android: generate files by $(call es-gen)
[mesa.git] / src / glsl / opt_algebraic.cpp
index 953b03c2943be183703b8b0c6bd2e000c70c3bc9..fa5db70f2dd3b3ae6eed13adebd9b03a4c571439 100644 (file)
@@ -45,10 +45,13 @@ namespace {
 
 class ir_algebraic_visitor : public ir_rvalue_visitor {
 public:
-   ir_algebraic_visitor()
+   ir_algebraic_visitor(bool native_integers,
+                        const struct gl_shader_compiler_options *options)
+      : options(options)
    {
       this->progress = false;
       this->mem_ctx = NULL;
+      this->native_integers = native_integers;
    }
 
    virtual ~ir_algebraic_visitor()
@@ -68,8 +71,10 @@ public:
    ir_rvalue *swizzle_if_required(ir_expression *expr,
                                  ir_rvalue *operand);
 
+   const struct gl_shader_compiler_options *options;
    void *mem_ctx;
 
+   bool native_integers;
    bool progress;
 };
 
@@ -93,6 +98,12 @@ is_vec_two(ir_constant *ir)
    return (ir == NULL) ? false : ir->is_value(2.0, 2);
 }
 
+static inline bool
+is_vec_four(ir_constant *ir)
+{
+   return (ir == NULL) ? false : ir->is_value(4.0, 4);
+}
+
 static inline bool
 is_vec_negative_one(ir_constant *ir)
 {
@@ -100,9 +111,49 @@ is_vec_negative_one(ir_constant *ir)
 }
 
 static inline bool
-is_vec_basis(ir_constant *ir)
+is_valid_vec_const(ir_constant *ir)
 {
-   return (ir == NULL) ? false : ir->is_basis();
+   if (ir == NULL)
+      return false;
+
+   if (!ir->type->is_scalar() && !ir->type->is_vector())
+      return false;
+
+   return true;
+}
+
+static inline bool
+is_less_than_one(ir_constant *ir)
+{
+   assert(ir->type->base_type == GLSL_TYPE_FLOAT);
+
+   if (!is_valid_vec_const(ir))
+      return false;
+
+   unsigned component = 0;
+   for (int c = 0; c < ir->type->vector_elements; c++) {
+      if (ir->get_float_component(c) < 1.0f)
+         component++;
+   }
+
+   return (component == ir->type->vector_elements);
+}
+
+static inline bool
+is_greater_than_zero(ir_constant *ir)
+{
+   assert(ir->type->base_type == GLSL_TYPE_FLOAT);
+
+   if (!is_valid_vec_const(ir))
+      return false;
+
+   unsigned component = 0;
+   for (int c = 0; c < ir->type->vector_elements; c++) {
+      if (ir->get_float_component(c) > 0.0f)
+         component++;
+   }
+
+   return (component == ir->type->vector_elements);
 }
 
 static void
@@ -114,6 +165,46 @@ update_type(ir_expression *ir)
       ir->type = ir->operands[1]->type;
 }
 
+/* Recognize (v.x + v.y) + (v.z + v.w) as dot(v, 1.0) */
+static ir_expression *
+try_replace_with_dot(ir_expression *expr0, ir_expression *expr1, void *mem_ctx)
+{
+   if (expr0 && expr0->operation == ir_binop_add &&
+       expr0->type->is_float() &&
+       expr1 && expr1->operation == ir_binop_add &&
+       expr1->type->is_float()) {
+      ir_swizzle *x = expr0->operands[0]->as_swizzle();
+      ir_swizzle *y = expr0->operands[1]->as_swizzle();
+      ir_swizzle *z = expr1->operands[0]->as_swizzle();
+      ir_swizzle *w = expr1->operands[1]->as_swizzle();
+
+      if (!x || x->mask.num_components != 1 ||
+          !y || y->mask.num_components != 1 ||
+          !z || z->mask.num_components != 1 ||
+          !w || w->mask.num_components != 1) {
+         return NULL;
+      }
+
+      bool swiz_seen[4] = {false, false, false, false};
+      swiz_seen[x->mask.x] = true;
+      swiz_seen[y->mask.x] = true;
+      swiz_seen[z->mask.x] = true;
+      swiz_seen[w->mask.x] = true;
+
+      if (!swiz_seen[0] || !swiz_seen[1] ||
+          !swiz_seen[2] || !swiz_seen[3]) {
+         return NULL;
+      }
+
+      if (x->val->equals(y->val) &&
+          x->val->equals(z->val) &&
+          x->val->equals(w->val)) {
+         return dot(x->val, new(mem_ctx) ir_constant(1.0f, 4));
+      }
+   }
+   return NULL;
+}
+
 void
 ir_algebraic_visitor::reassociate_operands(ir_expression *ir1,
                                           int op1,
@@ -205,6 +296,20 @@ ir_algebraic_visitor::handle_expression(ir_expression *ir)
    ir_expression *op_expr[4] = {NULL, NULL, NULL, NULL};
    unsigned int i;
 
+   if (ir->operation == ir_binop_mul &&
+       ir->operands[0]->type->is_matrix() &&
+       ir->operands[1]->type->is_vector()) {
+      ir_expression *matrix_mul = ir->operands[0]->as_expression();
+
+      if (matrix_mul && matrix_mul->operation == ir_binop_mul &&
+         matrix_mul->operands[0]->type->is_matrix() &&
+         matrix_mul->operands[1]->type->is_matrix()) {
+
+         return mul(matrix_mul->operands[0],
+                    mul(matrix_mul->operands[1], ir->operands[1]));
+      }
+   }
+
    assert(ir->get_num_operands() <= 4);
    for (i = 0; i < ir->get_num_operands(); i++) {
       if (ir->operands[i]->type->is_matrix())
@@ -270,6 +375,20 @@ ir_algebraic_visitor::handle_expression(ir_expression *ir)
       if (op_expr[0]->operation == ir_unop_log2) {
          return op_expr[0]->operands[0];
       }
+
+      if (!options->EmitNoPow && op_expr[0]->operation == ir_binop_mul) {
+         for (int log2_pos = 0; log2_pos < 2; log2_pos++) {
+            ir_expression *log2_expr =
+               op_expr[0]->operands[log2_pos]->as_expression();
+
+            if (log2_expr && log2_expr->operation == ir_unop_log2) {
+               return new(mem_ctx) ir_expression(ir_binop_pow,
+                                                 ir->type,
+                                                 log2_expr->operands[0],
+                                                 op_expr[0]->operands[1 - log2_pos]);
+            }
+         }
+      }
       break;
 
    case ir_unop_log2:
@@ -281,6 +400,15 @@ ir_algebraic_visitor::handle_expression(ir_expression *ir)
       }
       break;
 
+   case ir_unop_f2i:
+   case ir_unop_f2u:
+      if (op_expr[0] && op_expr[0]->operation == ir_unop_trunc) {
+         return new(mem_ctx) ir_expression(ir->operation,
+                                           ir->type,
+                                           op_expr[0]->operands[0]);
+      }
+      break;
+
    case ir_unop_logic_not: {
       enum ir_expression_operation new_op = ir_unop_logic_not;
 
@@ -313,6 +441,18 @@ ir_algebraic_visitor::handle_expression(ir_expression *ir)
       break;
    }
 
+   case ir_unop_saturate:
+      if (op_expr[0] && op_expr[0]->operation == ir_binop_add) {
+         ir_expression *b2f_0 = op_expr[0]->operands[0]->as_expression();
+         ir_expression *b2f_1 = op_expr[0]->operands[1]->as_expression();
+
+         if (b2f_0 && b2f_0->operation == ir_unop_b2f &&
+             b2f_1 && b2f_1->operation == ir_unop_b2f) {
+            return b2f(logic_or(b2f_0->operands[0], b2f_1->operands[0]));
+         }
+      }
+      break;
+
    case ir_binop_add:
       if (is_vec_zero(op_const[0]))
         return ir->operands[1];
@@ -327,6 +467,14 @@ ir_algebraic_visitor::handle_expression(ir_expression *ir)
       if (op_const[1] && !op_const[0])
         reassociate_constant(ir, 1, op_const[1], op_expr[0]);
 
+      /* Recognize (v.x + v.y) + (v.z + v.w) as dot(v, 1.0) */
+      if (options->OptimizeForAOS) {
+         ir_expression *expr = try_replace_with_dot(op_expr[0], op_expr[1],
+                                                    mem_ctx);
+         if (expr)
+            return expr;
+      }
+
       /* Replace (-x + y) * a + x and commutative variations with lrp(x, y, a).
        *
        * (-x + y) * a + x
@@ -378,6 +526,7 @@ ir_algebraic_visitor::handle_expression(ir_expression *ir)
             }
          }
       }
+
       break;
 
    case ir_binop_sub:
@@ -401,6 +550,10 @@ ir_algebraic_visitor::handle_expression(ir_expression *ir)
       if (is_vec_negative_one(op_const[1]))
          return neg(ir->operands[0]);
 
+      if (op_expr[0] && op_expr[0]->operation == ir_unop_b2f &&
+          op_expr[1] && op_expr[1]->operation == ir_unop_b2f) {
+         return b2f(logic_and(op_expr[0]->operands[0], op_expr[1]->operands[0]));
+      }
 
       /* Reassociate multiplication of constants so that we can do
        * constant folding.
@@ -410,10 +563,47 @@ ir_algebraic_visitor::handle_expression(ir_expression *ir)
       if (op_const[1] && !op_const[0])
         reassociate_constant(ir, 1, op_const[1], op_expr[0]);
 
+      /* Optimizes
+       *
+       *    (mul (floor (add (abs x) 0.5) (sign x)))
+       *
+       * into
+       *
+       *    (trunc (add x (mul (sign x) 0.5)))
+       */
+      for (int i = 0; i < 2; i++) {
+         ir_expression *sign_expr = ir->operands[i]->as_expression();
+         ir_expression *floor_expr = ir->operands[1 - i]->as_expression();
+
+         if (!sign_expr || sign_expr->operation != ir_unop_sign ||
+             !floor_expr || floor_expr->operation != ir_unop_floor)
+            continue;
+
+         ir_expression *add_expr = floor_expr->operands[0]->as_expression();
+         if (!add_expr)
+            continue;
+
+         for (int j = 0; j < 2; j++) {
+            ir_expression *abs_expr = add_expr->operands[j]->as_expression();
+            if (!abs_expr || abs_expr->operation != ir_unop_abs)
+               continue;
+
+            ir_constant *point_five = add_expr->operands[1 - j]->as_constant();
+            if (!point_five->is_value(0.5, 0))
+               continue;
+
+            if (abs_expr->operands[0]->equals(sign_expr->operands[0])) {
+               return trunc(add(abs_expr->operands[0],
+                                mul(sign_expr, point_five)));
+            }
+         }
+      }
       break;
 
    case ir_binop_div:
-      if (is_vec_one(op_const[0]) && ir->type->base_type == GLSL_TYPE_FLOAT) {
+      if (is_vec_one(op_const[0]) && (
+                ir->type->base_type == GLSL_TYPE_FLOAT ||
+                ir->type->base_type == GLSL_TYPE_DOUBLE)) {
         return new(mem_ctx) ir_expression(ir_unop_rcp,
                                           ir->operands[1]->type,
                                           ir->operands[1],
@@ -427,24 +617,78 @@ ir_algebraic_visitor::handle_expression(ir_expression *ir)
       if (is_vec_zero(op_const[0]) || is_vec_zero(op_const[1]))
         return ir_constant::zero(mem_ctx, ir->type);
 
-      if (is_vec_basis(op_const[0])) {
-        unsigned component = 0;
-        for (unsigned c = 0; c < op_const[0]->type->vector_elements; c++) {
-           if (op_const[0]->value.f[c] == 1.0)
-              component = c;
-        }
-        return new(mem_ctx) ir_swizzle(ir->operands[1], component, 0, 0, 0, 1);
-      }
-      if (is_vec_basis(op_const[1])) {
-        unsigned component = 0;
-        for (unsigned c = 0; c < op_const[1]->type->vector_elements; c++) {
-           if (op_const[1]->value.f[c] == 1.0)
-              component = c;
-        }
-        return new(mem_ctx) ir_swizzle(ir->operands[0], component, 0, 0, 0, 1);
+      for (int i = 0; i < 2; i++) {
+         if (!op_const[i])
+            continue;
+
+         unsigned components[4] = { 0 }, count = 0;
+
+         for (unsigned c = 0; c < op_const[i]->type->vector_elements; c++) {
+            if (op_const[i]->is_zero())
+               continue;
+
+            components[count] = c;
+            count++;
+         }
+
+         /* No channels had zero values; bail. */
+         if (count >= op_const[i]->type->vector_elements)
+            break;
+
+         ir_expression_operation op = count == 1 ?
+            ir_binop_mul : ir_binop_dot;
+
+         /* Swizzle both operands to remove the channels that were zero. */
+         return new(mem_ctx)
+            ir_expression(op, ir->type,
+                          new(mem_ctx) ir_swizzle(ir->operands[0],
+                                                  components, count),
+                          new(mem_ctx) ir_swizzle(ir->operands[1],
+                                                  components, count));
       }
       break;
 
+   case ir_binop_less:
+   case ir_binop_lequal:
+   case ir_binop_greater:
+   case ir_binop_gequal:
+   case ir_binop_equal:
+   case ir_binop_nequal:
+      for (int add_pos = 0; add_pos < 2; add_pos++) {
+         ir_expression *add = op_expr[add_pos];
+
+         if (!add || add->operation != ir_binop_add)
+            continue;
+
+         ir_constant *zero = op_const[1 - add_pos];
+         if (!is_vec_zero(zero))
+            continue;
+
+         /* Depending of the zero position we want to optimize
+          * (0 cmp x+y) into (-x cmp y) or (x+y cmp 0) into (x cmp -y)
+          */
+         if (add_pos == 1) {
+            return new(mem_ctx) ir_expression(ir->operation,
+                                              neg(add->operands[0]),
+                                              add->operands[1]);
+         } else {
+            return new(mem_ctx) ir_expression(ir->operation,
+                                              add->operands[0],
+                                              neg(add->operands[1]));
+         }
+      }
+      break;
+
+   case ir_binop_all_equal:
+   case ir_binop_any_nequal:
+      if (ir->operands[0]->type->is_scalar() &&
+          ir->operands[1]->type->is_scalar())
+         return new(mem_ctx) ir_expression(ir->operation == ir_binop_all_equal
+                                           ? ir_binop_equal : ir_binop_nequal,
+                                           ir->operands[0],
+                                           ir->operands[1]);
+      break;
+
    case ir_binop_rshift:
    case ir_binop_lshift:
       /* 0 >> x == 0 */
@@ -528,12 +772,113 @@ ir_algebraic_visitor::handle_expression(ir_expression *ir)
       if (is_vec_two(op_const[0]))
          return expr(ir_unop_exp2, ir->operands[1]);
 
+      if (is_vec_two(op_const[1])) {
+         ir_variable *x = new(ir) ir_variable(ir->operands[1]->type, "x",
+                                              ir_var_temporary);
+         base_ir->insert_before(x);
+         base_ir->insert_before(assign(x, ir->operands[0]));
+         return mul(x, x);
+      }
+
+      if (is_vec_four(op_const[1])) {
+         ir_variable *x = new(ir) ir_variable(ir->operands[1]->type, "x",
+                                              ir_var_temporary);
+         base_ir->insert_before(x);
+         base_ir->insert_before(assign(x, ir->operands[0]));
+
+         ir_variable *squared = new(ir) ir_variable(ir->operands[1]->type,
+                                                    "squared",
+                                                    ir_var_temporary);
+         base_ir->insert_before(squared);
+         base_ir->insert_before(assign(squared, mul(x, x)));
+         return mul(squared, squared);
+      }
+
+      break;
+
+   case ir_binop_min:
+   case ir_binop_max:
+      if (ir->type->base_type != GLSL_TYPE_FLOAT || options->EmitNoSat)
+         break;
+
+      /* Replace min(max) operations and its commutative combinations with
+       * a saturate operation
+       */
+      for (int op = 0; op < 2; op++) {
+         ir_expression *inner_expr = op_expr[op];
+         ir_constant *outer_const = op_const[1 - op];
+         ir_expression_operation op_cond = (ir->operation == ir_binop_max) ?
+            ir_binop_min : ir_binop_max;
+
+         if (!inner_expr || !outer_const || (inner_expr->operation != op_cond))
+            continue;
+
+         /* One of these has to be a constant */
+         if (!inner_expr->operands[0]->as_constant() &&
+             !inner_expr->operands[1]->as_constant())
+            break;
+
+         /* Found a min(max) combination. Now try to see if its operands
+          * meet our conditions that we can do just a single saturate operation
+          */
+         for (int minmax_op = 0; minmax_op < 2; minmax_op++) {
+            ir_rvalue *x = inner_expr->operands[minmax_op];
+            ir_rvalue *y = inner_expr->operands[1 - minmax_op];
+
+            ir_constant *inner_const = y->as_constant();
+            if (!inner_const)
+               continue;
+
+            /* min(max(x, 0.0), 1.0) is sat(x) */
+            if (ir->operation == ir_binop_min &&
+                inner_const->is_zero() &&
+                outer_const->is_one())
+               return saturate(x);
+
+            /* max(min(x, 1.0), 0.0) is sat(x) */
+            if (ir->operation == ir_binop_max &&
+                inner_const->is_one() &&
+                outer_const->is_zero())
+               return saturate(x);
+
+            /* min(max(x, 0.0), b) where b < 1.0 is sat(min(x, b)) */
+            if (ir->operation == ir_binop_min &&
+                inner_const->is_zero() &&
+                is_less_than_one(outer_const))
+               return saturate(expr(ir_binop_min, x, outer_const));
+
+            /* max(min(x, b), 0.0) where b < 1.0 is sat(min(x, b)) */
+            if (ir->operation == ir_binop_max &&
+                is_less_than_one(inner_const) &&
+                outer_const->is_zero())
+               return saturate(expr(ir_binop_min, x, inner_const));
+
+            /* max(min(x, 1.0), b) where b > 0.0 is sat(max(x, b)) */
+            if (ir->operation == ir_binop_max &&
+                inner_const->is_one() &&
+                is_greater_than_zero(outer_const))
+               return saturate(expr(ir_binop_max, x, outer_const));
+
+            /* min(max(x, b), 1.0) where b > 0.0 is sat(max(x, b)) */
+            if (ir->operation == ir_binop_min &&
+                is_greater_than_zero(inner_const) &&
+                outer_const->is_one())
+               return saturate(expr(ir_binop_max, x, inner_const));
+         }
+      }
+
       break;
 
    case ir_unop_rcp:
       if (op_expr[0] && op_expr[0]->operation == ir_unop_rcp)
         return op_expr[0]->operands[0];
 
+      if (op_expr[0] && (op_expr[0]->operation == ir_unop_exp2 ||
+                         op_expr[0]->operation == ir_unop_exp)) {
+         return new(mem_ctx) ir_expression(op_expr[0]->operation, ir->type,
+                                           neg(op_expr[0]->operands[0]));
+      }
+
       /* While ir_to_mesa.cpp will lower sqrt(x) to rcp(rsq(x)), it does so at
        * its IR level, so we can always apply this transformation.
        */
@@ -547,15 +892,56 @@ ir_algebraic_visitor::handle_expression(ir_expression *ir)
 
       break;
 
+   case ir_triop_fma:
+      /* Operands are op0 * op1 + op2. */
+      if (is_vec_zero(op_const[0]) || is_vec_zero(op_const[1])) {
+         return ir->operands[2];
+      } else if (is_vec_zero(op_const[2])) {
+         return mul(ir->operands[0], ir->operands[1]);
+      } else if (is_vec_one(op_const[0])) {
+         return add(ir->operands[1], ir->operands[2]);
+      } else if (is_vec_one(op_const[1])) {
+         return add(ir->operands[0], ir->operands[2]);
+      }
+      break;
+
    case ir_triop_lrp:
       /* Operands are (x, y, a). */
       if (is_vec_zero(op_const[2])) {
          return ir->operands[0];
       } else if (is_vec_one(op_const[2])) {
          return ir->operands[1];
+      } else if (ir->operands[0]->equals(ir->operands[1])) {
+         return ir->operands[0];
+      } else if (is_vec_zero(op_const[0])) {
+         return mul(ir->operands[1], ir->operands[2]);
+      } else if (is_vec_zero(op_const[1])) {
+         unsigned op2_components = ir->operands[2]->type->vector_elements;
+         ir_constant *one;
+
+         switch (ir->type->base_type) {
+         case GLSL_TYPE_FLOAT:
+            one = new(mem_ctx) ir_constant(1.0f, op2_components);
+            break;
+         case GLSL_TYPE_DOUBLE:
+            one = new(mem_ctx) ir_constant(1.0, op2_components);
+            break;
+         default:
+            one = NULL;
+            unreachable("unexpected type");
+         }
+
+         return mul(ir->operands[0], add(one, neg(ir->operands[2])));
       }
       break;
 
+   case ir_triop_csel:
+      if (is_vec_one(op_const[0]))
+        return ir->operands[1];
+      if (is_vec_zero(op_const[0]))
+        return ir->operands[2];
+      break;
+
    default:
       break;
    }
@@ -587,9 +973,10 @@ ir_algebraic_visitor::handle_rvalue(ir_rvalue **rvalue)
 }
 
 bool
-do_algebraic(exec_list *instructions)
+do_algebraic(exec_list *instructions, bool native_integers,
+             const struct gl_shader_compiler_options *options)
 {
-   ir_algebraic_visitor v;
+   ir_algebraic_visitor v(native_integers, options);
 
    visit_list_elements(&v, instructions);