ac_build_ifcc(&ctx->ac, ac_cull_triangle(&ctx->ac, pos, ctx->ac.i1true,
+                                                        vp_scale, vp_translate,
+                                                        small_prim_precision, &options), 16003);
+               {
+                       LLVMBuildStore(builder, ctx->ac.i32_1, gs_accepted);
+                       for (unsigned vtx = 0; vtx < 3; vtx++) {
+                               LLVMBuildStore(builder, ctx->ac.i8_1,
+                                              si_build_gep_i8(ctx, gs_vtxptr[vtx], lds_byte0_accept_flag));
+                       }
+               }
+               ac_build_endif(&ctx->ac, 16003);
+       }
+       ac_build_endif(&ctx->ac, 16002);
+       ac_build_s_barrier(&ctx->ac);
+
+       gs_accepted = LLVMBuildLoad(builder, gs_accepted, "");
+
+       LLVMValueRef es_accepted = ac_build_alloca(&ctx->ac, ctx->ac.i1, "");
+
+       /* Convert the per-vertex flag to a thread bitmask in ES threads and store it in LDS. */
+       ac_build_ifcc(&ctx->ac, si_is_es_thread(ctx), 16007);
+       {
+               LLVMValueRef es_accepted_flag =
+                       LLVMBuildLoad(builder,
+                                     si_build_gep_i8(ctx, es_vtxptr, lds_byte0_accept_flag), "");
+
+               LLVMValueRef es_accepted_bool = LLVMBuildICmp(builder, LLVMIntNE,
+                                                             es_accepted_flag, ctx->ac.i8_0, "");
+               LLVMValueRef es_mask = ac_get_i1_sgpr_mask(&ctx->ac, es_accepted_bool);
+
+               LLVMBuildStore(builder, es_accepted_bool, es_accepted);
+
+               ac_build_ifcc(&ctx->ac, LLVMBuildICmp(builder, LLVMIntEQ,
+                                                     tid, ctx->ac.i32_0, ""), 16008);
+               {
+                       LLVMBuildStore(builder, es_mask,
+                                      ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch,
+                                                    get_wave_id_in_tg(ctx)));
+               }
+               ac_build_endif(&ctx->ac, 16008);
+       }
+       ac_build_endif(&ctx->ac, 16007);
+       ac_build_s_barrier(&ctx->ac);
+
+       /* Load the vertex masks and compute the new ES thread count. */
+       LLVMValueRef es_mask[2], new_num_es_threads, kill_wave;
+       load_bitmasks_2x64(ctx, ctx->gs_ngg_scratch, 0, es_mask, &new_num_es_threads);
+       new_num_es_threads = ac_build_readlane_no_opt_barrier(&ctx->ac, new_num_es_threads, NULL);
+
+       /* ES threads compute their prefix sum, which is the new ES thread ID.
+        * Then they write the value of the old thread ID into the LDS address
+        * of the new thread ID. It will be used it to load input VGPRs from
+        * the old thread's LDS location.
+        */
+       ac_build_ifcc(&ctx->ac, LLVMBuildLoad(builder, es_accepted, ""), 16009);
+       {
+               LLVMValueRef old_id = get_thread_id_in_tg(ctx);
+               LLVMValueRef new_id = ac_prefix_bitcount_2x64(&ctx->ac, es_mask, old_id);
+
+               LLVMBuildStore(builder, LLVMBuildTrunc(builder, old_id, ctx->ac.i8, ""),
+                              si_build_gep_i8(ctx, ngg_nogs_vertex_ptr(ctx, new_id),
+                                              lds_byte0_old_thread_id));
+               LLVMBuildStore(builder, LLVMBuildTrunc(builder, new_id, ctx->ac.i8, ""),
+                              si_build_gep_i8(ctx, es_vtxptr, lds_byte1_new_thread_id));
+       }
+       ac_build_endif(&ctx->ac, 16009);
+
+       /* Kill waves that have inactive threads. */
+       kill_wave = LLVMBuildICmp(builder, LLVMIntULE,
+                                 ac_build_imax(&ctx->ac, new_num_es_threads, ngg_get_prim_cnt(ctx)),
+                                 LLVMBuildMul(builder, get_wave_id_in_tg(ctx),
+                                              LLVMConstInt(ctx->ac.i32, ctx->ac.wave_size, 0), ""), "");
+       ac_build_ifcc(&ctx->ac, kill_wave, 19202);
+       {
+               /* If we are killing wave 0, send that there are no primitives
+                * in this threadgroup.
+                */
+               ac_build_sendmsg_gs_alloc_req(&ctx->ac, get_wave_id_in_tg(ctx),
+                                             ctx->ac.i32_0, ctx->ac.i32_0);
+               ac_build_s_endpgm(&ctx->ac);
+       }
+       ac_build_endif(&ctx->ac, 19202);
+       ac_build_s_barrier(&ctx->ac);
+
+       /* Send the final vertex and primitive counts. */
+       ac_build_sendmsg_gs_alloc_req(&ctx->ac, get_wave_id_in_tg(ctx),
+                                     new_num_es_threads, ngg_get_prim_cnt(ctx));
+
+       /* Update thread counts in SGPRs. */
+       LLVMValueRef new_gs_tg_info = ac_get_arg(&ctx->ac, ctx->gs_tg_info);
+       LLVMValueRef new_merged_wave_info = ac_get_arg(&ctx->ac, ctx->merged_wave_info);
+
+       /* This also converts the thread count from the total count to the per-wave count. */
+       update_thread_counts(ctx, &new_num_es_threads, &new_gs_tg_info, 9, 12,
+                            &new_merged_wave_info, 8, 0);
+
+       /* Update vertex indices in VGPR0 (same format as NGG passthrough). */
+       LLVMValueRef new_vgpr0 = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, "");
+
+       /* Set the null flag at the beginning (culled), and then
+        * overwrite it for accepted primitives.
+        */
+       LLVMBuildStore(builder, LLVMConstInt(ctx->ac.i32, 1u << 31, 0), new_vgpr0);
+
+       /* Get vertex indices after vertex compaction. */
+       ac_build_ifcc(&ctx->ac, LLVMBuildTrunc(builder, gs_accepted, ctx->ac.i1, ""), 16011);
+       {
+               struct ac_ngg_prim prim = {};
+               prim.num_vertices = 3;
+               prim.isnull = ctx->ac.i1false;
+
+               for (unsigned vtx = 0; vtx < 3; vtx++) {
+                       prim.index[vtx] =
+                               LLVMBuildLoad(builder,
+                                             si_build_gep_i8(ctx, gs_vtxptr[vtx],
+                                                             lds_byte1_new_thread_id), "");
+                       prim.index[vtx] = LLVMBuildZExt(builder, prim.index[vtx], ctx->ac.i32, "");
+                       prim.edgeflag[vtx] = ngg_get_initial_edgeflag(ctx, vtx);
+               }
+
+               /* Set the new GS input VGPR. */
+               LLVMBuildStore(builder, ac_pack_prim_export(&ctx->ac, &prim), new_vgpr0);
+       }
+       ac_build_endif(&ctx->ac, 16011);
+
+       if (gfx10_ngg_export_prim_early(shader))
+               gfx10_ngg_build_export_prim(ctx, NULL, LLVMBuildLoad(builder, new_vgpr0, ""));
+
+       /* Set the new ES input VGPRs. */
+       LLVMValueRef es_data[4];
+       LLVMValueRef old_thread_id = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, "");
+
+       for (unsigned i = 0; i < 4; i++)
+               es_data[i] = ac_build_alloca_undef(&ctx->ac, ctx->ac.i32, "");
+
+       ac_build_ifcc(&ctx->ac, LLVMBuildICmp(ctx->ac.builder, LLVMIntULT, tid,
+                                             new_num_es_threads, ""), 16012);
+       {
+               LLVMValueRef old_id, old_es_vtxptr, tmp;
+
+               /* Load ES input VGPRs from the ES thread before compaction. */
+               old_id = LLVMBuildLoad(builder,
+                                      si_build_gep_i8(ctx, es_vtxptr, lds_byte0_old_thread_id), "");
+               old_id = LLVMBuildZExt(builder, old_id, ctx->ac.i32, "");
+
+               LLVMBuildStore(builder, old_id, old_thread_id);
+               old_es_vtxptr = ngg_nogs_vertex_ptr(ctx, old_id);
+
+               for (unsigned i = 0; i < 2; i++) {
+                       tmp = LLVMBuildLoad(builder,
+                                           ac_build_gep0(&ctx->ac, old_es_vtxptr,
+                                                         LLVMConstInt(ctx->ac.i32, lds_vertex_id + i, 0)), "");
+                       LLVMBuildStore(builder, tmp, es_data[i]);
+               }
+
+               if (ctx->type == PIPE_SHADER_TESS_EVAL) {
+                       tmp = LLVMBuildLoad(builder,
+                                           si_build_gep_i8(ctx, old_es_vtxptr,
+                                                           lds_byte2_tes_rel_patch_id), "");
+                       tmp = LLVMBuildZExt(builder, tmp, ctx->ac.i32, "");
+                       LLVMBuildStore(builder, tmp, es_data[2]);
+
+                       if (uses_tes_prim_id) {
+                               tmp = LLVMBuildLoad(builder,
+                                                   ac_build_gep0(&ctx->ac, old_es_vtxptr,
+                                                                 LLVMConstInt(ctx->ac.i32, lds_tes_patch_id, 0)), "");
+                               LLVMBuildStore(builder, tmp, es_data[3]);
+                       }
+               }
+       }
+       ac_build_endif(&ctx->ac, 16012);
+
+       /* Return values for the main function. */
+       LLVMValueRef ret = ctx->return_value;
+       LLVMValueRef val;
+
+       ret = LLVMBuildInsertValue(ctx->ac.builder, ret, new_gs_tg_info, 2, "");
+       ret = LLVMBuildInsertValue(ctx->ac.builder, ret, new_merged_wave_info, 3, "");
+       if (ctx->type == PIPE_SHADER_TESS_EVAL)
+               ret = si_insert_input_ret(ctx, ret, ctx->tcs_offchip_offset, 4);
+
+       ret = si_insert_input_ptr(ctx, ret, ctx->rw_buffers,
+                                 8 + SI_SGPR_RW_BUFFERS);
+       ret = si_insert_input_ptr(ctx, ret,
+                                 ctx->bindless_samplers_and_images,
+                                 8 + SI_SGPR_BINDLESS_SAMPLERS_AND_IMAGES);
+       ret = si_insert_input_ptr(ctx, ret,
+                                 ctx->const_and_shader_buffers,
+                                 8 + SI_SGPR_CONST_AND_SHADER_BUFFERS);
+       ret = si_insert_input_ptr(ctx, ret,
+                                 ctx->samplers_and_images,
+                                 8 + SI_SGPR_SAMPLERS_AND_IMAGES);
+       ret = si_insert_input_ptr(ctx, ret, ctx->vs_state_bits,
+                                 8 + SI_SGPR_VS_STATE_BITS);
+
+       if (ctx->type == PIPE_SHADER_VERTEX) {
+               ret = si_insert_input_ptr(ctx, ret, ctx->args.base_vertex,
+                                         8 + SI_SGPR_BASE_VERTEX);
+               ret = si_insert_input_ptr(ctx, ret, ctx->args.start_instance,
+                                         8 + SI_SGPR_START_INSTANCE);
+               ret = si_insert_input_ptr(ctx, ret, ctx->args.draw_id,
+                                         8 + SI_SGPR_DRAWID);
+               ret = si_insert_input_ptr(ctx, ret, ctx->vertex_buffers,
+                                         8 + SI_VS_NUM_USER_SGPR);
 
-       ac_build_endif(&ctx->ac, 5020);
-}
+               for (unsigned i = 0; i < shader->selector->num_vbos_in_user_sgprs; i++) {
+                       ret = si_insert_input_v4i32(ctx, ret, ctx->vb_descriptors[i],
+                                                   8 + SI_SGPR_VS_VB_DESCRIPTOR_FIRST + i * 4);
+               }
+       } else {
+               assert(ctx->type == PIPE_SHADER_TESS_EVAL);
+               ret = si_insert_input_ptr(ctx, ret, ctx->tcs_offchip_layout,
+                                         8 + SI_SGPR_TES_OFFCHIP_LAYOUT);
+               ret = si_insert_input_ptr(ctx, ret, ctx->tes_offchip_addr,
+                                         8 + SI_SGPR_TES_OFFCHIP_ADDR);
+       }
 
-struct ngg_prim {
-       unsigned num_vertices;
-       LLVMValueRef isnull;
-       LLVMValueRef index[3];
-       LLVMValueRef edgeflag[3];
-};
+       unsigned vgpr;
+       if (ctx->type == PIPE_SHADER_VERTEX) {
+               if (shader->selector->num_vbos_in_user_sgprs) {
+                       vgpr = 8 + SI_SGPR_VS_VB_DESCRIPTOR_FIRST +
+                              shader->selector->num_vbos_in_user_sgprs * 4;
+               } else {
+                       vgpr = 8 + GFX9_VSGS_NUM_USER_SGPR + 1;
+               }
+       } else {
+               vgpr = 8 + GFX9_TESGS_NUM_USER_SGPR;
+       }
 
-static void build_export_prim(struct si_shader_context *ctx,
-                             const struct ngg_prim *prim)
-{
-       LLVMBuilderRef builder = ctx->ac.builder;
-       struct ac_export_args args;
-       LLVMValueRef tmp;
+       val = LLVMBuildLoad(builder, new_vgpr0, "");
+       ret = LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, val),
+                                  vgpr++, "");
+       vgpr++; /* gs_vtx23_offset */
 
-       tmp = LLVMBuildZExt(builder, prim->isnull, ctx->ac.i32, "");
-       args.out[0] = LLVMBuildShl(builder, tmp, LLVMConstInt(ctx->ac.i32, 31, false), "");
+       ret = si_insert_input_ret_float(ctx, ret, ctx->args.gs_prim_id, vgpr++);
+       ret = si_insert_input_ret_float(ctx, ret, ctx->args.gs_invocation_id, vgpr++);
+       vgpr++; /* gs_vtx45_offset */
 
-       for (unsigned i = 0; i < prim->num_vertices; ++i) {
-               tmp = LLVMBuildShl(builder, prim->index[i],
-                                  LLVMConstInt(ctx->ac.i32, 10 * i, false), "");
-               args.out[0] = LLVMBuildOr(builder, args.out[0], tmp, "");
-               tmp = LLVMBuildZExt(builder, prim->edgeflag[i], ctx->ac.i32, "");
-               tmp = LLVMBuildShl(builder, tmp,
-                                  LLVMConstInt(ctx->ac.i32, 10 * i + 9, false), "");
-               args.out[0] = LLVMBuildOr(builder, args.out[0], tmp, "");
+       if (ctx->type == PIPE_SHADER_VERTEX) {
+               val = LLVMBuildLoad(builder, es_data[0], "");
+               ret = LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, val),
+                                          vgpr++, ""); /* VGPR5 - VertexID */
+               vgpr += 2;
+               if (uses_instance_id) {
+                       val = LLVMBuildLoad(builder, es_data[1], "");
+                       ret = LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, val),
+                                                  vgpr++, ""); /* VGPR8 - InstanceID */
+               } else {
+                       vgpr++;
+               }
+       } else {
+               assert(ctx->type == PIPE_SHADER_TESS_EVAL);
+               unsigned num_vgprs = uses_tes_prim_id ? 4 : 3;
+               for (unsigned i = 0; i < num_vgprs; i++) {
+                       val = LLVMBuildLoad(builder, es_data[i], "");
+                       ret = LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, val),
+                                                  vgpr++, "");
+               }
+               if (num_vgprs == 3)
+                       vgpr++;
        }
+       /* Return the old thread ID. */
+       val = LLVMBuildLoad(builder, old_thread_id, "");
+       ret = LLVMBuildInsertValue(builder, ret, ac_to_float(&ctx->ac, val), vgpr++, "");
 
-       args.out[0] = LLVMBuildBitCast(builder, args.out[0], ctx->ac.f32, "");
-       args.out[1] = LLVMGetUndef(ctx->ac.f32);
-       args.out[2] = LLVMGetUndef(ctx->ac.f32);
-       args.out[3] = LLVMGetUndef(ctx->ac.f32);
-
-       args.target = V_008DFC_SQ_EXP_PRIM;
-       args.enabled_channels = 1;
-       args.done = true;
-       args.valid_mask = false;
-       args.compr = false;
+       /* These two also use LDS. */
+       if (sel->info.writes_edgeflag ||
+           (ctx->type == PIPE_SHADER_VERTEX && shader->key.mono.u.vs_export_prim_id))
+               ac_build_s_barrier(&ctx->ac);
 
-       ac_build_export(&ctx->ac, &args);
+       ctx->return_value = ret;
 }
 
 /**
@@ -120,146 +1242,922 @@ void gfx10_emit_ngg_epilogue(struct ac_shader_abi *abi,
                             LLVMValueRef *addrs)
 {
        struct si_shader_context *ctx = si_shader_context_from_abi(abi);
-       struct tgsi_shader_info *info = &ctx->shader->selector->info;
-       struct si_shader_output_values *outputs = NULL;
+       struct si_shader_selector *sel = ctx->shader->selector;
+       struct si_shader_info *info = &sel->info;
+       struct si_shader_output_values outputs[PIPE_MAX_SHADER_OUTPUTS];
        LLVMBuilderRef builder = ctx->ac.builder;
-       struct lp_build_if_state if_state;
-       LLVMValueRef tmp;
+       LLVMValueRef tmp, tmp2;
 
        assert(!ctx->shader->is_gs_copy_shader);
        assert(info->num_outputs <= max_outputs);
 
-       outputs = MALLOC((info->num_outputs + 1) * sizeof(outputs[0]));
+       LLVMValueRef vertex_ptr = NULL;
+
+       if (sel->so.num_outputs || sel->info.writes_edgeflag)
+               vertex_ptr = ngg_nogs_vertex_ptr(ctx, get_thread_id_in_tg(ctx));
 
        for (unsigned i = 0; i < info->num_outputs; i++) {
                outputs[i].semantic_name = info->output_semantic_name[i];
                outputs[i].semantic_index = info->output_semantic_index[i];
 
-               /* This is used only by streamout. */
                for (unsigned j = 0; j < 4; j++) {
-                       outputs[i].values[j] =
-                               LLVMBuildLoad(builder,
-                                             addrs[4 * i + j],
-                                             "");
                        outputs[i].vertex_stream[j] =
                                (info->output_streams[i] >> (2 * j)) & 3;
+
+                       /* TODO: we may store more outputs than streamout needs,
+                        * but streamout performance isn't that important.
+                        */
+                       if (sel->so.num_outputs) {
+                               tmp = ac_build_gep0(&ctx->ac, vertex_ptr,
+                                       LLVMConstInt(ctx->ac.i32, 4 * i + j, false));
+                               tmp2 = LLVMBuildLoad(builder, addrs[4 * i + j], "");
+                               tmp2 = ac_to_integer(&ctx->ac, tmp2);
+                               LLVMBuildStore(builder, tmp2, tmp);
+                       }
+               }
+
+               /* Store the edgeflag at the end (if streamout is enabled) */
+               if (info->output_semantic_name[i] == TGSI_SEMANTIC_EDGEFLAG &&
+                   sel->info.writes_edgeflag) {
+                       LLVMValueRef edgeflag = LLVMBuildLoad(builder, addrs[4 * i], "");
+                       /* The output is a float, but the hw expects a 1-bit integer. */
+                       edgeflag = LLVMBuildFPToUI(ctx->ac.builder, edgeflag, ctx->ac.i32, "");
+                       edgeflag = ac_build_umin(&ctx->ac, edgeflag, ctx->ac.i32_1);
+
+                       tmp = LLVMConstInt(ctx->ac.i32, ngg_nogs_vertex_size(ctx->shader) - 1, 0);
+                       tmp = ac_build_gep0(&ctx->ac, vertex_ptr, tmp);
+                       LLVMBuildStore(builder, edgeflag, tmp);
                }
        }
 
-       lp_build_endif(&ctx->merged_wrap_if_state);
+       bool unterminated_es_if_block =
+               !sel->so.num_outputs &&
+               !sel->info.writes_edgeflag &&
+               !ctx->screen->use_ngg_streamout && /* no query buffer */
+               (ctx->type != PIPE_SHADER_VERTEX ||
+                !ctx->shader->key.mono.u.vs_export_prim_id);
 
-       LLVMValueRef prims_in_wave = si_unpack_param(ctx, ctx->param_merged_wave_info, 8, 8);
-       LLVMValueRef vtx_in_wave = si_unpack_param(ctx, ctx->param_merged_wave_info, 0, 8);
-       LLVMValueRef is_gs_thread = LLVMBuildICmp(builder, LLVMIntULT,
-                                                 ac_get_thread_id(&ctx->ac), prims_in_wave, "");
-       LLVMValueRef is_es_thread = LLVMBuildICmp(builder, LLVMIntULT,
-                                                 ac_get_thread_id(&ctx->ac), vtx_in_wave, "");
-       LLVMValueRef vtxindex[] = {
-               si_unpack_param(ctx, ctx->param_gs_vtx01_offset, 0, 16),
-               si_unpack_param(ctx, ctx->param_gs_vtx01_offset, 16, 16),
-               si_unpack_param(ctx, ctx->param_gs_vtx23_offset, 0, 16),
-       };
+       if (!unterminated_es_if_block)
+               ac_build_endif(&ctx->ac, ctx->merged_wrap_if_label);
+
+       LLVMValueRef is_gs_thread = si_is_gs_thread(ctx);
+       LLVMValueRef is_es_thread = si_is_es_thread(ctx);
+       LLVMValueRef vtxindex[3];
+
+       if (ctx->shader->key.opt.ngg_culling) {
+               vtxindex[0] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 0, 9);
+               vtxindex[1] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 10, 9);
+               vtxindex[2] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 20, 9);
+       } else {
+               vtxindex[0] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 0, 16);
+               vtxindex[1] = si_unpack_param(ctx, ctx->gs_vtx01_offset, 16, 16);
+               vtxindex[2] = si_unpack_param(ctx, ctx->gs_vtx23_offset, 0, 16);
+       }
 
        /* Determine the number of vertices per primitive. */
        unsigned num_vertices;
-       LLVMValueRef num_vertices_val;
+       LLVMValueRef num_vertices_val = ngg_get_vertices_per_prim(ctx, &num_vertices);
 
-       if (ctx->type == PIPE_SHADER_VERTEX) {
-               if (info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS]) {
-                       /* Blits always use axis-aligned rectangles with 3 vertices. */
-                       num_vertices = 3;
-                       num_vertices_val = LLVMConstInt(ctx->i32, 3, 0);
-               } else {
-                       /* Extract OUTPRIM field. */
-                       tmp = si_unpack_param(ctx, ctx->param_vs_state_bits, 2, 2);
-                       num_vertices_val = LLVMBuildAdd(builder, tmp, ctx->i32_1, "");
-                       num_vertices = 3; /* TODO: optimize for points & lines */
-               }
-       } else {
-               assert(ctx->type == PIPE_SHADER_TESS_EVAL);
+       /* Streamout */
+       LLVMValueRef emitted_prims = NULL;
 
-               if (info->properties[TGSI_PROPERTY_TES_POINT_MODE])
-                       num_vertices = 1;
-               else if (info->properties[TGSI_PROPERTY_TES_PRIM_MODE] == PIPE_PRIM_LINES)
-                       num_vertices = 2;
-               else
-                       num_vertices = 3;
+       if (sel->so.num_outputs) {
+               assert(!unterminated_es_if_block);
+
+               struct ngg_streamout nggso = {};
+               nggso.num_vertices = num_vertices_val;
+               nggso.prim_enable[0] = is_gs_thread;
 
-               num_vertices_val = LLVMConstInt(ctx->i32, num_vertices, false);
+               for (unsigned i = 0; i < num_vertices; ++i)
+                       nggso.vertices[i] = ngg_nogs_vertex_ptr(ctx, vtxindex[i]);
+
+               build_streamout(ctx, &nggso);
+               emitted_prims = nggso.emit[0];
        }
 
-       /* TODO: streamout */
+       LLVMValueRef user_edgeflags[3] = {};
 
-       /* TODO: primitive culling */
+       if (sel->info.writes_edgeflag) {
+               assert(!unterminated_es_if_block);
 
-       build_sendmsg_gs_alloc_req(ctx, ngg_get_vtx_cnt(ctx), ngg_get_prim_cnt(ctx));
+               /* Streamout already inserted the barrier, so don't insert it again. */
+               if (!sel->so.num_outputs)
+                       ac_build_s_barrier(&ctx->ac);
 
-       /* Export primitive data to the index buffer. Format is:
-        *  - bits 0..8: index 0
-        *  - bit 9: edge flag 0
-        *  - bits 10..18: index 1
-        *  - bit 19: edge flag 1
-        *  - bits 20..28: index 2
-        *  - bit 29: edge flag 2
-        *  - bit 31: null primitive (skip)
-        *
-        * For the first version, we will always build up all three indices
-        * independent of the primitive type. The additional garbage data
-        * shouldn't hurt.
-        *
-        * TODO: culling depends on the primitive type, so can have some
-        * interaction here.
+               ac_build_ifcc(&ctx->ac, is_gs_thread, 5400);
+               /* Load edge flags from ES threads and store them into VGPRs in GS threads. */
+               for (unsigned i = 0; i < num_vertices; i++) {
+                       tmp = ngg_nogs_vertex_ptr(ctx, vtxindex[i]);
+                       tmp2 = LLVMConstInt(ctx->ac.i32, ngg_nogs_vertex_size(ctx->shader) - 1, 0);
+                       tmp = ac_build_gep0(&ctx->ac, tmp, tmp2);
+                       tmp = LLVMBuildLoad(builder, tmp, "");
+                       tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
+
+                       user_edgeflags[i] = ac_build_alloca_undef(&ctx->ac, ctx->ac.i1, "");
+                       LLVMBuildStore(builder, tmp, user_edgeflags[i]);
+               }
+               ac_build_endif(&ctx->ac, 5400);
+       }
+
+       /* Copy Primitive IDs from GS threads to the LDS address corresponding
+        * to the ES thread of the provoking vertex.
         */
-       lp_build_if(&if_state, &ctx->gallivm, is_gs_thread);
-       {
-               struct ngg_prim prim = {};
+       if (ctx->type == PIPE_SHADER_VERTEX &&
+           ctx->shader->key.mono.u.vs_export_prim_id) {
+               assert(!unterminated_es_if_block);
 
-               prim.num_vertices = num_vertices;
-               prim.isnull = ctx->ac.i1false;
-               memcpy(prim.index, vtxindex, sizeof(vtxindex[0]) * 3);
+               /* Streamout and edge flags use LDS. Make it idle, so that we can reuse it. */
+               if (sel->so.num_outputs || sel->info.writes_edgeflag)
+                       ac_build_s_barrier(&ctx->ac);
+
+               ac_build_ifcc(&ctx->ac, is_gs_thread, 5400);
+               /* Extract the PROVOKING_VTX_INDEX field. */
+               LLVMValueRef provoking_vtx_in_prim =
+                       si_unpack_param(ctx, ctx->vs_state_bits, 4, 2);
 
-               for (unsigned i = 0; i < num_vertices; ++i) {
-                       tmp = LLVMBuildLShr(builder, ctx->abi.gs_invocation_id,
-                                           LLVMConstInt(ctx->ac.i32, 8 + i, false), "");
-                       prim.edgeflag[i] = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
+               /* provoking_vtx_index = vtxindex[provoking_vtx_in_prim]; */
+               LLVMValueRef indices = ac_build_gather_values(&ctx->ac, vtxindex, 3);
+               LLVMValueRef provoking_vtx_index =
+                       LLVMBuildExtractElement(builder, indices, provoking_vtx_in_prim, "");
+               LLVMValueRef vertex_ptr = ngg_nogs_vertex_ptr(ctx, provoking_vtx_index);
+
+               LLVMBuildStore(builder, ac_get_arg(&ctx->ac, ctx->args.gs_prim_id),
+                              ac_build_gep0(&ctx->ac, vertex_ptr, ctx->ac.i32_0));
+               ac_build_endif(&ctx->ac, 5400);
+       }
+
+       /* Update query buffer */
+       if (ctx->screen->use_ngg_streamout &&
+           !info->properties[TGSI_PROPERTY_VS_BLIT_SGPRS_AMD]) {
+               assert(!unterminated_es_if_block);
+
+               tmp = si_unpack_param(ctx, ctx->vs_state_bits, 6, 1);
+               tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
+               ac_build_ifcc(&ctx->ac, tmp, 5029); /* if (STREAMOUT_QUERY_ENABLED) */
+               tmp = LLVMBuildICmp(builder, LLVMIntEQ, get_wave_id_in_tg(ctx), ctx->ac.i32_0, "");
+               ac_build_ifcc(&ctx->ac, tmp, 5030);
+               tmp = LLVMBuildICmp(builder, LLVMIntULE, ac_get_thread_id(&ctx->ac),
+                                   sel->so.num_outputs ? ctx->ac.i32_1 : ctx->ac.i32_0, "");
+               ac_build_ifcc(&ctx->ac, tmp, 5031);
+               {
+                       LLVMValueRef args[] = {
+                               ngg_get_prim_cnt(ctx),
+                               ngg_get_query_buf(ctx),
+                               LLVMConstInt(ctx->ac.i32, 16, false), /* offset of stream[0].generated_primitives */
+                               ctx->ac.i32_0, /* soffset */
+                               ctx->ac.i32_0, /* cachepolicy */
+                       };
+
+                       if (sel->so.num_outputs) {
+                               args[0] = ac_build_writelane(&ctx->ac, args[0], emitted_prims, ctx->ac.i32_1);
+                               args[2] = ac_build_writelane(&ctx->ac, args[2],
+                                               LLVMConstInt(ctx->ac.i32, 24, false), ctx->ac.i32_1);
+                       }
+
+                       /* TODO: should this be 64-bit atomics? */
+                       ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.raw.buffer.atomic.add.i32",
+                                          ctx->ac.i32, args, 5, 0);
                }
+               ac_build_endif(&ctx->ac, 5031);
+               ac_build_endif(&ctx->ac, 5030);
+               ac_build_endif(&ctx->ac, 5029);
+       }
 
-               build_export_prim(ctx, &prim);
+       /* Build the primitive export. */
+       if (!gfx10_ngg_export_prim_early(ctx->shader)) {
+               assert(!unterminated_es_if_block);
+               gfx10_ngg_build_export_prim(ctx, user_edgeflags, NULL);
        }
-       lp_build_endif(&if_state);
 
        /* Export per-vertex data (positions and parameters). */
-       lp_build_if(&if_state, &ctx->gallivm, is_es_thread);
+       if (!unterminated_es_if_block)
+               ac_build_ifcc(&ctx->ac, is_es_thread, 6002);
        {
                unsigned i;
 
                /* Unconditionally (re-)load the values for proper SSA form. */
                for (i = 0; i < info->num_outputs; i++) {
-                       for (unsigned j = 0; j < 4; j++) {
-                               outputs[i].values[j] =
-                                       LLVMBuildLoad(builder,
-                                               addrs[4 * i + j],
-                                               "");
+                       /* If the NGG cull shader part computed the position, don't
+                        * use the position from the current shader part. Instead,
+                        * load it from LDS.
+                        */
+                       if (info->output_semantic_name[i] == TGSI_SEMANTIC_POSITION &&
+                           ctx->shader->key.opt.ngg_culling) {
+                               vertex_ptr = ngg_nogs_vertex_ptr(ctx,
+                                               ac_get_arg(&ctx->ac, ctx->ngg_old_thread_id));
+
+                               for (unsigned j = 0; j < 4; j++) {
+                                       tmp = LLVMConstInt(ctx->ac.i32, lds_pos_x + j, 0);
+                                       tmp = ac_build_gep0(&ctx->ac, vertex_ptr, tmp);
+                                       tmp = LLVMBuildLoad(builder, tmp, "");
+                                       outputs[i].values[j] = ac_to_float(&ctx->ac, tmp);
+                               }
+                       } else {
+                               for (unsigned j = 0; j < 4; j++) {
+                                       outputs[i].values[j] =
+                                               LLVMBuildLoad(builder,
+                                                             addrs[4 * i + j], "");
+                               }
                        }
                }
 
-               /* TODO: Vertex shaders have to get PrimitiveID from GS VGPRs. */
-               if (ctx->type == PIPE_SHADER_TESS_EVAL &&
-                   ctx->shader->key.mono.u.vs_export_prim_id) {
+               if (ctx->shader->key.mono.u.vs_export_prim_id) {
                        outputs[i].semantic_name = TGSI_SEMANTIC_PRIMID;
                        outputs[i].semantic_index = 0;
-                       outputs[i].values[0] = ac_to_float(&ctx->ac, si_get_primitive_id(ctx, 0));
+
+                       if (ctx->type == PIPE_SHADER_VERTEX) {
+                               /* Wait for GS stores to finish. */
+                               ac_build_s_barrier(&ctx->ac);
+
+                               tmp = ngg_nogs_vertex_ptr(ctx, get_thread_id_in_tg(ctx));
+                               tmp = ac_build_gep0(&ctx->ac, tmp, ctx->ac.i32_0);
+                               outputs[i].values[0] = LLVMBuildLoad(builder, tmp, "");
+                       } else {
+                               assert(ctx->type == PIPE_SHADER_TESS_EVAL);
+                               outputs[i].values[0] = si_get_primitive_id(ctx, 0);
+                       }
+
+                       outputs[i].values[0] = ac_to_float(&ctx->ac, outputs[i].values[0]);
                        for (unsigned j = 1; j < 4; j++)
-                               outputs[i].values[j] = LLVMGetUndef(ctx->f32);
+                               outputs[i].values[j] = LLVMGetUndef(ctx->ac.f32);
 
                        memset(outputs[i].vertex_stream, 0,
                               sizeof(outputs[i].vertex_stream));
                        i++;
                }
 
-               si_llvm_export_vs(ctx, outputs, i);
+               si_llvm_build_vs_exports(ctx, outputs, i);
+       }
+       ac_build_endif(&ctx->ac, 6002);
+}
+
+static LLVMValueRef
+ngg_gs_get_vertex_storage(struct si_shader_context *ctx)
+{
+       const struct si_shader_selector *sel = ctx->shader->selector;
+       const struct si_shader_info *info = &sel->info;
+
+       LLVMTypeRef elements[2] = {
+               LLVMArrayType(ctx->ac.i32, 4 * info->num_outputs),
+               LLVMArrayType(ctx->ac.i8, 4),
+       };
+       LLVMTypeRef type = LLVMStructTypeInContext(ctx->ac.context, elements, 2, false);
+       type = LLVMPointerType(LLVMArrayType(type, 0), AC_ADDR_SPACE_LDS);
+       return LLVMBuildBitCast(ctx->ac.builder, ctx->gs_ngg_emit, type, "");
+}
+
+/**
+ * Return a pointer to the LDS storage reserved for the N'th vertex, where N
+ * is in emit order; that is:
+ * - during the epilogue, N is the threadidx (relative to the entire threadgroup)
+ * - during vertex emit, i.e. while the API GS shader invocation is running,
+ *   N = threadidx * gs_max_out_vertices + emitidx
+ *
+ * Goals of the LDS memory layout:
+ * 1. Eliminate bank conflicts on write for geometry shaders that have all emits
+ *    in uniform control flow
+ * 2. Eliminate bank conflicts on read for export if, additionally, there is no
+ *    culling
+ * 3. Agnostic to the number of waves (since we don't know it before compiling)
+ * 4. Allow coalescing of LDS instructions (ds_write_b128 etc.)
+ * 5. Avoid wasting memory.
+ *
+ * We use an AoS layout due to point 4 (this also helps point 3). In an AoS
+ * layout, elimination of bank conflicts requires that each vertex occupy an
+ * odd number of dwords. We use the additional dword to store the output stream
+ * index as well as a flag to indicate whether this vertex ends a primitive
+ * for rasterization.
+ *
+ * Swizzling is required to satisfy points 1 and 2 simultaneously.
+ *
+ * Vertices are stored in export order (gsthread * gs_max_out_vertices + emitidx).
+ * Indices are swizzled in groups of 32, which ensures point 1 without
+ * disturbing point 2.
+ *
+ * \return an LDS pointer to type {[N x i32], [4 x i8]}
+ */
+static LLVMValueRef
+ngg_gs_vertex_ptr(struct si_shader_context *ctx, LLVMValueRef vertexidx)
+{
+       struct si_shader_selector *sel = ctx->shader->selector;
+       LLVMBuilderRef builder = ctx->ac.builder;
+       LLVMValueRef storage = ngg_gs_get_vertex_storage(ctx);
+
+       /* gs_max_out_vertices = 2^(write_stride_2exp) * some odd number */
+       unsigned write_stride_2exp = ffs(sel->gs_max_out_vertices) - 1;
+       if (write_stride_2exp) {
+               LLVMValueRef row =
+                       LLVMBuildLShr(builder, vertexidx,
+                                     LLVMConstInt(ctx->ac.i32, 5, false), "");
+               LLVMValueRef swizzle =
+                       LLVMBuildAnd(builder, row,
+                                    LLVMConstInt(ctx->ac.i32, (1u << write_stride_2exp) - 1,
+                                                 false), "");
+               vertexidx = LLVMBuildXor(builder, vertexidx, swizzle, "");
+       }
+
+       return ac_build_gep0(&ctx->ac, storage, vertexidx);
+}
+
+static LLVMValueRef
+ngg_gs_emit_vertex_ptr(struct si_shader_context *ctx, LLVMValueRef gsthread,
+                      LLVMValueRef emitidx)
+{
+       struct si_shader_selector *sel = ctx->shader->selector;
+       LLVMBuilderRef builder = ctx->ac.builder;
+       LLVMValueRef tmp;
+
+       tmp = LLVMConstInt(ctx->ac.i32, sel->gs_max_out_vertices, false);
+       tmp = LLVMBuildMul(builder, tmp, gsthread, "");
+       const LLVMValueRef vertexidx = LLVMBuildAdd(builder, tmp, emitidx, "");
+       return ngg_gs_vertex_ptr(ctx, vertexidx);
+}
+
+static LLVMValueRef
+ngg_gs_get_emit_output_ptr(struct si_shader_context *ctx, LLVMValueRef vertexptr,
+                          unsigned out_idx)
+{
+       LLVMValueRef gep_idx[3] = {
+               ctx->ac.i32_0, /* implied C-style array */
+               ctx->ac.i32_0, /* first struct entry */
+               LLVMConstInt(ctx->ac.i32, out_idx, false),
+       };
+       return LLVMBuildGEP(ctx->ac.builder, vertexptr, gep_idx, 3, "");
+}
+
+static LLVMValueRef
+ngg_gs_get_emit_primflag_ptr(struct si_shader_context *ctx, LLVMValueRef vertexptr,
+                            unsigned stream)
+{
+       LLVMValueRef gep_idx[3] = {
+               ctx->ac.i32_0, /* implied C-style array */
+               ctx->ac.i32_1, /* second struct entry */
+               LLVMConstInt(ctx->ac.i32, stream, false),
+       };
+       return LLVMBuildGEP(ctx->ac.builder, vertexptr, gep_idx, 3, "");
+}
+
+void gfx10_ngg_gs_emit_vertex(struct si_shader_context *ctx,
+                             unsigned stream,
+                             LLVMValueRef *addrs)
+{
+       const struct si_shader_selector *sel = ctx->shader->selector;
+       const struct si_shader_info *info = &sel->info;
+       LLVMBuilderRef builder = ctx->ac.builder;
+       LLVMValueRef tmp;
+       const LLVMValueRef vertexidx =
+               LLVMBuildLoad(builder, ctx->gs_next_vertex[stream], "");
+
+       /* If this thread has already emitted the declared maximum number of
+        * vertices, skip the write: excessive vertex emissions are not
+        * supposed to have any effect.
+        */
+       const LLVMValueRef can_emit =
+               LLVMBuildICmp(builder, LLVMIntULT, vertexidx,
+                             LLVMConstInt(ctx->ac.i32, sel->gs_max_out_vertices, false), "");
+
+       tmp = LLVMBuildAdd(builder, vertexidx, ctx->ac.i32_1, "");
+       tmp = LLVMBuildSelect(builder, can_emit, tmp, vertexidx, "");
+       LLVMBuildStore(builder, tmp, ctx->gs_next_vertex[stream]);
+
+       ac_build_ifcc(&ctx->ac, can_emit, 9001);
+
+       const LLVMValueRef vertexptr =
+               ngg_gs_emit_vertex_ptr(ctx, get_thread_id_in_tg(ctx), vertexidx);
+       unsigned out_idx = 0;
+       for (unsigned i = 0; i < info->num_outputs; i++) {
+               for (unsigned chan = 0; chan < 4; chan++, out_idx++) {
+                       if (!(info->output_usagemask[i] & (1 << chan)) ||
+                           ((info->output_streams[i] >> (2 * chan)) & 3) != stream)
+                               continue;
+
+                       LLVMValueRef out_val = LLVMBuildLoad(builder, addrs[4 * i + chan], "");
+                       out_val = ac_to_integer(&ctx->ac, out_val);
+                       LLVMBuildStore(builder, out_val,
+                                      ngg_gs_get_emit_output_ptr(ctx, vertexptr, out_idx));
+               }
+       }
+       assert(out_idx * 4 == sel->gsvs_vertex_size);
+
+       /* Determine and store whether this vertex completed a primitive. */
+       const LLVMValueRef curverts = LLVMBuildLoad(builder, ctx->gs_curprim_verts[stream], "");
+
+       tmp = LLVMConstInt(ctx->ac.i32, u_vertices_per_prim(sel->gs_output_prim) - 1, false);
+       const LLVMValueRef iscompleteprim =
+               LLVMBuildICmp(builder, LLVMIntUGE, curverts, tmp, "");
+
+       /* Since the geometry shader emits triangle strips, we need to
+        * track which primitive is odd and swap vertex indices to get
+        * the correct vertex order.
+        */
+       LLVMValueRef is_odd = ctx->ac.i1false;
+       if (stream == 0 && u_vertices_per_prim(sel->gs_output_prim) == 3) {
+               tmp = LLVMBuildAnd(builder, curverts, ctx->ac.i32_1, "");
+               is_odd = LLVMBuildICmp(builder, LLVMIntEQ, tmp, ctx->ac.i32_1, "");
+       }
+
+       tmp = LLVMBuildAdd(builder, curverts, ctx->ac.i32_1, "");
+       LLVMBuildStore(builder, tmp, ctx->gs_curprim_verts[stream]);
+
+       /* The per-vertex primitive flag encoding:
+        *   bit 0: whether this vertex finishes a primitive
+        *   bit 1: whether the primitive is odd (if we are emitting triangle strips)
+        */
+       tmp = LLVMBuildZExt(builder, iscompleteprim, ctx->ac.i8, "");
+       tmp = LLVMBuildOr(builder, tmp,
+                         LLVMBuildShl(builder,
+                                      LLVMBuildZExt(builder, is_odd, ctx->ac.i8, ""),
+                                      ctx->ac.i8_1, ""), "");
+       LLVMBuildStore(builder, tmp, ngg_gs_get_emit_primflag_ptr(ctx, vertexptr, stream));
+
+       tmp = LLVMBuildLoad(builder, ctx->gs_generated_prims[stream], "");
+       tmp = LLVMBuildAdd(builder, tmp, LLVMBuildZExt(builder, iscompleteprim, ctx->ac.i32, ""), "");
+       LLVMBuildStore(builder, tmp, ctx->gs_generated_prims[stream]);
+
+       ac_build_endif(&ctx->ac, 9001);
+}
+
+void gfx10_ngg_gs_emit_prologue(struct si_shader_context *ctx)
+{
+       /* Zero out the part of LDS scratch that is used to accumulate the
+        * per-stream generated primitive count.
+        */
+       LLVMBuilderRef builder = ctx->ac.builder;
+       LLVMValueRef scratchptr = ctx->gs_ngg_scratch;
+       LLVMValueRef tid = get_thread_id_in_tg(ctx);
+       LLVMValueRef tmp;
+
+       tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, LLVMConstInt(ctx->ac.i32, 4, false), "");
+       ac_build_ifcc(&ctx->ac, tmp, 5090);
+       {
+               LLVMValueRef ptr = ac_build_gep0(&ctx->ac, scratchptr, tid);
+               LLVMBuildStore(builder, ctx->ac.i32_0, ptr);
+       }
+       ac_build_endif(&ctx->ac, 5090);
+
+       ac_build_s_barrier(&ctx->ac);
+}
+
+void gfx10_ngg_gs_emit_epilogue(struct si_shader_context *ctx)
+{
+       const struct si_shader_selector *sel = ctx->shader->selector;
+       const struct si_shader_info *info = &sel->info;
+       const unsigned verts_per_prim = u_vertices_per_prim(sel->gs_output_prim);
+       LLVMBuilderRef builder = ctx->ac.builder;
+       LLVMValueRef i8_0 = LLVMConstInt(ctx->ac.i8, 0, false);
+       LLVMValueRef tmp, tmp2;
+
+       /* Zero out remaining (non-emitted) primitive flags.
+        *
+        * Note: Alternatively, we could pass the relevant gs_next_vertex to
+        *       the emit threads via LDS. This is likely worse in the expected
+        *       typical case where each GS thread emits the full set of
+        *       vertices.
+        */
+       for (unsigned stream = 0; stream < 4; ++stream) {
+               if (!info->num_stream_output_components[stream])
+                       continue;
+
+               const LLVMValueRef gsthread = get_thread_id_in_tg(ctx);
+
+               ac_build_bgnloop(&ctx->ac, 5100);
+
+               const LLVMValueRef vertexidx =
+                       LLVMBuildLoad(builder, ctx->gs_next_vertex[stream], "");
+               tmp = LLVMBuildICmp(builder, LLVMIntUGE, vertexidx,
+                       LLVMConstInt(ctx->ac.i32, sel->gs_max_out_vertices, false), "");
+               ac_build_ifcc(&ctx->ac, tmp, 5101);
+               ac_build_break(&ctx->ac);
+               ac_build_endif(&ctx->ac, 5101);
+
+               tmp = LLVMBuildAdd(builder, vertexidx, ctx->ac.i32_1, "");
+               LLVMBuildStore(builder, tmp, ctx->gs_next_vertex[stream]);
+
+               tmp = ngg_gs_emit_vertex_ptr(ctx, gsthread, vertexidx);
+               LLVMBuildStore(builder, i8_0, ngg_gs_get_emit_primflag_ptr(ctx, tmp, stream));
+
+               ac_build_endloop(&ctx->ac, 5100);
+       }
+
+       /* Accumulate generated primitives counts across the entire threadgroup. */
+       for (unsigned stream = 0; stream < 4; ++stream) {
+               if (!info->num_stream_output_components[stream])
+                       continue;
+
+               LLVMValueRef numprims =
+                       LLVMBuildLoad(builder, ctx->gs_generated_prims[stream], "");
+               numprims = ac_build_reduce(&ctx->ac, numprims, nir_op_iadd, ctx->ac.wave_size);
+
+               tmp = LLVMBuildICmp(builder, LLVMIntEQ, ac_get_thread_id(&ctx->ac), ctx->ac.i32_0, "");
+               ac_build_ifcc(&ctx->ac, tmp, 5105);
+               {
+                       LLVMBuildAtomicRMW(builder, LLVMAtomicRMWBinOpAdd,
+                                          ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch,
+                                                        LLVMConstInt(ctx->ac.i32, stream, false)),
+                                          numprims, LLVMAtomicOrderingMonotonic, false);
+               }
+               ac_build_endif(&ctx->ac, 5105);
+       }
+
+       ac_build_endif(&ctx->ac, ctx->merged_wrap_if_label);
+
+       ac_build_s_barrier(&ctx->ac);
+
+       const LLVMValueRef tid = get_thread_id_in_tg(ctx);
+       LLVMValueRef num_emit_threads = ngg_get_prim_cnt(ctx);
+
+       /* Streamout */
+       if (sel->so.num_outputs) {
+               struct ngg_streamout nggso = {};
+
+               nggso.num_vertices = LLVMConstInt(ctx->ac.i32, verts_per_prim, false);
+
+               LLVMValueRef vertexptr = ngg_gs_vertex_ptr(ctx, tid);
+               for (unsigned stream = 0; stream < 4; ++stream) {
+                       if (!info->num_stream_output_components[stream])
+                               continue;
+
+                       tmp = LLVMBuildLoad(builder, ngg_gs_get_emit_primflag_ptr(ctx, vertexptr, stream), "");
+                       tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
+                       tmp2 = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
+                       nggso.prim_enable[stream] = LLVMBuildAnd(builder, tmp, tmp2, "");
+               }
+
+               for (unsigned i = 0; i < verts_per_prim; ++i) {
+                       tmp = LLVMBuildSub(builder, tid,
+                                          LLVMConstInt(ctx->ac.i32, verts_per_prim - i - 1, false), "");
+                       tmp = ngg_gs_vertex_ptr(ctx, tmp);
+                       nggso.vertices[i] = ac_build_gep0(&ctx->ac, tmp, ctx->ac.i32_0);
+               }
+
+               build_streamout(ctx, &nggso);
+       }
+
+       /* Write shader query data. */
+       if (ctx->screen->use_ngg_streamout) {
+               tmp = si_unpack_param(ctx, ctx->vs_state_bits, 6, 1);
+               tmp = LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
+               ac_build_ifcc(&ctx->ac, tmp, 5109); /* if (STREAMOUT_QUERY_ENABLED) */
+               unsigned num_query_comps = sel->so.num_outputs ? 8 : 4;
+               tmp = LLVMBuildICmp(builder, LLVMIntULT, tid,
+                                   LLVMConstInt(ctx->ac.i32, num_query_comps, false), "");
+               ac_build_ifcc(&ctx->ac, tmp, 5110);
+               {
+                       LLVMValueRef offset;
+                       tmp = tid;
+                       if (sel->so.num_outputs)
+                               tmp = LLVMBuildAnd(builder, tmp, LLVMConstInt(ctx->ac.i32, 3, false), "");
+                       offset = LLVMBuildNUWMul(builder, tmp, LLVMConstInt(ctx->ac.i32, 32, false), "");
+                       if (sel->so.num_outputs) {
+                               tmp = LLVMBuildLShr(builder, tid, LLVMConstInt(ctx->ac.i32, 2, false), "");
+                               tmp = LLVMBuildNUWMul(builder, tmp, LLVMConstInt(ctx->ac.i32, 8, false), "");
+                               offset = LLVMBuildAdd(builder, offset, tmp, "");
+                       }
+
+                       tmp = LLVMBuildLoad(builder, ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, tid), "");
+                       LLVMValueRef args[] = {
+                               tmp,
+                               ngg_get_query_buf(ctx),
+                               offset,
+                               LLVMConstInt(ctx->ac.i32, 16, false), /* soffset */
+                               ctx->ac.i32_0, /* cachepolicy */
+                       };
+                       ac_build_intrinsic(&ctx->ac, "llvm.amdgcn.raw.buffer.atomic.add.i32",
+                                          ctx->ac.i32, args, 5, 0);
+               }
+               ac_build_endif(&ctx->ac, 5110);
+               ac_build_endif(&ctx->ac, 5109);
+       }
+
+       /* Determine vertex liveness. */
+       LLVMValueRef vertliveptr = ac_build_alloca(&ctx->ac, ctx->ac.i1, "vertexlive");
+
+       tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
+       ac_build_ifcc(&ctx->ac, tmp, 5120);
+       {
+               for (unsigned i = 0; i < verts_per_prim; ++i) {
+                       const LLVMValueRef primidx =
+                               LLVMBuildAdd(builder, tid,
+                                            LLVMConstInt(ctx->ac.i32, i, false), "");
+
+                       if (i > 0) {
+                               tmp = LLVMBuildICmp(builder, LLVMIntULT, primidx, num_emit_threads, "");
+                               ac_build_ifcc(&ctx->ac, tmp, 5121 + i);
+                       }
+
+                       /* Load primitive liveness */
+                       tmp = ngg_gs_vertex_ptr(ctx, primidx);
+                       tmp = LLVMBuildLoad(builder, ngg_gs_get_emit_primflag_ptr(ctx, tmp, 0), "");
+                       const LLVMValueRef primlive =
+                               LLVMBuildTrunc(builder, tmp, ctx->ac.i1, "");
+
+                       tmp = LLVMBuildLoad(builder, vertliveptr, "");
+                       tmp = LLVMBuildOr(builder, tmp, primlive, ""),
+                       LLVMBuildStore(builder, tmp, vertliveptr);
+
+                       if (i > 0)
+                               ac_build_endif(&ctx->ac, 5121 + i);
+               }
+       }
+       ac_build_endif(&ctx->ac, 5120);
+
+       /* Inclusive scan addition across the current wave. */
+       LLVMValueRef vertlive = LLVMBuildLoad(builder, vertliveptr, "");
+       struct ac_wg_scan vertlive_scan = {};
+       vertlive_scan.op = nir_op_iadd;
+       vertlive_scan.enable_reduce = true;
+       vertlive_scan.enable_exclusive = true;
+       vertlive_scan.src = vertlive;
+       vertlive_scan.scratch = ac_build_gep0(&ctx->ac, ctx->gs_ngg_scratch, ctx->ac.i32_0);
+       vertlive_scan.waveidx = get_wave_id_in_tg(ctx);
+       vertlive_scan.numwaves = get_tgsize(ctx);
+       vertlive_scan.maxwaves = 8;
+
+       ac_build_wg_scan(&ctx->ac, &vertlive_scan);
+
+       /* Skip all exports (including index exports) when possible. At least on
+        * early gfx10 revisions this is also to avoid hangs.
+        */
+       LLVMValueRef have_exports =
+               LLVMBuildICmp(builder, LLVMIntNE, vertlive_scan.result_reduce, ctx->ac.i32_0, "");
+       num_emit_threads =
+               LLVMBuildSelect(builder, have_exports, num_emit_threads, ctx->ac.i32_0, "");
+
+       /* Allocate export space. Send this message as early as possible, to
+        * hide the latency of the SQ <-> SPI roundtrip.
+        *
+        * Note: We could consider compacting primitives for export as well.
+        *       PA processes 1 non-null prim / clock, but it fetches 4 DW of
+        *       prim data per clock and skips null primitives at no additional
+        *       cost. So compacting primitives can only be beneficial when
+        *       there are 4 or more contiguous null primitives in the export
+        *       (in the common case of single-dword prim exports).
+        */
+       ac_build_sendmsg_gs_alloc_req(&ctx->ac, get_wave_id_in_tg(ctx),
+                                     vertlive_scan.result_reduce, num_emit_threads);
+
+       /* Setup the reverse vertex compaction permutation. We re-use stream 1
+        * of the primitive liveness flags, relying on the fact that each
+        * threadgroup can have at most 256 threads. */
+       ac_build_ifcc(&ctx->ac, vertlive, 5130);
+       {
+               tmp = ngg_gs_vertex_ptr(ctx, vertlive_scan.result_exclusive);
+               tmp2 = LLVMBuildTrunc(builder, tid, ctx->ac.i8, "");
+               LLVMBuildStore(builder, tmp2, ngg_gs_get_emit_primflag_ptr(ctx, tmp, 1));
+       }
+       ac_build_endif(&ctx->ac, 5130);
+
+       ac_build_s_barrier(&ctx->ac);
+
+       /* Export primitive data */
+       tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, num_emit_threads, "");
+       ac_build_ifcc(&ctx->ac, tmp, 5140);
+       {
+               LLVMValueRef flags;
+               struct ac_ngg_prim prim = {};
+               prim.num_vertices = verts_per_prim;
+
+               tmp = ngg_gs_vertex_ptr(ctx, tid);
+               flags = LLVMBuildLoad(builder, ngg_gs_get_emit_primflag_ptr(ctx, tmp, 0), "");
+               prim.isnull = LLVMBuildNot(builder, LLVMBuildTrunc(builder, flags, ctx->ac.i1, ""), "");
+
+               for (unsigned i = 0; i < verts_per_prim; ++i) {
+                       prim.index[i] = LLVMBuildSub(builder, vertlive_scan.result_exclusive,
+                               LLVMConstInt(ctx->ac.i32, verts_per_prim - i - 1, false), "");
+                       prim.edgeflag[i] = ctx->ac.i1false;
+               }
+
+               /* Geometry shaders output triangle strips, but NGG expects triangles. */
+               if (verts_per_prim == 3) {
+                       LLVMValueRef is_odd = LLVMBuildLShr(builder, flags, ctx->ac.i8_1, "");
+                       is_odd = LLVMBuildTrunc(builder, is_odd, ctx->ac.i1, "");
+                       LLVMValueRef flatshade_first =
+                               LLVMBuildICmp(builder, LLVMIntEQ,
+                                             si_unpack_param(ctx, ctx->vs_state_bits, 4, 2),
+                                             ctx->ac.i32_0, "");
+
+                       ac_build_triangle_strip_indices_to_triangle(&ctx->ac, is_odd,
+                                                                   flatshade_first,
+                                                                   prim.index);
+               }
+
+               ac_build_export_prim(&ctx->ac, &prim);
+       }
+       ac_build_endif(&ctx->ac, 5140);
+
+       /* Export position and parameter data */
+       tmp = LLVMBuildICmp(builder, LLVMIntULT, tid, vertlive_scan.result_reduce, "");
+       ac_build_ifcc(&ctx->ac, tmp, 5145);
+       {
+               struct si_shader_output_values outputs[PIPE_MAX_SHADER_OUTPUTS];
+
+               tmp = ngg_gs_vertex_ptr(ctx, tid);
+               tmp = LLVMBuildLoad(builder, ngg_gs_get_emit_primflag_ptr(ctx, tmp, 1), "");
+               tmp = LLVMBuildZExt(builder, tmp, ctx->ac.i32, "");
+               const LLVMValueRef vertexptr = ngg_gs_vertex_ptr(ctx, tmp);
+
+               unsigned out_idx = 0;
+               for (unsigned i = 0; i < info->num_outputs; i++) {
+                       outputs[i].semantic_name = info->output_semantic_name[i];
+                       outputs[i].semantic_index = info->output_semantic_index[i];
+
+                       for (unsigned j = 0; j < 4; j++, out_idx++) {
+                               tmp = ngg_gs_get_emit_output_ptr(ctx, vertexptr, out_idx);
+                               tmp = LLVMBuildLoad(builder, tmp, "");
+                               outputs[i].values[j] = ac_to_float(&ctx->ac, tmp);
+                               outputs[i].vertex_stream[j] =
+                                       (info->output_streams[i] >> (2 * j)) & 3;
+                       }
+               }
+
+               si_llvm_build_vs_exports(ctx, outputs, info->num_outputs);
+       }
+       ac_build_endif(&ctx->ac, 5145);
+}
+
+static void clamp_gsprims_to_esverts(unsigned *max_gsprims, unsigned max_esverts,
+                                    unsigned min_verts_per_prim, bool use_adjacency)
+{
+       unsigned max_reuse = max_esverts - min_verts_per_prim;
+       if (use_adjacency)
+               max_reuse /= 2;
+       *max_gsprims = MIN2(*max_gsprims, 1 + max_reuse);
+}
+
+/**
+ * Determine subgroup information like maximum number of vertices and prims.
+ *
+ * This happens before the shader is uploaded, since LDS relocations during
+ * upload depend on the subgroup size.
+ */
+void gfx10_ngg_calculate_subgroup_info(struct si_shader *shader)
+{
+       const struct si_shader_selector *gs_sel = shader->selector;
+       const struct si_shader_selector *es_sel =
+               shader->previous_stage_sel ? shader->previous_stage_sel : gs_sel;
+       const enum pipe_shader_type gs_type = gs_sel->type;
+       const unsigned gs_num_invocations = MAX2(gs_sel->gs_num_invocations, 1);
+       const unsigned input_prim = si_get_input_prim(gs_sel);
+       const bool use_adjacency = input_prim >= PIPE_PRIM_LINES_ADJACENCY &&
+                                  input_prim <= PIPE_PRIM_TRIANGLE_STRIP_ADJACENCY;
+       const unsigned max_verts_per_prim = u_vertices_per_prim(input_prim);
+       const unsigned min_verts_per_prim =
+               gs_type == PIPE_SHADER_GEOMETRY ? max_verts_per_prim : 1;
+
+       /* All these are in dwords: */
+       /* We can't allow using the whole LDS, because GS waves compete with
+        * other shader stages for LDS space.
+        *
+        * TODO: We should really take the shader's internal LDS use into
+        *       account. The linker will fail if the size is greater than
+        *       8K dwords.
+        */
+       const unsigned max_lds_size = 8 * 1024 - 768;
+       const unsigned target_lds_size = max_lds_size;
+       unsigned esvert_lds_size = 0;
+       unsigned gsprim_lds_size = 0;
+
+       /* All these are per subgroup: */
+       bool max_vert_out_per_gs_instance = false;
+       unsigned max_gsprims_base = 128; /* default prim group size clamp */
+       unsigned max_esverts_base = 128;
+
+       if (shader->key.opt.ngg_culling & SI_NGG_CULL_GS_FAST_LAUNCH_TRI_LIST) {
+               max_gsprims_base = 128 / 3;
+               max_esverts_base = max_gsprims_base * 3;
+       } else if (shader->key.opt.ngg_culling & SI_NGG_CULL_GS_FAST_LAUNCH_TRI_STRIP) {
+               max_gsprims_base = 126;
+               max_esverts_base = 128;
+       }
+
+       /* Hardware has the following non-natural restrictions on the value
+        * of GE_CNTL.VERT_GRP_SIZE based on based on the primitive type of
+        * the draw:
+        *  - at most 252 for any line input primitive type
+        *  - at most 251 for any quad input primitive type
+        *  - at most 251 for triangle strips with adjacency (this happens to
+        *    be the natural limit for triangle *lists* with adjacency)
+        */
+       max_esverts_base = MIN2(max_esverts_base, 251 + max_verts_per_prim - 1);
+
+       if (gs_type == PIPE_SHADER_GEOMETRY) {
+               unsigned max_out_verts_per_gsprim =
+                       gs_sel->gs_max_out_vertices * gs_num_invocations;
+
+               if (max_out_verts_per_gsprim <= 256) {
+                       if (max_out_verts_per_gsprim) {
+                               max_gsprims_base = MIN2(max_gsprims_base,
+                                                       256 / max_out_verts_per_gsprim);
+                       }
+               } else {
+                       /* Use special multi-cycling mode in which each GS
+                        * instance gets its own subgroup. Does not work with
+                        * tessellation. */
+                       max_vert_out_per_gs_instance = true;
+                       max_gsprims_base = 1;
+                       max_out_verts_per_gsprim = gs_sel->gs_max_out_vertices;
+               }
+
+               esvert_lds_size = es_sel->esgs_itemsize / 4;
+               gsprim_lds_size = (gs_sel->gsvs_vertex_size / 4 + 1) * max_out_verts_per_gsprim;
+       } else {
+               /* VS and TES. */
+               /* LDS size for passing data from ES to GS. */
+               esvert_lds_size = ngg_nogs_vertex_size(shader);
+       }
+
+       unsigned max_gsprims = max_gsprims_base;
+       unsigned max_esverts = max_esverts_base;
+
+       if (esvert_lds_size)
+               max_esverts = MIN2(max_esverts, target_lds_size / esvert_lds_size);
+       if (gsprim_lds_size)
+               max_gsprims = MIN2(max_gsprims, target_lds_size / gsprim_lds_size);
+
+       max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
+       clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, use_adjacency);
+       assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
+
+       if (esvert_lds_size || gsprim_lds_size) {
+               /* Now that we have a rough proportionality between esverts
+                * and gsprims based on the primitive type, scale both of them
+                * down simultaneously based on required LDS space.
+                *
+                * We could be smarter about this if we knew how much vertex
+                * reuse to expect.
+                */
+               unsigned lds_total = max_esverts * esvert_lds_size +
+                                    max_gsprims * gsprim_lds_size;
+               if (lds_total > target_lds_size) {
+                       max_esverts = max_esverts * target_lds_size / lds_total;
+                       max_gsprims = max_gsprims * target_lds_size / lds_total;
+
+                       max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
+                       clamp_gsprims_to_esverts(&max_gsprims, max_esverts,
+                                                min_verts_per_prim, use_adjacency);
+                       assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
+               }
+       }
+
+       /* Round up towards full wave sizes for better ALU utilization. */
+       if (!max_vert_out_per_gs_instance) {
+               const unsigned wavesize = gs_sel->screen->ge_wave_size;
+               unsigned orig_max_esverts;
+               unsigned orig_max_gsprims;
+               do {
+                       orig_max_esverts = max_esverts;
+                       orig_max_gsprims = max_gsprims;
+
+                       max_esverts = align(max_esverts, wavesize);
+                       max_esverts = MIN2(max_esverts, max_esverts_base);
+                       if (esvert_lds_size)
+                               max_esverts = MIN2(max_esverts,
+                                                  (max_lds_size - max_gsprims * gsprim_lds_size) /
+                                                  esvert_lds_size);
+                       max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim);
+
+                       max_gsprims = align(max_gsprims, wavesize);
+                       max_gsprims = MIN2(max_gsprims, max_gsprims_base);
+                       if (gsprim_lds_size)
+                               max_gsprims = MIN2(max_gsprims,
+                                                  (max_lds_size - max_esverts * esvert_lds_size) /
+                                                  gsprim_lds_size);
+                       clamp_gsprims_to_esverts(&max_gsprims, max_esverts,
+                                                min_verts_per_prim, use_adjacency);
+                       assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1);
+               } while (orig_max_esverts != max_esverts || orig_max_gsprims != max_gsprims);
+       }
+
+       /* Hardware restriction: minimum value of max_esverts */
+       max_esverts = MAX2(max_esverts, 23 + max_verts_per_prim);
+
+       unsigned max_out_vertices =
+               max_vert_out_per_gs_instance ? gs_sel->gs_max_out_vertices :
+               gs_type == PIPE_SHADER_GEOMETRY ?
+               max_gsprims * gs_num_invocations * gs_sel->gs_max_out_vertices :
+               max_esverts;
+       assert(max_out_vertices <= 256);
+
+       unsigned prim_amp_factor = 1;
+       if (gs_type == PIPE_SHADER_GEOMETRY) {
+               /* Number of output primitives per GS input primitive after
+                * GS instancing. */
+               prim_amp_factor = gs_sel->gs_max_out_vertices;
        }
-       lp_build_endif(&if_state);
 
-       FREE(outputs);
+       /* The GE only checks against the maximum number of ES verts after
+        * allocating a full GS primitive. So we need to ensure that whenever
+        * this check passes, there is enough space for a full primitive without
+        * vertex reuse.
+        */
+       shader->ngg.hw_max_esverts = max_esverts - max_verts_per_prim + 1;
+       shader->ngg.max_gsprims = max_gsprims;
+       shader->ngg.max_out_verts = max_out_vertices;
+       shader->ngg.prim_amp_factor = prim_amp_factor;
+       shader->ngg.max_vert_out_per_gs_instance = max_vert_out_per_gs_instance;
+
+       shader->gs_info.esgs_ring_size = 4 * max_esverts * esvert_lds_size;
+       shader->ngg.ngg_emit_size = max_gsprims * gsprim_lds_size;
+
+       assert(shader->ngg.hw_max_esverts >= 24); /* HW limitation */
 }