radeonsi: move EOP event code from r600_pipe_common.c to si_fence.c
[mesa.git] / src / gallium / drivers / radeonsi / si_fence.c
index 81007192994e9a974a8f81123b726d2a708f4c07..3b437091b1eb272578410d6c65b9db0eb82c948f 100644 (file)
 #include "util/os_time.h"
 #include "util/u_memory.h"
 #include "util/u_queue.h"
+#include "util/u_upload_mgr.h"
 
 #include "si_pipe.h"
+#include "radeon/r600_cs.h"
+
+struct si_fine_fence {
+       struct r600_resource *buf;
+       unsigned offset;
+};
 
 struct si_multi_fence {
        struct pipe_reference reference;
@@ -42,8 +49,131 @@ struct si_multi_fence {
                struct r600_common_context *ctx;
                unsigned ib_index;
        } gfx_unflushed;
+
+       struct si_fine_fence fine;
 };
 
+/**
+ * Write an EOP event.
+ *
+ * \param event                EVENT_TYPE_*
+ * \param event_flags  Optional cache flush flags (TC)
+ * \param data_sel     1 = fence, 3 = timestamp
+ * \param buf          Buffer
+ * \param va           GPU address
+ * \param old_value    Previous fence value (for a bug workaround)
+ * \param new_value    Fence value to write for this event.
+ */
+void si_gfx_write_event_eop(struct r600_common_context *ctx,
+                           unsigned event, unsigned event_flags,
+                           unsigned data_sel,
+                           struct r600_resource *buf, uint64_t va,
+                           uint32_t new_fence, unsigned query_type)
+{
+       struct radeon_winsys_cs *cs = ctx->gfx.cs;
+       unsigned op = EVENT_TYPE(event) |
+                     EVENT_INDEX(5) |
+                     event_flags;
+       unsigned sel = EOP_DATA_SEL(data_sel);
+
+       /* Wait for write confirmation before writing data, but don't send
+        * an interrupt. */
+       if (data_sel != EOP_DATA_SEL_DISCARD)
+               sel |= EOP_INT_SEL(EOP_INT_SEL_SEND_DATA_AFTER_WR_CONFIRM);
+
+       if (ctx->chip_class >= GFX9) {
+               /* A ZPASS_DONE or PIXEL_STAT_DUMP_EVENT (of the DB occlusion
+                * counters) must immediately precede every timestamp event to
+                * prevent a GPU hang on GFX9.
+                *
+                * Occlusion queries don't need to do it here, because they
+                * always do ZPASS_DONE before the timestamp.
+                */
+               if (ctx->chip_class == GFX9 &&
+                   query_type != PIPE_QUERY_OCCLUSION_COUNTER &&
+                   query_type != PIPE_QUERY_OCCLUSION_PREDICATE &&
+                   query_type != PIPE_QUERY_OCCLUSION_PREDICATE_CONSERVATIVE) {
+                       struct r600_resource *scratch = ctx->eop_bug_scratch;
+
+                       assert(16 * ctx->screen->info.num_render_backends <=
+                              scratch->b.b.width0);
+                       radeon_emit(cs, PKT3(PKT3_EVENT_WRITE, 2, 0));
+                       radeon_emit(cs, EVENT_TYPE(EVENT_TYPE_ZPASS_DONE) | EVENT_INDEX(1));
+                       radeon_emit(cs, scratch->gpu_address);
+                       radeon_emit(cs, scratch->gpu_address >> 32);
+
+                       radeon_add_to_buffer_list(ctx, &ctx->gfx, scratch,
+                                                 RADEON_USAGE_WRITE, RADEON_PRIO_QUERY);
+               }
+
+               radeon_emit(cs, PKT3(PKT3_RELEASE_MEM, 6, 0));
+               radeon_emit(cs, op);
+               radeon_emit(cs, sel);
+               radeon_emit(cs, va);            /* address lo */
+               radeon_emit(cs, va >> 32);      /* address hi */
+               radeon_emit(cs, new_fence);     /* immediate data lo */
+               radeon_emit(cs, 0); /* immediate data hi */
+               radeon_emit(cs, 0); /* unused */
+       } else {
+               if (ctx->chip_class == CIK ||
+                   ctx->chip_class == VI) {
+                       struct r600_resource *scratch = ctx->eop_bug_scratch;
+                       uint64_t va = scratch->gpu_address;
+
+                       /* Two EOP events are required to make all engines go idle
+                        * (and optional cache flushes executed) before the timestamp
+                        * is written.
+                        */
+                       radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0));
+                       radeon_emit(cs, op);
+                       radeon_emit(cs, va);
+                       radeon_emit(cs, ((va >> 32) & 0xffff) | sel);
+                       radeon_emit(cs, 0); /* immediate data */
+                       radeon_emit(cs, 0); /* unused */
+
+                       radeon_add_to_buffer_list(ctx, &ctx->gfx, scratch,
+                                                 RADEON_USAGE_WRITE, RADEON_PRIO_QUERY);
+               }
+
+               radeon_emit(cs, PKT3(PKT3_EVENT_WRITE_EOP, 4, 0));
+               radeon_emit(cs, op);
+               radeon_emit(cs, va);
+               radeon_emit(cs, ((va >> 32) & 0xffff) | sel);
+               radeon_emit(cs, new_fence); /* immediate data */
+               radeon_emit(cs, 0); /* unused */
+       }
+
+       if (buf) {
+               radeon_add_to_buffer_list(ctx, &ctx->gfx, buf, RADEON_USAGE_WRITE,
+                                         RADEON_PRIO_QUERY);
+       }
+}
+
+unsigned si_gfx_write_fence_dwords(struct si_screen *screen)
+{
+       unsigned dwords = 6;
+
+       if (screen->info.chip_class == CIK ||
+           screen->info.chip_class == VI)
+               dwords *= 2;
+
+       return dwords;
+}
+
+void si_gfx_wait_fence(struct r600_common_context *ctx,
+                      uint64_t va, uint32_t ref, uint32_t mask)
+{
+       struct radeon_winsys_cs *cs = ctx->gfx.cs;
+
+       radeon_emit(cs, PKT3(PKT3_WAIT_REG_MEM, 5, 0));
+       radeon_emit(cs, WAIT_REG_MEM_EQUAL | WAIT_REG_MEM_MEM_SPACE(1));
+       radeon_emit(cs, va);
+       radeon_emit(cs, va >> 32);
+       radeon_emit(cs, ref); /* reference value */
+       radeon_emit(cs, mask); /* mask */
+       radeon_emit(cs, 4); /* poll interval */
+}
+
 static void si_add_fence_dependency(struct r600_common_context *rctx,
                                    struct pipe_fence_handle *fence)
 {
@@ -54,11 +184,19 @@ static void si_add_fence_dependency(struct r600_common_context *rctx,
        ws->cs_add_fence_dependency(rctx->gfx.cs, fence);
 }
 
+static void si_add_syncobj_signal(struct r600_common_context *rctx,
+                                 struct pipe_fence_handle *fence)
+{
+       struct radeon_winsys *ws = rctx->ws;
+
+       ws->cs_add_syncobj_signal(rctx->gfx.cs, fence);
+}
+
 static void si_fence_reference(struct pipe_screen *screen,
                               struct pipe_fence_handle **dst,
                               struct pipe_fence_handle *src)
 {
-       struct radeon_winsys *ws = ((struct r600_common_screen*)screen)->ws;
+       struct radeon_winsys *ws = ((struct si_screen*)screen)->ws;
        struct si_multi_fence **rdst = (struct si_multi_fence **)dst;
        struct si_multi_fence *rsrc = (struct si_multi_fence *)src;
 
@@ -66,6 +204,7 @@ static void si_fence_reference(struct pipe_screen *screen,
                ws->fence_reference(&(*rdst)->gfx, NULL);
                ws->fence_reference(&(*rdst)->sdma, NULL);
                tc_unflushed_batch_token_reference(&(*rdst)->tc_token, NULL);
+               r600_resource_reference(&(*rdst)->fine.buf, NULL);
                FREE(*rdst);
        }
         *rdst = rsrc;
@@ -96,28 +235,55 @@ struct pipe_fence_handle *si_create_fence(struct pipe_context *ctx,
        return (struct pipe_fence_handle *)fence;
 }
 
-static void si_fence_server_sync(struct pipe_context *ctx,
-                                struct pipe_fence_handle *fence)
+static bool si_fine_fence_signaled(struct radeon_winsys *rws,
+                                  const struct si_fine_fence *fine)
 {
-       struct r600_common_context *rctx = (struct r600_common_context *)ctx;
-       struct si_multi_fence *rfence = (struct si_multi_fence *)fence;
+       char *map = rws->buffer_map(fine->buf->buf, NULL, PIPE_TRANSFER_READ |
+                                                         PIPE_TRANSFER_UNSYNCHRONIZED);
+       if (!map)
+               return false;
 
-       util_queue_fence_wait(&rfence->ready);
+       uint32_t *fence = (uint32_t*)(map + fine->offset);
+       return *fence != 0;
+}
 
-       /* Unflushed fences from the same context are no-ops. */
-       if (rfence->gfx_unflushed.ctx &&
-           rfence->gfx_unflushed.ctx == rctx)
+static void si_fine_fence_set(struct si_context *ctx,
+                             struct si_fine_fence *fine,
+                             unsigned flags)
+{
+       uint32_t *fence_ptr;
+
+       assert(util_bitcount(flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) == 1);
+
+       /* Use uncached system memory for the fence. */
+       u_upload_alloc(ctx->b.cached_gtt_allocator, 0, 4, 4,
+                      &fine->offset, (struct pipe_resource **)&fine->buf, (void **)&fence_ptr);
+       if (!fine->buf)
                return;
 
-       /* All unflushed commands will not start execution before
-        * this fence dependency is signalled.
-        *
-        * Should we flush the context to allow more GPU parallelism?
-        */
-       if (rfence->sdma)
-               si_add_fence_dependency(rctx, rfence->sdma);
-       if (rfence->gfx)
-               si_add_fence_dependency(rctx, rfence->gfx);
+       *fence_ptr = 0;
+
+       uint64_t fence_va = fine->buf->gpu_address + fine->offset;
+
+       radeon_add_to_buffer_list(&ctx->b, &ctx->b.gfx, fine->buf,
+                                 RADEON_USAGE_WRITE, RADEON_PRIO_QUERY);
+       if (flags & PIPE_FLUSH_TOP_OF_PIPE) {
+               struct radeon_winsys_cs *cs = ctx->b.gfx.cs;
+               radeon_emit(cs, PKT3(PKT3_WRITE_DATA, 3, 0));
+               radeon_emit(cs, S_370_DST_SEL(V_370_MEM_ASYNC) |
+                       S_370_WR_CONFIRM(1) |
+                       S_370_ENGINE_SEL(V_370_PFP));
+               radeon_emit(cs, fence_va);
+               radeon_emit(cs, fence_va >> 32);
+               radeon_emit(cs, 0x80000000);
+       } else if (flags & PIPE_FLUSH_BOTTOM_OF_PIPE) {
+               si_gfx_write_event_eop(&ctx->b, V_028A90_BOTTOM_OF_PIPE_TS, 0,
+                                      EOP_DATA_SEL_VALUE_32BIT,
+                                      NULL, fence_va, 0x80000000,
+                                      PIPE_QUERY_GPU_FINISHED);
+       } else {
+               assert(false);
+       }
 }
 
 static boolean si_fence_finish(struct pipe_screen *screen,
@@ -125,18 +291,11 @@ static boolean si_fence_finish(struct pipe_screen *screen,
                               struct pipe_fence_handle *fence,
                               uint64_t timeout)
 {
-       struct radeon_winsys *rws = ((struct r600_common_screen*)screen)->ws;
+       struct radeon_winsys *rws = ((struct si_screen*)screen)->ws;
        struct si_multi_fence *rfence = (struct si_multi_fence *)fence;
-       struct r600_common_context *rctx;
        int64_t abs_timeout = os_time_get_absolute_timeout(timeout);
 
-       ctx = threaded_context_unwrap_sync(ctx);
-       rctx = ctx ? (struct r600_common_context*)ctx : NULL;
-
        if (!util_queue_fence_is_signalled(&rfence->ready)) {
-               if (!timeout)
-                       return false;
-
                if (rfence->tc_token) {
                        /* Ensure that si_flush_from_st will be called for
                         * this fence, but only if we're in the API thread
@@ -146,15 +305,24 @@ static boolean si_fence_finish(struct pipe_screen *screen,
                         * be in flight in the driver thread, so the fence
                         * may not be ready yet when this call returns.
                         */
-                       threaded_context_flush(ctx, rfence->tc_token);
+                       threaded_context_flush(ctx, rfence->tc_token,
+                                              timeout == 0);
                }
 
+               if (!timeout)
+                       return false;
+
                if (timeout == PIPE_TIMEOUT_INFINITE) {
                        util_queue_fence_wait(&rfence->ready);
                } else {
                        if (!util_queue_fence_wait_timeout(&rfence->ready, abs_timeout))
                                return false;
                }
+
+               if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
+                       int64_t time = os_time_get_nano();
+                       timeout = abs_timeout > time ? abs_timeout - time : 0;
+               }
        }
 
        if (rfence->sdma) {
@@ -171,65 +339,103 @@ static boolean si_fence_finish(struct pipe_screen *screen,
        if (!rfence->gfx)
                return true;
 
+       if (rfence->fine.buf &&
+           si_fine_fence_signaled(rws, &rfence->fine)) {
+               rws->fence_reference(&rfence->gfx, NULL);
+               r600_resource_reference(&rfence->fine.buf, NULL);
+               return true;
+       }
+
        /* Flush the gfx IB if it hasn't been flushed yet. */
-       if (rctx &&
-           rfence->gfx_unflushed.ctx == rctx &&
-           rfence->gfx_unflushed.ib_index == rctx->num_gfx_cs_flushes) {
-               /* Section 4.1.2 (Signaling) of the OpenGL 4.6 (Core profile)
-                * spec says:
-                *
-                *    "If the sync object being blocked upon will not be
-                *     signaled in finite time (for example, by an associated
-                *     fence command issued previously, but not yet flushed to
-                *     the graphics pipeline), then ClientWaitSync may hang
-                *     forever. To help prevent this behavior, if
-                *     ClientWaitSync is called and all of the following are
-                *     true:
-                *
-                *     * the SYNC_FLUSH_COMMANDS_BIT bit is set in flags,
-                *     * sync is unsignaled when ClientWaitSync is called,
-                *     * and the calls to ClientWaitSync and FenceSync were
-                *       issued from the same context,
-                *
-                *     then the GL will behave as if the equivalent of Flush
-                *     were inserted immediately after the creation of sync."
-                *
-                * This means we need to flush for such fences even when we're
-                * not going to wait.
-                */
-               rctx->gfx.flush(rctx, timeout ? 0 : RADEON_FLUSH_ASYNC, NULL);
-               rfence->gfx_unflushed.ctx = NULL;
+       if (ctx && rfence->gfx_unflushed.ctx) {
+               struct si_context *sctx;
+
+               sctx = (struct si_context *)threaded_context_unwrap_unsync(ctx);
+               if (rfence->gfx_unflushed.ctx == &sctx->b &&
+                   rfence->gfx_unflushed.ib_index == sctx->b.num_gfx_cs_flushes) {
+                       /* Section 4.1.2 (Signaling) of the OpenGL 4.6 (Core profile)
+                        * spec says:
+                        *
+                        *    "If the sync object being blocked upon will not be
+                        *     signaled in finite time (for example, by an associated
+                        *     fence command issued previously, but not yet flushed to
+                        *     the graphics pipeline), then ClientWaitSync may hang
+                        *     forever. To help prevent this behavior, if
+                        *     ClientWaitSync is called and all of the following are
+                        *     true:
+                        *
+                        *     * the SYNC_FLUSH_COMMANDS_BIT bit is set in flags,
+                        *     * sync is unsignaled when ClientWaitSync is called,
+                        *     * and the calls to ClientWaitSync and FenceSync were
+                        *       issued from the same context,
+                        *
+                        *     then the GL will behave as if the equivalent of Flush
+                        *     were inserted immediately after the creation of sync."
+                        *
+                        * This means we need to flush for such fences even when we're
+                        * not going to wait.
+                        */
+                       threaded_context_unwrap_sync(ctx);
+                       sctx->b.gfx.flush(&sctx->b, timeout ? 0 : PIPE_FLUSH_ASYNC, NULL);
+                       rfence->gfx_unflushed.ctx = NULL;
 
-               if (!timeout)
-                       return false;
+                       if (!timeout)
+                               return false;
 
-               /* Recompute the timeout after all that. */
-               if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
-                       int64_t time = os_time_get_nano();
-                       timeout = abs_timeout > time ? abs_timeout - time : 0;
+                       /* Recompute the timeout after all that. */
+                       if (timeout && timeout != PIPE_TIMEOUT_INFINITE) {
+                               int64_t time = os_time_get_nano();
+                               timeout = abs_timeout > time ? abs_timeout - time : 0;
+                       }
                }
        }
 
-       return rws->fence_wait(rws, rfence->gfx, timeout);
+       if (rws->fence_wait(rws, rfence->gfx, timeout))
+               return true;
+
+       /* Re-check in case the GPU is slow or hangs, but the commands before
+        * the fine-grained fence have completed. */
+       if (rfence->fine.buf &&
+           si_fine_fence_signaled(rws, &rfence->fine))
+               return true;
+
+       return false;
 }
 
 static void si_create_fence_fd(struct pipe_context *ctx,
-                              struct pipe_fence_handle **pfence, int fd)
+                              struct pipe_fence_handle **pfence, int fd,
+                              enum pipe_fd_type type)
 {
-       struct r600_common_screen *rscreen = (struct r600_common_screen*)ctx->screen;
-       struct radeon_winsys *ws = rscreen->ws;
+       struct si_screen *sscreen = (struct si_screen*)ctx->screen;
+       struct radeon_winsys *ws = sscreen->ws;
        struct si_multi_fence *rfence;
 
        *pfence = NULL;
 
-       if (!rscreen->info.has_sync_file)
-               return;
-
        rfence = si_create_multi_fence();
        if (!rfence)
                return;
 
-       rfence->gfx = ws->fence_import_sync_file(ws, fd);
+       switch (type) {
+       case PIPE_FD_TYPE_NATIVE_SYNC:
+               if (!sscreen->info.has_fence_to_handle)
+                       goto finish;
+
+               rfence->gfx = ws->fence_import_sync_file(ws, fd);
+               break;
+
+       case PIPE_FD_TYPE_SYNCOBJ:
+               if (!sscreen->info.has_syncobj)
+                       goto finish;
+
+               rfence->gfx = ws->fence_import_syncobj(ws, fd);
+               break;
+
+       default:
+               unreachable("bad fence fd type when importing");
+       }
+
+finish:
        if (!rfence->gfx) {
                FREE(rfence);
                return;
@@ -241,12 +447,12 @@ static void si_create_fence_fd(struct pipe_context *ctx,
 static int si_fence_get_fd(struct pipe_screen *screen,
                           struct pipe_fence_handle *fence)
 {
-       struct r600_common_screen *rscreen = (struct r600_common_screen*)screen;
-       struct radeon_winsys *ws = rscreen->ws;
+       struct si_screen *sscreen = (struct si_screen*)screen;
+       struct radeon_winsys *ws = sscreen->ws;
        struct si_multi_fence *rfence = (struct si_multi_fence *)fence;
        int gfx_fd = -1, sdma_fd = -1;
 
-       if (!rscreen->info.has_sync_file)
+       if (!sscreen->info.has_fence_to_handle)
                return -1;
 
        util_queue_fence_wait(&rfence->ready);
@@ -272,6 +478,8 @@ static int si_fence_get_fd(struct pipe_screen *screen,
 
        /* If we don't have FDs at this point, it means we don't have fences
         * either. */
+       if (sdma_fd == -1 && gfx_fd == -1)
+               return ws->export_signalled_sync_file(ws);
        if (sdma_fd == -1)
                return gfx_fd;
        if (gfx_fd == -1)
@@ -293,10 +501,18 @@ static void si_flush_from_st(struct pipe_context *ctx,
        struct pipe_fence_handle *gfx_fence = NULL;
        struct pipe_fence_handle *sdma_fence = NULL;
        bool deferred_fence = false;
-       unsigned rflags = RADEON_FLUSH_ASYNC;
+       struct si_fine_fence fine = {};
+       unsigned rflags = PIPE_FLUSH_ASYNC;
 
        if (flags & PIPE_FLUSH_END_OF_FRAME)
-               rflags |= RADEON_FLUSH_END_OF_FRAME;
+               rflags |= PIPE_FLUSH_END_OF_FRAME;
+
+       if (flags & (PIPE_FLUSH_TOP_OF_PIPE | PIPE_FLUSH_BOTTOM_OF_PIPE)) {
+               assert(flags & PIPE_FLUSH_DEFERRED);
+               assert(fence);
+
+               si_fine_fence_set((struct si_context *)rctx, &fine, flags);
+       }
 
        /* DMA IBs are preambles to gfx IBs, therefore must be flushed first. */
        if (rctx->dma.cs)
@@ -352,11 +568,15 @@ static void si_flush_from_st(struct pipe_context *ctx,
                        multi_fence->gfx_unflushed.ib_index = rctx->num_gfx_cs_flushes;
                }
 
+               multi_fence->fine = fine;
+               fine.buf = NULL;
+
                if (flags & TC_FLUSH_ASYNC) {
                        util_queue_fence_signal(&multi_fence->ready);
                        tc_unflushed_batch_token_reference(&multi_fence->tc_token, NULL);
                }
        }
+       assert(!fine.buf);
 finish:
        if (!(flags & PIPE_FLUSH_DEFERRED)) {
                if (rctx->dma.cs)
@@ -365,16 +585,70 @@ finish:
        }
 }
 
+static void si_fence_server_signal(struct pipe_context *ctx,
+                                  struct pipe_fence_handle *fence)
+{
+       struct r600_common_context *rctx = (struct r600_common_context *)ctx;
+       struct si_multi_fence *rfence = (struct si_multi_fence *)fence;
+
+       /* We should have at least one syncobj to signal */
+       assert(rfence->sdma || rfence->gfx);
+
+       if (rfence->sdma)
+               si_add_syncobj_signal(rctx, rfence->sdma);
+       if (rfence->gfx)
+               si_add_syncobj_signal(rctx, rfence->gfx);
+
+       /**
+        * The spec does not require a flush here. We insert a flush
+        * because syncobj based signals are not directly placed into
+        * the command stream. Instead the signal happens when the
+        * submission associated with the syncobj finishes execution.
+        *
+        * Therefore, we must make sure that we flush the pipe to avoid
+        * new work being emitted and getting executed before the signal
+        * operation.
+        */
+       si_flush_from_st(ctx, NULL, PIPE_FLUSH_ASYNC);
+}
+
+static void si_fence_server_sync(struct pipe_context *ctx,
+                                struct pipe_fence_handle *fence)
+{
+       struct r600_common_context *rctx = (struct r600_common_context *)ctx;
+       struct si_multi_fence *rfence = (struct si_multi_fence *)fence;
+
+       util_queue_fence_wait(&rfence->ready);
+
+       /* Unflushed fences from the same context are no-ops. */
+       if (rfence->gfx_unflushed.ctx &&
+           rfence->gfx_unflushed.ctx == rctx)
+               return;
+
+       /* All unflushed commands will not start execution before
+        * this fence dependency is signalled.
+        *
+        * Therefore we must flush before inserting the dependency
+        */
+       si_flush_from_st(ctx, NULL, PIPE_FLUSH_ASYNC);
+
+       if (rfence->sdma)
+               si_add_fence_dependency(rctx, rfence->sdma);
+       if (rfence->gfx)
+               si_add_fence_dependency(rctx, rfence->gfx);
+}
+
 void si_init_fence_functions(struct si_context *ctx)
 {
        ctx->b.b.flush = si_flush_from_st;
        ctx->b.b.create_fence_fd = si_create_fence_fd;
        ctx->b.b.fence_server_sync = si_fence_server_sync;
+       ctx->b.b.fence_server_signal = si_fence_server_signal;
 }
 
 void si_init_screen_fence_functions(struct si_screen *screen)
 {
-       screen->b.b.fence_finish = si_fence_finish;
-       screen->b.b.fence_reference = si_fence_reference;
-       screen->b.b.fence_get_fd = si_fence_get_fd;
+       screen->b.fence_finish = si_fence_finish;
+       screen->b.fence_reference = si_fence_reference;
+       screen->b.fence_get_fd = si_fence_get_fd;
 }