glsl: Fix handling of function calls inside nested loops.
[mesa.git] / src / glsl / ast_function.cpp
index 34b0f70d41e55243ea2faa6d0d7b0ea92a9f4eee..64237594e13e19baf021c101501d00f754aedbc9 100644 (file)
 static ir_rvalue *
 convert_component(ir_rvalue *src, const glsl_type *desired_type);
 
+bool
+apply_implicit_conversion(const glsl_type *to, ir_rvalue * &from,
+                          struct _mesa_glsl_parse_state *state);
+
 static unsigned
 process_parameters(exec_list *instructions, exec_list *actual_parameters,
                   exec_list *parameters,
@@ -58,11 +62,13 @@ process_parameters(exec_list *instructions, exec_list *actual_parameters,
  *
  * \param return_type Return type of the function.  May be \c NULL.
  * \param name        Name of the function.
- * \param parameters  Parameter list for the function.  This may be either a
- *                    formal or actual parameter list.  Only the type is used.
+ * \param parameters  List of \c ir_instruction nodes representing the
+ *                    parameter list for the function.  This may be either a
+ *                    formal (\c ir_variable) or actual (\c ir_rvalue)
+ *                    parameter list.  Only the type is used.
  *
  * \return
- * A talloced string representing the prototype of the function.
+ * A ralloced string representing the prototype of the function.
  */
 char *
 prototype_string(const glsl_type *return_type, const char *name,
@@ -71,139 +77,392 @@ prototype_string(const glsl_type *return_type, const char *name,
    char *str = NULL;
 
    if (return_type != NULL)
-      str = talloc_asprintf(str, "%s ", return_type->name);
+      str = ralloc_asprintf(NULL, "%s ", return_type->name);
 
-   str = talloc_asprintf_append(str, "%s(", name);
+   ralloc_asprintf_append(&str, "%s(", name);
 
    const char *comma = "";
    foreach_list(node, parameters) {
-      const ir_instruction *const param = (ir_instruction *) node;
+      const ir_variable *const param = (ir_variable *) node;
 
-      str = talloc_asprintf_append(str, "%s%s", comma, param->type->name);
+      ralloc_asprintf_append(&str, "%s%s", comma, param->type->name);
       comma = ", ";
    }
 
-   str = talloc_strdup_append(str, ")");
+   ralloc_strcat(&str, ")");
    return str;
 }
 
-
-static ir_rvalue *
-process_call(exec_list *instructions, ir_function *f,
-            YYLTYPE *loc, exec_list *actual_parameters,
-            struct _mesa_glsl_parse_state *state)
+/**
+ * Verify that 'out' and 'inout' actual parameters are lvalues.  Also, verify
+ * that 'const_in' formal parameters (an extension in our IR) correspond to
+ * ir_constant actual parameters.
+ */
+static bool
+verify_parameter_modes(_mesa_glsl_parse_state *state,
+                      ir_function_signature *sig,
+                      exec_list &actual_ir_parameters,
+                      exec_list &actual_ast_parameters)
 {
-   void *ctx = state;
+   exec_node *actual_ir_node  = actual_ir_parameters.head;
+   exec_node *actual_ast_node = actual_ast_parameters.head;
 
-   ir_function_signature *sig = f->matching_signature(actual_parameters);
+   foreach_list(formal_node, &sig->parameters) {
+      /* The lists must be the same length. */
+      assert(!actual_ir_node->is_tail_sentinel());
+      assert(!actual_ast_node->is_tail_sentinel());
 
-   /* The instructions param will be used when the FINISHMEs below are done */
-   (void) instructions;
+      const ir_variable *const formal = (ir_variable *) formal_node;
+      const ir_rvalue *const actual = (ir_rvalue *) actual_ir_node;
+      const ast_expression *const actual_ast =
+        exec_node_data(ast_expression, actual_ast_node, link);
 
-   if (sig != NULL) {
-      /* Verify that 'out' and 'inout' actual parameters are lvalues.  This
-       * isn't done in ir_function::matching_signature because that function
-       * cannot generate the necessary diagnostics.
+      /* FIXME: 'loc' is incorrect (as of 2011-01-21). It is always
+       * FIXME: 0:0(0).
        */
-      exec_list_iterator actual_iter = actual_parameters->iterator();
-      exec_list_iterator formal_iter = sig->parameters.iterator();
-
-      while (actual_iter.has_next()) {
-        ir_rvalue *actual = (ir_rvalue *) actual_iter.get();
-        ir_variable *formal = (ir_variable *) formal_iter.get();
-
-        assert(actual != NULL);
-        assert(formal != NULL);
-
-        if ((formal->mode == ir_var_out)
-            || (formal->mode == ir_var_inout)) {
-           if (! actual->is_lvalue()) {
-              /* FINISHME: Log a better diagnostic here.  There is no way
-               * FINISHME: to tell the user which parameter is invalid.
-               */
-              _mesa_glsl_error(loc, state, "`%s' parameter is not lvalue",
-                               (formal->mode == ir_var_out) ? "out" : "inout");
-           }
+      YYLTYPE loc = actual_ast->get_location();
+
+      /* Verify that 'const_in' parameters are ir_constants. */
+      if (formal->mode == ir_var_const_in &&
+         actual->ir_type != ir_type_constant) {
+        _mesa_glsl_error(&loc, state,
+                         "parameter `in %s' must be a constant expression",
+                         formal->name);
+        return false;
+      }
+
+      /* Verify that 'out' and 'inout' actual parameters are lvalues. */
+      if (formal->mode == ir_var_function_out
+          || formal->mode == ir_var_function_inout) {
+        const char *mode = NULL;
+        switch (formal->mode) {
+        case ir_var_function_out:   mode = "out";   break;
+        case ir_var_function_inout: mode = "inout"; break;
+        default:                    assert(false);  break;
         }
 
-        if (formal->type->is_numeric() || formal->type->is_boolean()) {
-           ir_rvalue *converted = convert_component(actual, formal->type);
-           actual->replace_with(converted);
+        /* This AST-based check catches errors like f(i++).  The IR-based
+         * is_lvalue() is insufficient because the actual parameter at the
+         * IR-level is just a temporary value, which is an l-value.
+         */
+        if (actual_ast->non_lvalue_description != NULL) {
+           _mesa_glsl_error(&loc, state,
+                            "function parameter '%s %s' references a %s",
+                            mode, formal->name,
+                            actual_ast->non_lvalue_description);
+           return false;
         }
 
-        actual_iter.next();
-        formal_iter.next();
+        ir_variable *var = actual->variable_referenced();
+        if (var)
+           var->assigned = true;
+
+        if (var && var->read_only) {
+           _mesa_glsl_error(&loc, state,
+                            "function parameter '%s %s' references the "
+                            "read-only variable '%s'",
+                            mode, formal->name,
+                            actual->variable_referenced()->name);
+           return false;
+        } else if (!actual->is_lvalue()) {
+            /* Even though ir_binop_vector_extract is not an l-value, let it
+             * slop through.  generate_call will handle it correctly.
+             */
+            ir_expression *const expr = ((ir_rvalue *) actual)->as_expression();
+            if (expr == NULL
+                || expr->operation != ir_binop_vector_extract
+                || !expr->operands[0]->is_lvalue()) {
+               _mesa_glsl_error(&loc, state,
+                                "function parameter '%s %s' is not an lvalue",
+                                mode, formal->name);
+               return false;
+            }
+        }
       }
 
-      /* Always insert the call in the instruction stream, and return a deref
-       * of its return val if it returns a value, since we don't know if
-       * the rvalue is going to be assigned to anything or not.
+      actual_ir_node  = actual_ir_node->next;
+      actual_ast_node = actual_ast_node->next;
+   }
+   return true;
+}
+
+static void
+fix_parameter(void *mem_ctx, ir_rvalue *actual, const glsl_type *formal_type,
+              exec_list *before_instructions, exec_list *after_instructions,
+              bool parameter_is_inout)
+{
+   ir_expression *const expr = actual->as_expression();
+
+   /* If the types match exactly and the parameter is not a vector-extract,
+    * nothing needs to be done to fix the parameter.
+    */
+   if (formal_type == actual->type
+       && (expr == NULL || expr->operation != ir_binop_vector_extract))
+      return;
+
+   /* To convert an out parameter, we need to create a temporary variable to
+    * hold the value before conversion, and then perform the conversion after
+    * the function call returns.
+    *
+    * This has the effect of transforming code like this:
+    *
+    *   void f(out int x);
+    *   float value;
+    *   f(value);
+    *
+    * Into IR that's equivalent to this:
+    *
+    *   void f(out int x);
+    *   float value;
+    *   int out_parameter_conversion;
+    *   f(out_parameter_conversion);
+    *   value = float(out_parameter_conversion);
+    *
+    * If the parameter is an ir_expression of ir_binop_vector_extract,
+    * additional conversion is needed in the post-call re-write.
+    */
+   ir_variable *tmp =
+      new(mem_ctx) ir_variable(formal_type, "inout_tmp", ir_var_temporary);
+
+   before_instructions->push_tail(tmp);
+
+   /* If the parameter is an inout parameter, copy the value of the actual
+    * parameter to the new temporary.  Note that no type conversion is allowed
+    * here because inout parameters must match types exactly.
+    */
+   if (parameter_is_inout) {
+      /* Inout parameters should never require conversion, since that would
+       * require an implicit conversion to exist both to and from the formal
+       * parameter type, and there are no bidirectional implicit conversions.
        */
-      ir_call *call = new(ctx) ir_call(sig, actual_parameters);
-      if (!sig->return_type->is_void()) {
-        ir_variable *var;
-        ir_dereference_variable *deref;
-
-        var = new(ctx) ir_variable(sig->return_type,
-                                   talloc_asprintf(ctx, "%s_retval",
-                                                   sig->function_name()),
-                                   ir_var_temporary);
-        instructions->push_tail(var);
-
-        deref = new(ctx) ir_dereference_variable(var);
-        ir_assignment *assign = new(ctx) ir_assignment(deref, call, NULL);
-        instructions->push_tail(assign);
-        if (state->language_version >= 120)
-           var->constant_value = call->constant_expression_value();
-
-        deref = new(ctx) ir_dereference_variable(var);
-        return deref;
-      } else {
-        instructions->push_tail(call);
-        return NULL;
-      }
-   } else {
-      char *str = prototype_string(NULL, f->name, actual_parameters);
+      assert (actual->type == formal_type);
+
+      ir_dereference_variable *const deref_tmp_1 =
+         new(mem_ctx) ir_dereference_variable(tmp);
+      ir_assignment *const assignment =
+         new(mem_ctx) ir_assignment(deref_tmp_1, actual);
+      before_instructions->push_tail(assignment);
+   }
+
+   /* Replace the parameter in the call with a dereference of the new
+    * temporary.
+    */
+   ir_dereference_variable *const deref_tmp_2 =
+      new(mem_ctx) ir_dereference_variable(tmp);
+   actual->replace_with(deref_tmp_2);
 
-      _mesa_glsl_error(loc, state, "no matching function for call to `%s'",
-                      str);
-      talloc_free(str);
 
-      const char *prefix = "candidates are: ";
-      foreach_list (node, &f->signatures) {
-        ir_function_signature *sig = (ir_function_signature *) node;
+   /* Copy the temporary variable to the actual parameter with optional
+    * type conversion applied.
+    */
+   ir_rvalue *rhs = new(mem_ctx) ir_dereference_variable(tmp);
+   if (actual->type != formal_type)
+      rhs = convert_component(rhs, actual->type);
+
+   ir_rvalue *lhs = actual;
+   if (expr != NULL && expr->operation == ir_binop_vector_extract) {
+      rhs = new(mem_ctx) ir_expression(ir_triop_vector_insert,
+                                       expr->operands[0]->type,
+                                       expr->operands[0]->clone(mem_ctx, NULL),
+                                       rhs,
+                                       expr->operands[1]->clone(mem_ctx, NULL));
+      lhs = expr->operands[0]->clone(mem_ctx, NULL);
+   }
 
-        str = prototype_string(sig->return_type, f->name, &sig->parameters);
-        _mesa_glsl_error(loc, state, "%s%s\n", prefix, str);
-        talloc_free(str);
+   ir_assignment *const assignment_2 = new(mem_ctx) ir_assignment(lhs, rhs);
+   after_instructions->push_tail(assignment_2);
+}
 
-        prefix = "                ";
+/**
+ * Generate a function call.
+ *
+ * For non-void functions, this returns a dereference of the temporary variable
+ * which stores the return value for the call.  For void functions, this returns
+ * NULL.
+ */
+static ir_rvalue *
+generate_call(exec_list *instructions, ir_function_signature *sig,
+             exec_list *actual_parameters,
+             struct _mesa_glsl_parse_state *state)
+{
+   void *ctx = state;
+   exec_list post_call_conversions;
+
+   /* Perform implicit conversion of arguments.  For out parameters, we need
+    * to place them in a temporary variable and do the conversion after the
+    * call takes place.  Since we haven't emitted the call yet, we'll place
+    * the post-call conversions in a temporary exec_list, and emit them later.
+    */
+   exec_list_iterator actual_iter = actual_parameters->iterator();
+   exec_list_iterator formal_iter = sig->parameters.iterator();
+
+   while (actual_iter.has_next()) {
+      ir_rvalue *actual = (ir_rvalue *) actual_iter.get();
+      ir_variable *formal = (ir_variable *) formal_iter.get();
+
+      assert(actual != NULL);
+      assert(formal != NULL);
+
+      if (formal->type->is_numeric() || formal->type->is_boolean()) {
+        switch (formal->mode) {
+        case ir_var_const_in:
+        case ir_var_function_in: {
+           ir_rvalue *converted
+              = convert_component(actual, formal->type);
+           actual->replace_with(converted);
+           break;
+        }
+        case ir_var_function_out:
+        case ir_var_function_inout:
+            fix_parameter(ctx, actual, formal->type,
+                          instructions, &post_call_conversions,
+                          formal->mode == ir_var_function_inout);
+           break;
+        default:
+           assert (!"Illegal formal parameter mode");
+           break;
+        }
       }
 
-      return ir_call::get_error_instruction(ctx);
+      actual_iter.next();
+      formal_iter.next();
    }
-}
 
+   /* If the function call is a constant expression, don't generate any
+    * instructions; just generate an ir_constant.
+    *
+    * Function calls were first allowed to be constant expressions in GLSL
+    * 1.20 and GLSL ES 3.00.
+    */
+   if (state->is_version(120, 300)) {
+      ir_constant *value = sig->constant_expression_value(actual_parameters, NULL);
+      if (value != NULL) {
+        return value;
+      }
+   }
 
-static ir_rvalue *
-match_function_by_name(exec_list *instructions, const char *name,
-                      YYLTYPE *loc, exec_list *actual_parameters,
+   ir_dereference_variable *deref = NULL;
+   if (!sig->return_type->is_void()) {
+      /* Create a new temporary to hold the return value. */
+      ir_variable *var;
+
+      var = new(ctx) ir_variable(sig->return_type,
+                                ralloc_asprintf(ctx, "%s_retval",
+                                                sig->function_name()),
+                                ir_var_temporary);
+      instructions->push_tail(var);
+
+      deref = new(ctx) ir_dereference_variable(var);
+   }
+   ir_call *call = new(ctx) ir_call(sig, deref, actual_parameters);
+   instructions->push_tail(call);
+
+   /* Also emit any necessary out-parameter conversions. */
+   instructions->append_list(&post_call_conversions);
+
+   return deref ? deref->clone(ctx, NULL) : NULL;
+}
+
+/**
+ * Given a function name and parameter list, find the matching signature.
+ */
+static ir_function_signature *
+match_function_by_name(const char *name,
+                      exec_list *actual_parameters,
                       struct _mesa_glsl_parse_state *state)
 {
    void *ctx = state;
    ir_function *f = state->symbols->get_function(name);
+   ir_function_signature *local_sig = NULL;
+   ir_function_signature *sig = NULL;
+
+   /* Is the function hidden by a record type constructor? */
+   if (state->symbols->get_type(name))
+      goto done; /* no match */
+
+   /* Is the function hidden by a variable (impossible in 1.10)? */
+   if (!state->symbols->separate_function_namespace
+       && state->symbols->get_variable(name))
+      goto done; /* no match */
+
+   if (f != NULL) {
+      /* Look for a match in the local shader.  If exact, we're done. */
+      bool is_exact = false;
+      sig = local_sig = f->matching_signature(state, actual_parameters,
+                                              &is_exact);
+      if (is_exact)
+        goto done;
+
+      if (!state->es_shader && f->has_user_signature()) {
+        /* In desktop GL, the presence of a user-defined signature hides any
+         * built-in signatures, so we must ignore them.  In contrast, in ES2
+         * user-defined signatures add new overloads, so we must proceed.
+         */
+        goto done;
+      }
+   }
 
-   if (f == NULL) {
-      _mesa_glsl_error(loc, state, "function `%s' undeclared", name);
-      return ir_call::get_error_instruction(ctx);
+   /* Local shader has no exact candidates; check the built-ins. */
+   _mesa_glsl_initialize_builtin_functions();
+   sig = _mesa_glsl_find_builtin_function(state, name, actual_parameters);
+
+done:
+   if (sig != NULL) {
+      /* If the match is from a linked built-in shader, import the prototype. */
+      if (sig != local_sig) {
+        if (f == NULL) {
+           f = new(ctx) ir_function(name);
+           state->symbols->add_global_function(f);
+           emit_function(state, f);
+        }
+        f->add_signature(sig->clone_prototype(f, NULL));
+      }
    }
+   return sig;
+}
 
-   /* Once we've determined that the function being called might exist, try
-    * to find an overload of the function that matches the parameters.
-    */
-   return process_call(instructions, f, loc, actual_parameters, state);
+static void
+print_function_prototypes(_mesa_glsl_parse_state *state, YYLTYPE *loc,
+                          ir_function *f)
+{
+   if (f == NULL)
+      return;
+
+   foreach_list (node, &f->signatures) {
+      ir_function_signature *sig = (ir_function_signature *) node;
+
+      if (sig->is_builtin() && !sig->is_builtin_available(state))
+         continue;
+
+      char *str = prototype_string(sig->return_type, f->name, &sig->parameters);
+      _mesa_glsl_error(loc, state, "   %s", str);
+      ralloc_free(str);
+   }
 }
 
+/**
+ * Raise a "no matching function" error, listing all possible overloads the
+ * compiler considered so developers can figure out what went wrong.
+ */
+static void
+no_matching_function_error(const char *name,
+                          YYLTYPE *loc,
+                          exec_list *actual_parameters,
+                          _mesa_glsl_parse_state *state)
+{
+   char *str = prototype_string(NULL, name, actual_parameters);
+   _mesa_glsl_error(loc, state,
+                    "no matching function for call to `%s'; candidates are:",
+                    str);
+   ralloc_free(str);
+
+   print_function_prototypes(state, loc, state->symbols->get_function(name));
+
+   if (state->uses_builtin_functions) {
+      gl_shader *sh = _mesa_glsl_get_builtin_function_shader();
+      print_function_prototypes(state, loc, sh->symbols->get_function(name));
+   }
+}
 
 /**
  * Perform automatic type conversion of constructor parameters
@@ -214,7 +473,7 @@ match_function_by_name(exec_list *instructions, const char *name,
 static ir_rvalue *
 convert_component(ir_rvalue *src, const glsl_type *desired_type)
 {
-   void *ctx = talloc_parent(src);
+   void *ctx = ralloc_parent(src);
    const unsigned a = desired_type->base_type;
    const unsigned b = src->type->base_type;
    ir_expression *result = NULL;
@@ -225,17 +484,35 @@ convert_component(ir_rvalue *src, const glsl_type *desired_type)
    assert(a <= GLSL_TYPE_BOOL);
    assert(b <= GLSL_TYPE_BOOL);
 
-   if ((a == b) || (src->type->is_integer() && desired_type->is_integer()))
+   if (a == b)
       return src;
 
    switch (a) {
    case GLSL_TYPE_UINT:
+      switch (b) {
+      case GLSL_TYPE_INT:
+        result = new(ctx) ir_expression(ir_unop_i2u, src);
+        break;
+      case GLSL_TYPE_FLOAT:
+        result = new(ctx) ir_expression(ir_unop_f2u, src);
+        break;
+      case GLSL_TYPE_BOOL:
+        result = new(ctx) ir_expression(ir_unop_i2u,
+                 new(ctx) ir_expression(ir_unop_b2i, src));
+        break;
+      }
+      break;
    case GLSL_TYPE_INT:
-      if (b == GLSL_TYPE_FLOAT)
-        result = new(ctx) ir_expression(ir_unop_f2i, desired_type, src, NULL);
-      else {
-        assert(b == GLSL_TYPE_BOOL);
-        result = new(ctx) ir_expression(ir_unop_b2i, desired_type, src, NULL);
+      switch (b) {
+      case GLSL_TYPE_UINT:
+        result = new(ctx) ir_expression(ir_unop_u2i, src);
+        break;
+      case GLSL_TYPE_FLOAT:
+        result = new(ctx) ir_expression(ir_unop_f2i, src);
+        break;
+      case GLSL_TYPE_BOOL:
+        result = new(ctx) ir_expression(ir_unop_b2i, src);
+        break;
       }
       break;
    case GLSL_TYPE_FLOAT:
@@ -254,6 +531,9 @@ convert_component(ir_rvalue *src, const glsl_type *desired_type)
    case GLSL_TYPE_BOOL:
       switch (b) {
       case GLSL_TYPE_UINT:
+        result = new(ctx) ir_expression(ir_unop_i2b,
+                 new(ctx) ir_expression(ir_unop_u2i, src));
+        break;
       case GLSL_TYPE_INT:
         result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
         break;
@@ -265,6 +545,7 @@ convert_component(ir_rvalue *src, const glsl_type *desired_type)
    }
 
    assert(result != NULL);
+   assert(result->type == desired_type);
 
    /* Try constant folding; it may fold in the conversion we just added. */
    ir_constant *const constant = result->constant_expression_value();
@@ -277,7 +558,7 @@ convert_component(ir_rvalue *src, const glsl_type *desired_type)
 static ir_rvalue *
 dereference_component(ir_rvalue *src, unsigned component)
 {
-   void *ctx = talloc_parent(src);
+   void *ctx = ralloc_parent(src);
    assert(component < src->type->components());
 
    /* If the source is a constant, just create a new constant instead of a
@@ -312,6 +593,120 @@ dereference_component(ir_rvalue *src, unsigned component)
 }
 
 
+static ir_rvalue *
+process_vec_mat_constructor(exec_list *instructions,
+                            const glsl_type *constructor_type,
+                            YYLTYPE *loc, exec_list *parameters,
+                            struct _mesa_glsl_parse_state *state)
+{
+   void *ctx = state;
+
+   /* The ARB_shading_language_420pack spec says:
+    *
+    * "If an initializer is a list of initializers enclosed in curly braces,
+    *  the variable being declared must be a vector, a matrix, an array, or a
+    *  structure.
+    *
+    *      int i = { 1 }; // illegal, i is not an aggregate"
+    */
+   if (constructor_type->vector_elements <= 1) {
+      _mesa_glsl_error(loc, state, "aggregates can only initialize vectors, "
+                       "matrices, arrays, and structs");
+      return ir_rvalue::error_value(ctx);
+   }
+
+   exec_list actual_parameters;
+   const unsigned parameter_count =
+      process_parameters(instructions, &actual_parameters, parameters, state);
+
+   if (parameter_count == 0
+       || (constructor_type->is_vector() &&
+           constructor_type->vector_elements != parameter_count)
+       || (constructor_type->is_matrix() &&
+           constructor_type->matrix_columns != parameter_count)) {
+      _mesa_glsl_error(loc, state, "%s constructor must have %u parameters",
+                       constructor_type->is_vector() ? "vector" : "matrix",
+                       constructor_type->vector_elements);
+      return ir_rvalue::error_value(ctx);
+   }
+
+   bool all_parameters_are_constant = true;
+
+   /* Type cast each parameter and, if possible, fold constants. */
+   foreach_list_safe(n, &actual_parameters) {
+      ir_rvalue *ir = (ir_rvalue *) n;
+      ir_rvalue *result = ir;
+
+      /* Apply implicit conversions (not the scalar constructor rules!). See
+       * the spec quote above. */
+      if (constructor_type->is_float()) {
+         const glsl_type *desired_type =
+            glsl_type::get_instance(GLSL_TYPE_FLOAT,
+                                    ir->type->vector_elements,
+                                    ir->type->matrix_columns);
+         if (result->type->can_implicitly_convert_to(desired_type)) {
+            /* Even though convert_component() implements the constructor
+             * conversion rules (not the implicit conversion rules), its safe
+             * to use it here because we already checked that the implicit
+             * conversion is legal.
+             */
+            result = convert_component(ir, desired_type);
+         }
+      }
+
+      if (constructor_type->is_matrix()) {
+         if (result->type != constructor_type->column_type()) {
+            _mesa_glsl_error(loc, state, "type error in matrix constructor: "
+                             "expected: %s, found %s",
+                             constructor_type->column_type()->name,
+                             result->type->name);
+            return ir_rvalue::error_value(ctx);
+         }
+      } else if (result->type != constructor_type->get_scalar_type()) {
+         _mesa_glsl_error(loc, state, "type error in vector constructor: "
+                          "expected: %s, found %s",
+                          constructor_type->get_scalar_type()->name,
+                          result->type->name);
+         return ir_rvalue::error_value(ctx);
+      }
+
+      /* Attempt to convert the parameter to a constant valued expression.
+       * After doing so, track whether or not all the parameters to the
+       * constructor are trivially constant valued expressions.
+       */
+      ir_rvalue *const constant = result->constant_expression_value();
+
+      if (constant != NULL)
+         result = constant;
+      else
+         all_parameters_are_constant = false;
+
+      ir->replace_with(result);
+   }
+
+   if (all_parameters_are_constant)
+      return new(ctx) ir_constant(constructor_type, &actual_parameters);
+
+   ir_variable *var = new(ctx) ir_variable(constructor_type, "vec_mat_ctor",
+                                           ir_var_temporary);
+   instructions->push_tail(var);
+
+   int i = 0;
+   foreach_list(node, &actual_parameters) {
+      ir_rvalue *rhs = (ir_rvalue *) node;
+      ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
+                                                     new(ctx) ir_constant(i));
+
+      ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs, NULL);
+      instructions->push_tail(assignment);
+
+      i++;
+   }
+
+   return new(ctx) ir_dereference_variable(var);
+}
+
+
 static ir_rvalue *
 process_array_constructor(exec_list *instructions,
                          const glsl_type *constructor_type,
@@ -342,21 +737,21 @@ process_array_constructor(exec_list *instructions,
    exec_list actual_parameters;
    const unsigned parameter_count =
       process_parameters(instructions, &actual_parameters, parameters, state);
+   bool is_unsized_array = constructor_type->is_unsized_array();
 
-   if ((parameter_count == 0)
-       || ((constructor_type->length != 0)
-          && (constructor_type->length != parameter_count))) {
-      const unsigned min_param = (constructor_type->length == 0)
-        ? 1 : constructor_type->length;
+   if ((parameter_count == 0) ||
+       (!is_unsized_array && (constructor_type->length != parameter_count))) {
+      const unsigned min_param = is_unsized_array
+         ? 1 : constructor_type->length;
 
       _mesa_glsl_error(loc, state, "array constructor must have %s %u "
                       "parameter%s",
-                      (constructor_type->length != 0) ? "at least" : "exactly",
+                      is_unsized_array ? "at least" : "exactly",
                       min_param, (min_param <= 1) ? "" : "s");
-      return ir_call::get_error_instruction(ctx);
+      return ir_rvalue::error_value(ctx);
    }
 
-   if (constructor_type->length == 0) {
+   if (is_unsized_array) {
       constructor_type =
         glsl_type::get_array_instance(constructor_type->element_type(),
                                       parameter_count);
@@ -371,13 +766,21 @@ process_array_constructor(exec_list *instructions,
       ir_rvalue *ir = (ir_rvalue *) n;
       ir_rvalue *result = ir;
 
-      /* Apply implicit conversions (not the scalar constructor rules!) */
+      /* Apply implicit conversions (not the scalar constructor rules!). See
+       * the spec quote above. */
       if (constructor_type->element_type()->is_float()) {
         const glsl_type *desired_type =
            glsl_type::get_instance(GLSL_TYPE_FLOAT,
                                    ir->type->vector_elements,
                                    ir->type->matrix_columns);
-        result = convert_component(ir, desired_type);
+        if (result->type->can_implicitly_convert_to(desired_type)) {
+           /* Even though convert_component() implements the constructor
+            * conversion rules (not the implicit conversion rules), its safe
+            * to use it here because we already checked that the implicit
+            * conversion is legal.
+            */
+           result = convert_component(ir, desired_type);
+        }
       }
 
       if (result->type != constructor_type->element_type()) {
@@ -385,6 +788,7 @@ process_array_constructor(exec_list *instructions,
                          "expected: %s, found %s",
                          constructor_type->element_type()->name,
                          result->type->name);
+         return ir_rvalue::error_value(ctx);
       }
 
       /* Attempt to convert the parameter to a constant valued expression.
@@ -429,137 +833,16 @@ process_array_constructor(exec_list *instructions,
  */
 static ir_constant *
 constant_record_constructor(const glsl_type *constructor_type,
-                           YYLTYPE *loc, exec_list *parameters,
-                           struct _mesa_glsl_parse_state *state)
+                           exec_list *parameters, void *mem_ctx)
 {
-   void *ctx = state;
-   bool all_parameters_are_constant = true;
-
-   exec_node *node = parameters->head;
-   for (unsigned i = 0; i < constructor_type->length; i++) {
-      ir_instruction *ir = (ir_instruction *) node;
-
-      if (node->is_tail_sentinel()) {
-        _mesa_glsl_error(loc, state,
-                         "insufficient parameters to constructor for `%s'",
-                         constructor_type->name);
-        return NULL;
-      }
-
-      if (ir->type != constructor_type->fields.structure[i].type) {
-        _mesa_glsl_error(loc, state,
-                         "parameter type mismatch in constructor for `%s' "
-                         " (%s vs %s)",
-                         constructor_type->name,
-                         ir->type->name,
-                         constructor_type->fields.structure[i].type->name);
+   foreach_list(node, parameters) {
+      ir_constant *constant = ((ir_instruction *) node)->as_constant();
+      if (constant == NULL)
         return NULL;
-      }
-
-      if (ir->as_constant() == NULL)
-        all_parameters_are_constant = false;
-
-      node = node->next;
+      node->replace_with(constant);
    }
 
-   if (!all_parameters_are_constant)
-      return NULL;
-
-   return new(ctx) ir_constant(constructor_type, parameters);
-}
-
-
-/**
- * Generate data for a constant matrix constructor w/a single scalar parameter
- *
- * Matrix constructors in GLSL can be passed a single scalar of the
- * approriate type.  In these cases, the resulting matrix is the identity
- * matrix multipled by the specified scalar.  This function generates data for
- * that matrix.
- *
- * \param type         Type of the desired matrix.
- * \param initializer  Scalar value used to initialize the matrix diagonal.
- * \param data         Location to store the resulting matrix.
- */
-void
-generate_constructor_matrix(const glsl_type *type, ir_constant *initializer,
-                           ir_constant_data *data)
-{
-   switch (type->base_type) {
-   case GLSL_TYPE_UINT:
-   case GLSL_TYPE_INT:
-      for (unsigned i = 0; i < type->components(); i++)
-        data->u[i] = 0;
-
-      for (unsigned i = 0; i < type->matrix_columns; i++) {
-        /* The array offset of the ith row and column of the matrix.
-         */
-        const unsigned idx = (i * type->vector_elements) + i;
-
-        data->u[idx] = initializer->value.u[0];
-      }
-      break;
-
-   case GLSL_TYPE_FLOAT:
-      for (unsigned i = 0; i < type->components(); i++)
-        data->f[i] = 0;
-
-      for (unsigned i = 0; i < type->matrix_columns; i++) {
-        /* The array offset of the ith row and column of the matrix.
-         */
-        const unsigned idx = (i * type->vector_elements) + i;
-
-        data->f[idx] = initializer->value.f[0];
-      }
-
-      break;
-
-   default:
-      assert(!"Should not get here.");
-      break;
-   }
-}
-
-
-/**
- * Generate data for a constant vector constructor w/a single scalar parameter
- *
- * Vector constructors in GLSL can be passed a single scalar of the
- * approriate type.  In these cases, the resulting vector contains the specified
- * value in all components.  This function generates data for that vector.
- *
- * \param type         Type of the desired vector.
- * \param initializer  Scalar value used to initialize the vector.
- * \param data         Location to store the resulting vector data.
- */
-void
-generate_constructor_vector(const glsl_type *type, ir_constant *initializer,
-                           ir_constant_data *data)
-{
-   switch (type->base_type) {
-   case GLSL_TYPE_UINT:
-   case GLSL_TYPE_INT:
-      for (unsigned i = 0; i < type->components(); i++)
-        data->u[i] = initializer->value.u[0];
-
-      break;
-
-   case GLSL_TYPE_FLOAT:
-      for (unsigned i = 0; i < type->components(); i++)
-        data->f[i] = initializer->value.f[0];
-
-      break;
-
-   case GLSL_TYPE_BOOL:
-      for (unsigned i = 0; i < type->components(); i++)
-        data->b[i] = initializer->value.b[0];
-
-      break;
-
-   default:
-      assert(!"Should not get here.");
-      break;
-   }
+   return new(mem_ctx) ir_constant(constructor_type, parameters);
 }
 
 
@@ -621,34 +904,98 @@ emit_inline_vector_constructor(const glsl_type *type,
       instructions->push_tail(inst);
    } else {
       unsigned base_component = 0;
+      unsigned base_lhs_component = 0;
+      ir_constant_data data;
+      unsigned constant_mask = 0, constant_components = 0;
+
+      memset(&data, 0, sizeof(data));
+
       foreach_list(node, parameters) {
         ir_rvalue *param = (ir_rvalue *) node;
         unsigned rhs_components = param->type->components();
 
         /* Do not try to assign more components to the vector than it has!
          */
-        if ((rhs_components + base_component) > lhs_components) {
-           rhs_components = lhs_components - base_component;
+        if ((rhs_components + base_lhs_component) > lhs_components) {
+           rhs_components = lhs_components - base_lhs_component;
         }
 
-        /* Generate a swizzle that puts the first element of the source at
-         * the location of the first element of the destination.
-         */
-        unsigned swiz[4] = { 0, 0, 0, 0 };
-        for (unsigned i = 0; i < rhs_components; i++)
-           swiz[i + base_component] = i;
+        const ir_constant *const c = param->as_constant();
+        if (c != NULL) {
+           for (unsigned i = 0; i < rhs_components; i++) {
+              switch (c->type->base_type) {
+              case GLSL_TYPE_UINT:
+                 data.u[i + base_component] = c->get_uint_component(i);
+                 break;
+              case GLSL_TYPE_INT:
+                 data.i[i + base_component] = c->get_int_component(i);
+                 break;
+              case GLSL_TYPE_FLOAT:
+                 data.f[i + base_component] = c->get_float_component(i);
+                 break;
+              case GLSL_TYPE_BOOL:
+                 data.b[i + base_component] = c->get_bool_component(i);
+                 break;
+              default:
+                 assert(!"Should not get here.");
+                 break;
+              }
+           }
+
+           /* Mask of fields to be written in the assignment.
+            */
+           constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
+           constant_components += rhs_components;
 
-        /* Mask of fields to be written in the assignment.
+           base_component += rhs_components;
+        }
+        /* Advance the component index by the number of components
+         * that were just assigned.
          */
-        const unsigned write_mask = ((1U << rhs_components) - 1)
-           << base_component;
+        base_lhs_component += rhs_components;
+      }
 
+      if (constant_mask != 0) {
         ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
-        ir_rvalue *rhs = new(ctx) ir_swizzle(param, swiz, lhs_components);
+        const glsl_type *rhs_type = glsl_type::get_instance(var->type->base_type,
+                                                            constant_components,
+                                                            1);
+        ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
 
         ir_instruction *inst =
-           new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
+           new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
         instructions->push_tail(inst);
+      }
+
+      base_component = 0;
+      foreach_list(node, parameters) {
+        ir_rvalue *param = (ir_rvalue *) node;
+        unsigned rhs_components = param->type->components();
+
+        /* Do not try to assign more components to the vector than it has!
+         */
+        if ((rhs_components + base_component) > lhs_components) {
+           rhs_components = lhs_components - base_component;
+        }
+
+        const ir_constant *const c = param->as_constant();
+        if (c == NULL) {
+           /* Mask of fields to be written in the assignment.
+            */
+           const unsigned write_mask = ((1U << rhs_components) - 1)
+              << base_component;
+
+           ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
+
+           /* Generate a swizzle so that LHS and RHS sizes match.
+            */
+           ir_rvalue *rhs =
+              new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
+
+           ir_instruction *inst =
+              new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
+           instructions->push_tail(inst);
+        }
 
         /* Advance the component index by the number of components that were
          * just assigned.
@@ -683,21 +1030,21 @@ assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
    assert(column_ref->type->components() >= (row_base + count));
    assert(src->type->components() >= (src_base + count));
 
-   /* Generate a swizzle that puts the first element of the source at the
-    * location of the first element of the destination.
+   /* Generate a swizzle that extracts the number of components from the source
+    * that are to be assigned to the column of the matrix.
     */
-   unsigned swiz[4] = { src_base, src_base, src_base, src_base };
-   for (unsigned i = 0; i < count; i++)
-      swiz[i + row_base] = src_base + i;
-
-   ir_rvalue *const rhs =
-      new(mem_ctx) ir_swizzle(src, swiz, column_ref->type->components());
+   if (count < src->type->vector_elements) {
+      src = new(mem_ctx) ir_swizzle(src,
+                                   src_base + 0, src_base + 1,
+                                   src_base + 2, src_base + 3,
+                                   count);
+   }
 
    /* Mask of fields to be written in the assignment.
     */
    const unsigned write_mask = ((1U << count) - 1) << row_base;
 
-   return new(mem_ctx) ir_assignment(column_ref, rhs, NULL, write_mask);
+   return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask);
 }
 
 
@@ -866,14 +1213,16 @@ emit_inline_matrix_constructor(const glsl_type *type,
         new(ctx) ir_assignment(rhs_var_ref, first_param, NULL);
       instructions->push_tail(inst);
 
+      const unsigned last_row = MIN2(src_matrix->type->vector_elements,
+                                    var->type->vector_elements);
+      const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
+                                    var->type->matrix_columns);
 
       unsigned swiz[4] = { 0, 0, 0, 0 };
-      for (unsigned i = 1; i < src_matrix->type->vector_elements; i++)
+      for (unsigned i = 1; i < last_row; i++)
         swiz[i] = i;
 
-      const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
-                                    var->type->matrix_columns);
-      const unsigned write_mask = (1U << var->type->vector_elements) - 1;
+      const unsigned write_mask = (1U << last_row) - 1;
 
       for (unsigned i = 0; i < last_col; i++) {
         ir_dereference *const lhs =
@@ -891,14 +1240,11 @@ emit_inline_matrix_constructor(const glsl_type *type,
          */
         ir_rvalue *rhs;
         if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
-           rhs = new(ctx) ir_swizzle(rhs_col, swiz,
-                                     lhs->type->vector_elements);
+           rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
         } else {
            rhs = rhs_col;
         }
 
-        assert(lhs->type == rhs->type);
-
         ir_instruction *inst =
            new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
         instructions->push_tail(inst);
@@ -979,6 +1325,96 @@ emit_inline_matrix_constructor(const glsl_type *type,
 }
 
 
+ir_rvalue *
+emit_inline_record_constructor(const glsl_type *type,
+                              exec_list *instructions,
+                              exec_list *parameters,
+                              void *mem_ctx)
+{
+   ir_variable *const var =
+      new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
+   ir_dereference_variable *const d = new(mem_ctx) ir_dereference_variable(var);
+
+   instructions->push_tail(var);
+
+   exec_node *node = parameters->head;
+   for (unsigned i = 0; i < type->length; i++) {
+      assert(!node->is_tail_sentinel());
+
+      ir_dereference *const lhs =
+        new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
+                                           type->fields.structure[i].name);
+
+      ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
+      assert(rhs != NULL);
+
+      ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs, NULL);
+
+      instructions->push_tail(assign);
+      node = node->next;
+   }
+
+   return d;
+}
+
+
+static ir_rvalue *
+process_record_constructor(exec_list *instructions,
+                           const glsl_type *constructor_type,
+                           YYLTYPE *loc, exec_list *parameters,
+                           struct _mesa_glsl_parse_state *state)
+{
+   void *ctx = state;
+   exec_list actual_parameters;
+
+   process_parameters(instructions, &actual_parameters,
+                      parameters, state);
+
+   exec_node *node = actual_parameters.head;
+   for (unsigned i = 0; i < constructor_type->length; i++) {
+      ir_rvalue *ir = (ir_rvalue *) node;
+
+      if (node->is_tail_sentinel()) {
+         _mesa_glsl_error(loc, state,
+                          "insufficient parameters to constructor for `%s'",
+                          constructor_type->name);
+         return ir_rvalue::error_value(ctx);
+      }
+
+      if (apply_implicit_conversion(constructor_type->fields.structure[i].type,
+                                 ir, state)) {
+         node->replace_with(ir);
+      } else {
+         _mesa_glsl_error(loc, state,
+                          "parameter type mismatch in constructor for `%s.%s' "
+                          "(%s vs %s)",
+                          constructor_type->name,
+                          constructor_type->fields.structure[i].name,
+                          ir->type->name,
+                          constructor_type->fields.structure[i].type->name);
+         return ir_rvalue::error_value(ctx);;
+      }
+
+      node = node->next;
+   }
+
+   if (!node->is_tail_sentinel()) {
+      _mesa_glsl_error(loc, state, "too many parameters in constructor "
+                                    "for `%s'", constructor_type->name);
+      return ir_rvalue::error_value(ctx);
+   }
+
+   ir_rvalue *const constant =
+      constant_record_constructor(constructor_type, &actual_parameters,
+                                  state);
+
+   return (constant != NULL)
+            ? constant
+            : emit_inline_record_constructor(constructor_type, instructions,
+                                             &actual_parameters, state);
+}
+
+
 ir_rvalue *
 ast_function_expression::hir(exec_list *instructions,
                             struct _mesa_glsl_parse_state *state)
@@ -1000,36 +1436,58 @@ ast_function_expression::hir(exec_list *instructions,
 
       const glsl_type *const constructor_type = type->glsl_type(& name, state);
 
+      /* constructor_type can be NULL if a variable with the same name as the
+       * structure has come into scope.
+       */
+      if (constructor_type == NULL) {
+        _mesa_glsl_error(& loc, state, "unknown type `%s' (structure name "
+                         "may be shadowed by a variable with the same name)",
+                         type->type_name);
+        return ir_rvalue::error_value(ctx);
+      }
+
 
       /* Constructors for samplers are illegal.
        */
       if (constructor_type->is_sampler()) {
         _mesa_glsl_error(& loc, state, "cannot construct sampler type `%s'",
                          constructor_type->name);
-        return ir_call::get_error_instruction(ctx);
+        return ir_rvalue::error_value(ctx);
       }
 
       if (constructor_type->is_array()) {
-        if (state->language_version <= 110) {
-           _mesa_glsl_error(& loc, state,
-                            "array constructors forbidden in GLSL 1.10");
-           return ir_call::get_error_instruction(ctx);
+         if (!state->check_version(120, 300, &loc,
+                                   "array constructors forbidden")) {
+           return ir_rvalue::error_value(ctx);
         }
 
         return process_array_constructor(instructions, constructor_type,
                                          & loc, &this->expressions, state);
       }
 
-      /* There are two kinds of constructor call.  Constructors for built-in
-       * language types, such as mat4 and vec2, are free form.  The only
-       * requirement is that the parameters must provide enough values of the
-       * correct scalar type.  Constructors for arrays and structures must
-       * have the exact number of parameters with matching types in the
-       * correct order.  These constructors follow essentially the same type
-       * matching rules as functions.
+
+      /* There are two kinds of constructor calls.  Constructors for arrays and
+       * structures must have the exact number of arguments with matching types
+       * in the correct order.  These constructors follow essentially the same
+       * type matching rules as functions.
+       *
+       * Constructors for built-in language types, such as mat4 and vec2, are
+       * free form.  The only requirements are that the parameters must provide
+       * enough values of the correct scalar type and that no arguments are
+       * given past the last used argument.
+       *
+       * When using the C-style initializer syntax from GLSL 4.20, constructors
+       * must have the exact number of arguments with matching types in the
+       * correct order.
        */
+      if (constructor_type->is_record()) {
+         return process_record_constructor(instructions, constructor_type,
+                                           &loc, &this->expressions,
+                                           state);
+      }
+
       if (!constructor_type->is_numeric() && !constructor_type->is_boolean())
-        return ir_call::get_error_instruction(ctx);
+        return ir_rvalue::error_value(ctx);
 
       /* Total number of components of the type being constructed. */
       const unsigned type_components = constructor_type->components();
@@ -1056,14 +1514,14 @@ ast_function_expression::hir(exec_list *instructions,
            _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
                             "constructor",
                             constructor_type->name);
-           return ir_call::get_error_instruction(ctx);
+           return ir_rvalue::error_value(ctx);
         }
 
         if (!result->type->is_numeric() && !result->type->is_boolean()) {
            _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
                             "non-numeric data type",
                             constructor_type->name);
-           return ir_call::get_error_instruction(ctx);
+           return ir_rvalue::error_value(ctx);
         }
 
         /* Count the number of matrix and nonmatrix parameters.  This
@@ -1083,12 +1541,12 @@ ast_function_expression::hir(exec_list *instructions,
        *    "It is an error to construct matrices from other matrices. This
        *    is reserved for future use."
        */
-      if ((state->language_version <= 110) && (matrix_parameters > 0)
-         && constructor_type->is_matrix()) {
-        _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
-                         "matrix in GLSL 1.10",
-                         constructor_type->name);
-        return ir_call::get_error_instruction(ctx);
+      if (matrix_parameters > 0
+          && constructor_type->is_matrix()
+          && !state->check_version(120, 100, &loc,
+                                   "cannot construct `%s' from a matrix",
+                                   constructor_type->name)) {
+        return ir_rvalue::error_value(ctx);
       }
 
       /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
@@ -1102,7 +1560,7 @@ ast_function_expression::hir(exec_list *instructions,
         _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
                          "matrix must be only parameter",
                          constructor_type->name);
-        return ir_call::get_error_instruction(ctx);
+        return ir_rvalue::error_value(ctx);
       }
 
       /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
@@ -1111,11 +1569,12 @@ ast_function_expression::hir(exec_list *instructions,
        *    arguments to provide an initializer for every component in the
        *    constructed value."
        */
-      if ((components_used < type_components) && (components_used != 1)) {
+      if (components_used < type_components && components_used != 1
+         && matrix_parameters == 0) {
         _mesa_glsl_error(& loc, state, "too few components to construct "
                          "`%s'",
                          constructor_type->name);
-        return ir_call::get_error_instruction(ctx);
+        return ir_rvalue::error_value(ctx);
       }
 
       /* Later, we cast each parameter to the same base type as the
@@ -1178,32 +1637,7 @@ ast_function_expression::hir(exec_list *instructions,
        * constant representing the complete collection of parameters.
        */
       if (all_parameters_are_constant) {
-        if (components_used >= type_components)
-           return new(ctx) ir_constant(constructor_type,
-                                       & actual_parameters);
-
-        /* The above case must handle all scalar constructors.
-         */
-        assert(constructor_type->is_vector()
-               || constructor_type->is_matrix());
-
-        /* Constructors with exactly one component are special for
-         * vectors and matrices.  For vectors it causes all elements of
-         * the vector to be filled with the value.  For matrices it
-         * causes the matrix to be filled with 0 and the diagonal to be
-         * filled with the value.
-         */
-        ir_constant_data data;
-        ir_constant *const initializer =
-           (ir_constant *) actual_parameters.head;
-        if (constructor_type->is_matrix())
-           generate_constructor_matrix(constructor_type, initializer,
-                                       &data);
-        else
-           generate_constructor_vector(constructor_type, initializer,
-                                       &data);
-
-        return new(ctx) ir_constant(constructor_type, &data);
+        return new(ctx) ir_constant(constructor_type, &actual_parameters);
       } else if (constructor_type->is_scalar()) {
         return dereference_component((ir_rvalue *) actual_parameters.head,
                                      0);
@@ -1221,27 +1655,64 @@ ast_function_expression::hir(exec_list *instructions,
       }
    } else {
       const ast_expression *id = subexpressions[0];
+      const char *func_name = id->primary_expression.identifier;
       YYLTYPE loc = id->get_location();
       exec_list actual_parameters;
 
       process_parameters(instructions, &actual_parameters, &this->expressions,
                         state);
 
-      const glsl_type *const type =
-        state->symbols->get_type(id->primary_expression.identifier);
-
-      if ((type != NULL) && type->is_record()) {
-        ir_constant *constant =
-           constant_record_constructor(type, &loc, &actual_parameters, state);
+      ir_function_signature *sig =
+        match_function_by_name(func_name, &actual_parameters, state);
 
-        if (constant != NULL)
-           return constant;
+      ir_rvalue *value = NULL;
+      if (sig == NULL) {
+        no_matching_function_error(func_name, &loc, &actual_parameters, state);
+        value = ir_rvalue::error_value(ctx);
+      } else if (!verify_parameter_modes(state, sig, actual_parameters, this->expressions)) {
+        /* an error has already been emitted */
+        value = ir_rvalue::error_value(ctx);
+      } else {
+        value = generate_call(instructions, sig, &actual_parameters, state);
       }
 
-      return match_function_by_name(instructions, 
-                                   id->primary_expression.identifier, & loc,
-                                   &actual_parameters, state);
+      return value;
+   }
+
+   return ir_rvalue::error_value(ctx);
+}
+
+ir_rvalue *
+ast_aggregate_initializer::hir(exec_list *instructions,
+                               struct _mesa_glsl_parse_state *state)
+{
+   void *ctx = state;
+   YYLTYPE loc = this->get_location();
+   const char *name;
+
+   if (!this->constructor_type) {
+      _mesa_glsl_error(&loc, state, "type of C-style initializer unknown");
+      return ir_rvalue::error_value(ctx);
+   }
+   const glsl_type *const constructor_type =
+      this->constructor_type->glsl_type(&name, state);
+
+   if (!state->ARB_shading_language_420pack_enable) {
+      _mesa_glsl_error(&loc, state, "C-style initialization requires the "
+                       "GL_ARB_shading_language_420pack extension");
+      return ir_rvalue::error_value(ctx);
+   }
+
+   if (this->constructor_type->is_array) {
+      return process_array_constructor(instructions, constructor_type, &loc,
+                                       &this->expressions, state);
+   }
+
+   if (this->constructor_type->structure) {
+      return process_record_constructor(instructions, constructor_type, &loc,
+                                        &this->expressions, state);
    }
 
-   return ir_call::get_error_instruction(ctx);
+   return process_vec_mat_constructor(instructions, constructor_type, &loc,
+                                      &this->expressions, state);
 }