radeonsi: move PS LLVM code into si_shader_llvm_ps.c
[mesa.git] / src / gallium / drivers / radeonsi / si_shader_llvm_ps.c
diff --git a/src/gallium/drivers/radeonsi/si_shader_llvm_ps.c b/src/gallium/drivers/radeonsi/si_shader_llvm_ps.c
new file mode 100644 (file)
index 0000000..74ae6f7
--- /dev/null
@@ -0,0 +1,1061 @@
+/*
+ * Copyright 2020 Advanced Micro Devices, Inc.
+ * All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * on the rights to use, copy, modify, merge, publish, distribute, sub
+ * license, and/or sell copies of the Software, and to permit persons to whom
+ * the Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice (including the next
+ * paragraph) shall be included in all copies or substantial portions of the
+ * Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
+ * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
+ * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
+ * USE OR OTHER DEALINGS IN THE SOFTWARE.
+ */
+
+#include "si_shader_internal.h"
+#include "si_pipe.h"
+#include "sid.h"
+
+LLVMValueRef si_get_sample_id(struct si_shader_context *ctx)
+{
+       return si_unpack_param(ctx, ctx->args.ancillary, 8, 4);
+}
+
+static LLVMValueRef load_sample_mask_in(struct ac_shader_abi *abi)
+{
+       struct si_shader_context *ctx = si_shader_context_from_abi(abi);
+       return ac_to_integer(&ctx->ac, ac_get_arg(&ctx->ac, ctx->args.sample_coverage));
+}
+
+static LLVMValueRef load_sample_position(struct ac_shader_abi *abi, LLVMValueRef sample_id)
+{
+       struct si_shader_context *ctx = si_shader_context_from_abi(abi);
+       LLVMValueRef desc = ac_get_arg(&ctx->ac, ctx->rw_buffers);
+       LLVMValueRef buf_index = LLVMConstInt(ctx->i32, SI_PS_CONST_SAMPLE_POSITIONS, 0);
+       LLVMValueRef resource = ac_build_load_to_sgpr(&ctx->ac, desc, buf_index);
+
+       /* offset = sample_id * 8  (8 = 2 floats containing samplepos.xy) */
+       LLVMValueRef offset0 = LLVMBuildMul(ctx->ac.builder, sample_id, LLVMConstInt(ctx->i32, 8, 0), "");
+       LLVMValueRef offset1 = LLVMBuildAdd(ctx->ac.builder, offset0, LLVMConstInt(ctx->i32, 4, 0), "");
+
+       LLVMValueRef pos[4] = {
+               si_buffer_load_const(ctx, resource, offset0),
+               si_buffer_load_const(ctx, resource, offset1),
+               LLVMConstReal(ctx->f32, 0),
+               LLVMConstReal(ctx->f32, 0)
+       };
+
+       return ac_build_gather_values(&ctx->ac, pos, 4);
+}
+
+static LLVMValueRef si_nir_emit_fbfetch(struct ac_shader_abi *abi)
+{
+       struct si_shader_context *ctx = si_shader_context_from_abi(abi);
+       struct ac_image_args args = {};
+       LLVMValueRef ptr, image, fmask;
+
+       /* Ignore src0, because KHR_blend_func_extended disallows multiple render
+        * targets.
+        */
+
+       /* Load the image descriptor. */
+       STATIC_ASSERT(SI_PS_IMAGE_COLORBUF0 % 2 == 0);
+       ptr = ac_get_arg(&ctx->ac, ctx->rw_buffers);
+       ptr = LLVMBuildPointerCast(ctx->ac.builder, ptr,
+                                  ac_array_in_const32_addr_space(ctx->v8i32), "");
+       image = ac_build_load_to_sgpr(&ctx->ac, ptr,
+                       LLVMConstInt(ctx->i32, SI_PS_IMAGE_COLORBUF0 / 2, 0));
+
+       unsigned chan = 0;
+
+       args.coords[chan++] = si_unpack_param(ctx, ctx->pos_fixed_pt, 0, 16);
+
+       if (!ctx->shader->key.mono.u.ps.fbfetch_is_1D)
+               args.coords[chan++] = si_unpack_param(ctx, ctx->pos_fixed_pt, 16, 16);
+
+       /* Get the current render target layer index. */
+       if (ctx->shader->key.mono.u.ps.fbfetch_layered)
+               args.coords[chan++] = si_unpack_param(ctx, ctx->args.ancillary, 16, 11);
+
+       if (ctx->shader->key.mono.u.ps.fbfetch_msaa)
+               args.coords[chan++] = si_get_sample_id(ctx);
+
+       if (ctx->shader->key.mono.u.ps.fbfetch_msaa &&
+           !(ctx->screen->debug_flags & DBG(NO_FMASK))) {
+               fmask = ac_build_load_to_sgpr(&ctx->ac, ptr,
+                       LLVMConstInt(ctx->i32, SI_PS_IMAGE_COLORBUF0_FMASK / 2, 0));
+
+               ac_apply_fmask_to_sample(&ctx->ac, fmask, args.coords,
+                                        ctx->shader->key.mono.u.ps.fbfetch_layered);
+       }
+
+       args.opcode = ac_image_load;
+       args.resource = image;
+       args.dmask = 0xf;
+       args.attributes = AC_FUNC_ATTR_READNONE;
+
+       if (ctx->shader->key.mono.u.ps.fbfetch_msaa)
+               args.dim = ctx->shader->key.mono.u.ps.fbfetch_layered ?
+                       ac_image_2darraymsaa : ac_image_2dmsaa;
+       else if (ctx->shader->key.mono.u.ps.fbfetch_is_1D)
+               args.dim = ctx->shader->key.mono.u.ps.fbfetch_layered ?
+                       ac_image_1darray : ac_image_1d;
+       else
+               args.dim = ctx->shader->key.mono.u.ps.fbfetch_layered ?
+                       ac_image_2darray : ac_image_2d;
+
+       return ac_build_image_opcode(&ctx->ac, &args);
+}
+
+static LLVMValueRef si_build_fs_interp(struct si_shader_context *ctx,
+                                      unsigned attr_index, unsigned chan,
+                                      LLVMValueRef prim_mask,
+                                      LLVMValueRef i, LLVMValueRef j)
+{
+       if (i || j) {
+               return ac_build_fs_interp(&ctx->ac,
+                                         LLVMConstInt(ctx->i32, chan, 0),
+                                         LLVMConstInt(ctx->i32, attr_index, 0),
+                                         prim_mask, i, j);
+       }
+       return ac_build_fs_interp_mov(&ctx->ac,
+                                     LLVMConstInt(ctx->i32, 2, 0), /* P0 */
+                                     LLVMConstInt(ctx->i32, chan, 0),
+                                     LLVMConstInt(ctx->i32, attr_index, 0),
+                                     prim_mask);
+}
+
+/**
+ * Interpolate a fragment shader input.
+ *
+ * @param ctx          context
+ * @param input_index          index of the input in hardware
+ * @param semantic_name                TGSI_SEMANTIC_*
+ * @param semantic_index       semantic index
+ * @param num_interp_inputs    number of all interpolated inputs (= BCOLOR offset)
+ * @param colors_read_mask     color components read (4 bits for each color, 8 bits in total)
+ * @param interp_param         interpolation weights (i,j)
+ * @param prim_mask            SI_PARAM_PRIM_MASK
+ * @param face                 SI_PARAM_FRONT_FACE
+ * @param result               the return value (4 components)
+ */
+static void interp_fs_color(struct si_shader_context *ctx,
+                           unsigned input_index,
+                           unsigned semantic_index,
+                           unsigned num_interp_inputs,
+                           unsigned colors_read_mask,
+                           LLVMValueRef interp_param,
+                           LLVMValueRef prim_mask,
+                           LLVMValueRef face,
+                           LLVMValueRef result[4])
+{
+       LLVMValueRef i = NULL, j = NULL;
+       unsigned chan;
+
+       /* fs.constant returns the param from the middle vertex, so it's not
+        * really useful for flat shading. It's meant to be used for custom
+        * interpolation (but the intrinsic can't fetch from the other two
+        * vertices).
+        *
+        * Luckily, it doesn't matter, because we rely on the FLAT_SHADE state
+        * to do the right thing. The only reason we use fs.constant is that
+        * fs.interp cannot be used on integers, because they can be equal
+        * to NaN.
+        *
+        * When interp is false we will use fs.constant or for newer llvm,
+         * amdgcn.interp.mov.
+        */
+       bool interp = interp_param != NULL;
+
+       if (interp) {
+               interp_param = LLVMBuildBitCast(ctx->ac.builder, interp_param,
+                                               LLVMVectorType(ctx->f32, 2), "");
+
+               i = LLVMBuildExtractElement(ctx->ac.builder, interp_param,
+                                               ctx->i32_0, "");
+               j = LLVMBuildExtractElement(ctx->ac.builder, interp_param,
+                                               ctx->i32_1, "");
+       }
+
+       if (ctx->shader->key.part.ps.prolog.color_two_side) {
+               LLVMValueRef is_face_positive;
+
+               /* If BCOLOR0 is used, BCOLOR1 is at offset "num_inputs + 1",
+                * otherwise it's at offset "num_inputs".
+                */
+               unsigned back_attr_offset = num_interp_inputs;
+               if (semantic_index == 1 && colors_read_mask & 0xf)
+                       back_attr_offset += 1;
+
+               is_face_positive = LLVMBuildICmp(ctx->ac.builder, LLVMIntNE,
+                                                face, ctx->i32_0, "");
+
+               for (chan = 0; chan < 4; chan++) {
+                       LLVMValueRef front, back;
+
+                       front = si_build_fs_interp(ctx,
+                                                  input_index, chan,
+                                                  prim_mask, i, j);
+                       back = si_build_fs_interp(ctx,
+                                                 back_attr_offset, chan,
+                                                 prim_mask, i, j);
+
+                       result[chan] = LLVMBuildSelect(ctx->ac.builder,
+                                               is_face_positive,
+                                               front,
+                                               back,
+                                               "");
+               }
+       } else {
+               for (chan = 0; chan < 4; chan++) {
+                       result[chan] = si_build_fs_interp(ctx,
+                                                         input_index, chan,
+                                                         prim_mask, i, j);
+               }
+       }
+}
+
+static void si_alpha_test(struct si_shader_context *ctx, LLVMValueRef alpha)
+{
+       if (ctx->shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_NEVER) {
+               static LLVMRealPredicate cond_map[PIPE_FUNC_ALWAYS + 1] = {
+                       [PIPE_FUNC_LESS] = LLVMRealOLT,
+                       [PIPE_FUNC_EQUAL] = LLVMRealOEQ,
+                       [PIPE_FUNC_LEQUAL] = LLVMRealOLE,
+                       [PIPE_FUNC_GREATER] = LLVMRealOGT,
+                       [PIPE_FUNC_NOTEQUAL] = LLVMRealONE,
+                       [PIPE_FUNC_GEQUAL] = LLVMRealOGE,
+               };
+               LLVMRealPredicate cond = cond_map[ctx->shader->key.part.ps.epilog.alpha_func];
+               assert(cond);
+
+               LLVMValueRef alpha_ref = LLVMGetParam(ctx->main_fn,
+                               SI_PARAM_ALPHA_REF);
+               LLVMValueRef alpha_pass =
+                       LLVMBuildFCmp(ctx->ac.builder, cond, alpha, alpha_ref, "");
+               ac_build_kill_if_false(&ctx->ac, alpha_pass);
+       } else {
+               ac_build_kill_if_false(&ctx->ac, ctx->i1false);
+       }
+}
+
+static LLVMValueRef si_scale_alpha_by_sample_mask(struct si_shader_context *ctx,
+                                                 LLVMValueRef alpha,
+                                                 unsigned samplemask_param)
+{
+       LLVMValueRef coverage;
+
+       /* alpha = alpha * popcount(coverage) / SI_NUM_SMOOTH_AA_SAMPLES */
+       coverage = LLVMGetParam(ctx->main_fn,
+                               samplemask_param);
+       coverage = ac_to_integer(&ctx->ac, coverage);
+
+       coverage = ac_build_intrinsic(&ctx->ac, "llvm.ctpop.i32",
+                                  ctx->i32,
+                                  &coverage, 1, AC_FUNC_ATTR_READNONE);
+
+       coverage = LLVMBuildUIToFP(ctx->ac.builder, coverage,
+                                  ctx->f32, "");
+
+       coverage = LLVMBuildFMul(ctx->ac.builder, coverage,
+                                LLVMConstReal(ctx->f32,
+                                       1.0 / SI_NUM_SMOOTH_AA_SAMPLES), "");
+
+       return LLVMBuildFMul(ctx->ac.builder, alpha, coverage, "");
+}
+
+struct si_ps_exports {
+       unsigned num;
+       struct ac_export_args args[10];
+};
+
+static void si_export_mrt_z(struct si_shader_context *ctx,
+                           LLVMValueRef depth, LLVMValueRef stencil,
+                           LLVMValueRef samplemask, struct si_ps_exports *exp)
+{
+       struct ac_export_args args;
+
+       ac_export_mrt_z(&ctx->ac, depth, stencil, samplemask, &args);
+
+       memcpy(&exp->args[exp->num++], &args, sizeof(args));
+}
+
+/* Initialize arguments for the shader export intrinsic */
+static void si_llvm_init_ps_export_args(struct si_shader_context *ctx,
+                                       LLVMValueRef *values,
+                                       unsigned target,
+                                       struct ac_export_args *args)
+{
+       const struct si_shader_key *key = &ctx->shader->key;
+       unsigned col_formats = key->part.ps.epilog.spi_shader_col_format;
+       LLVMValueRef f32undef = LLVMGetUndef(ctx->ac.f32);
+       unsigned spi_shader_col_format;
+       unsigned chan;
+       bool is_int8, is_int10;
+       int cbuf = target - V_008DFC_SQ_EXP_MRT;
+
+       assert(cbuf >= 0 && cbuf < 8);
+
+       spi_shader_col_format = (col_formats >> (cbuf * 4)) & 0xf;
+       is_int8 = (key->part.ps.epilog.color_is_int8 >> cbuf) & 0x1;
+       is_int10 = (key->part.ps.epilog.color_is_int10 >> cbuf) & 0x1;
+
+       /* Default is 0xf. Adjusted below depending on the format. */
+       args->enabled_channels = 0xf; /* writemask */
+
+       /* Specify whether the EXEC mask represents the valid mask */
+       args->valid_mask = 0;
+
+       /* Specify whether this is the last export */
+       args->done = 0;
+
+       /* Specify the target we are exporting */
+       args->target = target;
+
+       args->compr = false;
+       args->out[0] = f32undef;
+       args->out[1] = f32undef;
+       args->out[2] = f32undef;
+       args->out[3] = f32undef;
+
+       LLVMValueRef (*packf)(struct ac_llvm_context *ctx, LLVMValueRef args[2]) = NULL;
+       LLVMValueRef (*packi)(struct ac_llvm_context *ctx, LLVMValueRef args[2],
+                             unsigned bits, bool hi) = NULL;
+
+       switch (spi_shader_col_format) {
+       case V_028714_SPI_SHADER_ZERO:
+               args->enabled_channels = 0; /* writemask */
+               args->target = V_008DFC_SQ_EXP_NULL;
+               break;
+
+       case V_028714_SPI_SHADER_32_R:
+               args->enabled_channels = 1; /* writemask */
+               args->out[0] = values[0];
+               break;
+
+       case V_028714_SPI_SHADER_32_GR:
+               args->enabled_channels = 0x3; /* writemask */
+               args->out[0] = values[0];
+               args->out[1] = values[1];
+               break;
+
+       case V_028714_SPI_SHADER_32_AR:
+               if (ctx->screen->info.chip_class >= GFX10) {
+                       args->enabled_channels = 0x3; /* writemask */
+                       args->out[0] = values[0];
+                       args->out[1] = values[3];
+               } else {
+                       args->enabled_channels = 0x9; /* writemask */
+                       args->out[0] = values[0];
+                       args->out[3] = values[3];
+               }
+               break;
+
+       case V_028714_SPI_SHADER_FP16_ABGR:
+               packf = ac_build_cvt_pkrtz_f16;
+               break;
+
+       case V_028714_SPI_SHADER_UNORM16_ABGR:
+               packf = ac_build_cvt_pknorm_u16;
+               break;
+
+       case V_028714_SPI_SHADER_SNORM16_ABGR:
+               packf = ac_build_cvt_pknorm_i16;
+               break;
+
+       case V_028714_SPI_SHADER_UINT16_ABGR:
+               packi = ac_build_cvt_pk_u16;
+               break;
+
+       case V_028714_SPI_SHADER_SINT16_ABGR:
+               packi = ac_build_cvt_pk_i16;
+               break;
+
+       case V_028714_SPI_SHADER_32_ABGR:
+               memcpy(&args->out[0], values, sizeof(values[0]) * 4);
+               break;
+       }
+
+       /* Pack f16 or norm_i16/u16. */
+       if (packf) {
+               for (chan = 0; chan < 2; chan++) {
+                       LLVMValueRef pack_args[2] = {
+                               values[2 * chan],
+                               values[2 * chan + 1]
+                       };
+                       LLVMValueRef packed;
+
+                       packed = packf(&ctx->ac, pack_args);
+                       args->out[chan] = ac_to_float(&ctx->ac, packed);
+               }
+               args->compr = 1; /* COMPR flag */
+       }
+       /* Pack i16/u16. */
+       if (packi) {
+               for (chan = 0; chan < 2; chan++) {
+                       LLVMValueRef pack_args[2] = {
+                               ac_to_integer(&ctx->ac, values[2 * chan]),
+                               ac_to_integer(&ctx->ac, values[2 * chan + 1])
+                       };
+                       LLVMValueRef packed;
+
+                       packed = packi(&ctx->ac, pack_args,
+                                      is_int8 ? 8 : is_int10 ? 10 : 16,
+                                      chan == 1);
+                       args->out[chan] = ac_to_float(&ctx->ac, packed);
+               }
+               args->compr = 1; /* COMPR flag */
+       }
+}
+
+static void si_export_mrt_color(struct si_shader_context *ctx,
+                               LLVMValueRef *color, unsigned index,
+                               unsigned samplemask_param,
+                               bool is_last, struct si_ps_exports *exp)
+{
+       int i;
+
+       /* Clamp color */
+       if (ctx->shader->key.part.ps.epilog.clamp_color)
+               for (i = 0; i < 4; i++)
+                       color[i] = ac_build_clamp(&ctx->ac, color[i]);
+
+       /* Alpha to one */
+       if (ctx->shader->key.part.ps.epilog.alpha_to_one)
+               color[3] = ctx->ac.f32_1;
+
+       /* Alpha test */
+       if (index == 0 &&
+           ctx->shader->key.part.ps.epilog.alpha_func != PIPE_FUNC_ALWAYS)
+               si_alpha_test(ctx, color[3]);
+
+       /* Line & polygon smoothing */
+       if (ctx->shader->key.part.ps.epilog.poly_line_smoothing)
+               color[3] = si_scale_alpha_by_sample_mask(ctx, color[3],
+                                                        samplemask_param);
+
+       /* If last_cbuf > 0, FS_COLOR0_WRITES_ALL_CBUFS is true. */
+       if (ctx->shader->key.part.ps.epilog.last_cbuf > 0) {
+               struct ac_export_args args[8];
+               int c, last = -1;
+
+               /* Get the export arguments, also find out what the last one is. */
+               for (c = 0; c <= ctx->shader->key.part.ps.epilog.last_cbuf; c++) {
+                       si_llvm_init_ps_export_args(ctx, color,
+                                                   V_008DFC_SQ_EXP_MRT + c, &args[c]);
+                       if (args[c].enabled_channels)
+                               last = c;
+               }
+
+               /* Emit all exports. */
+               for (c = 0; c <= ctx->shader->key.part.ps.epilog.last_cbuf; c++) {
+                       if (is_last && last == c) {
+                               args[c].valid_mask = 1; /* whether the EXEC mask is valid */
+                               args[c].done = 1; /* DONE bit */
+                       } else if (!args[c].enabled_channels)
+                               continue; /* unnecessary NULL export */
+
+                       memcpy(&exp->args[exp->num++], &args[c], sizeof(args[c]));
+               }
+       } else {
+               struct ac_export_args args;
+
+               /* Export */
+               si_llvm_init_ps_export_args(ctx, color, V_008DFC_SQ_EXP_MRT + index,
+                                           &args);
+               if (is_last) {
+                       args.valid_mask = 1; /* whether the EXEC mask is valid */
+                       args.done = 1; /* DONE bit */
+               } else if (!args.enabled_channels)
+                       return; /* unnecessary NULL export */
+
+               memcpy(&exp->args[exp->num++], &args, sizeof(args));
+       }
+}
+
+static void si_emit_ps_exports(struct si_shader_context *ctx,
+                              struct si_ps_exports *exp)
+{
+       for (unsigned i = 0; i < exp->num; i++)
+               ac_build_export(&ctx->ac, &exp->args[i]);
+}
+
+/**
+ * Return PS outputs in this order:
+ *
+ * v[0:3] = color0.xyzw
+ * v[4:7] = color1.xyzw
+ * ...
+ * vN+0 = Depth
+ * vN+1 = Stencil
+ * vN+2 = SampleMask
+ * vN+3 = SampleMaskIn (used for OpenGL smoothing)
+ *
+ * The alpha-ref SGPR is returned via its original location.
+ */
+static void si_llvm_return_fs_outputs(struct ac_shader_abi *abi,
+                                     unsigned max_outputs,
+                                     LLVMValueRef *addrs)
+{
+       struct si_shader_context *ctx = si_shader_context_from_abi(abi);
+       struct si_shader *shader = ctx->shader;
+       struct si_shader_info *info = &shader->selector->info;
+       LLVMBuilderRef builder = ctx->ac.builder;
+       unsigned i, j, first_vgpr, vgpr;
+
+       LLVMValueRef color[8][4] = {};
+       LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
+       LLVMValueRef ret;
+
+       if (ctx->postponed_kill)
+               ac_build_kill_if_false(&ctx->ac, LLVMBuildLoad(builder, ctx->postponed_kill, ""));
+
+       /* Read the output values. */
+       for (i = 0; i < info->num_outputs; i++) {
+               unsigned semantic_name = info->output_semantic_name[i];
+               unsigned semantic_index = info->output_semantic_index[i];
+
+               switch (semantic_name) {
+               case TGSI_SEMANTIC_COLOR:
+                       assert(semantic_index < 8);
+                       for (j = 0; j < 4; j++) {
+                               LLVMValueRef ptr = addrs[4 * i + j];
+                               LLVMValueRef result = LLVMBuildLoad(builder, ptr, "");
+                               color[semantic_index][j] = result;
+                       }
+                       break;
+               case TGSI_SEMANTIC_POSITION:
+                       depth = LLVMBuildLoad(builder,
+                                             addrs[4 * i + 0], "");
+                       break;
+               case TGSI_SEMANTIC_STENCIL:
+                       stencil = LLVMBuildLoad(builder,
+                                               addrs[4 * i + 0], "");
+                       break;
+               case TGSI_SEMANTIC_SAMPLEMASK:
+                       samplemask = LLVMBuildLoad(builder,
+                                                  addrs[4 * i + 0], "");
+                       break;
+               default:
+                       fprintf(stderr, "Warning: GFX6 unhandled fs output type:%d\n",
+                               semantic_name);
+               }
+       }
+
+       /* Fill the return structure. */
+       ret = ctx->return_value;
+
+       /* Set SGPRs. */
+       ret = LLVMBuildInsertValue(builder, ret,
+                                  ac_to_integer(&ctx->ac,
+                                                 LLVMGetParam(ctx->main_fn,
+                                                              SI_PARAM_ALPHA_REF)),
+                                  SI_SGPR_ALPHA_REF, "");
+
+       /* Set VGPRs */
+       first_vgpr = vgpr = SI_SGPR_ALPHA_REF + 1;
+       for (i = 0; i < ARRAY_SIZE(color); i++) {
+               if (!color[i][0])
+                       continue;
+
+               for (j = 0; j < 4; j++)
+                       ret = LLVMBuildInsertValue(builder, ret, color[i][j], vgpr++, "");
+       }
+       if (depth)
+               ret = LLVMBuildInsertValue(builder, ret, depth, vgpr++, "");
+       if (stencil)
+               ret = LLVMBuildInsertValue(builder, ret, stencil, vgpr++, "");
+       if (samplemask)
+               ret = LLVMBuildInsertValue(builder, ret, samplemask, vgpr++, "");
+
+       /* Add the input sample mask for smoothing at the end. */
+       if (vgpr < first_vgpr + PS_EPILOG_SAMPLEMASK_MIN_LOC)
+               vgpr = first_vgpr + PS_EPILOG_SAMPLEMASK_MIN_LOC;
+       ret = LLVMBuildInsertValue(builder, ret,
+                                  LLVMGetParam(ctx->main_fn,
+                                               SI_PARAM_SAMPLE_COVERAGE), vgpr++, "");
+
+       ctx->return_value = ret;
+}
+
+static void si_llvm_emit_polygon_stipple(struct si_shader_context *ctx,
+                                        LLVMValueRef param_rw_buffers,
+                                        struct ac_arg param_pos_fixed_pt)
+{
+       LLVMBuilderRef builder = ctx->ac.builder;
+       LLVMValueRef slot, desc, offset, row, bit, address[2];
+
+       /* Use the fixed-point gl_FragCoord input.
+        * Since the stipple pattern is 32x32 and it repeats, just get 5 bits
+        * per coordinate to get the repeating effect.
+        */
+       address[0] = si_unpack_param(ctx, param_pos_fixed_pt, 0, 5);
+       address[1] = si_unpack_param(ctx, param_pos_fixed_pt, 16, 5);
+
+       /* Load the buffer descriptor. */
+       slot = LLVMConstInt(ctx->i32, SI_PS_CONST_POLY_STIPPLE, 0);
+       desc = ac_build_load_to_sgpr(&ctx->ac, param_rw_buffers, slot);
+
+       /* The stipple pattern is 32x32, each row has 32 bits. */
+       offset = LLVMBuildMul(builder, address[1],
+                             LLVMConstInt(ctx->i32, 4, 0), "");
+       row = si_buffer_load_const(ctx, desc, offset);
+       row = ac_to_integer(&ctx->ac, row);
+       bit = LLVMBuildLShr(builder, row, address[0], "");
+       bit = LLVMBuildTrunc(builder, bit, ctx->i1, "");
+       ac_build_kill_if_false(&ctx->ac, bit);
+}
+
+static void si_llvm_emit_kill(struct ac_shader_abi *abi, LLVMValueRef visible)
+{
+       struct si_shader_context *ctx = si_shader_context_from_abi(abi);
+       LLVMBuilderRef builder = ctx->ac.builder;
+
+       if (ctx->shader->selector->force_correct_derivs_after_kill) {
+               /* Kill immediately while maintaining WQM. */
+               ac_build_kill_if_false(&ctx->ac,
+                                      ac_build_wqm_vote(&ctx->ac, visible));
+
+               LLVMValueRef mask = LLVMBuildLoad(builder, ctx->postponed_kill, "");
+               mask = LLVMBuildAnd(builder, mask, visible, "");
+               LLVMBuildStore(builder, mask, ctx->postponed_kill);
+               return;
+       }
+
+       ac_build_kill_if_false(&ctx->ac, visible);
+}
+
+/**
+ * Build the pixel shader prolog function. This handles:
+ * - two-side color selection and interpolation
+ * - overriding interpolation parameters for the API PS
+ * - polygon stippling
+ *
+ * All preloaded SGPRs and VGPRs are passed through unmodified unless they are
+ * overriden by other states. (e.g. per-sample interpolation)
+ * Interpolated colors are stored after the preloaded VGPRs.
+ */
+void si_llvm_build_ps_prolog(struct si_shader_context *ctx,
+                            union si_shader_part_key *key)
+{
+       LLVMValueRef ret, func;
+       int num_returns, i, num_color_channels;
+
+       memset(&ctx->args, 0, sizeof(ctx->args));
+
+       /* Declare inputs. */
+       LLVMTypeRef return_types[AC_MAX_ARGS];
+       num_returns = 0;
+       num_color_channels = util_bitcount(key->ps_prolog.colors_read);
+       assert(key->ps_prolog.num_input_sgprs +
+              key->ps_prolog.num_input_vgprs +
+              num_color_channels <= AC_MAX_ARGS);
+       for (i = 0; i < key->ps_prolog.num_input_sgprs; i++) {
+               ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, NULL);
+               return_types[num_returns++] = ctx->i32;
+
+       }
+
+       struct ac_arg pos_fixed_pt;
+       struct ac_arg ancillary;
+       struct ac_arg param_sample_mask;
+       for (i = 0; i < key->ps_prolog.num_input_vgprs; i++) {
+               struct ac_arg *arg = NULL;
+               if (i == key->ps_prolog.ancillary_vgpr_index) {
+                       arg = &ancillary;
+               } else if (i == key->ps_prolog.ancillary_vgpr_index + 1) {
+                       arg = &param_sample_mask;
+               } else if (i == key->ps_prolog.num_input_vgprs - 1) {
+                       /* POS_FIXED_PT is always last. */
+                       arg = &pos_fixed_pt;
+               }
+               ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, arg);
+               return_types[num_returns++] = ctx->f32;
+       }
+
+       /* Declare outputs (same as inputs + add colors if needed) */
+       for (i = 0; i < num_color_channels; i++)
+               return_types[num_returns++] = ctx->f32;
+
+       /* Create the function. */
+       si_llvm_create_func(ctx, "ps_prolog", return_types, num_returns, 0);
+       func = ctx->main_fn;
+
+       /* Copy inputs to outputs. This should be no-op, as the registers match,
+        * but it will prevent the compiler from overwriting them unintentionally.
+        */
+       ret = ctx->return_value;
+       for (i = 0; i < ctx->args.arg_count; i++) {
+               LLVMValueRef p = LLVMGetParam(func, i);
+               ret = LLVMBuildInsertValue(ctx->ac.builder, ret, p, i, "");
+       }
+
+       /* Polygon stippling. */
+       if (key->ps_prolog.states.poly_stipple) {
+               LLVMValueRef list = si_prolog_get_rw_buffers(ctx);
+
+               si_llvm_emit_polygon_stipple(ctx, list, pos_fixed_pt);
+       }
+
+       if (key->ps_prolog.states.bc_optimize_for_persp ||
+           key->ps_prolog.states.bc_optimize_for_linear) {
+               unsigned i, base = key->ps_prolog.num_input_sgprs;
+               LLVMValueRef center[2], centroid[2], tmp, bc_optimize;
+
+               /* The shader should do: if (PRIM_MASK[31]) CENTROID = CENTER;
+                * The hw doesn't compute CENTROID if the whole wave only
+                * contains fully-covered quads.
+                *
+                * PRIM_MASK is after user SGPRs.
+                */
+               bc_optimize = LLVMGetParam(func, SI_PS_NUM_USER_SGPR);
+               bc_optimize = LLVMBuildLShr(ctx->ac.builder, bc_optimize,
+                                           LLVMConstInt(ctx->i32, 31, 0), "");
+               bc_optimize = LLVMBuildTrunc(ctx->ac.builder, bc_optimize,
+                                            ctx->i1, "");
+
+               if (key->ps_prolog.states.bc_optimize_for_persp) {
+                       /* Read PERSP_CENTER. */
+                       for (i = 0; i < 2; i++)
+                               center[i] = LLVMGetParam(func, base + 2 + i);
+                       /* Read PERSP_CENTROID. */
+                       for (i = 0; i < 2; i++)
+                               centroid[i] = LLVMGetParam(func, base + 4 + i);
+                       /* Select PERSP_CENTROID. */
+                       for (i = 0; i < 2; i++) {
+                               tmp = LLVMBuildSelect(ctx->ac.builder, bc_optimize,
+                                                     center[i], centroid[i], "");
+                               ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
+                                                          tmp, base + 4 + i, "");
+                       }
+               }
+               if (key->ps_prolog.states.bc_optimize_for_linear) {
+                       /* Read LINEAR_CENTER. */
+                       for (i = 0; i < 2; i++)
+                               center[i] = LLVMGetParam(func, base + 8 + i);
+                       /* Read LINEAR_CENTROID. */
+                       for (i = 0; i < 2; i++)
+                               centroid[i] = LLVMGetParam(func, base + 10 + i);
+                       /* Select LINEAR_CENTROID. */
+                       for (i = 0; i < 2; i++) {
+                               tmp = LLVMBuildSelect(ctx->ac.builder, bc_optimize,
+                                                     center[i], centroid[i], "");
+                               ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
+                                                          tmp, base + 10 + i, "");
+                       }
+               }
+       }
+
+       /* Force per-sample interpolation. */
+       if (key->ps_prolog.states.force_persp_sample_interp) {
+               unsigned i, base = key->ps_prolog.num_input_sgprs;
+               LLVMValueRef persp_sample[2];
+
+               /* Read PERSP_SAMPLE. */
+               for (i = 0; i < 2; i++)
+                       persp_sample[i] = LLVMGetParam(func, base + i);
+               /* Overwrite PERSP_CENTER. */
+               for (i = 0; i < 2; i++)
+                       ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
+                                                  persp_sample[i], base + 2 + i, "");
+               /* Overwrite PERSP_CENTROID. */
+               for (i = 0; i < 2; i++)
+                       ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
+                                                  persp_sample[i], base + 4 + i, "");
+       }
+       if (key->ps_prolog.states.force_linear_sample_interp) {
+               unsigned i, base = key->ps_prolog.num_input_sgprs;
+               LLVMValueRef linear_sample[2];
+
+               /* Read LINEAR_SAMPLE. */
+               for (i = 0; i < 2; i++)
+                       linear_sample[i] = LLVMGetParam(func, base + 6 + i);
+               /* Overwrite LINEAR_CENTER. */
+               for (i = 0; i < 2; i++)
+                       ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
+                                                  linear_sample[i], base + 8 + i, "");
+               /* Overwrite LINEAR_CENTROID. */
+               for (i = 0; i < 2; i++)
+                       ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
+                                                  linear_sample[i], base + 10 + i, "");
+       }
+
+       /* Force center interpolation. */
+       if (key->ps_prolog.states.force_persp_center_interp) {
+               unsigned i, base = key->ps_prolog.num_input_sgprs;
+               LLVMValueRef persp_center[2];
+
+               /* Read PERSP_CENTER. */
+               for (i = 0; i < 2; i++)
+                       persp_center[i] = LLVMGetParam(func, base + 2 + i);
+               /* Overwrite PERSP_SAMPLE. */
+               for (i = 0; i < 2; i++)
+                       ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
+                                                  persp_center[i], base + i, "");
+               /* Overwrite PERSP_CENTROID. */
+               for (i = 0; i < 2; i++)
+                       ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
+                                                  persp_center[i], base + 4 + i, "");
+       }
+       if (key->ps_prolog.states.force_linear_center_interp) {
+               unsigned i, base = key->ps_prolog.num_input_sgprs;
+               LLVMValueRef linear_center[2];
+
+               /* Read LINEAR_CENTER. */
+               for (i = 0; i < 2; i++)
+                       linear_center[i] = LLVMGetParam(func, base + 8 + i);
+               /* Overwrite LINEAR_SAMPLE. */
+               for (i = 0; i < 2; i++)
+                       ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
+                                                  linear_center[i], base + 6 + i, "");
+               /* Overwrite LINEAR_CENTROID. */
+               for (i = 0; i < 2; i++)
+                       ret = LLVMBuildInsertValue(ctx->ac.builder, ret,
+                                                  linear_center[i], base + 10 + i, "");
+       }
+
+       /* Interpolate colors. */
+       unsigned color_out_idx = 0;
+       for (i = 0; i < 2; i++) {
+               unsigned writemask = (key->ps_prolog.colors_read >> (i * 4)) & 0xf;
+               unsigned face_vgpr = key->ps_prolog.num_input_sgprs +
+                                    key->ps_prolog.face_vgpr_index;
+               LLVMValueRef interp[2], color[4];
+               LLVMValueRef interp_ij = NULL, prim_mask = NULL, face = NULL;
+
+               if (!writemask)
+                       continue;
+
+               /* If the interpolation qualifier is not CONSTANT (-1). */
+               if (key->ps_prolog.color_interp_vgpr_index[i] != -1) {
+                       unsigned interp_vgpr = key->ps_prolog.num_input_sgprs +
+                                              key->ps_prolog.color_interp_vgpr_index[i];
+
+                       /* Get the (i,j) updated by bc_optimize handling. */
+                       interp[0] = LLVMBuildExtractValue(ctx->ac.builder, ret,
+                                                         interp_vgpr, "");
+                       interp[1] = LLVMBuildExtractValue(ctx->ac.builder, ret,
+                                                         interp_vgpr + 1, "");
+                       interp_ij = ac_build_gather_values(&ctx->ac, interp, 2);
+               }
+
+               /* Use the absolute location of the input. */
+               prim_mask = LLVMGetParam(func, SI_PS_NUM_USER_SGPR);
+
+               if (key->ps_prolog.states.color_two_side) {
+                       face = LLVMGetParam(func, face_vgpr);
+                       face = ac_to_integer(&ctx->ac, face);
+               }
+
+               interp_fs_color(ctx,
+                               key->ps_prolog.color_attr_index[i], i,
+                               key->ps_prolog.num_interp_inputs,
+                               key->ps_prolog.colors_read, interp_ij,
+                               prim_mask, face, color);
+
+               while (writemask) {
+                       unsigned chan = u_bit_scan(&writemask);
+                       ret = LLVMBuildInsertValue(ctx->ac.builder, ret, color[chan],
+                                                  ctx->args.arg_count + color_out_idx++, "");
+               }
+       }
+
+       /* Section 15.2.2 (Shader Inputs) of the OpenGL 4.5 (Core Profile) spec
+        * says:
+        *
+        *    "When per-sample shading is active due to the use of a fragment
+        *     input qualified by sample or due to the use of the gl_SampleID
+        *     or gl_SamplePosition variables, only the bit for the current
+        *     sample is set in gl_SampleMaskIn. When state specifies multiple
+        *     fragment shader invocations for a given fragment, the sample
+        *     mask for any single fragment shader invocation may specify a
+        *     subset of the covered samples for the fragment. In this case,
+        *     the bit corresponding to each covered sample will be set in
+        *     exactly one fragment shader invocation."
+        *
+        * The samplemask loaded by hardware is always the coverage of the
+        * entire pixel/fragment, so mask bits out based on the sample ID.
+        */
+       if (key->ps_prolog.states.samplemask_log_ps_iter) {
+               /* The bit pattern matches that used by fixed function fragment
+                * processing. */
+               static const uint16_t ps_iter_masks[] = {
+                       0xffff, /* not used */
+                       0x5555,
+                       0x1111,
+                       0x0101,
+                       0x0001,
+               };
+               assert(key->ps_prolog.states.samplemask_log_ps_iter < ARRAY_SIZE(ps_iter_masks));
+
+               uint32_t ps_iter_mask = ps_iter_masks[key->ps_prolog.states.samplemask_log_ps_iter];
+               LLVMValueRef sampleid = si_unpack_param(ctx, ancillary, 8, 4);
+               LLVMValueRef samplemask = ac_get_arg(&ctx->ac, param_sample_mask);
+
+               samplemask = ac_to_integer(&ctx->ac, samplemask);
+               samplemask = LLVMBuildAnd(
+                       ctx->ac.builder,
+                       samplemask,
+                       LLVMBuildShl(ctx->ac.builder,
+                                    LLVMConstInt(ctx->i32, ps_iter_mask, false),
+                                    sampleid, ""),
+                       "");
+               samplemask = ac_to_float(&ctx->ac, samplemask);
+
+               ret = LLVMBuildInsertValue(ctx->ac.builder, ret, samplemask,
+                                          param_sample_mask.arg_index, "");
+       }
+
+       /* Tell LLVM to insert WQM instruction sequence when needed. */
+       if (key->ps_prolog.wqm) {
+               LLVMAddTargetDependentFunctionAttr(func,
+                                                  "amdgpu-ps-wqm-outputs", "");
+       }
+
+       si_llvm_build_ret(ctx, ret);
+}
+
+/**
+ * Build the pixel shader epilog function. This handles everything that must be
+ * emulated for pixel shader exports. (alpha-test, format conversions, etc)
+ */
+void si_llvm_build_ps_epilog(struct si_shader_context *ctx,
+                            union si_shader_part_key *key)
+{
+       LLVMValueRef depth = NULL, stencil = NULL, samplemask = NULL;
+       int i;
+       struct si_ps_exports exp = {};
+
+       memset(&ctx->args, 0, sizeof(ctx->args));
+
+       /* Declare input SGPRs. */
+       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT, &ctx->rw_buffers);
+       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT,
+                  &ctx->bindless_samplers_and_images);
+       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT,
+                  &ctx->const_and_shader_buffers);
+       ac_add_arg(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_INT,
+                  &ctx->samplers_and_images);
+       si_add_arg_checked(&ctx->args, AC_ARG_SGPR, 1, AC_ARG_FLOAT,
+                          NULL, SI_PARAM_ALPHA_REF);
+
+       /* Declare input VGPRs. */
+       unsigned required_num_params =
+                    ctx->args.num_sgprs_used +
+                    util_bitcount(key->ps_epilog.colors_written) * 4 +
+                    key->ps_epilog.writes_z +
+                    key->ps_epilog.writes_stencil +
+                    key->ps_epilog.writes_samplemask;
+
+       required_num_params = MAX2(required_num_params,
+                                  ctx->args.num_sgprs_used + PS_EPILOG_SAMPLEMASK_MIN_LOC + 1);
+
+       while (ctx->args.arg_count < required_num_params)
+               ac_add_arg(&ctx->args, AC_ARG_VGPR, 1, AC_ARG_FLOAT, NULL);
+
+       /* Create the function. */
+       si_llvm_create_func(ctx, "ps_epilog", NULL, 0, 0);
+       /* Disable elimination of unused inputs. */
+       ac_llvm_add_target_dep_function_attr(ctx->main_fn,
+                                            "InitialPSInputAddr", 0xffffff);
+
+       /* Process colors. */
+       unsigned vgpr = ctx->args.num_sgprs_used;
+       unsigned colors_written = key->ps_epilog.colors_written;
+       int last_color_export = -1;
+
+       /* Find the last color export. */
+       if (!key->ps_epilog.writes_z &&
+           !key->ps_epilog.writes_stencil &&
+           !key->ps_epilog.writes_samplemask) {
+               unsigned spi_format = key->ps_epilog.states.spi_shader_col_format;
+
+               /* If last_cbuf > 0, FS_COLOR0_WRITES_ALL_CBUFS is true. */
+               if (colors_written == 0x1 && key->ps_epilog.states.last_cbuf > 0) {
+                       /* Just set this if any of the colorbuffers are enabled. */
+                       if (spi_format &
+                           ((1ull << (4 * (key->ps_epilog.states.last_cbuf + 1))) - 1))
+                               last_color_export = 0;
+               } else {
+                       for (i = 0; i < 8; i++)
+                               if (colors_written & (1 << i) &&
+                                   (spi_format >> (i * 4)) & 0xf)
+                                       last_color_export = i;
+               }
+       }
+
+       while (colors_written) {
+               LLVMValueRef color[4];
+               int mrt = u_bit_scan(&colors_written);
+
+               for (i = 0; i < 4; i++)
+                       color[i] = LLVMGetParam(ctx->main_fn, vgpr++);
+
+               si_export_mrt_color(ctx, color, mrt,
+                                   ctx->args.arg_count - 1,
+                                   mrt == last_color_export, &exp);
+       }
+
+       /* Process depth, stencil, samplemask. */
+       if (key->ps_epilog.writes_z)
+               depth = LLVMGetParam(ctx->main_fn, vgpr++);
+       if (key->ps_epilog.writes_stencil)
+               stencil = LLVMGetParam(ctx->main_fn, vgpr++);
+       if (key->ps_epilog.writes_samplemask)
+               samplemask = LLVMGetParam(ctx->main_fn, vgpr++);
+
+       if (depth || stencil || samplemask)
+               si_export_mrt_z(ctx, depth, stencil, samplemask, &exp);
+       else if (last_color_export == -1)
+               ac_build_export_null(&ctx->ac);
+
+       if (exp.num)
+               si_emit_ps_exports(ctx, &exp);
+
+       /* Compile. */
+       LLVMBuildRetVoid(ctx->ac.builder);
+}
+
+void si_llvm_build_monolithic_ps(struct si_shader_context *ctx,
+                                struct si_shader *shader)
+{
+       LLVMValueRef parts[3];
+       unsigned num_parts = 0, main_index;
+
+       union si_shader_part_key prolog_key;
+       si_get_ps_prolog_key(shader, &prolog_key, false);
+
+       if (si_need_ps_prolog(&prolog_key)) {
+               si_llvm_build_ps_prolog(ctx, &prolog_key);
+               parts[num_parts++] = ctx->main_fn;
+       }
+
+       main_index = num_parts;
+       parts[num_parts++] = ctx->main_fn;
+
+       union si_shader_part_key epilog_key;
+       si_get_ps_epilog_key(shader, &epilog_key);
+       si_llvm_build_ps_epilog(ctx, &epilog_key);
+       parts[num_parts++] = ctx->main_fn;
+
+       si_build_wrapper_function(ctx, parts, num_parts, main_index, 0);
+}
+
+void si_llvm_init_ps_callbacks(struct si_shader_context *ctx)
+{
+       ctx->abi.emit_outputs = si_llvm_return_fs_outputs;
+       ctx->abi.load_sample_position = load_sample_position;
+       ctx->abi.load_sample_mask_in = load_sample_mask_in;
+       ctx->abi.emit_fbfetch = si_nir_emit_fbfetch;
+       ctx->abi.emit_kill = si_llvm_emit_kill;
+}