anv: Better types for 'aspect' function params
[mesa.git] / src / intel / vulkan / anv_image.c
index 3bd8be4c07227dbdbef709bc56e7e38dfb98b293..32aa8741ffdfd2989d6b7d3c65ca1077236244d5 100644 (file)
 #include <string.h>
 #include <unistd.h>
 #include <fcntl.h>
+#include <sys/mman.h>
 
 #include "anv_private.h"
 #include "util/debug.h"
+#include "vk_util.h"
 
 #include "vk_format_info.h"
 
-/**
- * Exactly one bit must be set in \a aspect.
- */
 static isl_surf_usage_flags_t
-choose_isl_surf_usage(VkImageUsageFlags vk_usage,
-                      VkImageAspectFlags aspect)
+choose_isl_surf_usage(VkImageCreateFlags vk_create_flags,
+                      VkImageUsageFlags vk_usage,
+                      isl_surf_usage_flags_t isl_extra_usage,
+                      VkImageAspectFlagBits aspect)
 {
-   isl_surf_usage_flags_t isl_usage = 0;
-
-   /* FINISHME: Support aux surfaces */
-   isl_usage |= ISL_SURF_USAGE_DISABLE_AUX_BIT;
+   isl_surf_usage_flags_t isl_usage = isl_extra_usage;
 
    if (vk_usage & VK_IMAGE_USAGE_SAMPLED_BIT)
       isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT;
@@ -53,7 +51,7 @@ choose_isl_surf_usage(VkImageUsageFlags vk_usage,
    if (vk_usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT)
       isl_usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT;
 
-   if (vk_usage & VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT)
+   if (vk_create_flags & VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT)
       isl_usage |= ISL_SURF_USAGE_CUBE_BIT;
 
    /* Even if we're only using it for transfer operations, clears to depth and
@@ -62,13 +60,15 @@ choose_isl_surf_usage(VkImageUsageFlags vk_usage,
     */
    switch (aspect) {
    case VK_IMAGE_ASPECT_DEPTH_BIT:
-      isl_usage &= ~ISL_SURF_USAGE_DISABLE_AUX_BIT;
       isl_usage |= ISL_SURF_USAGE_DEPTH_BIT;
       break;
    case VK_IMAGE_ASPECT_STENCIL_BIT:
       isl_usage |= ISL_SURF_USAGE_STENCIL_BIT;
       break;
    case VK_IMAGE_ASPECT_COLOR_BIT:
+   case VK_IMAGE_ASPECT_PLANE_0_BIT_KHR:
+   case VK_IMAGE_ASPECT_PLANE_1_BIT_KHR:
+   case VK_IMAGE_ASPECT_PLANE_2_BIT_KHR:
       break;
    default:
       unreachable("bad VkImageAspect");
@@ -79,53 +79,180 @@ choose_isl_surf_usage(VkImageUsageFlags vk_usage,
       isl_usage |= ISL_SURF_USAGE_TEXTURE_BIT;
    }
 
-   if (vk_usage & VK_IMAGE_USAGE_TRANSFER_DST_BIT) {
-      /* blorp implements transfers by rendering into the destination image. */
+   if (vk_usage & VK_IMAGE_USAGE_TRANSFER_DST_BIT &&
+       aspect == VK_IMAGE_ASPECT_COLOR_BIT) {
+      /* blorp implements transfers by rendering into the destination image.
+       * Only request this with color images, as we deal with depth/stencil
+       * formats differently. */
       isl_usage |= ISL_SURF_USAGE_RENDER_TARGET_BIT;
    }
 
    return isl_usage;
 }
 
-/**
- * Exactly one bit must be set in \a aspect.
- */
 static struct anv_surface *
-get_surface(struct anv_image *image, VkImageAspectFlags aspect)
+get_surface(struct anv_image *image, VkImageAspectFlagBits aspect)
 {
-   switch (aspect) {
-   default:
-      unreachable("bad VkImageAspect");
-   case VK_IMAGE_ASPECT_COLOR_BIT:
-      return &image->color_surface;
-   case VK_IMAGE_ASPECT_DEPTH_BIT:
-      return &image->depth_surface;
-   case VK_IMAGE_ASPECT_STENCIL_BIT:
-      return &image->stencil_surface;
-   }
+   uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
+   return &image->planes[plane].surface;
 }
 
 static void
-add_surface(struct anv_image *image, struct anv_surface *surf)
+add_surface(struct anv_image *image, struct anv_surface *surf, uint32_t plane)
 {
    assert(surf->isl.size > 0); /* isl surface must be initialized */
 
-   surf->offset = align_u32(image->size, surf->isl.alignment);
+   if (image->disjoint) {
+      surf->offset = align_u32(image->planes[plane].size, surf->isl.alignment);
+      /* Plane offset is always 0 when it's disjoint. */
+   } else {
+      surf->offset = align_u32(image->size, surf->isl.alignment);
+      /* Determine plane's offset only once when the first surface is added. */
+      if (image->planes[plane].size == 0)
+         image->planes[plane].offset = image->size;
+   }
+
    image->size = surf->offset + surf->isl.size;
+   image->planes[plane].size = (surf->offset + surf->isl.size) - image->planes[plane].offset;
+
    image->alignment = MAX2(image->alignment, surf->isl.alignment);
+   image->planes[plane].alignment = MAX2(image->planes[plane].alignment,
+                                         surf->isl.alignment);
+}
+
+
+static bool
+all_formats_ccs_e_compatible(const struct gen_device_info *devinfo,
+                             const struct VkImageCreateInfo *vk_info)
+{
+   enum isl_format format =
+      anv_get_isl_format(devinfo, vk_info->format,
+                         VK_IMAGE_ASPECT_COLOR_BIT, vk_info->tiling);
+
+   if (!isl_format_supports_ccs_e(devinfo, format))
+      return false;
+
+   if (!(vk_info->flags & VK_IMAGE_CREATE_MUTABLE_FORMAT_BIT))
+      return true;
+
+   const VkImageFormatListCreateInfoKHR *fmt_list =
+      vk_find_struct_const(vk_info->pNext, IMAGE_FORMAT_LIST_CREATE_INFO_KHR);
+
+   if (!fmt_list || fmt_list->viewFormatCount == 0)
+      return false;
+
+   for (uint32_t i = 0; i < fmt_list->viewFormatCount; i++) {
+      enum isl_format view_format =
+         anv_get_isl_format(devinfo, fmt_list->pViewFormats[i],
+                            VK_IMAGE_ASPECT_COLOR_BIT, vk_info->tiling);
+
+      if (!isl_formats_are_ccs_e_compatible(devinfo, format, view_format))
+         return false;
+   }
+
+   return true;
+}
+
+/**
+ * For color images that have an auxiliary surface, request allocation for an
+ * additional buffer that mainly stores fast-clear values. Use of this buffer
+ * allows us to access the image's subresources while being aware of their
+ * fast-clear values in non-trivial cases (e.g., outside of a render pass in
+ * which a fast clear has occurred).
+ *
+ * For the purpose of discoverability, the algorithm used to manage this buffer
+ * is described here. A clear value in this buffer is updated when a fast clear
+ * is performed on a subresource. One of two synchronization operations is
+ * performed in order for a following memory access to use the fast-clear
+ * value:
+ *    a. Copy the value from the buffer to the surface state object used for
+ *       reading. This is done implicitly when the value is the clear value
+ *       predetermined to be the default in other surface state objects. This
+ *       is currently only done explicitly for the operation below.
+ *    b. Do (a) and use the surface state object to resolve the subresource.
+ *       This is only done during layout transitions for decent performance.
+ *
+ * With the above scheme, we can fast-clear whenever the hardware allows except
+ * for two cases in which synchronization becomes impossible or undesirable:
+ *    * The subresource is in the GENERAL layout and is cleared to a value
+ *      other than the special default value.
+ *
+ *      Performing a synchronization operation in order to read from the
+ *      subresource is undesirable in this case. Firstly, b) is not an option
+ *      because a layout transition isn't required between a write and read of
+ *      an image in the GENERAL layout. Secondly, it's undesirable to do a)
+ *      explicitly because it would require large infrastructural changes. The
+ *      Vulkan API supports us in deciding not to optimize this layout by
+ *      stating that using this layout may cause suboptimal performance. NOTE:
+ *      the auxiliary buffer must always be enabled to support a) implicitly.
+ *
+ *
+ *    * For the given miplevel, only some of the layers are cleared at once.
+ *
+ *      If the user clears each layer to a different value, then tries to
+ *      render to multiple layers at once, we have no ability to perform a
+ *      synchronization operation in between. a) is not helpful because the
+ *      object can only hold one clear value. b) is not an option because a
+ *      layout transition isn't required in this case.
+ */
+static void
+add_fast_clear_state_buffer(struct anv_image *image,
+                            VkImageAspectFlagBits aspect,
+                            uint32_t plane,
+                            const struct anv_device *device)
+{
+   assert(image && device);
+   assert(image->planes[plane].aux_surface.isl.size > 0 &&
+          image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
+
+   /* The offset to the buffer of clear values must be dword-aligned for GPU
+    * memcpy operations. It is located immediately after the auxiliary surface.
+    */
+
+   /* Tiled images are guaranteed to be 4K aligned, so the image alignment
+    * should also be dword-aligned.
+    */
+   assert(image->alignment % 4 == 0);
+
+   /* Auxiliary buffers should be a multiple of 4K, so the start of the clear
+    * values buffer should already be dword-aligned.
+    */
+   assert((image->planes[plane].offset + image->planes[plane].size) % 4 == 0);
+
+   /* This buffer should be at the very end of the plane. */
+   if (image->disjoint) {
+      assert(image->planes[plane].size ==
+             (image->planes[plane].offset + image->planes[plane].size));
+   } else {
+      assert(image->size ==
+             (image->planes[plane].offset + image->planes[plane].size));
+   }
+
+   const unsigned entry_size = anv_fast_clear_state_entry_size(device);
+   /* There's no padding between entries, so ensure that they're always a
+    * multiple of 32 bits in order to enable GPU memcpy operations.
+    */
+   assert(entry_size % 4 == 0);
+
+   const unsigned plane_state_size =
+      entry_size * anv_image_aux_levels(image, aspect);
+
+   image->planes[plane].fast_clear_state_offset =
+      image->planes[plane].offset + image->planes[plane].size;
+
+   image->planes[plane].size += plane_state_size;
+   image->size += plane_state_size;
 }
 
 /**
  * Initialize the anv_image::*_surface selected by \a aspect. Then update the
  * image's memory requirements (that is, the image's size and alignment).
- *
- * Exactly one bit must be set in \a aspect.
  */
 static VkResult
 make_surface(const struct anv_device *dev,
              struct anv_image *image,
              const struct anv_image_create_info *anv_info,
-             VkImageAspectFlags aspect)
+             VkImageAspectFlagBits aspect)
 {
    const VkImageCreateInfo *vk_info = anv_info->vk_info;
    bool ok UNUSED;
@@ -148,27 +275,45 @@ make_surface(const struct anv_device *dev,
 
    assert(tiling_flags);
 
-   struct anv_surface *anv_surf = get_surface(image, aspect);
-
    image->extent = anv_sanitize_image_extent(vk_info->imageType,
                                              vk_info->extent);
 
-   enum isl_format format = anv_get_isl_format(&dev->info, vk_info->format,
-                                               aspect, vk_info->tiling);
-   assert(format != ISL_FORMAT_UNSUPPORTED);
+   const unsigned plane = anv_image_aspect_to_plane(image->aspects, aspect);
+   const  struct anv_format_plane plane_format =
+      anv_get_format_plane(&dev->info, image->vk_format, aspect, image->tiling);
+   struct anv_surface *anv_surf = &image->planes[plane].surface;
+
+   const isl_surf_usage_flags_t usage =
+      choose_isl_surf_usage(vk_info->flags, image->usage,
+                            anv_info->isl_extra_usage_flags, aspect);
+
+   /* If an image is created as BLOCK_TEXEL_VIEW_COMPATIBLE, then we need to
+    * fall back to linear on Broadwell and earlier because we aren't
+    * guaranteed that we can handle offsets correctly.  On Sky Lake, the
+    * horizontal and vertical alignments are sufficiently high that we can
+    * just use RENDER_SURFACE_STATE::X/Y Offset.
+    */
+   bool needs_shadow = false;
+   if (dev->info.gen <= 8 &&
+       (vk_info->flags & VK_IMAGE_CREATE_BLOCK_TEXEL_VIEW_COMPATIBLE_BIT_KHR) &&
+       vk_info->tiling == VK_IMAGE_TILING_OPTIMAL) {
+      assert(isl_format_is_compressed(plane_format.isl_format));
+      tiling_flags = ISL_TILING_LINEAR_BIT;
+      needs_shadow = true;
+   }
 
    ok = isl_surf_init(&dev->isl_dev, &anv_surf->isl,
       .dim = vk_to_isl_surf_dim[vk_info->imageType],
-      .format = format,
-      .width = image->extent.width,
-      .height = image->extent.height,
+      .format = plane_format.isl_format,
+      .width = image->extent.width / plane_format.denominator_scales[0],
+      .height = image->extent.height / plane_format.denominator_scales[1],
       .depth = image->extent.depth,
       .levels = vk_info->mipLevels,
       .array_len = vk_info->arrayLayers,
       .samples = vk_info->samples,
       .min_alignment = 0,
-      .min_pitch = anv_info->stride,
-      .usage = choose_isl_surf_usage(image->usage, aspect),
+      .row_pitch = anv_info->stride,
+      .usage = usage,
       .tiling_flags = tiling_flags);
 
    /* isl_surf_init() will fail only if provided invalid input. Invalid input
@@ -176,29 +321,160 @@ make_surface(const struct anv_device *dev,
     */
    assert(ok);
 
-   add_surface(image, anv_surf);
+   image->planes[plane].aux_usage = ISL_AUX_USAGE_NONE;
+
+   add_surface(image, anv_surf, plane);
+
+   /* If an image is created as BLOCK_TEXEL_VIEW_COMPATIBLE, then we need to
+    * create an identical tiled shadow surface for use while texturing so we
+    * don't get garbage performance.
+    */
+   if (needs_shadow) {
+      assert(aspect == VK_IMAGE_ASPECT_COLOR_BIT);
+      assert(tiling_flags == ISL_TILING_LINEAR_BIT);
+
+      ok = isl_surf_init(&dev->isl_dev, &image->planes[plane].shadow_surface.isl,
+         .dim = vk_to_isl_surf_dim[vk_info->imageType],
+         .format = plane_format.isl_format,
+         .width = image->extent.width,
+         .height = image->extent.height,
+         .depth = image->extent.depth,
+         .levels = vk_info->mipLevels,
+         .array_len = vk_info->arrayLayers,
+         .samples = vk_info->samples,
+         .min_alignment = 0,
+         .row_pitch = anv_info->stride,
+         .usage = usage,
+         .tiling_flags = ISL_TILING_ANY_MASK);
+
+      /* isl_surf_init() will fail only if provided invalid input. Invalid input
+       * is illegal in Vulkan.
+       */
+      assert(ok);
+
+      add_surface(image, &image->planes[plane].shadow_surface, plane);
+   }
 
    /* Add a HiZ surface to a depth buffer that will be used for rendering.
     */
-   if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT &&
-       (image->usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) {
+   if (aspect == VK_IMAGE_ASPECT_DEPTH_BIT) {
+      /* We don't advertise that depth buffers could be used as storage
+       * images.
+       */
+       assert(!(image->usage & VK_IMAGE_USAGE_STORAGE_BIT));
 
       /* Allow the user to control HiZ enabling. Disable by default on gen7
        * because resolves are not currently implemented pre-BDW.
        */
-      if (!env_var_as_boolean("INTEL_VK_HIZ", dev->info.gen >= 8)) {
-         anv_finishme("Implement gen7 HiZ");
+      if (!(image->usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT)) {
+         /* It will never be used as an attachment, HiZ is pointless. */
+      } else if (dev->info.gen == 7) {
+         anv_perf_warn(dev->instance, image, "Implement gen7 HiZ");
       } else if (vk_info->mipLevels > 1) {
-         anv_finishme("Test multi-LOD HiZ");
+         anv_perf_warn(dev->instance, image, "Enable multi-LOD HiZ");
+      } else if (vk_info->arrayLayers > 1) {
+         anv_perf_warn(dev->instance, image,
+                       "Implement multi-arrayLayer HiZ clears and resolves");
       } else if (dev->info.gen == 8 && vk_info->samples > 1) {
-         anv_finishme("Test gen8 multisampled HiZ");
-      } else {
-         isl_surf_get_hiz_surf(&dev->isl_dev, &image->depth_surface.isl,
-                               &image->hiz_surface.isl);
-         add_surface(image, &image->hiz_surface);
+         anv_perf_warn(dev->instance, image, "Enable gen8 multisampled HiZ");
+      } else if (!unlikely(INTEL_DEBUG & DEBUG_NO_HIZ)) {
+         assert(image->planes[plane].aux_surface.isl.size == 0);
+         ok = isl_surf_get_hiz_surf(&dev->isl_dev,
+                                    &image->planes[plane].surface.isl,
+                                    &image->planes[plane].aux_surface.isl);
+         assert(ok);
+         add_surface(image, &image->planes[plane].aux_surface, plane);
+         image->planes[plane].aux_usage = ISL_AUX_USAGE_HIZ;
+      }
+   } else if ((aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) && vk_info->samples == 1) {
+      /* TODO: Disallow compression with :
+       *
+       *     1) non multiplanar images (We appear to hit a sampler bug with
+       *        CCS & R16G16 format. Putting the clear state a page/4096bytes
+       *        further fixes the issue).
+       *
+       *     2) alias images, because they might be aliases of images
+       *        described in 1)
+       *
+       *     3) compression disabled by debug
+       */
+      const bool allow_compression =
+         image->n_planes == 1 &&
+         (vk_info->flags & VK_IMAGE_CREATE_ALIAS_BIT_KHR) == 0 &&
+         likely((INTEL_DEBUG & DEBUG_NO_RBC) == 0);
+
+      if (allow_compression) {
+         assert(image->planes[plane].aux_surface.isl.size == 0);
+         ok = isl_surf_get_ccs_surf(&dev->isl_dev,
+                                    &image->planes[plane].surface.isl,
+                                    &image->planes[plane].aux_surface.isl, 0);
+         if (ok) {
+
+            /* Disable CCS when it is not useful (i.e., when you can't render
+             * to the image with CCS enabled).
+             */
+            if (!isl_format_supports_rendering(&dev->info,
+                                               plane_format.isl_format)) {
+               /* While it may be technically possible to enable CCS for this
+                * image, we currently don't have things hooked up to get it
+                * working.
+                */
+               anv_perf_warn(dev->instance, image,
+                             "This image format doesn't support rendering. "
+                             "Not allocating an CCS buffer.");
+               image->planes[plane].aux_surface.isl.size = 0;
+               return VK_SUCCESS;
+            }
+
+            add_surface(image, &image->planes[plane].aux_surface, plane);
+            add_fast_clear_state_buffer(image, aspect, plane, dev);
+
+            /* For images created without MUTABLE_FORMAT_BIT set, we know that
+             * they will always be used with the original format.  In
+             * particular, they will always be used with a format that
+             * supports color compression.  If it's never used as a storage
+             * image, then it will only be used through the sampler or the as
+             * a render target.  This means that it's safe to just leave
+             * compression on at all times for these formats.
+             */
+            if (!(vk_info->usage & VK_IMAGE_USAGE_STORAGE_BIT) &&
+                all_formats_ccs_e_compatible(&dev->info, vk_info)) {
+               image->planes[plane].aux_usage = ISL_AUX_USAGE_CCS_E;
+            }
+         }
+      }
+   } else if ((aspect & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) && vk_info->samples > 1) {
+      assert(!(vk_info->usage & VK_IMAGE_USAGE_STORAGE_BIT));
+      assert(image->planes[plane].aux_surface.isl.size == 0);
+      ok = isl_surf_get_mcs_surf(&dev->isl_dev,
+                                 &image->planes[plane].surface.isl,
+                                 &image->planes[plane].aux_surface.isl);
+      if (ok) {
+         add_surface(image, &image->planes[plane].aux_surface, plane);
+         add_fast_clear_state_buffer(image, aspect, plane, dev);
+         image->planes[plane].aux_usage = ISL_AUX_USAGE_MCS;
       }
    }
 
+   assert((image->planes[plane].offset + image->planes[plane].size) == image->size);
+
+   /* Upper bound of the last surface should be smaller than the plane's
+    * size.
+    */
+   assert((MAX2(image->planes[plane].surface.offset,
+                image->planes[plane].aux_surface.offset) +
+           (image->planes[plane].aux_surface.isl.size > 0 ?
+            image->planes[plane].aux_surface.isl.size :
+            image->planes[plane].surface.isl.size)) <=
+          (image->planes[plane].offset + image->planes[plane].size));
+
+   if (image->planes[plane].aux_surface.isl.size) {
+      /* assert(image->planes[plane].fast_clear_state_offset == */
+      /*        (image->planes[plane].aux_surface.offset + image->planes[plane].aux_surface.isl.size)); */
+      assert(image->planes[plane].fast_clear_state_offset <
+             (image->planes[plane].offset + image->planes[plane].size));
+   }
+
    return VK_SUCCESS;
 }
 
@@ -222,21 +498,27 @@ anv_image_create(VkDevice _device,
    anv_assert(pCreateInfo->extent.height > 0);
    anv_assert(pCreateInfo->extent.depth > 0);
 
-   image = vk_alloc2(&device->alloc, alloc, sizeof(*image), 8,
-                      VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
+   image = vk_zalloc2(&device->alloc, alloc, sizeof(*image), 8,
+                       VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
    if (!image)
       return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
 
-   memset(image, 0, sizeof(*image));
    image->type = pCreateInfo->imageType;
    image->extent = pCreateInfo->extent;
    image->vk_format = pCreateInfo->format;
+   image->format = anv_get_format(pCreateInfo->format);
    image->aspects = vk_format_aspects(image->vk_format);
    image->levels = pCreateInfo->mipLevels;
    image->array_size = pCreateInfo->arrayLayers;
    image->samples = pCreateInfo->samples;
    image->usage = pCreateInfo->usage;
    image->tiling = pCreateInfo->tiling;
+   image->disjoint = pCreateInfo->flags & VK_IMAGE_CREATE_DISJOINT_BIT_KHR;
+
+   const struct anv_format *format = anv_get_format(image->vk_format);
+   assert(format != NULL);
+
+   image->n_planes = format->n_planes;
 
    uint32_t b;
    for_each_bit(b, image->aspects) {
@@ -262,6 +544,15 @@ anv_CreateImage(VkDevice device,
                 const VkAllocationCallbacks *pAllocator,
                 VkImage *pImage)
 {
+#ifdef ANDROID
+   const VkNativeBufferANDROID *gralloc_info =
+      vk_find_struct_const(pCreateInfo->pNext, NATIVE_BUFFER_ANDROID);
+
+   if (gralloc_info)
+      return anv_image_from_gralloc(device, pCreateInfo, gralloc_info,
+                                    pAllocator, pImage);
+#endif
+
    return anv_image_create(device,
       &(struct anv_image_create_info) {
          .vk_info = pCreateInfo,
@@ -280,9 +571,34 @@ anv_DestroyImage(VkDevice _device, VkImage _image,
    if (!image)
       return;
 
+   for (uint32_t p = 0; p < image->n_planes; ++p) {
+      if (image->planes[p].bo_is_owned) {
+         assert(image->planes[p].bo != NULL);
+         anv_bo_cache_release(device, &device->bo_cache, image->planes[p].bo);
+      }
+   }
+
    vk_free2(&device->alloc, pAllocator, image);
 }
 
+static void anv_image_bind_memory_plane(struct anv_device *device,
+                                        struct anv_image *image,
+                                        uint32_t plane,
+                                        struct anv_device_memory *memory,
+                                        uint32_t memory_offset)
+{
+   assert(!image->planes[plane].bo_is_owned);
+
+   if (!memory) {
+      image->planes[plane].bo = NULL;
+      image->planes[plane].bo_offset = 0;
+      return;
+   }
+
+   image->planes[plane].bo = memory->bo;
+   image->planes[plane].bo_offset = memory_offset;
+}
+
 VkResult anv_BindImageMemory(
     VkDevice                                    _device,
     VkImage                                     _image,
@@ -293,40 +609,51 @@ VkResult anv_BindImageMemory(
    ANV_FROM_HANDLE(anv_device_memory, mem, _memory);
    ANV_FROM_HANDLE(anv_image, image, _image);
 
-   if (mem) {
-      image->bo = &mem->bo;
-      image->offset = memoryOffset;
-   } else {
-      image->bo = NULL;
-      image->offset = 0;
+   uint32_t aspect_bit;
+   anv_foreach_image_aspect_bit(aspect_bit, image, image->aspects) {
+      uint32_t plane =
+         anv_image_aspect_to_plane(image->aspects, 1UL << aspect_bit);
+      anv_image_bind_memory_plane(device, image, plane, mem, memoryOffset);
    }
 
-   if (anv_image_has_hiz(image)) {
-
-      /* The offset and size must be a multiple of 4K or else the
-       * anv_gem_mmap call below will return NULL.
-       */
-      assert((image->offset + image->hiz_surface.offset) % 4096 == 0);
-      assert(image->hiz_surface.isl.size % 4096 == 0);
-
-      /* HiZ surfaces need to have their memory cleared to 0 before they
-       * can be used.  If we let it have garbage data, it can cause GPU
-       * hangs on some hardware.
-       */
-      void *map = anv_gem_mmap(device, image->bo->gem_handle,
-                               image->offset + image->hiz_surface.offset,
-                               image->hiz_surface.isl.size,
-                               device->info.has_llc ? 0 : I915_MMAP_WC);
+   return VK_SUCCESS;
+}
 
-      /* If anv_gem_mmap returns NULL, it's likely that the kernel was
-       * not able to find space on the host to create a proper mapping.
-       */
-      if (map == NULL)
-         return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
+VkResult anv_BindImageMemory2KHR(
+    VkDevice                                    _device,
+    uint32_t                                    bindInfoCount,
+    const VkBindImageMemoryInfoKHR*             pBindInfos)
+{
+   ANV_FROM_HANDLE(anv_device, device, _device);
 
-      memset(map, 0, image->hiz_surface.isl.size);
+   for (uint32_t i = 0; i < bindInfoCount; i++) {
+      const VkBindImageMemoryInfoKHR *bind_info = &pBindInfos[i];
+      ANV_FROM_HANDLE(anv_device_memory, mem, bind_info->memory);
+      ANV_FROM_HANDLE(anv_image, image, bind_info->image);
+      VkImageAspectFlags aspects = image->aspects;
+
+      vk_foreach_struct_const(s, bind_info->pNext) {
+         switch (s->sType) {
+         case VK_STRUCTURE_TYPE_BIND_IMAGE_PLANE_MEMORY_INFO_KHR: {
+            const VkBindImagePlaneMemoryInfoKHR *plane_info =
+               (const VkBindImagePlaneMemoryInfoKHR *) s;
+
+            aspects = plane_info->planeAspect;
+            break;
+         }
+         default:
+            anv_debug_ignored_stype(s->sType);
+            break;
+         }
+      }
 
-      anv_gem_munmap(map, image->hiz_surface.isl.size);
+      uint32_t aspect_bit;
+      anv_foreach_image_aspect_bit(aspect_bit, image, aspects) {
+         uint32_t plane =
+            anv_image_aspect_to_plane(image->aspects, 1UL << aspect_bit);
+         anv_image_bind_memory_plane(device, image, plane,
+                                     mem, bind_info->memoryOffset);
+      }
    }
 
    return VK_SUCCESS;
@@ -361,24 +688,148 @@ void anv_GetImageSubresourceLayout(
 
    assert(__builtin_popcount(pSubresource->aspectMask) == 1);
 
-   switch (pSubresource->aspectMask) {
-   case VK_IMAGE_ASPECT_COLOR_BIT:
-      anv_surface_get_subresource_layout(image, &image->color_surface,
-                                         pSubresource, pLayout);
-      break;
-   case VK_IMAGE_ASPECT_DEPTH_BIT:
-      anv_surface_get_subresource_layout(image, &image->depth_surface,
-                                         pSubresource, pLayout);
-      break;
-   case VK_IMAGE_ASPECT_STENCIL_BIT:
-      anv_surface_get_subresource_layout(image, &image->stencil_surface,
-                                         pSubresource, pLayout);
-      break;
-   default:
-      assert(!"Invalid image aspect");
+   anv_surface_get_subresource_layout(image,
+                                      get_surface(image,
+                                                  pSubresource->aspectMask),
+                                      pSubresource, pLayout);
+}
+
+/**
+ * This function determines the optimal buffer to use for a given
+ * VkImageLayout and other pieces of information needed to make that
+ * determination. This does not determine the optimal buffer to use
+ * during a resolve operation.
+ *
+ * @param devinfo The device information of the Intel GPU.
+ * @param image The image that may contain a collection of buffers.
+ * @param plane The plane of the image to be accessed.
+ * @param layout The current layout of the image aspect(s).
+ *
+ * @return The primary buffer that should be used for the given layout.
+ */
+enum isl_aux_usage
+anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
+                        const struct anv_image * const image,
+                        const VkImageAspectFlagBits aspect,
+                        const VkImageLayout layout)
+{
+   /* Validate the inputs. */
+
+   /* The devinfo is needed as the optimal buffer varies across generations. */
+   assert(devinfo != NULL);
+
+   /* The layout of a NULL image is not properly defined. */
+   assert(image != NULL);
+
+   /* The aspect must be exactly one of the image aspects. */
+   assert(_mesa_bitcount(aspect) == 1 && (aspect & image->aspects));
+
+   /* Determine the optimal buffer. */
+
+   uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
+
+   /* If there is no auxiliary surface allocated, we must use the one and only
+    * main buffer.
+    */
+   if (image->planes[plane].aux_surface.isl.size == 0)
+      return ISL_AUX_USAGE_NONE;
+
+   /* All images that use an auxiliary surface are required to be tiled. */
+   assert(image->tiling == VK_IMAGE_TILING_OPTIMAL);
+
+   /* Stencil has no aux */
+   assert(aspect != VK_IMAGE_ASPECT_STENCIL_BIT);
+
+   /* The following switch currently only handles depth stencil aspects.
+    * TODO: Handle the color aspect.
+    */
+   if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV)
+      return image->planes[plane].aux_usage;
+
+   switch (layout) {
+
+   /* Invalid Layouts */
+   case VK_IMAGE_LAYOUT_RANGE_SIZE:
+   case VK_IMAGE_LAYOUT_MAX_ENUM:
+      unreachable("Invalid image layout.");
+
+   /* Undefined layouts
+    *
+    * The pre-initialized layout is equivalent to the undefined layout for
+    * optimally-tiled images.  We can only do color compression (CCS or HiZ)
+    * on tiled images.
+    */
+   case VK_IMAGE_LAYOUT_UNDEFINED:
+   case VK_IMAGE_LAYOUT_PREINITIALIZED:
+      return ISL_AUX_USAGE_NONE;
+
+
+   /* Transfer Layouts
+    *
+    * This buffer could be a depth buffer used in a transfer operation. BLORP
+    * currently doesn't use HiZ for transfer operations so we must use the main
+    * buffer for this layout. TODO: Enable HiZ in BLORP.
+    */
+   case VK_IMAGE_LAYOUT_GENERAL:
+   case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
+   case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
+      return ISL_AUX_USAGE_NONE;
+
+
+   /* Sampling Layouts */
+   case VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL:
+      assert((image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0);
+      /* Fall-through */
+   case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
+   case VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL_KHR:
+      assert(aspect == VK_IMAGE_ASPECT_DEPTH_BIT);
+      if (anv_can_sample_with_hiz(devinfo, image))
+         return ISL_AUX_USAGE_HIZ;
+      else
+         return ISL_AUX_USAGE_NONE;
+
+   case VK_IMAGE_LAYOUT_PRESENT_SRC_KHR:
+      assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
+
+      /* On SKL+, the render buffer can be decompressed by the presentation
+       * engine. Support for this feature has not yet landed in the wider
+       * ecosystem. TODO: Update this code when support lands.
+       *
+       * From the BDW PRM, Vol 7, Render Target Resolve:
+       *
+       *    If the MCS is enabled on a non-multisampled render target, the
+       *    render target must be resolved before being used for other
+       *    purposes (display, texture, CPU lock) The clear value from
+       *    SURFACE_STATE is written into pixels in the render target
+       *    indicated as clear in the MCS.
+       *
+       * Pre-SKL, the render buffer must be resolved before being used for
+       * presentation. We can infer that the auxiliary buffer is not used.
+       */
+      return ISL_AUX_USAGE_NONE;
+
+
+   /* Rendering Layouts */
+   case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
+      assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
+      unreachable("Color images are not yet supported.");
+
+   case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
+   case VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL_KHR:
+      assert(aspect == VK_IMAGE_ASPECT_DEPTH_BIT);
+      return ISL_AUX_USAGE_HIZ;
+
+   case VK_IMAGE_LAYOUT_SHARED_PRESENT_KHR:
+      unreachable("VK_KHR_shared_presentable_image is unsupported");
    }
+
+   /* If the layout isn't recognized in the exhaustive switch above, the
+    * VkImageLayout value is not defined in vulkan.h.
+    */
+   unreachable("layout is not a VkImageLayout enumeration member.");
 }
 
+
 static struct anv_state
 alloc_surface_state(struct anv_device *device)
 {
@@ -404,6 +855,189 @@ remap_swizzle(VkComponentSwizzle swizzle, VkComponentSwizzle component,
    }
 }
 
+void
+anv_image_fill_surface_state(struct anv_device *device,
+                             const struct anv_image *image,
+                             VkImageAspectFlagBits aspect,
+                             const struct isl_view *view_in,
+                             isl_surf_usage_flags_t view_usage,
+                             enum isl_aux_usage aux_usage,
+                             const union isl_color_value *clear_color,
+                             enum anv_image_view_state_flags flags,
+                             struct anv_surface_state *state_inout,
+                             struct brw_image_param *image_param_out)
+{
+   uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
+
+   const struct anv_surface *surface = &image->planes[plane].surface,
+      *aux_surface = &image->planes[plane].aux_surface;
+
+   struct isl_view view = *view_in;
+   view.usage |= view_usage;
+
+   /* For texturing with VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL from a
+    * compressed surface with a shadow surface, we use the shadow instead of
+    * the primary surface.  The shadow surface will be tiled, unlike the main
+    * surface, so it should get significantly better performance.
+    */
+   if (image->planes[plane].shadow_surface.isl.size > 0 &&
+       isl_format_is_compressed(view.format) &&
+       (flags & ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL)) {
+      assert(isl_format_is_compressed(surface->isl.format));
+      assert(surface->isl.tiling == ISL_TILING_LINEAR);
+      assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR);
+      surface = &image->planes[plane].shadow_surface;
+   }
+
+   if (view_usage == ISL_SURF_USAGE_RENDER_TARGET_BIT)
+      view.swizzle = anv_swizzle_for_render(view.swizzle);
+
+   /* If this is a HiZ buffer we can sample from with a programmable clear
+    * value (SKL+), define the clear value to the optimal constant.
+    */
+   union isl_color_value default_clear_color = { .u32 = { 0, } };
+   if (device->info.gen >= 9 && aux_usage == ISL_AUX_USAGE_HIZ)
+      default_clear_color.f32[0] = ANV_HZ_FC_VAL;
+   if (!clear_color)
+      clear_color = &default_clear_color;
+
+   const uint64_t address = image->planes[plane].bo_offset + surface->offset;
+   const uint64_t aux_address = aux_usage == ISL_AUX_USAGE_NONE ?
+      0 : (image->planes[plane].bo_offset + aux_surface->offset);
+
+   if (view_usage == ISL_SURF_USAGE_STORAGE_BIT &&
+       !(flags & ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY) &&
+       !isl_has_matching_typed_storage_image_format(&device->info,
+                                                    view.format)) {
+      /* In this case, we are a writeable storage buffer which needs to be
+       * lowered to linear. All tiling and offset calculations will be done in
+       * the shader.
+       */
+      assert(aux_usage == ISL_AUX_USAGE_NONE);
+      isl_buffer_fill_state(&device->isl_dev, state_inout->state.map,
+                            .address = address,
+                            .size = surface->isl.size,
+                            .format = ISL_FORMAT_RAW,
+                            .stride = 1,
+                            .mocs = device->default_mocs);
+      state_inout->address = address,
+      state_inout->aux_address = 0;
+   } else {
+      if (view_usage == ISL_SURF_USAGE_STORAGE_BIT &&
+          !(flags & ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY)) {
+         /* Typed surface reads support a very limited subset of the shader
+          * image formats.  Translate it into the closest format the hardware
+          * supports.
+          */
+         assert(aux_usage == ISL_AUX_USAGE_NONE);
+         view.format = isl_lower_storage_image_format(&device->info,
+                                                      view.format);
+      }
+
+      const struct isl_surf *isl_surf = &surface->isl;
+
+      struct isl_surf tmp_surf;
+      uint32_t offset_B = 0, tile_x_sa = 0, tile_y_sa = 0;
+      if (isl_format_is_compressed(surface->isl.format) &&
+          !isl_format_is_compressed(view.format)) {
+         /* We're creating an uncompressed view of a compressed surface.  This
+          * is allowed but only for a single level/layer.
+          */
+         assert(surface->isl.samples == 1);
+         assert(view.levels == 1);
+         assert(view.array_len == 1);
+
+         isl_surf_get_image_surf(&device->isl_dev, isl_surf,
+                                 view.base_level,
+                                 surface->isl.dim == ISL_SURF_DIM_3D ?
+                                    0 : view.base_array_layer,
+                                 surface->isl.dim == ISL_SURF_DIM_3D ?
+                                    view.base_array_layer : 0,
+                                 &tmp_surf,
+                                 &offset_B, &tile_x_sa, &tile_y_sa);
+
+         /* The newly created image represents the one subimage we're
+          * referencing with this view so it only has one array slice and
+          * miplevel.
+          */
+         view.base_array_layer = 0;
+         view.base_level = 0;
+
+         /* We're making an uncompressed view here.  The image dimensions need
+          * to be scaled down by the block size.
+          */
+         const struct isl_format_layout *fmtl =
+            isl_format_get_layout(surface->isl.format);
+         tmp_surf.format = view.format;
+         tmp_surf.logical_level0_px.width =
+            DIV_ROUND_UP(tmp_surf.logical_level0_px.width, fmtl->bw);
+         tmp_surf.logical_level0_px.height =
+            DIV_ROUND_UP(tmp_surf.logical_level0_px.height, fmtl->bh);
+         tmp_surf.phys_level0_sa.width /= fmtl->bw;
+         tmp_surf.phys_level0_sa.height /= fmtl->bh;
+         tile_x_sa /= fmtl->bw;
+         tile_y_sa /= fmtl->bh;
+
+         isl_surf = &tmp_surf;
+
+         if (device->info.gen <= 8) {
+            assert(surface->isl.tiling == ISL_TILING_LINEAR);
+            assert(tile_x_sa == 0);
+            assert(tile_y_sa == 0);
+         }
+      }
+
+      isl_surf_fill_state(&device->isl_dev, state_inout->state.map,
+                          .surf = isl_surf,
+                          .view = &view,
+                          .address = address + offset_B,
+                          .clear_color = *clear_color,
+                          .aux_surf = &aux_surface->isl,
+                          .aux_usage = aux_usage,
+                          .aux_address = aux_address,
+                          .mocs = device->default_mocs,
+                          .x_offset_sa = tile_x_sa,
+                          .y_offset_sa = tile_y_sa);
+      state_inout->address = address + offset_B;
+      if (device->info.gen >= 8) {
+         state_inout->aux_address = aux_address;
+      } else {
+         /* On gen7 and prior, the bottom 12 bits of the MCS base address are
+          * used to store other information.  This should be ok, however,
+          * because surface buffer addresses are always 4K page alinged.
+          */
+         uint32_t *aux_addr_dw = state_inout->state.map +
+                                 device->isl_dev.ss.aux_addr_offset;
+         assert((aux_address & 0xfff) == 0);
+         assert(aux_address == (*aux_addr_dw & 0xfffff000));
+         state_inout->aux_address = *aux_addr_dw;
+      }
+   }
+
+   anv_state_flush(device, state_inout->state);
+
+   if (image_param_out) {
+      assert(view_usage == ISL_SURF_USAGE_STORAGE_BIT);
+      isl_surf_fill_image_param(&device->isl_dev, image_param_out,
+                                &surface->isl, &view);
+   }
+}
+
+static VkImageAspectFlags
+remap_aspect_flags(VkImageAspectFlags view_aspects)
+{
+   if (view_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
+      if (_mesa_bitcount(view_aspects) == 1)
+         return VK_IMAGE_ASPECT_COLOR_BIT;
+
+      VkImageAspectFlags color_aspects = 0;
+      for (uint32_t i = 0; i < _mesa_bitcount(view_aspects); i++)
+         color_aspects |= VK_IMAGE_ASPECT_PLANE_0_BIT_KHR << i;
+      return color_aspects;
+   }
+   /* No special remapping needed for depth & stencil aspects. */
+   return view_aspects;
+}
 
 VkResult
 anv_CreateImageView(VkDevice _device,
@@ -415,7 +1049,7 @@ anv_CreateImageView(VkDevice _device,
    ANV_FROM_HANDLE(anv_image, image, pCreateInfo->image);
    struct anv_image_view *iview;
 
-   iview = vk_alloc2(&device->alloc, pAllocator, sizeof(*iview), 8,
+   iview = vk_zalloc2(&device->alloc, pAllocator, sizeof(*iview), 8,
                       VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
    if (iview == NULL)
       return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
@@ -424,10 +1058,17 @@ anv_CreateImageView(VkDevice _device,
 
    assert(range->layerCount > 0);
    assert(range->baseMipLevel < image->levels);
-   assert(image->usage & (VK_IMAGE_USAGE_SAMPLED_BIT |
-                          VK_IMAGE_USAGE_STORAGE_BIT |
-                          VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT |
-                          VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT));
+
+   const VkImageViewUsageCreateInfoKHR *usage_info =
+      vk_find_struct_const(pCreateInfo, IMAGE_VIEW_USAGE_CREATE_INFO_KHR);
+   VkImageUsageFlags view_usage = usage_info ? usage_info->usage : image->usage;
+   /* View usage should be a subset of image usage */
+   assert((view_usage & ~image->usage) == 0);
+   assert(view_usage & (VK_IMAGE_USAGE_SAMPLED_BIT |
+                        VK_IMAGE_USAGE_STORAGE_BIT |
+                        VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT |
+                        VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT |
+                        VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT));
 
    switch (image->type) {
    default:
@@ -442,102 +1083,130 @@ anv_CreateImageView(VkDevice _device,
       break;
    }
 
-   const struct anv_surface *surface =
-      anv_image_get_surface_for_aspect_mask(image, range->aspectMask);
+   /* First expand aspects to the image's ones (for example
+    * VK_IMAGE_ASPECT_COLOR_BIT will be converted to
+    * VK_IMAGE_ASPECT_PLANE_0_BIT_KHR | VK_IMAGE_ASPECT_PLANE_1_BIT_KHR |
+    * VK_IMAGE_ASPECT_PLANE_2_BIT_KHR for an image of format
+    * VK_FORMAT_G8_B8_R8_3PLANE_420_UNORM_KHR.
+    */
+   VkImageAspectFlags expanded_aspects =
+      anv_image_expand_aspects(image, range->aspectMask);
 
    iview->image = image;
-   iview->bo = image->bo;
-   iview->offset = image->offset + surface->offset;
 
-   iview->aspect_mask = pCreateInfo->subresourceRange.aspectMask;
+   /* Remap the expanded aspects for the image view. For example if only
+    * VK_IMAGE_ASPECT_PLANE_1_BIT_KHR was given in range->aspectMask, we will
+    * convert it to VK_IMAGE_ASPECT_COLOR_BIT since from the point of view of
+    * the image view, it only has a single plane.
+    */
+   iview->aspect_mask = remap_aspect_flags(expanded_aspects);
+   iview->n_planes = anv_image_aspect_get_planes(iview->aspect_mask);
    iview->vk_format = pCreateInfo->format;
 
-   struct anv_format format = anv_get_format(&device->info, pCreateInfo->format,
-                                             range->aspectMask, image->tiling);
-
-   iview->isl = (struct isl_view) {
-      .format = format.isl_format,
-      .base_level = range->baseMipLevel,
-      .levels = anv_get_levelCount(image, range),
-      .base_array_layer = range->baseArrayLayer,
-      .array_len = anv_get_layerCount(image, range),
-      .swizzle = {
-         .r = remap_swizzle(pCreateInfo->components.r,
-                            VK_COMPONENT_SWIZZLE_R, format.swizzle),
-         .g = remap_swizzle(pCreateInfo->components.g,
-                            VK_COMPONENT_SWIZZLE_G, format.swizzle),
-         .b = remap_swizzle(pCreateInfo->components.b,
-                            VK_COMPONENT_SWIZZLE_B, format.swizzle),
-         .a = remap_swizzle(pCreateInfo->components.a,
-                            VK_COMPONENT_SWIZZLE_A, format.swizzle),
-      },
-   };
-
    iview->extent = (VkExtent3D) {
       .width  = anv_minify(image->extent.width , range->baseMipLevel),
       .height = anv_minify(image->extent.height, range->baseMipLevel),
       .depth  = anv_minify(image->extent.depth , range->baseMipLevel),
    };
 
-   if (image->type == VK_IMAGE_TYPE_3D) {
-      iview->isl.base_array_layer = 0;
-      iview->isl.array_len = iview->extent.depth;
-   }
-
-   if (pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_CUBE ||
-       pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY) {
-      iview->isl.usage = ISL_SURF_USAGE_CUBE_BIT;
-   } else {
-      iview->isl.usage = 0;
-   }
-
-   if (image->usage & VK_IMAGE_USAGE_SAMPLED_BIT) {
-      iview->sampler_surface_state = alloc_surface_state(device);
-
-      struct isl_view view = iview->isl;
-      view.usage |= ISL_SURF_USAGE_TEXTURE_BIT;
-      isl_surf_fill_state(&device->isl_dev,
-                          iview->sampler_surface_state.map,
-                          .surf = &surface->isl,
-                          .view = &view,
-                          .mocs = device->default_mocs);
-
-      if (!device->info.has_llc)
-         anv_state_clflush(iview->sampler_surface_state);
-   } else {
-      iview->sampler_surface_state.alloc_size = 0;
-   }
-
-   /* NOTE: This one needs to go last since it may stomp isl_view.format */
-   if (image->usage & VK_IMAGE_USAGE_STORAGE_BIT) {
-      iview->storage_surface_state = alloc_surface_state(device);
+   /* Now go through the underlying image selected planes (computed in
+    * expanded_aspects) and map them to planes in the image view.
+    */
+   uint32_t iaspect_bit, vplane = 0;
+   anv_foreach_image_aspect_bit(iaspect_bit, image, expanded_aspects) {
+      uint32_t iplane =
+         anv_image_aspect_to_plane(expanded_aspects, 1UL << iaspect_bit);
+      VkImageAspectFlags vplane_aspect =
+         anv_plane_to_aspect(iview->aspect_mask, vplane);
+      struct anv_format_plane format =
+         anv_get_format_plane(&device->info, pCreateInfo->format,
+                              vplane_aspect, image->tiling);
+
+      iview->planes[vplane].image_plane = iplane;
+
+      iview->planes[vplane].isl = (struct isl_view) {
+         .format = format.isl_format,
+         .base_level = range->baseMipLevel,
+         .levels = anv_get_levelCount(image, range),
+         .base_array_layer = range->baseArrayLayer,
+         .array_len = anv_get_layerCount(image, range),
+         .swizzle = {
+            .r = remap_swizzle(pCreateInfo->components.r,
+                               VK_COMPONENT_SWIZZLE_R, format.swizzle),
+            .g = remap_swizzle(pCreateInfo->components.g,
+                               VK_COMPONENT_SWIZZLE_G, format.swizzle),
+            .b = remap_swizzle(pCreateInfo->components.b,
+                               VK_COMPONENT_SWIZZLE_B, format.swizzle),
+            .a = remap_swizzle(pCreateInfo->components.a,
+                               VK_COMPONENT_SWIZZLE_A, format.swizzle),
+         },
+      };
+
+      if (pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_3D) {
+         iview->planes[vplane].isl.base_array_layer = 0;
+         iview->planes[vplane].isl.array_len = iview->extent.depth;
+      }
 
-      if (isl_has_matching_typed_storage_image_format(&device->info,
-                                                      format.isl_format)) {
-         struct isl_view view = iview->isl;
-         view.usage |= ISL_SURF_USAGE_STORAGE_BIT;
-         view.format = isl_lower_storage_image_format(&device->info,
-                                                      format.isl_format);
-         isl_surf_fill_state(&device->isl_dev,
-                             iview->storage_surface_state.map,
-                             .surf = &surface->isl,
-                             .view = &view,
-                             .mocs = device->default_mocs);
+      if (pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_CUBE ||
+          pCreateInfo->viewType == VK_IMAGE_VIEW_TYPE_CUBE_ARRAY) {
+         iview->planes[vplane].isl.usage = ISL_SURF_USAGE_CUBE_BIT;
       } else {
-         anv_fill_buffer_surface_state(device, iview->storage_surface_state,
-                                       ISL_FORMAT_RAW,
-                                       iview->offset,
-                                       iview->bo->size - iview->offset, 1);
+         iview->planes[vplane].isl.usage = 0;
       }
 
-      isl_surf_fill_image_param(&device->isl_dev,
-                                &iview->storage_image_param,
-                                &surface->isl, &iview->isl);
+      if (view_usage & VK_IMAGE_USAGE_SAMPLED_BIT ||
+          (view_usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT &&
+           !(iview->aspect_mask & VK_IMAGE_ASPECT_COLOR_BIT))) {
+         iview->planes[vplane].optimal_sampler_surface_state.state = alloc_surface_state(device);
+         iview->planes[vplane].general_sampler_surface_state.state = alloc_surface_state(device);
+
+         enum isl_aux_usage general_aux_usage =
+            anv_layout_to_aux_usage(&device->info, image, 1UL << iaspect_bit,
+                                    VK_IMAGE_LAYOUT_GENERAL);
+         enum isl_aux_usage optimal_aux_usage =
+            anv_layout_to_aux_usage(&device->info, image, 1UL << iaspect_bit,
+                                    VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
+
+         anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
+                                      &iview->planes[vplane].isl,
+                                      ISL_SURF_USAGE_TEXTURE_BIT,
+                                      optimal_aux_usage, NULL,
+                                      ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL,
+                                      &iview->planes[vplane].optimal_sampler_surface_state,
+                                      NULL);
+
+         anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
+                                      &iview->planes[vplane].isl,
+                                      ISL_SURF_USAGE_TEXTURE_BIT,
+                                      general_aux_usage, NULL,
+                                      0,
+                                      &iview->planes[vplane].general_sampler_surface_state,
+                                      NULL);
+      }
 
-      if (!device->info.has_llc)
-         anv_state_clflush(iview->storage_surface_state);
-   } else {
-      iview->storage_surface_state.alloc_size = 0;
+      /* NOTE: This one needs to go last since it may stomp isl_view.format */
+      if (view_usage & VK_IMAGE_USAGE_STORAGE_BIT) {
+         iview->planes[vplane].storage_surface_state.state = alloc_surface_state(device);
+         iview->planes[vplane].writeonly_storage_surface_state.state = alloc_surface_state(device);
+
+         anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
+                                      &iview->planes[vplane].isl,
+                                      ISL_SURF_USAGE_STORAGE_BIT,
+                                      ISL_AUX_USAGE_NONE, NULL,
+                                      0,
+                                      &iview->planes[vplane].storage_surface_state,
+                                      &iview->planes[vplane].storage_image_param);
+
+         anv_image_fill_surface_state(device, image, 1ULL << iaspect_bit,
+                                      &iview->planes[vplane].isl,
+                                      ISL_SURF_USAGE_STORAGE_BIT,
+                                      ISL_AUX_USAGE_NONE, NULL,
+                                      ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY,
+                                      &iview->planes[vplane].writeonly_storage_surface_state,
+                                      NULL);
+      }
+
+      vplane++;
    }
 
    *pView = anv_image_view_to_handle(iview);
@@ -555,14 +1224,26 @@ anv_DestroyImageView(VkDevice _device, VkImageView _iview,
    if (!iview)
       return;
 
-   if (iview->sampler_surface_state.alloc_size > 0) {
-      anv_state_pool_free(&device->surface_state_pool,
-                          iview->sampler_surface_state);
-   }
+   for (uint32_t plane = 0; plane < iview->n_planes; plane++) {
+      if (iview->planes[plane].optimal_sampler_surface_state.state.alloc_size > 0) {
+         anv_state_pool_free(&device->surface_state_pool,
+                             iview->planes[plane].optimal_sampler_surface_state.state);
+      }
 
-   if (iview->storage_surface_state.alloc_size > 0) {
-      anv_state_pool_free(&device->surface_state_pool,
-                          iview->storage_surface_state);
+      if (iview->planes[plane].general_sampler_surface_state.state.alloc_size > 0) {
+         anv_state_pool_free(&device->surface_state_pool,
+                             iview->planes[plane].general_sampler_surface_state.state);
+      }
+
+      if (iview->planes[plane].storage_surface_state.state.alloc_size > 0) {
+         anv_state_pool_free(&device->surface_state_pool,
+                             iview->planes[plane].storage_surface_state.state);
+      }
+
+      if (iview->planes[plane].writeonly_storage_surface_state.state.alloc_size > 0) {
+         anv_state_pool_free(&device->surface_state_pool,
+                             iview->planes[plane].writeonly_storage_surface_state.state);
+      }
    }
 
    vk_free2(&device->alloc, pAllocator, iview);
@@ -592,8 +1273,8 @@ anv_CreateBufferView(VkDevice _device,
    const uint32_t format_bs = isl_format_get_layout(view->format)->bpb / 8;
    view->bo = buffer->bo;
    view->offset = buffer->offset + pCreateInfo->offset;
-   view->range = pCreateInfo->range == VK_WHOLE_SIZE ?
-                 buffer->size - pCreateInfo->offset : pCreateInfo->range;
+   view->range = anv_buffer_get_range(buffer, pCreateInfo->offset,
+                                              pCreateInfo->range);
    view->range = align_down_npot_u32(view->range, format_bs);
 
    if (buffer->usage & VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT) {
@@ -608,6 +1289,7 @@ anv_CreateBufferView(VkDevice _device,
 
    if (buffer->usage & VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT) {
       view->storage_surface_state = alloc_surface_state(device);
+      view->writeonly_storage_surface_state = alloc_surface_state(device);
 
       enum isl_format storage_format =
          isl_has_matching_typed_storage_image_format(&device->info,
@@ -621,11 +1303,18 @@ anv_CreateBufferView(VkDevice _device,
                                     (storage_format == ISL_FORMAT_RAW ? 1 :
                                      isl_format_get_layout(storage_format)->bpb / 8));
 
+      /* Write-only accesses should use the original format. */
+      anv_fill_buffer_surface_state(device, view->writeonly_storage_surface_state,
+                                    view->format,
+                                    view->offset, view->range,
+                                    isl_format_get_layout(view->format)->bpb / 8);
+
       isl_buffer_fill_image_param(&device->isl_dev,
                                   &view->storage_image_param,
                                   view->format, view->range);
    } else {
       view->storage_surface_state = (struct anv_state){ 0 };
+      view->writeonly_storage_surface_state = (struct anv_state){ 0 };
    }
 
    *pView = anv_buffer_view_to_handle(view);
@@ -651,6 +1340,10 @@ anv_DestroyBufferView(VkDevice _device, VkBufferView bufferView,
       anv_state_pool_free(&device->surface_state_pool,
                           view->storage_surface_state);
 
+   if (view->writeonly_storage_surface_state.alloc_size > 0)
+      anv_state_pool_free(&device->surface_state_pool,
+                          view->writeonly_storage_surface_state);
+
    vk_free2(&device->alloc, pAllocator, view);
 }
 
@@ -658,16 +1351,21 @@ const struct anv_surface *
 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
                                       VkImageAspectFlags aspect_mask)
 {
+   VkImageAspectFlags sanitized_mask;
+
    switch (aspect_mask) {
    case VK_IMAGE_ASPECT_COLOR_BIT:
       assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
-      return &image->color_surface;
+      sanitized_mask = VK_IMAGE_ASPECT_COLOR_BIT;
+      break;
    case VK_IMAGE_ASPECT_DEPTH_BIT:
       assert(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT);
-      return &image->depth_surface;
+      sanitized_mask = VK_IMAGE_ASPECT_DEPTH_BIT;
+      break;
    case VK_IMAGE_ASPECT_STENCIL_BIT:
       assert(image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT);
-      return &image->stencil_surface;
+      sanitized_mask = VK_IMAGE_ASPECT_STENCIL_BIT;
+      break;
    case VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT:
       /* FINISHME: The Vulkan spec (git a511ba2) requires support for
        * combined depth stencil formats. Specifically, it states:
@@ -681,13 +1379,29 @@ anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
        * stencil surfaces from the underlying surface.
        */
       if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
-         return &image->depth_surface;
+         sanitized_mask = VK_IMAGE_ASPECT_DEPTH_BIT;
       } else {
          assert(image->aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
-         return &image->stencil_surface;
+         sanitized_mask = VK_IMAGE_ASPECT_STENCIL_BIT;
       }
-    default:
+      break;
+   case VK_IMAGE_ASPECT_PLANE_0_BIT_KHR:
+      assert((image->aspects & ~VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0);
+      sanitized_mask = VK_IMAGE_ASPECT_PLANE_0_BIT_KHR;
+      break;
+   case VK_IMAGE_ASPECT_PLANE_1_BIT_KHR:
+      assert((image->aspects & ~VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0);
+      sanitized_mask = VK_IMAGE_ASPECT_PLANE_1_BIT_KHR;
+      break;
+   case VK_IMAGE_ASPECT_PLANE_2_BIT_KHR:
+      assert((image->aspects & ~VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0);
+      sanitized_mask = VK_IMAGE_ASPECT_PLANE_2_BIT_KHR;
+      break;
+   default:
        unreachable("image does not have aspect");
        return NULL;
    }
+
+   uint32_t plane = anv_image_aspect_to_plane(image->aspects, sanitized_mask);
+   return &image->planes[plane].surface;
 }