anv: Drop some VK_IMAGE_TILING_OPTIMAL checks
[mesa.git] / src / intel / vulkan / genX_cmd_buffer.c
index 93b5269c6ba1f5ef074f25ee6836bc1f672947eb..818d1b14a268c7948d3827c3c24923cb07f1c8fb 100644 (file)
 #include "anv_private.h"
 #include "vk_format_info.h"
 #include "vk_util.h"
+#include "util/fast_idiv_by_const.h"
 
+#include "common/gen_aux_map.h"
 #include "common/gen_l3_config.h"
 #include "genxml/gen_macros.h"
 #include "genxml/genX_pack.h"
 
-static void
-emit_lrm(struct anv_batch *batch, uint32_t reg, struct anv_address addr)
-{
-   anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
-      lrm.RegisterAddress  = reg;
-      lrm.MemoryAddress    = addr;
-   }
-}
+/* We reserve GPR 14 and 15 for conditional rendering */
+#define GEN_MI_BUILDER_NUM_ALLOC_GPRS 14
+#define __gen_get_batch_dwords anv_batch_emit_dwords
+#define __gen_address_offset anv_address_add
+#include "common/gen_mi_builder.h"
+
+static void genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
+                                        uint32_t pipeline);
 
 static void
 emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
@@ -50,21 +52,12 @@ emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
    }
 }
 
-#if GEN_IS_HASWELL || GEN_GEN >= 8
-static void
-emit_lrr(struct anv_batch *batch, uint32_t dst, uint32_t src)
-{
-   anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
-      lrr.SourceRegisterAddress        = src;
-      lrr.DestinationRegisterAddress   = dst;
-   }
-}
-#endif
-
 void
 genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
 {
    struct anv_device *device = cmd_buffer->device;
+   UNUSED const struct gen_device_info *devinfo = &device->info;
+   uint32_t mocs = device->isl_dev.mocs.internal;
 
    /* If we are emitting a new state base address we probably need to re-emit
     * binding tables.
@@ -82,30 +75,56 @@ genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
       pc.DCFlushEnable = true;
       pc.RenderTargetCacheFlushEnable = true;
       pc.CommandStreamerStallEnable = true;
+#if GEN_GEN >= 12
+      pc.TileCacheFlushEnable = true;
+#endif
+#if GEN_GEN == 12
+      /* GEN:BUG:1606662791:
+       *
+       *   Software must program PIPE_CONTROL command with "HDC Pipeline
+       *   Flush" prior to programming of the below two non-pipeline state :
+       *      * STATE_BASE_ADDRESS
+       *      * 3DSTATE_BINDING_TABLE_POOL_ALLOC
+       */
+      if (devinfo->revision == 0 /* A0 */)
+         pc.HDCPipelineFlushEnable = true;
+#endif
    }
 
+#if GEN_GEN == 12
+   /* GEN:BUG:1607854226:
+    *
+    *  Workaround the non pipelined state not applying in MEDIA/GPGPU pipeline
+    *  mode by putting the pipeline temporarily in 3D mode.
+    */
+   uint32_t gen12_wa_pipeline = cmd_buffer->state.current_pipeline;
+   genX(flush_pipeline_select_3d)(cmd_buffer);
+#endif
+
    anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS), sba) {
       sba.GeneralStateBaseAddress = (struct anv_address) { NULL, 0 };
-      sba.GeneralStateMOCS = GENX(MOCS);
+      sba.GeneralStateMOCS = mocs;
       sba.GeneralStateBaseAddressModifyEnable = true;
 
+      sba.StatelessDataPortAccessMOCS = mocs;
+
       sba.SurfaceStateBaseAddress =
          anv_cmd_buffer_surface_base_address(cmd_buffer);
-      sba.SurfaceStateMOCS = GENX(MOCS);
+      sba.SurfaceStateMOCS = mocs;
       sba.SurfaceStateBaseAddressModifyEnable = true;
 
       sba.DynamicStateBaseAddress =
-         (struct anv_address) { &device->dynamic_state_pool.block_pool.bo, 0 };
-      sba.DynamicStateMOCS = GENX(MOCS);
+         (struct anv_address) { device->dynamic_state_pool.block_pool.bo, 0 };
+      sba.DynamicStateMOCS = mocs;
       sba.DynamicStateBaseAddressModifyEnable = true;
 
       sba.IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 };
-      sba.IndirectObjectMOCS = GENX(MOCS);
+      sba.IndirectObjectMOCS = mocs;
       sba.IndirectObjectBaseAddressModifyEnable = true;
 
       sba.InstructionBaseAddress =
-         (struct anv_address) { &device->instruction_state_pool.block_pool.bo, 0 };
-      sba.InstructionMOCS = GENX(MOCS);
+         (struct anv_address) { device->instruction_state_pool.block_pool.bo, 0 };
+      sba.InstructionMOCS = mocs;
       sba.InstructionBaseAddressModifyEnable = true;
 
 #  if (GEN_GEN >= 8)
@@ -121,21 +140,55 @@ genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
       sba.IndirectObjectBufferSizeModifyEnable  = true;
       sba.InstructionBufferSize                 = 0xfffff;
       sba.InstructionBuffersizeModifyEnable     = true;
+#  else
+      /* On gen7, we have upper bounds instead.  According to the docs,
+       * setting an upper bound of zero means that no bounds checking is
+       * performed so, in theory, we should be able to leave them zero.
+       * However, border color is broken and the GPU bounds-checks anyway.
+       * To avoid this and other potential problems, we may as well set it
+       * for everything.
+       */
+      sba.GeneralStateAccessUpperBound =
+         (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
+      sba.GeneralStateAccessUpperBoundModifyEnable = true;
+      sba.DynamicStateAccessUpperBound =
+         (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
+      sba.DynamicStateAccessUpperBoundModifyEnable = true;
+      sba.InstructionAccessUpperBound =
+         (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
+      sba.InstructionAccessUpperBoundModifyEnable = true;
 #  endif
 #  if (GEN_GEN >= 9)
-      sba.BindlessSurfaceStateBaseAddress = (struct anv_address) { NULL, 0 };
-      sba.BindlessSurfaceStateMOCS = GENX(MOCS);
+      if (cmd_buffer->device->instance->physicalDevice.use_softpin) {
+         sba.BindlessSurfaceStateBaseAddress = (struct anv_address) {
+            .bo = device->surface_state_pool.block_pool.bo,
+            .offset = 0,
+         };
+         sba.BindlessSurfaceStateSize = (1 << 20) - 1;
+      } else {
+         sba.BindlessSurfaceStateBaseAddress = ANV_NULL_ADDRESS;
+         sba.BindlessSurfaceStateSize = 0;
+      }
+      sba.BindlessSurfaceStateMOCS = mocs;
       sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
-      sba.BindlessSurfaceStateSize = 0;
 #  endif
 #  if (GEN_GEN >= 10)
       sba.BindlessSamplerStateBaseAddress = (struct anv_address) { NULL, 0 };
-      sba.BindlessSamplerStateMOCS = GENX(MOCS);
+      sba.BindlessSamplerStateMOCS = mocs;
       sba.BindlessSamplerStateBaseAddressModifyEnable = true;
       sba.BindlessSamplerStateBufferSize = 0;
 #  endif
    }
 
+#if GEN_GEN == 12
+   /* GEN:BUG:1607854226:
+    *
+    *  Put the pipeline back into its current mode.
+    */
+   if (gen12_wa_pipeline != UINT32_MAX)
+      genX(flush_pipeline_select)(cmd_buffer, gen12_wa_pipeline);
+#endif
+
    /* After re-setting the surface state base address, we have to do some
     * cache flusing so that the sampler engine will pick up the new
     * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
@@ -189,7 +242,7 @@ add_surface_reloc(struct anv_cmd_buffer *cmd_buffer,
    VkResult result =
       anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc,
                          state.offset + isl_dev->ss.addr_offset,
-                         addr.bo, addr.offset);
+                         addr.bo, addr.offset, NULL);
    if (result != VK_SUCCESS)
       anv_batch_set_error(&cmd_buffer->batch, result);
 }
@@ -208,7 +261,9 @@ add_surface_state_relocs(struct anv_cmd_buffer *cmd_buffer,
          anv_reloc_list_add(&cmd_buffer->surface_relocs,
                             &cmd_buffer->pool->alloc,
                             state.state.offset + isl_dev->ss.aux_addr_offset,
-                            state.aux_address.bo, state.aux_address.offset);
+                            state.aux_address.bo,
+                            state.aux_address.offset,
+                            NULL);
       if (result != VK_SUCCESS)
          anv_batch_set_error(&cmd_buffer->batch, result);
    }
@@ -219,7 +274,9 @@ add_surface_state_relocs(struct anv_cmd_buffer *cmd_buffer,
                             &cmd_buffer->pool->alloc,
                             state.state.offset +
                             isl_dev->ss.clear_color_state_offset,
-                            state.clear_address.bo, state.clear_address.offset);
+                            state.clear_address.bo,
+                            state.clear_address.offset,
+                            NULL);
       if (result != VK_SUCCESS)
          anv_batch_set_error(&cmd_buffer->batch, result);
    }
@@ -232,7 +289,7 @@ color_attachment_compute_aux_usage(struct anv_device * device,
                                    union isl_color_value *fast_clear_color)
 {
    struct anv_attachment_state *att_state = &cmd_state->attachments[att];
-   struct anv_image_view *iview = cmd_state->framebuffer->attachments[att];
+   struct anv_image_view *iview = cmd_state->attachments[att].image_view;
 
    assert(iview->n_planes == 1);
 
@@ -273,7 +330,8 @@ color_attachment_compute_aux_usage(struct anv_device * device,
        * In other words, we can only sample from a fast-cleared image if it
        * also supports color compression.
        */
-      if (isl_format_supports_ccs_e(&device->info, iview->planes[0].isl.format)) {
+      if (isl_format_supports_ccs_e(&device->info, iview->planes[0].isl.format) &&
+          isl_format_supports_ccs_d(&device->info, iview->planes[0].isl.format)) {
          att_state->input_aux_usage = ISL_AUX_USAGE_CCS_D;
 
          /* While fast-clear resolves and partial resolves are fairly cheap in the
@@ -374,7 +432,7 @@ depth_stencil_attachment_compute_aux_usage(struct anv_device *device,
    struct anv_render_pass_attachment *pass_att =
       &cmd_state->pass->attachments[att];
    struct anv_attachment_state *att_state = &cmd_state->attachments[att];
-   struct anv_image_view *iview = cmd_state->framebuffer->attachments[att];
+   struct anv_image_view *iview = cmd_state->attachments[att].image_view;
 
    /* These will be initialized after the first subpass transition. */
    att_state->aux_usage = ISL_AUX_USAGE_NONE;
@@ -403,12 +461,11 @@ depth_stencil_attachment_compute_aux_usage(struct anv_device *device,
       anv_layout_to_aux_usage(&device->info, iview->image,
                               VK_IMAGE_ASPECT_DEPTH_BIT,
                               pass_att->first_subpass_layout);
-   if (first_subpass_aux_usage != ISL_AUX_USAGE_HIZ)
-      return;
-
-   if (!blorp_can_hiz_clear_depth(GEN_GEN,
-                                  iview->planes[0].isl.format,
-                                  iview->image->samples,
+   if (!blorp_can_hiz_clear_depth(&device->info,
+                                  &iview->image->planes[0].surface.isl,
+                                  first_subpass_aux_usage,
+                                  iview->planes[0].isl.base_level,
+                                  iview->planes[0].isl.base_array_layer,
                                   render_area.offset.x,
                                   render_area.offset.y,
                                   render_area.offset.x +
@@ -479,8 +536,60 @@ transition_depth_buffer(struct anv_cmd_buffer *cmd_buffer,
                        0, 0, 1, hiz_op);
 }
 
-#define MI_PREDICATE_SRC0  0x2400
-#define MI_PREDICATE_SRC1  0x2408
+static inline bool
+vk_image_layout_stencil_write_optimal(VkImageLayout layout)
+{
+   return layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL ||
+          layout == VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL ||
+          layout == VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR;
+}
+
+/* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
+ * the initial layout is undefined, the HiZ buffer and depth buffer will
+ * represent the same data at the end of this operation.
+ */
+static void
+transition_stencil_buffer(struct anv_cmd_buffer *cmd_buffer,
+                          const struct anv_image *image,
+                          uint32_t base_level, uint32_t level_count,
+                          uint32_t base_layer, uint32_t layer_count,
+                          VkImageLayout initial_layout,
+                          VkImageLayout final_layout)
+{
+#if GEN_GEN == 7
+   uint32_t plane = anv_image_aspect_to_plane(image->aspects,
+                                              VK_IMAGE_ASPECT_STENCIL_BIT);
+
+   /* On gen7, we have to store a texturable version of the stencil buffer in
+    * a shadow whenever VK_IMAGE_USAGE_SAMPLED_BIT is set and copy back and
+    * forth at strategic points. Stencil writes are only allowed in following
+    * layouts:
+    *
+    *  - VK_IMAGE_LAYOUT_GENERAL
+    *  - VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
+    *  - VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL
+    *  - VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL
+    *  - VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR
+    *
+    * For general, we have no nice opportunity to transition so we do the copy
+    * to the shadow unconditionally at the end of the subpass. For transfer
+    * destinations, we can update it as part of the transfer op. For the other
+    * layouts, we delay the copy until a transition into some other layout.
+    */
+   if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
+       vk_image_layout_stencil_write_optimal(initial_layout) &&
+       !vk_image_layout_stencil_write_optimal(final_layout)) {
+      anv_image_copy_to_shadow(cmd_buffer, image,
+                               VK_IMAGE_ASPECT_STENCIL_BIT,
+                               base_level, level_count,
+                               base_layer, layer_count);
+   }
+#endif /* GEN_GEN == 7 */
+}
+
+#define MI_PREDICATE_SRC0    0x2400
+#define MI_PREDICATE_SRC1    0x2408
+#define MI_PREDICATE_RESULT  0x2418
 
 static void
 set_image_compressed_bit(struct anv_cmd_buffer *cmd_buffer,
@@ -526,25 +635,6 @@ set_image_fast_clear_state(struct anv_cmd_buffer *cmd_buffer,
       set_image_compressed_bit(cmd_buffer, image, aspect, 0, 0, 1, true);
 }
 
-#if GEN_IS_HASWELL || GEN_GEN >= 8
-static inline uint32_t
-mi_alu(uint32_t opcode, uint32_t operand1, uint32_t operand2)
-{
-   struct GENX(MI_MATH_ALU_INSTRUCTION) instr = {
-      .ALUOpcode = opcode,
-      .Operand1 = operand1,
-      .Operand2 = operand2,
-   };
-
-   uint32_t dw;
-   GENX(MI_MATH_ALU_INSTRUCTION_pack)(NULL, &dw, &instr);
-
-   return dw;
-}
-#endif
-
-#define CS_GPR(n) (0x2600 + (n) * 8)
-
 /* This is only really practical on haswell and above because it requires
  * MI math in order to get it correct.
  */
@@ -557,15 +647,12 @@ anv_cmd_compute_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
                                   enum isl_aux_op resolve_op,
                                   enum anv_fast_clear_type fast_clear_supported)
 {
-   struct anv_address fast_clear_type_addr =
-      anv_image_get_fast_clear_type_addr(cmd_buffer->device, image, aspect);
+   struct gen_mi_builder b;
+   gen_mi_builder_init(&b, &cmd_buffer->batch);
 
-   /* Name some registers */
-   const int image_fc_reg = MI_ALU_REG0;
-   const int fc_imm_reg = MI_ALU_REG1;
-   const int pred_reg = MI_ALU_REG2;
-
-   uint32_t *dw;
+   const struct gen_mi_value fast_clear_type =
+      gen_mi_mem32(anv_image_get_fast_clear_type_addr(cmd_buffer->device,
+                                                      image, aspect));
 
    if (resolve_op == ISL_AUX_OP_FULL_RESOLVE) {
       /* In this case, we're doing a full resolve which means we want the
@@ -576,17 +663,13 @@ anv_cmd_compute_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
        * if the first slice has been fast-cleared, it is also marked as
        * compressed.  See also set_image_fast_clear_state.
        */
-      struct anv_address compression_state_addr =
-         anv_image_get_compression_state_addr(cmd_buffer->device, image,
-                                              aspect, level, array_layer);
-      anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
-         lrm.RegisterAddress  = MI_PREDICATE_SRC0;
-         lrm.MemoryAddress    = compression_state_addr;
-      }
-      anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
-         sdi.Address       = compression_state_addr;
-         sdi.ImmediateData = 0;
-      }
+      const struct gen_mi_value compression_state =
+         gen_mi_mem32(anv_image_get_compression_state_addr(cmd_buffer->device,
+                                                           image, aspect,
+                                                           level, array_layer));
+      gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
+                       compression_state);
+      gen_mi_store(&b, compression_state, gen_mi_imm(0));
 
       if (level == 0 && array_layer == 0) {
          /* If the predicate is true, we want to write 0 to the fast clear type
@@ -594,25 +677,10 @@ anv_cmd_compute_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
           *
           * clear_type = clear_type & ~predicate;
           */
-         anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
-            lrm.RegisterAddress  = CS_GPR(image_fc_reg);
-            lrm.MemoryAddress    = fast_clear_type_addr;
-         }
-         anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
-            lrr.DestinationRegisterAddress   = CS_GPR(pred_reg);
-            lrr.SourceRegisterAddress        = MI_PREDICATE_SRC0;
-         }
-
-         dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(MI_MATH));
-         dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, image_fc_reg);
-         dw[2] = mi_alu(MI_ALU_LOADINV, MI_ALU_SRCB, pred_reg);
-         dw[3] = mi_alu(MI_ALU_AND, 0, 0);
-         dw[4] = mi_alu(MI_ALU_STORE, image_fc_reg, MI_ALU_ACCU);
-
-         anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
-            srm.MemoryAddress    = fast_clear_type_addr;
-            srm.RegisterAddress  = CS_GPR(image_fc_reg);
-         }
+         struct gen_mi_value new_fast_clear_type =
+            gen_mi_iand(&b, fast_clear_type,
+                            gen_mi_inot(&b, gen_mi_reg64(MI_PREDICATE_SRC0)));
+         gen_mi_store(&b, fast_clear_type, new_fast_clear_type);
       }
    } else if (level == 0 && array_layer == 0) {
       /* In this case, we are doing a partial resolve to get rid of fast-clear
@@ -622,42 +690,20 @@ anv_cmd_compute_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
       assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
       assert(fast_clear_supported < ANV_FAST_CLEAR_ANY);
 
-      anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
-         lrm.RegisterAddress  = CS_GPR(image_fc_reg);
-         lrm.MemoryAddress    = fast_clear_type_addr;
-      }
-      emit_lri(&cmd_buffer->batch, CS_GPR(image_fc_reg) + 4, 0);
-
-      emit_lri(&cmd_buffer->batch, CS_GPR(fc_imm_reg), fast_clear_supported);
-      emit_lri(&cmd_buffer->batch, CS_GPR(fc_imm_reg) + 4, 0);
-
-      /* We need to compute (fast_clear_supported < image->fast_clear).
-       * We do this by subtracting and storing the carry bit.
-       */
-      dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(MI_MATH));
-      dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, fc_imm_reg);
-      dw[2] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCB, image_fc_reg);
-      dw[3] = mi_alu(MI_ALU_SUB, 0, 0);
-      dw[4] = mi_alu(MI_ALU_STORE, pred_reg, MI_ALU_CF);
-
-      /* Store the predicate */
-      emit_lrr(&cmd_buffer->batch, MI_PREDICATE_SRC0, CS_GPR(pred_reg));
+      /* We need to compute (fast_clear_supported < image->fast_clear) */
+      struct gen_mi_value pred =
+         gen_mi_ult(&b, gen_mi_imm(fast_clear_supported), fast_clear_type);
+      gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
+                       gen_mi_value_ref(&b, pred));
 
       /* If the predicate is true, we want to write 0 to the fast clear type
        * and, if it's false, leave it alone.  We can do this by writing
        *
        * clear_type = clear_type & ~predicate;
        */
-      dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(MI_MATH));
-      dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, image_fc_reg);
-      dw[2] = mi_alu(MI_ALU_LOADINV, MI_ALU_SRCB, pred_reg);
-      dw[3] = mi_alu(MI_ALU_AND, 0, 0);
-      dw[4] = mi_alu(MI_ALU_STORE, image_fc_reg, MI_ALU_ACCU);
-
-      anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
-         srm.RegisterAddress  = CS_GPR(image_fc_reg);
-         srm.MemoryAddress    = fast_clear_type_addr;
-      }
+      struct gen_mi_value new_fast_clear_type =
+         gen_mi_iand(&b, fast_clear_type, gen_mi_inot(&b, pred));
+      gen_mi_store(&b, fast_clear_type, new_fast_clear_type);
    } else {
       /* In this case, we're trying to do a partial resolve on a slice that
        * doesn't have clear color.  There's nothing to do.
@@ -666,13 +712,8 @@ anv_cmd_compute_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
       return;
    }
 
-   /* We use the first half of src0 for the actual predicate.  Set the second
-    * half of src0 and all of src1 to 0 as the predicate operation will be
-    * doing an implicit src0 != src1.
-    */
-   emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC0 + 4, 0);
-   emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1    , 0);
-   emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 + 4, 0);
+   /* Set src1 to 0 and use a != condition */
+   gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
 
    anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
       mip.LoadOperation    = LOAD_LOADINV;
@@ -691,8 +732,12 @@ anv_cmd_simple_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
                                  enum isl_aux_op resolve_op,
                                  enum anv_fast_clear_type fast_clear_supported)
 {
-   struct anv_address fast_clear_type_addr =
-      anv_image_get_fast_clear_type_addr(cmd_buffer->device, image, aspect);
+   struct gen_mi_builder b;
+   gen_mi_builder_init(&b, &cmd_buffer->batch);
+
+   struct gen_mi_value fast_clear_type_mem =
+      gen_mi_mem32(anv_image_get_fast_clear_type_addr(cmd_buffer->device,
+                                                      image, aspect));
 
    /* This only works for partial resolves and only when the clear color is
     * all or nothing.  On the upside, this emits less command streamer code
@@ -709,22 +754,9 @@ anv_cmd_simple_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
     * can't sample from CCS surfaces.  It's enough to just load the fast clear
     * state into the predicate register.
     */
-   anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
-      lrm.RegisterAddress  = MI_PREDICATE_SRC0;
-      lrm.MemoryAddress    = fast_clear_type_addr;
-   }
-   anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
-      sdi.Address          = fast_clear_type_addr;
-      sdi.ImmediateData    = 0;
-   }
-
-   /* We use the first half of src0 for the actual predicate.  Set the second
-    * half of src0 and all of src1 to 0 as the predicate operation will be
-    * doing an implicit src0 != src1.
-    */
-   emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC0 + 4, 0);
-   emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1    , 0);
-   emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 + 4, 0);
+   gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), fast_clear_type_mem);
+   gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
+   gen_mi_store(&b, fast_clear_type_mem, gen_mi_imm(0));
 
    anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
       mip.LoadOperation    = LOAD_LOADINV;
@@ -737,6 +769,7 @@ anv_cmd_simple_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
 static void
 anv_cmd_predicated_ccs_resolve(struct anv_cmd_buffer *cmd_buffer,
                                const struct anv_image *image,
+                               enum isl_format format,
                                VkImageAspectFlagBits aspect,
                                uint32_t level, uint32_t array_layer,
                                enum isl_aux_op resolve_op,
@@ -761,13 +794,14 @@ anv_cmd_predicated_ccs_resolve(struct anv_cmd_buffer *cmd_buffer,
        image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
       resolve_op = ISL_AUX_OP_FULL_RESOLVE;
 
-   anv_image_ccs_op(cmd_buffer, image, aspect, level,
+   anv_image_ccs_op(cmd_buffer, image, format, aspect, level,
                     array_layer, 1, resolve_op, NULL, true);
 }
 
 static void
 anv_cmd_predicated_mcs_resolve(struct anv_cmd_buffer *cmd_buffer,
                                const struct anv_image *image,
+                               enum isl_format format,
                                VkImageAspectFlagBits aspect,
                                uint32_t array_layer,
                                enum isl_aux_op resolve_op,
@@ -781,7 +815,7 @@ anv_cmd_predicated_mcs_resolve(struct anv_cmd_buffer *cmd_buffer,
                                      aspect, 0, array_layer,
                                      resolve_op, fast_clear_supported);
 
-   anv_image_mcs_op(cmd_buffer, image, aspect,
+   anv_image_mcs_op(cmd_buffer, image, format, aspect,
                     array_layer, 1, resolve_op, NULL, true);
 #else
    unreachable("MCS resolves are unsupported on Ivybridge and Bay Trail");
@@ -824,27 +858,21 @@ init_fast_clear_color(struct anv_cmd_buffer *cmd_buffer,
    set_image_fast_clear_state(cmd_buffer, image, aspect,
                               ANV_FAST_CLEAR_NONE);
 
-   /* The fast clear value dword(s) will be copied into a surface state object.
-    * Ensure that the restrictions of the fields in the dword(s) are followed.
-    *
-    * CCS buffers on SKL+ can have any value set for the clear colors.
-    */
-   if (image->samples == 1 && GEN_GEN >= 9)
-      return;
-
-   /* Other combinations of auxiliary buffers and platforms require specific
-    * values in the clear value dword(s).
+   /* Initialize the struct fields that are accessed for fast-clears so that
+    * the HW restrictions on the field values are satisfied.
     */
    struct anv_address addr =
       anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
 
    if (GEN_GEN >= 9) {
-      for (unsigned i = 0; i < 4; i++) {
+      const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
+      const unsigned num_dwords = GEN_GEN >= 10 ?
+                                  isl_dev->ss.clear_color_state_size / 4 :
+                                  isl_dev->ss.clear_value_size / 4;
+      for (unsigned i = 0; i < num_dwords; i++) {
          anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
             sdi.Address = addr;
             sdi.Address.offset += i * 4;
-            /* MCS buffers on SKL+ can only have 1/0 clear colors. */
-            assert(image->samples > 1);
             sdi.ImmediateData = 0;
          }
       }
@@ -884,7 +912,7 @@ genX(copy_fast_clear_dwords)(struct anv_cmd_buffer *cmd_buffer,
    assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
 
    struct anv_address ss_clear_addr = {
-      .bo = &cmd_buffer->device->surface_state_pool.block_pool.bo,
+      .bo = cmd_buffer->device->surface_state_pool.block_pool.bo,
       .offset = surface_state.offset +
                 cmd_buffer->device->isl_dev.ss.clear_value_offset,
    };
@@ -892,12 +920,35 @@ genX(copy_fast_clear_dwords)(struct anv_cmd_buffer *cmd_buffer,
       anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
    unsigned copy_size = cmd_buffer->device->isl_dev.ss.clear_value_size;
 
+#if GEN_GEN == 7
+   /* On gen7, the combination of commands used here(MI_LOAD_REGISTER_MEM
+    * and MI_STORE_REGISTER_MEM) can cause GPU hangs if any rendering is
+    * in-flight when they are issued even if the memory touched is not
+    * currently active for rendering.  The weird bit is that it is not the
+    * MI_LOAD/STORE_REGISTER_MEM commands which hang but rather the in-flight
+    * rendering hangs such that the next stalling command after the
+    * MI_LOAD/STORE_REGISTER_MEM commands will catch the hang.
+    *
+    * It is unclear exactly why this hang occurs.  Both MI commands come with
+    * warnings about the 3D pipeline but that doesn't seem to fully explain
+    * it.  My (Jason's) best theory is that it has something to do with the
+    * fact that we're using a GPU state register as our temporary and that
+    * something with reading/writing it is causing problems.
+    *
+    * In order to work around this issue, we emit a PIPE_CONTROL with the
+    * command streamer stall bit set.
+    */
+   cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
+   genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
+#endif
+
+   struct gen_mi_builder b;
+   gen_mi_builder_init(&b, &cmd_buffer->batch);
+
    if (copy_from_surface_state) {
-      genX(cmd_buffer_mi_memcpy)(cmd_buffer, entry_addr,
-                                 ss_clear_addr, copy_size);
+      gen_mi_memcpy(&b, entry_addr, ss_clear_addr, copy_size);
    } else {
-      genX(cmd_buffer_mi_memcpy)(cmd_buffer, ss_clear_addr,
-                                 entry_addr, copy_size);
+      gen_mi_memcpy(&b, ss_clear_addr, entry_addr, copy_size);
 
       /* Updating a surface state object may require that the state cache be
        * invalidated. From the SKL PRM, Shared Functions -> State -> State
@@ -943,7 +994,7 @@ transition_color_buffer(struct anv_cmd_buffer *cmd_buffer,
    assert(level_count != VK_REMAINING_MIP_LEVELS &&
           layer_count != VK_REMAINING_ARRAY_LAYERS);
    /* Ensure the subresource range is valid. */
-   uint64_t last_level_num = base_level + level_count;
+   UNUSED uint64_t last_level_num = base_level + level_count;
    const uint32_t max_depth = anv_minify(image->extent.depth, base_level);
    UNUSED const uint32_t image_layers = MAX2(image->array_size, max_depth);
    assert((uint64_t)base_layer + layer_count  <= image_layers);
@@ -972,6 +1023,7 @@ transition_color_buffer(struct anv_cmd_buffer *cmd_buffer,
       assert(isl_format_is_compressed(image->planes[plane].surface.isl.format));
       assert(plane == 0);
       anv_image_copy_to_shadow(cmd_buffer, image,
+                               VK_IMAGE_ASPECT_COLOR_BIT,
                                base_level, level_count,
                                base_layer, layer_count);
    }
@@ -979,7 +1031,7 @@ transition_color_buffer(struct anv_cmd_buffer *cmd_buffer,
    if (base_layer >= anv_image_aux_layers(image, aspect, base_level))
       return;
 
-   assert(image->tiling == VK_IMAGE_TILING_OPTIMAL);
+   assert(image->planes[plane].surface.isl.tiling != ISL_TILING_LINEAR);
 
    if (initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
        initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED) {
@@ -1037,8 +1089,9 @@ transition_color_buffer(struct anv_cmd_buffer *cmd_buffer,
             uint32_t level_layer_count =
                MIN2(layer_count, aux_layers - base_layer);
 
-            anv_image_ccs_op(cmd_buffer, image, aspect, level,
-                             base_layer, level_layer_count,
+            anv_image_ccs_op(cmd_buffer, image,
+                             image->planes[plane].surface.isl.format,
+                             aspect, level, base_layer, level_layer_count,
                              ISL_AUX_OP_AMBIGUATE, NULL, false);
 
             if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) {
@@ -1055,8 +1108,9 @@ transition_color_buffer(struct anv_cmd_buffer *cmd_buffer,
          }
 
          assert(base_level == 0 && level_count == 1);
-         anv_image_mcs_op(cmd_buffer, image, aspect,
-                          base_layer, layer_count,
+         anv_image_mcs_op(cmd_buffer, image,
+                          image->planes[plane].surface.isl.format,
+                          aspect, base_layer, layer_count,
                           ISL_AUX_OP_FAST_CLEAR, NULL, false);
       }
       return;
@@ -1133,8 +1187,9 @@ transition_color_buffer(struct anv_cmd_buffer *cmd_buffer,
       for (uint32_t a = 0; a < level_layer_count; a++) {
          uint32_t array_layer = base_layer + a;
          if (image->samples == 1) {
-            anv_cmd_predicated_ccs_resolve(cmd_buffer, image, aspect,
-                                           level, array_layer, resolve_op,
+            anv_cmd_predicated_ccs_resolve(cmd_buffer, image,
+                                           image->planes[plane].surface.isl.format,
+                                           aspect, level, array_layer, resolve_op,
                                            final_fast_clear);
          } else {
             /* We only support fast-clear on the first layer so partial
@@ -1145,8 +1200,9 @@ transition_color_buffer(struct anv_cmd_buffer *cmd_buffer,
                 array_layer != 0)
                continue;
 
-            anv_cmd_predicated_mcs_resolve(cmd_buffer, image, aspect,
-                                           array_layer, resolve_op,
+            anv_cmd_predicated_mcs_resolve(cmd_buffer, image,
+                                           image->planes[plane].surface.isl.format,
+                                           aspect, array_layer, resolve_op,
                                            final_fast_clear);
          }
       }
@@ -1166,6 +1222,7 @@ genX(cmd_buffer_setup_attachments)(struct anv_cmd_buffer *cmd_buffer,
 {
    const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
    struct anv_cmd_state *state = &cmd_buffer->state;
+   struct anv_framebuffer *framebuffer = cmd_buffer->state.framebuffer;
 
    vk_free(&cmd_buffer->pool->alloc, state->attachments);
 
@@ -1205,6 +1262,12 @@ genX(cmd_buffer_setup_attachments)(struct anv_cmd_buffer *cmd_buffer,
    next_state.offset += ss_stride;
    next_state.map += ss_stride;
 
+   const VkRenderPassAttachmentBeginInfoKHR *begin_attachment =
+      vk_find_struct_const(begin, RENDER_PASS_ATTACHMENT_BEGIN_INFO_KHR);
+
+   if (begin && !begin_attachment)
+      assert(pass->attachment_count == framebuffer->attachment_count);
+
    for (uint32_t i = 0; i < pass->attachment_count; ++i) {
       if (vk_format_is_color(pass->attachments[i].format)) {
          state->attachments[i].color.state = next_state;
@@ -1217,14 +1280,19 @@ genX(cmd_buffer_setup_attachments)(struct anv_cmd_buffer *cmd_buffer,
          next_state.offset += ss_stride;
          next_state.map += ss_stride;
       }
+
+      if (begin_attachment && begin_attachment->attachmentCount != 0) {
+         assert(begin_attachment->attachmentCount == pass->attachment_count);
+         ANV_FROM_HANDLE(anv_image_view, iview, begin_attachment->pAttachments[i]);
+         cmd_buffer->state.attachments[i].image_view = iview;
+      } else if (framebuffer && i < framebuffer->attachment_count) {
+         cmd_buffer->state.attachments[i].image_view = framebuffer->attachments[i];
+      }
    }
    assert(next_state.offset == state->render_pass_states.offset +
                                state->render_pass_states.alloc_size);
 
    if (begin) {
-      ANV_FROM_HANDLE(anv_framebuffer, framebuffer, begin->framebuffer);
-      assert(pass->attachment_count == framebuffer->attachment_count);
-
       isl_null_fill_state(isl_dev, state->null_surface_state.map,
                           isl_extent3d(framebuffer->width,
                                        framebuffer->height,
@@ -1262,12 +1330,13 @@ genX(cmd_buffer_setup_attachments)(struct anv_cmd_buffer *cmd_buffer,
          }
 
          state->attachments[i].current_layout = att->initial_layout;
+         state->attachments[i].current_stencil_layout = att->stencil_initial_layout;
          state->attachments[i].pending_clear_aspects = clear_aspects;
          state->attachments[i].pending_load_aspects = load_aspects;
          if (clear_aspects)
             state->attachments[i].clear_value = begin->pClearValues[i];
 
-         struct anv_image_view *iview = framebuffer->attachments[i];
+         struct anv_image_view *iview = cmd_buffer->state.attachments[i].image_view;
          anv_assert(iview->vk_format == att->format);
 
          const uint32_t num_layers = iview->planes[0].isl.array_len;
@@ -1357,9 +1426,12 @@ genX(BeginCommandBuffer)(
     * executing anything.  The chances are fairly high that they will use
     * blorp at least once per primary command buffer so it shouldn't be
     * wasted.
+    *
+    * There is also a workaround on gen8 which requires us to invalidate the
+    * VF cache occasionally.  It's easier if we can assume we start with a
+    * fresh cache (See also genX(cmd_buffer_set_binding_for_gen8_vb_flush).)
     */
-   if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY)
-      cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
+   cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
 
    /* We send an "Indirect State Pointers Disable" packet at
     * EndCommandBuffer, so all push contant packets are ignored during a
@@ -1405,6 +1477,19 @@ genX(BeginCommandBuffer)(
       cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
    }
 
+#if GEN_GEN >= 8 || GEN_IS_HASWELL
+   if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
+      const VkCommandBufferInheritanceConditionalRenderingInfoEXT *conditional_rendering_info =
+         vk_find_struct_const(pBeginInfo->pInheritanceInfo->pNext, COMMAND_BUFFER_INHERITANCE_CONDITIONAL_RENDERING_INFO_EXT);
+
+      /* If secondary buffer supports conditional rendering
+       * we should emit commands as if conditional rendering is enabled.
+       */
+      cmd_buffer->state.conditional_render_enabled =
+         conditional_rendering_info && conditional_rendering_info->conditionalRenderingEnable;
+   }
+#endif
+
    return result;
 }
 
@@ -1509,6 +1594,21 @@ genX(CmdExecuteCommands)(
       assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
       assert(!anv_batch_has_error(&secondary->batch));
 
+#if GEN_GEN >= 8 || GEN_IS_HASWELL
+      if (secondary->state.conditional_render_enabled) {
+         if (!primary->state.conditional_render_enabled) {
+            /* Secondary buffer is constructed as if it will be executed
+             * with conditional rendering, we should satisfy this dependency
+             * regardless of conditional rendering being enabled in primary.
+             */
+            struct gen_mi_builder b;
+            gen_mi_builder_init(&b, &primary->batch);
+            gen_mi_store(&b, gen_mi_reg64(ANV_PREDICATE_RESULT_REG),
+                             gen_mi_imm(UINT64_MAX));
+         }
+      }
+#endif
+
       if (secondary->usage_flags &
           VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
          /* If we're continuing a render pass from the primary, we need to
@@ -1516,7 +1616,7 @@ genX(CmdExecuteCommands)(
           * we allocated for them in BeginCommandBuffer.
           */
          struct anv_bo *ss_bo =
-            &primary->device->surface_state_pool.block_pool.bo;
+            primary->device->surface_state_pool.block_pool.bo;
          struct anv_state src_state = primary->state.render_pass_states;
          struct anv_state dst_state = secondary->state.render_pass_states;
          assert(src_state.alloc_size == dst_state.alloc_size);
@@ -1536,6 +1636,14 @@ genX(CmdExecuteCommands)(
       anv_cmd_buffer_add_secondary(primary, secondary);
    }
 
+   /* The secondary isn't counted in our VF cache tracking so we need to
+    * invalidate the whole thing.
+    */
+   if (GEN_GEN >= 8 && GEN_GEN <= 9) {
+      primary->state.pending_pipe_bits |=
+         ANV_PIPE_CS_STALL_BIT | ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
+   }
+
    /* The secondary may have selected a different pipeline (3D or compute) and
     * may have changed the current L3$ configuration.  Reset our tracking
     * variables to invalid values to ensure that we re-emit these in the case
@@ -1544,6 +1652,7 @@ genX(CmdExecuteCommands)(
     */
    primary->state.current_pipeline = UINT32_MAX;
    primary->state.current_l3_config = NULL;
+   primary->state.current_hash_scale = 0;
 
    /* Each of the secondary command buffers will use its own state base
     * address.  We need to re-emit state base address for the primary after
@@ -1575,7 +1684,7 @@ genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer,
       gen_dump_l3_config(cfg, stderr);
    }
 
-   const bool has_slm = cfg->n[GEN_L3P_SLM];
+   UNUSED const bool has_slm = cfg->n[GEN_L3P_SLM];
 
    /* According to the hardware docs, the L3 partitioning can only be changed
     * while the pipeline is completely drained and the caches are flushed,
@@ -1622,9 +1731,19 @@ genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer,
 
    assert(!cfg->n[GEN_L3P_IS] && !cfg->n[GEN_L3P_C] && !cfg->n[GEN_L3P_T]);
 
+#if GEN_GEN >= 12
+#define L3_ALLOCATION_REG GENX(L3ALLOC)
+#define L3_ALLOCATION_REG_num GENX(L3ALLOC_num)
+#else
+#define L3_ALLOCATION_REG GENX(L3CNTLREG)
+#define L3_ALLOCATION_REG_num GENX(L3CNTLREG_num)
+#endif
+
    uint32_t l3cr;
-   anv_pack_struct(&l3cr, GENX(L3CNTLREG),
+   anv_pack_struct(&l3cr, L3_ALLOCATION_REG,
+#if GEN_GEN < 12
                    .SLMEnable = has_slm,
+#endif
 #if GEN_GEN == 11
    /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
     * in L3CNTLREG register. The default setting of the bit is not the
@@ -1639,7 +1758,7 @@ genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer,
                    .AllAllocation = cfg->n[GEN_L3P_ALL]);
 
    /* Set up the L3 partitioning. */
-   emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG_num), l3cr);
+   emit_lri(&cmd_buffer->batch, L3_ALLOCATION_REG_num, l3cr);
 
 #else
 
@@ -1663,7 +1782,7 @@ genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer,
    assert(!urb_low_bw || cfg->n[GEN_L3P_URB] == cfg->n[GEN_L3P_SLM]);
 
    /* Minimum number of ways that can be allocated to the URB. */
-   MAYBE_UNUSED const unsigned n0_urb = devinfo->is_baytrail ? 32 : 0;
+   const unsigned n0_urb = devinfo->is_baytrail ? 32 : 0;
    assert(cfg->n[GEN_L3P_URB] >= n0_urb);
 
    uint32_t l3sqcr1, l3cr2, l3cr3;
@@ -1726,6 +1845,9 @@ genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer)
 {
    enum anv_pipe_bits bits = cmd_buffer->state.pending_pipe_bits;
 
+   if (cmd_buffer->device->instance->physicalDevice.always_flush_cache)
+      bits |= ANV_PIPE_FLUSH_BITS | ANV_PIPE_INVALIDATE_BITS;
+
    /* Flushes are pipelined while invalidations are handled immediately.
     * Therefore, if we're flushing anything then we need to schedule a stall
     * before any invalidations can happen.
@@ -1742,14 +1864,56 @@ genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer)
       bits &= ~ANV_PIPE_NEEDS_CS_STALL_BIT;
    }
 
+   if (GEN_GEN >= 12 &&
+       ((bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT) ||
+        (bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT))) {
+      /* From the PIPE_CONTROL instruction table, bit 28 (Tile Cache Flush
+       * Enable):
+       *
+       *    Unified Cache (Tile Cache Disabled):
+       *
+       *    When the Color and Depth (Z) streams are enabled to be cached in
+       *    the DC space of L2, Software must use "Render Target Cache Flush
+       *    Enable" and "Depth Cache Flush Enable" along with "Tile Cache
+       *    Flush" for getting the color and depth (Z) write data to be
+       *    globally observable.  In this mode of operation it is not required
+       *    to set "CS Stall" upon setting "Tile Cache Flush" bit.
+       */
+      bits |= ANV_PIPE_TILE_CACHE_FLUSH_BIT;
+   }
+
+   if ((GEN_GEN >= 8 && GEN_GEN <= 9) &&
+       (bits & ANV_PIPE_CS_STALL_BIT) &&
+       (bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT)) {
+      /* If we are doing a VF cache invalidate AND a CS stall (it must be
+       * both) then we can reset our vertex cache tracking.
+       */
+      memset(cmd_buffer->state.gfx.vb_dirty_ranges, 0,
+             sizeof(cmd_buffer->state.gfx.vb_dirty_ranges));
+      memset(&cmd_buffer->state.gfx.ib_dirty_range, 0,
+             sizeof(cmd_buffer->state.gfx.ib_dirty_range));
+   }
+
    if (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT)) {
       anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
+#if GEN_GEN >= 12
+         pipe.TileCacheFlushEnable = bits & ANV_PIPE_TILE_CACHE_FLUSH_BIT;
+#endif
          pipe.DepthCacheFlushEnable = bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
          pipe.DCFlushEnable = bits & ANV_PIPE_DATA_CACHE_FLUSH_BIT;
          pipe.RenderTargetCacheFlushEnable =
             bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
 
+         /* GEN:BUG:1409600907: "PIPE_CONTROL with Depth Stall Enable bit must
+          * be set with any PIPE_CONTROL with Depth Flush Enable bit set.
+          */
+#if GEN_GEN >= 12
+         pipe.DepthStallEnable =
+            pipe.DepthCacheFlushEnable || (bits & ANV_PIPE_DEPTH_STALL_BIT);
+#else
          pipe.DepthStallEnable = bits & ANV_PIPE_DEPTH_STALL_BIT;
+#endif
+
          pipe.CommandStreamerStallEnable = bits & ANV_PIPE_CS_STALL_BIT;
          pipe.StallAtPixelScoreboard = bits & ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
 
@@ -1778,7 +1942,7 @@ genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer)
        * saying that render target writes are ongoing.
        */
       if (bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
-         bits &= ~(ANV_PIPE_RENDER_TARGET_WRITES);
+         bits &= ~(ANV_PIPE_RENDER_TARGET_BUFFER_WRITES);
 
       bits &= ~(ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT);
    }
@@ -1818,7 +1982,7 @@ genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer)
          if (GEN_GEN == 9 && pipe.VFCacheInvalidationEnable) {
             pipe.PostSyncOperation = WriteImmediateData;
             pipe.Address =
-               (struct anv_address) { &cmd_buffer->device->workaround_bo, 0 };
+               (struct anv_address) { cmd_buffer->device->workaround_bo, 0 };
          }
       }
 
@@ -1866,24 +2030,34 @@ void genX(CmdPipelineBarrier)(
       const VkImageSubresourceRange *range =
          &pImageMemoryBarriers[i].subresourceRange;
 
+      uint32_t base_layer, layer_count;
+      if (image->type == VK_IMAGE_TYPE_3D) {
+         base_layer = 0;
+         layer_count = anv_minify(image->extent.depth, range->baseMipLevel);
+      } else {
+         base_layer = range->baseArrayLayer;
+         layer_count = anv_get_layerCount(image, range);
+      }
+
       if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
          transition_depth_buffer(cmd_buffer, image,
                                  pImageMemoryBarriers[i].oldLayout,
                                  pImageMemoryBarriers[i].newLayout);
-      } else if (range->aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
+      }
+
+      if (range->aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) {
+         transition_stencil_buffer(cmd_buffer, image,
+                                   range->baseMipLevel,
+                                   anv_get_levelCount(image, range),
+                                   base_layer, layer_count,
+                                   pImageMemoryBarriers[i].oldLayout,
+                                   pImageMemoryBarriers[i].newLayout);
+      }
+
+      if (range->aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
          VkImageAspectFlags color_aspects =
             anv_image_expand_aspects(image, range->aspectMask);
          uint32_t aspect_bit;
-
-         uint32_t base_layer, layer_count;
-         if (image->type == VK_IMAGE_TYPE_3D) {
-            base_layer = 0;
-            layer_count = anv_minify(image->extent.depth, range->baseMipLevel);
-         } else {
-            base_layer = range->baseArrayLayer;
-            layer_count = anv_get_layerCount(image, range);
-         }
-
          anv_foreach_image_aspect_bit(aspect_bit, image, color_aspects) {
             transition_color_buffer(cmd_buffer, image, 1UL << aspect_bit,
                                     range->baseMipLevel,
@@ -1967,32 +2141,29 @@ cmd_buffer_alloc_push_constants(struct anv_cmd_buffer *cmd_buffer)
    cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
 }
 
-static const struct anv_descriptor *
-anv_descriptor_for_binding(const struct anv_cmd_pipeline_state *pipe_state,
-                           const struct anv_pipeline_binding *binding)
-{
-   assert(binding->set < MAX_SETS);
-   const struct anv_descriptor_set *set =
-      pipe_state->descriptors[binding->set];
-   const uint32_t offset =
-      set->layout->binding[binding->binding].descriptor_index;
-   return &set->descriptors[offset + binding->index];
-}
-
-static uint32_t
-dynamic_offset_for_binding(const struct anv_cmd_pipeline_state *pipe_state,
-                           const struct anv_pipeline_binding *binding)
+static struct anv_address
+anv_descriptor_set_address(struct anv_cmd_buffer *cmd_buffer,
+                           struct anv_descriptor_set *set)
 {
-   assert(binding->set < MAX_SETS);
-   const struct anv_descriptor_set *set =
-      pipe_state->descriptors[binding->set];
-
-   uint32_t dynamic_offset_idx =
-      pipe_state->layout->set[binding->set].dynamic_offset_start +
-      set->layout->binding[binding->binding].dynamic_offset_index +
-      binding->index;
+   if (set->pool) {
+      /* This is a normal descriptor set */
+      return (struct anv_address) {
+         .bo = set->pool->bo,
+         .offset = set->desc_mem.offset,
+      };
+   } else {
+      /* This is a push descriptor set.  We have to flag it as used on the GPU
+       * so that the next time we push descriptors, we grab a new memory.
+       */
+      struct anv_push_descriptor_set *push_set =
+         (struct anv_push_descriptor_set *)set;
+      push_set->set_used_on_gpu = true;
 
-   return pipe_state->dynamic_offsets[dynamic_offset_idx];
+      return (struct anv_address) {
+         .bo = cmd_buffer->dynamic_state_stream.state_pool->block_pool.bo,
+         .offset = set->desc_mem.offset,
+      };
+   }
 }
 
 static VkResult
@@ -2003,16 +2174,14 @@ emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
    struct anv_subpass *subpass = cmd_buffer->state.subpass;
    struct anv_cmd_pipeline_state *pipe_state;
    struct anv_pipeline *pipeline;
-   uint32_t bias, state_offset;
+   uint32_t state_offset;
 
    switch (stage) {
    case  MESA_SHADER_COMPUTE:
       pipe_state = &cmd_buffer->state.compute.base;
-      bias = 1;
       break;
    default:
       pipe_state = &cmd_buffer->state.gfx.base;
-      bias = 0;
       break;
    }
    pipeline = pipe_state->pipeline;
@@ -2023,59 +2192,38 @@ emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
    }
 
    struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
-   if (bias + map->surface_count == 0) {
+   if (map->surface_count == 0) {
       *bt_state = (struct anv_state) { 0, };
       return VK_SUCCESS;
    }
 
    *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
-                                                  bias + map->surface_count,
+                                                  map->surface_count,
                                                   &state_offset);
    uint32_t *bt_map = bt_state->map;
 
    if (bt_state->map == NULL)
       return VK_ERROR_OUT_OF_DEVICE_MEMORY;
 
-   if (stage == MESA_SHADER_COMPUTE &&
-       get_cs_prog_data(pipeline)->uses_num_work_groups) {
-      struct anv_state surface_state;
-      surface_state =
-         anv_cmd_buffer_alloc_surface_state(cmd_buffer);
-
-      const enum isl_format format =
-         anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
-      anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
-                                    format,
-                                    cmd_buffer->state.compute.num_workgroups,
-                                    12, 1);
-
-      bt_map[0] = surface_state.offset + state_offset;
-      add_surface_reloc(cmd_buffer, surface_state,
-                        cmd_buffer->state.compute.num_workgroups);
-   }
-
-   if (map->surface_count == 0)
-      goto out;
-
-   if (map->image_count > 0) {
-      VkResult result =
-         anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, images);
-      if (result != VK_SUCCESS)
-         return result;
-
-      cmd_buffer->state.push_constants_dirty |= 1 << stage;
-   }
+   /* We only need to emit relocs if we're not using softpin.  If we are using
+    * softpin then we always keep all user-allocated memory objects resident.
+    */
+   const bool need_client_mem_relocs =
+      !cmd_buffer->device->instance->physicalDevice.use_softpin;
 
-   uint32_t image = 0;
    for (uint32_t s = 0; s < map->surface_count; s++) {
       struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s];
 
       struct anv_state surface_state;
 
-      if (binding->set == ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS) {
+      switch (binding->set) {
+      case ANV_DESCRIPTOR_SET_NULL:
+         bt_map[s] = 0;
+         break;
+
+      case ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS:
          /* Color attachment binding */
          assert(stage == MESA_SHADER_FRAGMENT);
-         assert(binding->binding == 0);
          if (binding->index < subpass->color_count) {
             const unsigned att =
                subpass->color_attachments[binding->index].attachment;
@@ -2095,14 +2243,15 @@ emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
             surface_state = cmd_buffer->state.null_surface_state;
          }
 
-         bt_map[bias + s] = surface_state.offset + state_offset;
-         continue;
-      } else if (binding->set == ANV_DESCRIPTOR_SET_SHADER_CONSTANTS) {
+         bt_map[s] = surface_state.offset + state_offset;
+         break;
+
+      case ANV_DESCRIPTOR_SET_SHADER_CONSTANTS: {
          struct anv_state surface_state =
             anv_cmd_buffer_alloc_surface_state(cmd_buffer);
 
          struct anv_address constant_data = {
-            .bo = &pipeline->device->dynamic_state_pool.block_pool.bo,
+            .bo = pipeline->device->dynamic_state_pool.block_pool.bo,
             .offset = pipeline->shaders[stage]->constant_data.offset,
          };
          unsigned constant_data_size =
@@ -2114,149 +2263,166 @@ emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
                                        surface_state, format,
                                        constant_data, constant_data_size, 1);
 
-         bt_map[bias + s] = surface_state.offset + state_offset;
+         bt_map[s] = surface_state.offset + state_offset;
          add_surface_reloc(cmd_buffer, surface_state, constant_data);
-         continue;
+         break;
       }
 
-      const struct anv_descriptor *desc =
-         anv_descriptor_for_binding(pipe_state, binding);
+      case ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS: {
+         /* This is always the first binding for compute shaders */
+         assert(stage == MESA_SHADER_COMPUTE && s == 0);
 
-      switch (desc->type) {
-      case VK_DESCRIPTOR_TYPE_SAMPLER:
-         /* Nothing for us to do here */
-         continue;
+         struct anv_state surface_state =
+            anv_cmd_buffer_alloc_surface_state(cmd_buffer);
 
-      case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
-      case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: {
-         struct anv_surface_state sstate =
-            (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
-            desc->image_view->planes[binding->plane].general_sampler_surface_state :
-            desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
-         surface_state = sstate.state;
-         assert(surface_state.alloc_size);
-         add_surface_state_relocs(cmd_buffer, sstate);
+         const enum isl_format format =
+            anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
+         anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
+                                       format,
+                                       cmd_buffer->state.compute.num_workgroups,
+                                       12, 1);
+         bt_map[s] = surface_state.offset + state_offset;
+         if (need_client_mem_relocs) {
+            add_surface_reloc(cmd_buffer, surface_state,
+                              cmd_buffer->state.compute.num_workgroups);
+         }
          break;
       }
-      case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
-         assert(stage == MESA_SHADER_FRAGMENT);
-         if ((desc->image_view->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0) {
-            /* For depth and stencil input attachments, we treat it like any
-             * old texture that a user may have bound.
-             */
+
+      case ANV_DESCRIPTOR_SET_DESCRIPTORS: {
+         /* This is a descriptor set buffer so the set index is actually
+          * given by binding->binding.  (Yes, that's confusing.)
+          */
+         struct anv_descriptor_set *set =
+            pipe_state->descriptors[binding->index];
+         assert(set->desc_mem.alloc_size);
+         assert(set->desc_surface_state.alloc_size);
+         bt_map[s] = set->desc_surface_state.offset + state_offset;
+         add_surface_reloc(cmd_buffer, set->desc_surface_state,
+                           anv_descriptor_set_address(cmd_buffer, set));
+         break;
+      }
+
+      default: {
+         assert(binding->set < MAX_SETS);
+         const struct anv_descriptor *desc =
+            &pipe_state->descriptors[binding->set]->descriptors[binding->index];
+
+         switch (desc->type) {
+         case VK_DESCRIPTOR_TYPE_SAMPLER:
+            /* Nothing for us to do here */
+            continue;
+
+         case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
+         case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: {
             struct anv_surface_state sstate =
                (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
                desc->image_view->planes[binding->plane].general_sampler_surface_state :
                desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
             surface_state = sstate.state;
             assert(surface_state.alloc_size);
-            add_surface_state_relocs(cmd_buffer, sstate);
-         } else {
-            /* For color input attachments, we create the surface state at
-             * vkBeginRenderPass time so that we can include aux and clear
-             * color information.
-             */
-            assert(binding->input_attachment_index < subpass->input_count);
-            const unsigned subpass_att = binding->input_attachment_index;
-            const unsigned att = subpass->input_attachments[subpass_att].attachment;
-            surface_state = cmd_buffer->state.attachments[att].input.state;
+            if (need_client_mem_relocs)
+               add_surface_state_relocs(cmd_buffer, sstate);
+            break;
          }
-         break;
-
-      case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
-         struct anv_surface_state sstate = (binding->write_only)
-            ? desc->image_view->planes[binding->plane].writeonly_storage_surface_state
-            : desc->image_view->planes[binding->plane].storage_surface_state;
-         surface_state = sstate.state;
-         assert(surface_state.alloc_size);
-         add_surface_state_relocs(cmd_buffer, sstate);
-
-         struct brw_image_param *image_param =
-            &cmd_buffer->state.push_constants[stage]->images[image++];
-
-         *image_param = desc->image_view->planes[binding->plane].storage_image_param;
-         break;
-      }
-
-      case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
-      case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
-      case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
-         surface_state = desc->buffer_view->surface_state;
-         assert(surface_state.alloc_size);
-         add_surface_reloc(cmd_buffer, surface_state,
-                           desc->buffer_view->address);
-         break;
+         case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
+            assert(stage == MESA_SHADER_FRAGMENT);
+            if ((desc->image_view->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0) {
+               /* For depth and stencil input attachments, we treat it like any
+                * old texture that a user may have bound.
+                */
+               assert(desc->image_view->n_planes == 1);
+               struct anv_surface_state sstate =
+                  (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
+                  desc->image_view->planes[0].general_sampler_surface_state :
+                  desc->image_view->planes[0].optimal_sampler_surface_state;
+               surface_state = sstate.state;
+               assert(surface_state.alloc_size);
+               if (need_client_mem_relocs)
+                  add_surface_state_relocs(cmd_buffer, sstate);
+            } else {
+               /* For color input attachments, we create the surface state at
+                * vkBeginRenderPass time so that we can include aux and clear
+                * color information.
+                */
+               assert(binding->input_attachment_index < subpass->input_count);
+               const unsigned subpass_att = binding->input_attachment_index;
+               const unsigned att = subpass->input_attachments[subpass_att].attachment;
+               surface_state = cmd_buffer->state.attachments[att].input.state;
+            }
+            break;
 
-      case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
-      case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
-         /* Compute the offset within the buffer */
-         uint32_t dynamic_offset =
-            dynamic_offset_for_binding(pipe_state, binding);
-         uint64_t offset = desc->offset + dynamic_offset;
-         /* Clamp to the buffer size */
-         offset = MIN2(offset, desc->buffer->size);
-         /* Clamp the range to the buffer size */
-         uint32_t range = MIN2(desc->range, desc->buffer->size - offset);
+         case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
+            struct anv_surface_state sstate = (binding->write_only)
+               ? desc->image_view->planes[binding->plane].writeonly_storage_surface_state
+               : desc->image_view->planes[binding->plane].storage_surface_state;
+            surface_state = sstate.state;
+            assert(surface_state.alloc_size);
+            if (need_client_mem_relocs)
+               add_surface_state_relocs(cmd_buffer, sstate);
+            break;
+         }
 
-         struct anv_address address =
-            anv_address_add(desc->buffer->address, offset);
+         case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
+         case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
+         case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
+            surface_state = desc->buffer_view->surface_state;
+            assert(surface_state.alloc_size);
+            if (need_client_mem_relocs) {
+               add_surface_reloc(cmd_buffer, surface_state,
+                                 desc->buffer_view->address);
+            }
+            break;
+
+         case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
+         case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
+            /* Compute the offset within the buffer */
+            struct anv_push_constants *push =
+               &cmd_buffer->state.push_constants[stage];
+
+            uint32_t dynamic_offset =
+               push->dynamic_offsets[binding->dynamic_offset_index];
+            uint64_t offset = desc->offset + dynamic_offset;
+            /* Clamp to the buffer size */
+            offset = MIN2(offset, desc->buffer->size);
+            /* Clamp the range to the buffer size */
+            uint32_t range = MIN2(desc->range, desc->buffer->size - offset);
+
+            struct anv_address address =
+               anv_address_add(desc->buffer->address, offset);
+
+            surface_state =
+               anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64);
+            enum isl_format format =
+               anv_isl_format_for_descriptor_type(desc->type);
+
+            anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
+                                          format, address, range, 1);
+            if (need_client_mem_relocs)
+               add_surface_reloc(cmd_buffer, surface_state, address);
+            break;
+         }
 
-         surface_state =
-            anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64);
-         enum isl_format format =
-            anv_isl_format_for_descriptor_type(desc->type);
+         case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
+            surface_state = (binding->write_only)
+               ? desc->buffer_view->writeonly_storage_surface_state
+               : desc->buffer_view->storage_surface_state;
+            assert(surface_state.alloc_size);
+            if (need_client_mem_relocs) {
+               add_surface_reloc(cmd_buffer, surface_state,
+                                 desc->buffer_view->address);
+            }
+            break;
 
-         anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
-                                       format, address, range, 1);
-         add_surface_reloc(cmd_buffer, surface_state, address);
+         default:
+            assert(!"Invalid descriptor type");
+            continue;
+         }
+         bt_map[s] = surface_state.offset + state_offset;
          break;
       }
-
-      case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
-         surface_state = (binding->write_only)
-            ? desc->buffer_view->writeonly_storage_surface_state
-            : desc->buffer_view->storage_surface_state;
-         assert(surface_state.alloc_size);
-         add_surface_reloc(cmd_buffer, surface_state,
-                           desc->buffer_view->address);
-
-         struct brw_image_param *image_param =
-            &cmd_buffer->state.push_constants[stage]->images[image++];
-
-         *image_param = desc->buffer_view->storage_image_param;
-         break;
-
-      default:
-         assert(!"Invalid descriptor type");
-         continue;
       }
-
-      bt_map[bias + s] = surface_state.offset + state_offset;
-   }
-   assert(image == map->image_count);
-
- out:
-   anv_state_flush(cmd_buffer->device, *bt_state);
-
-#if GEN_GEN >= 11
-   /* The PIPE_CONTROL command description says:
-    *
-    *    "Whenever a Binding Table Index (BTI) used by a Render Taget Message
-    *     points to a different RENDER_SURFACE_STATE, SW must issue a Render
-    *     Target Cache Flush by enabling this bit. When render target flush
-    *     is set due to new association of BTI, PS Scoreboard Stall bit must
-    *     be set in this packet."
-    *
-    * FINISHME: Currently we shuffle around the surface states in the binding
-    * table based on if they are getting used or not. So, we've to do below
-    * pipe control flush for every binding table upload. Make changes so
-    * that we do it only when we modify render target surface states.
-    */
-   anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
-      pc.RenderTargetCacheFlushEnable  = true;
-      pc.StallAtPixelScoreboard        = true;
    }
-#endif
 
    return VK_SUCCESS;
 }
@@ -2291,7 +2457,7 @@ emit_samplers(struct anv_cmd_buffer *cmd_buffer,
    for (uint32_t s = 0; s < map->sampler_count; s++) {
       struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s];
       const struct anv_descriptor *desc =
-         anv_descriptor_for_binding(pipe_state, binding);
+         &pipe_state->descriptors[binding->set]->descriptors[binding->index];
 
       if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
           desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
@@ -2309,16 +2475,13 @@ emit_samplers(struct anv_cmd_buffer *cmd_buffer,
              sampler->state[binding->plane], sizeof(sampler->state[0]));
    }
 
-   anv_state_flush(cmd_buffer->device, *state);
-
    return VK_SUCCESS;
 }
 
 static uint32_t
-flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer)
+flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer,
+                      struct anv_pipeline *pipeline)
 {
-   struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
-
    VkShaderStageFlags dirty = cmd_buffer->state.descriptors_dirty &
                               pipeline->active_stages;
 
@@ -2411,9 +2574,61 @@ cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer,
    }
 }
 
-static void
-cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer,
-                                VkShaderStageFlags dirty_stages)
+#if GEN_GEN >= 8 || GEN_IS_HASWELL
+static struct anv_address
+get_push_range_address(struct anv_cmd_buffer *cmd_buffer,
+                       gl_shader_stage stage,
+                       const struct anv_push_range *range)
+{
+   const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
+   switch (range->set) {
+   case ANV_DESCRIPTOR_SET_DESCRIPTORS: {
+      /* This is a descriptor set buffer so the set index is
+       * actually given by binding->binding.  (Yes, that's
+       * confusing.)
+       */
+      struct anv_descriptor_set *set =
+         gfx_state->base.descriptors[range->index];
+      return anv_descriptor_set_address(cmd_buffer, set);
+      break;
+   }
+
+   case ANV_DESCRIPTOR_SET_PUSH_CONSTANTS: {
+      struct anv_state state =
+         anv_cmd_buffer_push_constants(cmd_buffer, stage);
+      return (struct anv_address) {
+         .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
+         .offset = state.offset,
+      };
+      break;
+   }
+
+   default: {
+      assert(range->set < MAX_SETS);
+      struct anv_descriptor_set *set =
+         gfx_state->base.descriptors[range->set];
+      const struct anv_descriptor *desc =
+         &set->descriptors[range->index];
+
+      if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) {
+         return desc->buffer_view->address;
+      } else {
+         assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
+         struct anv_push_constants *push =
+            &cmd_buffer->state.push_constants[stage];
+         uint32_t dynamic_offset =
+            push->dynamic_offsets[range->dynamic_offset_index];
+         return anv_address_add(desc->buffer->address,
+                                desc->offset + dynamic_offset);
+      }
+   }
+   }
+}
+#endif
+
+static void
+cmd_buffer_emit_push_constant(struct anv_cmd_buffer *cmd_buffer,
+                              gl_shader_stage stage, unsigned buffer_count)
 {
    const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
    const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
@@ -2427,129 +2642,213 @@ cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer,
       [MESA_SHADER_COMPUTE]                     = 0,
    };
 
-   VkShaderStageFlags flushed = 0;
+   assert(stage < ARRAY_SIZE(push_constant_opcodes));
+   assert(push_constant_opcodes[stage] > 0);
 
-   anv_foreach_stage(stage, dirty_stages) {
-      assert(stage < ARRAY_SIZE(push_constant_opcodes));
-      assert(push_constant_opcodes[stage] > 0);
+   anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c) {
+      c._3DCommandSubOpcode = push_constant_opcodes[stage];
 
-      anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c) {
-         c._3DCommandSubOpcode = push_constant_opcodes[stage];
+      if (anv_pipeline_has_stage(pipeline, stage)) {
+         const struct anv_pipeline_bind_map *bind_map =
+            &pipeline->shaders[stage]->bind_map;
 
-         if (anv_pipeline_has_stage(pipeline, stage)) {
 #if GEN_GEN >= 8 || GEN_IS_HASWELL
-            const struct brw_stage_prog_data *prog_data =
-               pipeline->shaders[stage]->prog_data;
-            const struct anv_pipeline_bind_map *bind_map =
-               &pipeline->shaders[stage]->bind_map;
-
-            /* The Skylake PRM contains the following restriction:
-             *
-             *    "The driver must ensure The following case does not occur
-             *     without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
-             *     buffer 3 read length equal to zero committed followed by a
-             *     3DSTATE_CONSTANT_* with buffer 0 read length not equal to
-             *     zero committed."
-             *
-             * To avoid this, we program the buffers in the highest slots.
-             * This way, slot 0 is only used if slot 3 is also used.
-             */
-            int n = 3;
-
-            for (int i = 3; i >= 0; i--) {
-               const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
-               if (range->length == 0)
-                  continue;
-
-               const unsigned surface =
-                  prog_data->binding_table.ubo_start + range->block;
-
-               assert(surface <= bind_map->surface_count);
-               const struct anv_pipeline_binding *binding =
-                  &bind_map->surface_to_descriptor[surface];
-
-               struct anv_address read_addr;
-               uint32_t read_len;
-               if (binding->set == ANV_DESCRIPTOR_SET_SHADER_CONSTANTS) {
-                  struct anv_address constant_data = {
-                     .bo = &pipeline->device->dynamic_state_pool.block_pool.bo,
-                     .offset = pipeline->shaders[stage]->constant_data.offset,
-                  };
-                  unsigned constant_data_size =
-                     pipeline->shaders[stage]->constant_data_size;
-
-                  read_len = MIN2(range->length,
-                     DIV_ROUND_UP(constant_data_size, 32) - range->start);
-                  read_addr = anv_address_add(constant_data,
-                                              range->start * 32);
-               } else {
-                  const struct anv_descriptor *desc =
-                     anv_descriptor_for_binding(&gfx_state->base, binding);
-
-                  if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) {
-                     read_len = MIN2(range->length,
-                        DIV_ROUND_UP(desc->buffer_view->range, 32) - range->start);
-                     read_addr = anv_address_add(desc->buffer_view->address,
-                                                 range->start * 32);
-                  } else {
-                     assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
-
-                     uint32_t dynamic_offset =
-                        dynamic_offset_for_binding(&gfx_state->base, binding);
-                     uint32_t buf_offset =
-                        MIN2(desc->offset + dynamic_offset, desc->buffer->size);
-                     uint32_t buf_range =
-                        MIN2(desc->range, desc->buffer->size - buf_offset);
-
-                     read_len = MIN2(range->length,
-                        DIV_ROUND_UP(buf_range, 32) - range->start);
-                     read_addr = anv_address_add(desc->buffer->address,
-                                                 buf_offset + range->start * 32);
-                  }
-               }
+         /* The Skylake PRM contains the following restriction:
+          *
+          *    "The driver must ensure The following case does not occur
+          *     without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
+          *     buffer 3 read length equal to zero committed followed by a
+          *     3DSTATE_CONSTANT_* with buffer 0 read length not equal to
+          *     zero committed."
+          *
+          * To avoid this, we program the buffers in the highest slots.
+          * This way, slot 0 is only used if slot 3 is also used.
+          */
+         assert(buffer_count <= 4);
+         const unsigned shift = 4 - buffer_count;
+         for (unsigned i = 0; i < buffer_count; i++) {
+            const struct anv_push_range *range = &bind_map->push_ranges[i];
 
-               if (read_len > 0) {
-                  c.ConstantBody.Buffer[n] = read_addr;
-                  c.ConstantBody.ReadLength[n] = read_len;
-                  n--;
-               }
-            }
+            /* At this point we only have non-empty ranges */
+            assert(range->length > 0);
 
-            struct anv_state state =
-               anv_cmd_buffer_push_constants(cmd_buffer, stage);
+            /* For Ivy Bridge, make sure we only set the first range (actual
+             * push constants)
+             */
+            assert((GEN_GEN >= 8 || GEN_IS_HASWELL) || i == 0);
 
-            if (state.alloc_size > 0) {
-               c.ConstantBody.Buffer[n] = (struct anv_address) {
-                  .bo = &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
-                  .offset = state.offset,
-               };
-               c.ConstantBody.ReadLength[n] =
-                  DIV_ROUND_UP(state.alloc_size, 32);
-            }
+            const struct anv_address addr =
+               get_push_range_address(cmd_buffer, stage, range);
+            c.ConstantBody.ReadLength[i + shift] = range->length;
+            c.ConstantBody.Buffer[i + shift] =
+               anv_address_add(addr, range->start * 32);
+         }
 #else
-            /* For Ivy Bridge, the push constants packets have a different
-             * rule that would require us to iterate in the other direction
-             * and possibly mess around with dynamic state base address.
-             * Don't bother; just emit regular push constants at n = 0.
-             */
+         /* For Ivy Bridge, push constants are relative to dynamic state
+          * base address and we only ever push actual push constants.
+          */
+         if (bind_map->push_ranges[0].length > 0) {
+            assert(bind_map->push_ranges[0].set ==
+                   ANV_DESCRIPTOR_SET_PUSH_CONSTANTS);
             struct anv_state state =
                anv_cmd_buffer_push_constants(cmd_buffer, stage);
+            c.ConstantBody.ReadLength[0] = bind_map->push_ranges[0].length;
+            c.ConstantBody.Buffer[0].bo = NULL;
+            c.ConstantBody.Buffer[0].offset = state.offset;
+         }
+         assert(bind_map->push_ranges[1].length == 0);
+         assert(bind_map->push_ranges[2].length == 0);
+         assert(bind_map->push_ranges[3].length == 0);
+#endif
+      }
+   }
+}
 
-            if (state.alloc_size > 0) {
-               c.ConstantBody.Buffer[0].offset = state.offset,
-               c.ConstantBody.ReadLength[0] =
-                  DIV_ROUND_UP(state.alloc_size, 32);
-            }
+#if GEN_GEN >= 12
+static void
+cmd_buffer_emit_push_constant_all(struct anv_cmd_buffer *cmd_buffer,
+                                  uint32_t shader_mask, uint32_t count)
+{
+   if (count == 0) {
+      anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_ALL), c) {
+         c.ShaderUpdateEnable = shader_mask;
+      }
+      return;
+   }
+
+   const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
+   const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
+
+   static const uint32_t push_constant_opcodes[] = {
+      [MESA_SHADER_VERTEX]                      = 21,
+      [MESA_SHADER_TESS_CTRL]                   = 25, /* HS */
+      [MESA_SHADER_TESS_EVAL]                   = 26, /* DS */
+      [MESA_SHADER_GEOMETRY]                    = 22,
+      [MESA_SHADER_FRAGMENT]                    = 23,
+      [MESA_SHADER_COMPUTE]                     = 0,
+   };
+
+   gl_shader_stage stage = vk_to_mesa_shader_stage(shader_mask);
+   assert(stage < ARRAY_SIZE(push_constant_opcodes));
+   assert(push_constant_opcodes[stage] > 0);
+
+   const struct anv_pipeline_bind_map *bind_map =
+      &pipeline->shaders[stage]->bind_map;
+
+   uint32_t *dw;
+   const uint32_t buffers = (1 << count) - 1;
+   const uint32_t num_dwords = 2 + 2 * count;
+
+   dw = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
+                        GENX(3DSTATE_CONSTANT_ALL),
+                        .ShaderUpdateEnable = shader_mask,
+                        .PointerBufferMask = buffers);
+
+   for (int i = 0; i < count; i++) {
+      const struct anv_push_range *range = &bind_map->push_ranges[i];
+      const struct anv_address addr =
+         get_push_range_address(cmd_buffer, stage, range);
+
+      GENX(3DSTATE_CONSTANT_ALL_DATA_pack)(
+         &cmd_buffer->batch, dw + 2 + i * 2,
+         &(struct GENX(3DSTATE_CONSTANT_ALL_DATA)) {
+            .PointerToConstantBuffer = anv_address_add(addr, range->start * 32),
+            .ConstantBufferReadLength = range->length,
+         });
+   }
+}
+#endif
+
+static void
+cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer,
+                                VkShaderStageFlags dirty_stages)
+{
+   VkShaderStageFlags flushed = 0;
+   const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
+   const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
+
+#if GEN_GEN >= 12
+   uint32_t nobuffer_stages = 0;
 #endif
+
+   anv_foreach_stage(stage, dirty_stages) {
+      unsigned buffer_count = 0;
+      flushed |= mesa_to_vk_shader_stage(stage);
+      uint32_t max_push_range = 0;
+
+      if (anv_pipeline_has_stage(pipeline, stage)) {
+         const struct anv_pipeline_bind_map *bind_map =
+            &pipeline->shaders[stage]->bind_map;
+
+         for (unsigned i = 0; i < 4; i++) {
+            const struct anv_push_range *range = &bind_map->push_ranges[i];
+            if (range->length > 0) {
+               buffer_count++;
+               if (GEN_GEN >= 12 && range->length > max_push_range)
+                  max_push_range = range->length;
+            }
          }
       }
 
-      flushed |= mesa_to_vk_shader_stage(stage);
+#if GEN_GEN >= 12
+      /* If this stage doesn't have any push constants, emit it later in a
+       * single CONSTANT_ALL packet.
+       */
+      if (buffer_count == 0) {
+         nobuffer_stages |= 1 << stage;
+         continue;
+      }
+
+      /* The Constant Buffer Read Length field from 3DSTATE_CONSTANT_ALL
+       * contains only 5 bits, so we can only use it for buffers smaller than
+       * 32.
+       */
+      if (max_push_range < 32) {
+         cmd_buffer_emit_push_constant_all(cmd_buffer, 1 << stage,
+                                           buffer_count);
+         continue;
+      }
+#endif
+
+      cmd_buffer_emit_push_constant(cmd_buffer, stage, buffer_count);
    }
 
+#if GEN_GEN >= 12
+   if (nobuffer_stages)
+      cmd_buffer_emit_push_constant_all(cmd_buffer, nobuffer_stages, 0);
+#endif
+
    cmd_buffer->state.push_constants_dirty &= ~flushed;
 }
 
+#if GEN_GEN >= 12
+void
+genX(cmd_buffer_aux_map_state)(struct anv_cmd_buffer *cmd_buffer)
+{
+   void *aux_map_ctx = cmd_buffer->device->aux_map_ctx;
+   if (!aux_map_ctx)
+      return;
+   uint32_t aux_map_state_num = gen_aux_map_get_state_num(aux_map_ctx);
+   if (cmd_buffer->state.last_aux_map_state != aux_map_state_num) {
+      /* If the aux-map state number increased, then we need to rewrite the
+       * register. Rewriting the register is used to both set the aux-map
+       * translation table address, and also to invalidate any previously
+       * cached translations.
+       */
+      uint64_t base_addr = gen_aux_map_get_base(aux_map_ctx);
+      anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
+         lri.RegisterOffset = GENX(GFX_AUX_TABLE_BASE_ADDR_num);
+         lri.DataDWord = base_addr & 0xffffffff;
+      }
+      anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
+         lri.RegisterOffset = GENX(GFX_AUX_TABLE_BASE_ADDR_num) + 4;
+         lri.DataDWord = base_addr >> 32;
+      }
+      cmd_buffer->state.last_aux_map_state = aux_map_state_num;
+   }
+}
+#endif
+
 void
 genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
 {
@@ -2564,8 +2863,14 @@ genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
 
    genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
 
+   genX(cmd_buffer_emit_hashing_mode)(cmd_buffer, UINT_MAX, UINT_MAX, 1);
+
    genX(flush_pipeline_select_3d)(cmd_buffer);
 
+#if GEN_GEN >= 12
+   genX(cmd_buffer_aux_map_state)(cmd_buffer);
+#endif
+
    if (vb_emit) {
       const uint32_t num_buffers = __builtin_popcount(vb_emit);
       const uint32_t num_dwords = 1 + num_buffers * 4;
@@ -2597,6 +2902,12 @@ genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
 #endif
          };
 
+#if GEN_GEN >= 8 && GEN_GEN <= 9
+         genX(cmd_buffer_set_binding_for_gen8_vb_flush)(cmd_buffer, vb,
+                                                        state.BufferStartingAddress,
+                                                        state.BufferSize);
+#endif
+
          GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state);
          i++;
       }
@@ -2604,14 +2915,42 @@ genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
 
    cmd_buffer->state.gfx.vb_dirty &= ~vb_emit;
 
+#if GEN_GEN >= 8
+   if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_XFB_ENABLE) {
+      /* We don't need any per-buffer dirty tracking because you're not
+       * allowed to bind different XFB buffers while XFB is enabled.
+       */
+      for (unsigned idx = 0; idx < MAX_XFB_BUFFERS; idx++) {
+         struct anv_xfb_binding *xfb = &cmd_buffer->state.xfb_bindings[idx];
+         anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_SO_BUFFER), sob) {
+#if GEN_GEN < 12
+            sob.SOBufferIndex = idx;
+#else
+            sob._3DCommandOpcode = 0;
+            sob._3DCommandSubOpcode = SO_BUFFER_INDEX_0_CMD + idx;
+#endif
+
+            if (cmd_buffer->state.xfb_enabled && xfb->buffer && xfb->size != 0) {
+               sob.SOBufferEnable = true;
+               sob.MOCS = cmd_buffer->device->isl_dev.mocs.internal,
+               sob.StreamOffsetWriteEnable = false;
+               sob.SurfaceBaseAddress = anv_address_add(xfb->buffer->address,
+                                                        xfb->offset);
+               /* Size is in DWords - 1 */
+               sob.SurfaceSize = xfb->size / 4 - 1;
+            }
+         }
+      }
+
+      /* CNL and later require a CS stall after 3DSTATE_SO_BUFFER */
+      if (GEN_GEN >= 10)
+         cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
+   }
+#endif
+
    if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) {
       anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
 
-      /* The exact descriptor layout is pulled from the pipeline, so we need
-       * to re-emit binding tables on every pipeline change.
-       */
-      cmd_buffer->state.descriptors_dirty |= pipeline->active_stages;
-
       /* If the pipeline changed, we may need to re-allocate push constant
        * space in the URB.
        */
@@ -2635,7 +2974,7 @@ genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
          pc.DepthStallEnable  = true;
          pc.PostSyncOperation = WriteImmediateData;
          pc.Address           =
-            (struct anv_address) { &cmd_buffer->device->workaround_bo, 0 };
+            (struct anv_address) { cmd_buffer->device->workaround_bo, 0 };
       }
    }
 #endif
@@ -2653,7 +2992,7 @@ genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
     */
    uint32_t dirty = 0;
    if (cmd_buffer->state.descriptors_dirty)
-      dirty = flush_descriptor_sets(cmd_buffer);
+      dirty = flush_descriptor_sets(cmd_buffer, pipeline);
 
    if (dirty || cmd_buffer->state.push_constants_dirty) {
       /* Because we're pushing UBOs, we have to push whenever either
@@ -2681,8 +3020,6 @@ genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
       gen7_cmd_buffer_emit_scissor(cmd_buffer);
 
    genX(cmd_buffer_flush_dynamic_state)(cmd_buffer);
-
-   genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
 }
 
 static void
@@ -2698,7 +3035,8 @@ emit_vertex_bo(struct anv_cmd_buffer *cmd_buffer,
          .VertexBufferIndex = index,
          .AddressModifyEnable = true,
          .BufferPitch = 0,
-         .MOCS = anv_mocs_for_bo(cmd_buffer->device, addr.bo),
+         .MOCS = addr.bo ? anv_mocs_for_bo(cmd_buffer->device, addr.bo) : 0,
+         .NullVertexBuffer = size == 0,
 #if (GEN_GEN >= 8)
          .BufferStartingAddress = addr,
          .BufferSize = size
@@ -2707,33 +3045,38 @@ emit_vertex_bo(struct anv_cmd_buffer *cmd_buffer,
          .EndAddress = anv_address_add(addr, size),
 #endif
       });
+
+   genX(cmd_buffer_set_binding_for_gen8_vb_flush)(cmd_buffer,
+                                                  index, addr, size);
 }
 
 static void
 emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer,
                              struct anv_address addr)
 {
-   emit_vertex_bo(cmd_buffer, addr, 8, ANV_SVGS_VB_INDEX);
+   emit_vertex_bo(cmd_buffer, addr, addr.bo ? 8 : 0, ANV_SVGS_VB_INDEX);
 }
 
 static void
 emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer,
                           uint32_t base_vertex, uint32_t base_instance)
 {
-   struct anv_state id_state =
-      anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4);
-
-   ((uint32_t *)id_state.map)[0] = base_vertex;
-   ((uint32_t *)id_state.map)[1] = base_instance;
+   if (base_vertex == 0 && base_instance == 0) {
+      emit_base_vertex_instance_bo(cmd_buffer, ANV_NULL_ADDRESS);
+   } else {
+      struct anv_state id_state =
+         anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4);
 
-   anv_state_flush(cmd_buffer->device, id_state);
+      ((uint32_t *)id_state.map)[0] = base_vertex;
+      ((uint32_t *)id_state.map)[1] = base_instance;
 
-   struct anv_address addr = {
-      .bo = &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
-      .offset = id_state.offset,
-   };
+      struct anv_address addr = {
+         .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
+         .offset = id_state.offset,
+      };
 
-   emit_base_vertex_instance_bo(cmd_buffer, addr);
+      emit_base_vertex_instance_bo(cmd_buffer, addr);
+   }
 }
 
 static void
@@ -2744,16 +3087,33 @@ emit_draw_index(struct anv_cmd_buffer *cmd_buffer, uint32_t draw_index)
 
    ((uint32_t *)state.map)[0] = draw_index;
 
-   anv_state_flush(cmd_buffer->device, state);
-
    struct anv_address addr = {
-      .bo = &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
+      .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
       .offset = state.offset,
    };
 
    emit_vertex_bo(cmd_buffer, addr, 4, ANV_DRAWID_VB_INDEX);
 }
 
+static void
+update_dirty_vbs_for_gen8_vb_flush(struct anv_cmd_buffer *cmd_buffer,
+                                   uint32_t access_type)
+{
+   struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
+   const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
+
+   uint64_t vb_used = pipeline->vb_used;
+   if (vs_prog_data->uses_firstvertex ||
+       vs_prog_data->uses_baseinstance)
+      vb_used |= 1ull << ANV_SVGS_VB_INDEX;
+   if (vs_prog_data->uses_drawid)
+      vb_used |= 1ull << ANV_DRAWID_VB_INDEX;
+
+   genX(cmd_buffer_update_dirty_vbs_for_gen8_vb_flush)(cmd_buffer,
+                                                       access_type == RANDOM,
+                                                       vb_used);
+}
+
 void genX(CmdDraw)(
     VkCommandBuffer                             commandBuffer,
     uint32_t                                    vertexCount,
@@ -2770,18 +3130,27 @@ void genX(CmdDraw)(
 
    genX(cmd_buffer_flush_state)(cmd_buffer);
 
+   if (cmd_buffer->state.conditional_render_enabled)
+      genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
+
    if (vs_prog_data->uses_firstvertex ||
        vs_prog_data->uses_baseinstance)
       emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
    if (vs_prog_data->uses_drawid)
       emit_draw_index(cmd_buffer, 0);
 
+   /* Emitting draw index or vertex index BOs may result in needing
+    * additional VF cache flushes.
+    */
+   genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
+
    /* Our implementation of VK_KHR_multiview uses instancing to draw the
     * different views.  We need to multiply instanceCount by the view count.
     */
    instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
 
    anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
+      prim.PredicateEnable          = cmd_buffer->state.conditional_render_enabled;
       prim.VertexAccessType         = SEQUENTIAL;
       prim.PrimitiveTopologyType    = pipeline->topology;
       prim.VertexCountPerInstance   = vertexCount;
@@ -2791,7 +3160,7 @@ void genX(CmdDraw)(
       prim.BaseVertexLocation       = 0;
    }
 
-   cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_RENDER_TARGET_WRITES;
+   update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
 }
 
 void genX(CmdDrawIndexed)(
@@ -2811,18 +3180,27 @@ void genX(CmdDrawIndexed)(
 
    genX(cmd_buffer_flush_state)(cmd_buffer);
 
+   if (cmd_buffer->state.conditional_render_enabled)
+      genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
+
    if (vs_prog_data->uses_firstvertex ||
        vs_prog_data->uses_baseinstance)
       emit_base_vertex_instance(cmd_buffer, vertexOffset, firstInstance);
    if (vs_prog_data->uses_drawid)
       emit_draw_index(cmd_buffer, 0);
 
+   /* Emitting draw index or vertex index BOs may result in needing
+    * additional VF cache flushes.
+    */
+   genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
+
    /* Our implementation of VK_KHR_multiview uses instancing to draw the
     * different views.  We need to multiply instanceCount by the view count.
     */
    instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
 
    anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
+      prim.PredicateEnable          = cmd_buffer->state.conditional_render_enabled;
       prim.VertexAccessType         = RANDOM;
       prim.PrimitiveTopologyType    = pipeline->topology;
       prim.VertexCountPerInstance   = indexCount;
@@ -2832,7 +3210,7 @@ void genX(CmdDrawIndexed)(
       prim.BaseVertexLocation       = vertexOffset;
    }
 
-   cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_RENDER_TARGET_WRITES;
+   update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, RANDOM);
 }
 
 /* Auto-Draw / Indirect Registers */
@@ -2843,90 +3221,108 @@ void genX(CmdDrawIndexed)(
 #define GEN7_3DPRIM_START_INSTANCE      0x243C
 #define GEN7_3DPRIM_BASE_VERTEX         0x2440
 
-/* MI_MATH only exists on Haswell+ */
-#if GEN_IS_HASWELL || GEN_GEN >= 8
-
-/* Emit dwords to multiply GPR0 by N */
-static void
-build_alu_multiply_gpr0(uint32_t *dw, unsigned *dw_count, uint32_t N)
+void genX(CmdDrawIndirectByteCountEXT)(
+    VkCommandBuffer                             commandBuffer,
+    uint32_t                                    instanceCount,
+    uint32_t                                    firstInstance,
+    VkBuffer                                    counterBuffer,
+    VkDeviceSize                                counterBufferOffset,
+    uint32_t                                    counterOffset,
+    uint32_t                                    vertexStride)
 {
-   VK_OUTARRAY_MAKE(out, dw, dw_count);
+#if GEN_IS_HASWELL || GEN_GEN >= 8
+   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
+   ANV_FROM_HANDLE(anv_buffer, counter_buffer, counterBuffer);
+   struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
+   const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
 
-#define append_alu(opcode, operand1, operand2) \
-   vk_outarray_append(&out, alu_dw) *alu_dw = mi_alu(opcode, operand1, operand2)
+   /* firstVertex is always zero for this draw function */
+   const uint32_t firstVertex = 0;
 
-   assert(N > 0);
-   unsigned top_bit = 31 - __builtin_clz(N);
-   for (int i = top_bit - 1; i >= 0; i--) {
-      /* We get our initial data in GPR0 and we write the final data out to
-       * GPR0 but we use GPR1 as our scratch register.
-       */
-      unsigned src_reg = i == top_bit - 1 ? MI_ALU_REG0 : MI_ALU_REG1;
-      unsigned dst_reg = i == 0 ? MI_ALU_REG0 : MI_ALU_REG1;
+   if (anv_batch_has_error(&cmd_buffer->batch))
+      return;
 
-      /* Shift the current value left by 1 */
-      append_alu(MI_ALU_LOAD, MI_ALU_SRCA, src_reg);
-      append_alu(MI_ALU_LOAD, MI_ALU_SRCB, src_reg);
-      append_alu(MI_ALU_ADD, 0, 0);
+   genX(cmd_buffer_flush_state)(cmd_buffer);
 
-      if (N & (1 << i)) {
-         /* Store ACCU to R1 and add R0 to R1 */
-         append_alu(MI_ALU_STORE, MI_ALU_REG1, MI_ALU_ACCU);
-         append_alu(MI_ALU_LOAD, MI_ALU_SRCA, MI_ALU_REG0);
-         append_alu(MI_ALU_LOAD, MI_ALU_SRCB, MI_ALU_REG1);
-         append_alu(MI_ALU_ADD, 0, 0);
-      }
+   if (vs_prog_data->uses_firstvertex ||
+       vs_prog_data->uses_baseinstance)
+      emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
+   if (vs_prog_data->uses_drawid)
+      emit_draw_index(cmd_buffer, 0);
 
-      append_alu(MI_ALU_STORE, dst_reg, MI_ALU_ACCU);
-   }
+   /* Emitting draw index or vertex index BOs may result in needing
+    * additional VF cache flushes.
+    */
+   genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
 
-#undef append_alu
-}
+   /* Our implementation of VK_KHR_multiview uses instancing to draw the
+    * different views.  We need to multiply instanceCount by the view count.
+    */
+   instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
 
-static void
-emit_mul_gpr0(struct anv_batch *batch, uint32_t N)
-{
-   uint32_t num_dwords;
-   build_alu_multiply_gpr0(NULL, &num_dwords, N);
+   struct gen_mi_builder b;
+   gen_mi_builder_init(&b, &cmd_buffer->batch);
+   struct gen_mi_value count =
+      gen_mi_mem32(anv_address_add(counter_buffer->address,
+                                   counterBufferOffset));
+   if (counterOffset)
+      count = gen_mi_isub(&b, count, gen_mi_imm(counterOffset));
+   count = gen_mi_udiv32_imm(&b, count, vertexStride);
+   gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_VERTEX_COUNT), count);
+
+   gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_VERTEX),
+                    gen_mi_imm(firstVertex));
+   gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_INSTANCE_COUNT),
+                    gen_mi_imm(instanceCount));
+   gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE),
+                    gen_mi_imm(firstInstance));
+   gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX), gen_mi_imm(0));
 
-   uint32_t *dw = anv_batch_emitn(batch, 1 + num_dwords, GENX(MI_MATH));
-   build_alu_multiply_gpr0(dw + 1, &num_dwords, N);
-}
+   anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
+      prim.IndirectParameterEnable  = true;
+      prim.VertexAccessType         = SEQUENTIAL;
+      prim.PrimitiveTopologyType    = pipeline->topology;
+   }
 
+   update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
 #endif /* GEN_IS_HASWELL || GEN_GEN >= 8 */
+}
 
 static void
 load_indirect_parameters(struct anv_cmd_buffer *cmd_buffer,
                          struct anv_address addr,
                          bool indexed)
 {
-   struct anv_batch *batch = &cmd_buffer->batch;
+   struct gen_mi_builder b;
+   gen_mi_builder_init(&b, &cmd_buffer->batch);
 
-   emit_lrm(batch, GEN7_3DPRIM_VERTEX_COUNT, anv_address_add(addr, 0));
+   gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_VERTEX_COUNT),
+                    gen_mi_mem32(anv_address_add(addr, 0)));
 
+   struct gen_mi_value instance_count = gen_mi_mem32(anv_address_add(addr, 4));
    unsigned view_count = anv_subpass_view_count(cmd_buffer->state.subpass);
    if (view_count > 1) {
 #if GEN_IS_HASWELL || GEN_GEN >= 8
-      emit_lrm(batch, CS_GPR(0), anv_address_add(addr, 4));
-      emit_mul_gpr0(batch, view_count);
-      emit_lrr(batch, GEN7_3DPRIM_INSTANCE_COUNT, CS_GPR(0));
+      instance_count = gen_mi_imul_imm(&b, instance_count, view_count);
 #else
       anv_finishme("Multiview + indirect draw requires MI_MATH; "
                    "MI_MATH is not supported on Ivy Bridge");
-      emit_lrm(batch, GEN7_3DPRIM_INSTANCE_COUNT, anv_address_add(addr, 4));
 #endif
-   } else {
-      emit_lrm(batch, GEN7_3DPRIM_INSTANCE_COUNT, anv_address_add(addr, 4));
    }
+   gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_INSTANCE_COUNT), instance_count);
 
-   emit_lrm(batch, GEN7_3DPRIM_START_VERTEX, anv_address_add(addr, 8));
+   gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_VERTEX),
+                    gen_mi_mem32(anv_address_add(addr, 8)));
 
    if (indexed) {
-      emit_lrm(batch, GEN7_3DPRIM_BASE_VERTEX, anv_address_add(addr, 12));
-      emit_lrm(batch, GEN7_3DPRIM_START_INSTANCE, anv_address_add(addr, 16));
+      gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX),
+                       gen_mi_mem32(anv_address_add(addr, 12)));
+      gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE),
+                       gen_mi_mem32(anv_address_add(addr, 16)));
    } else {
-      emit_lrm(batch, GEN7_3DPRIM_START_INSTANCE, anv_address_add(addr, 12));
-      emit_lri(batch, GEN7_3DPRIM_BASE_VERTEX, 0);
+      gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE),
+                       gen_mi_mem32(anv_address_add(addr, 12)));
+      gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX), gen_mi_imm(0));
    }
 }
 
@@ -2947,6 +3343,9 @@ void genX(CmdDrawIndirect)(
 
    genX(cmd_buffer_flush_state)(cmd_buffer);
 
+   if (cmd_buffer->state.conditional_render_enabled)
+      genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
+
    for (uint32_t i = 0; i < drawCount; i++) {
       struct anv_address draw = anv_address_add(buffer->address, offset);
 
@@ -2956,18 +3355,24 @@ void genX(CmdDrawIndirect)(
       if (vs_prog_data->uses_drawid)
          emit_draw_index(cmd_buffer, i);
 
+      /* Emitting draw index or vertex index BOs may result in needing
+       * additional VF cache flushes.
+       */
+      genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
+
       load_indirect_parameters(cmd_buffer, draw, false);
 
       anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
          prim.IndirectParameterEnable  = true;
+         prim.PredicateEnable          = cmd_buffer->state.conditional_render_enabled;
          prim.VertexAccessType         = SEQUENTIAL;
          prim.PrimitiveTopologyType    = pipeline->topology;
       }
 
+      update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
+
       offset += stride;
    }
-
-   cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_RENDER_TARGET_WRITES;
 }
 
 void genX(CmdDrawIndexedIndirect)(
@@ -2987,6 +3392,9 @@ void genX(CmdDrawIndexedIndirect)(
 
    genX(cmd_buffer_flush_state)(cmd_buffer);
 
+   if (cmd_buffer->state.conditional_render_enabled)
+      genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
+
    for (uint32_t i = 0; i < drawCount; i++) {
       struct anv_address draw = anv_address_add(buffer->address, offset);
 
@@ -2997,94 +3405,371 @@ void genX(CmdDrawIndexedIndirect)(
       if (vs_prog_data->uses_drawid)
          emit_draw_index(cmd_buffer, i);
 
+      /* Emitting draw index or vertex index BOs may result in needing
+       * additional VF cache flushes.
+       */
+      genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
+
       load_indirect_parameters(cmd_buffer, draw, true);
 
       anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
          prim.IndirectParameterEnable  = true;
+         prim.PredicateEnable          = cmd_buffer->state.conditional_render_enabled;
          prim.VertexAccessType         = RANDOM;
          prim.PrimitiveTopologyType    = pipeline->topology;
       }
 
+      update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, RANDOM);
+
       offset += stride;
    }
-
-   cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_RENDER_TARGET_WRITES;
 }
 
-static VkResult
-flush_compute_descriptor_set(struct anv_cmd_buffer *cmd_buffer)
-{
-   struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
-   struct anv_state surfaces = { 0, }, samplers = { 0, };
-   VkResult result;
-
-   result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
-   if (result != VK_SUCCESS) {
-      assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
+#define TMP_DRAW_COUNT_REG 0x2670 /* MI_ALU_REG14 */
 
-      result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
-      if (result != VK_SUCCESS)
-         return result;
+static void
+prepare_for_draw_count_predicate(struct anv_cmd_buffer *cmd_buffer,
+                                 struct anv_address count_address,
+                                 const bool conditional_render_enabled)
+{
+   struct gen_mi_builder b;
+   gen_mi_builder_init(&b, &cmd_buffer->batch);
 
-      /* Re-emit state base addresses so we get the new surface state base
-       * address before we start emitting binding tables etc.
+   if (conditional_render_enabled) {
+#if GEN_GEN >= 8 || GEN_IS_HASWELL
+      gen_mi_store(&b, gen_mi_reg64(TMP_DRAW_COUNT_REG),
+                       gen_mi_mem32(count_address));
+#endif
+   } else {
+      /* Upload the current draw count from the draw parameters buffer to
+       * MI_PREDICATE_SRC0.
        */
-      genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
-
-      result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
-      if (result != VK_SUCCESS) {
-         anv_batch_set_error(&cmd_buffer->batch, result);
-         return result;
-      }
-   }
+      gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
+                       gen_mi_mem32(count_address));
 
-   result = emit_samplers(cmd_buffer, MESA_SHADER_COMPUTE, &samplers);
-   if (result != VK_SUCCESS) {
-      anv_batch_set_error(&cmd_buffer->batch, result);
-      return result;
+      gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC1 + 4), gen_mi_imm(0));
    }
+}
 
-   uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
-   struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
-      .BindingTablePointer = surfaces.offset,
-      .SamplerStatePointer = samplers.offset,
-   };
-   GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc);
+static void
+emit_draw_count_predicate(struct anv_cmd_buffer *cmd_buffer,
+                          uint32_t draw_index)
+{
+   struct gen_mi_builder b;
+   gen_mi_builder_init(&b, &cmd_buffer->batch);
 
-   struct anv_state state =
-      anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw,
-                                   pipeline->interface_descriptor_data,
-                                   GENX(INTERFACE_DESCRIPTOR_DATA_length),
-                                   64);
+   /* Upload the index of the current primitive to MI_PREDICATE_SRC1. */
+   gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC1), gen_mi_imm(draw_index));
 
-   uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
-   anv_batch_emit(&cmd_buffer->batch,
-                  GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) {
-      mid.InterfaceDescriptorTotalLength        = size;
-      mid.InterfaceDescriptorDataStartAddress   = state.offset;
+   if (draw_index == 0) {
+      anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
+         mip.LoadOperation    = LOAD_LOADINV;
+         mip.CombineOperation = COMBINE_SET;
+         mip.CompareOperation = COMPARE_SRCS_EQUAL;
+      }
+   } else {
+      /* While draw_index < draw_count the predicate's result will be
+       *  (draw_index == draw_count) ^ TRUE = TRUE
+       * When draw_index == draw_count the result is
+       *  (TRUE) ^ TRUE = FALSE
+       * After this all results will be:
+       *  (FALSE) ^ FALSE = FALSE
+       */
+      anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
+         mip.LoadOperation    = LOAD_LOAD;
+         mip.CombineOperation = COMBINE_XOR;
+         mip.CompareOperation = COMPARE_SRCS_EQUAL;
+      }
    }
-
-   return VK_SUCCESS;
 }
 
-void
-genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
+#if GEN_GEN >= 8 || GEN_IS_HASWELL
+static void
+emit_draw_count_predicate_with_conditional_render(
+                          struct anv_cmd_buffer *cmd_buffer,
+                          uint32_t draw_index)
 {
-   struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
-   MAYBE_UNUSED VkResult result;
+   struct gen_mi_builder b;
+   gen_mi_builder_init(&b, &cmd_buffer->batch);
 
-   assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT);
+   struct gen_mi_value pred = gen_mi_ult(&b, gen_mi_imm(draw_index),
+                                         gen_mi_reg64(TMP_DRAW_COUNT_REG));
+   pred = gen_mi_iand(&b, pred, gen_mi_reg64(ANV_PREDICATE_RESULT_REG));
 
-   genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
+#if GEN_GEN >= 8
+   gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_RESULT), pred);
+#else
+   /* MI_PREDICATE_RESULT is not whitelisted in i915 command parser
+    * so we emit MI_PREDICATE to set it.
+    */
 
-   genX(flush_pipeline_select_gpgpu)(cmd_buffer);
+   gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), pred);
+   gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
 
-   if (cmd_buffer->state.compute.pipeline_dirty) {
-      /* From the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE:
-       *
-       *    "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
-       *    the only bits that are changed are scoreboard related: Scoreboard
-       *    Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
+   anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
+      mip.LoadOperation    = LOAD_LOADINV;
+      mip.CombineOperation = COMBINE_SET;
+      mip.CompareOperation = COMPARE_SRCS_EQUAL;
+   }
+#endif
+}
+#endif
+
+void genX(CmdDrawIndirectCount)(
+    VkCommandBuffer                             commandBuffer,
+    VkBuffer                                    _buffer,
+    VkDeviceSize                                offset,
+    VkBuffer                                    _countBuffer,
+    VkDeviceSize                                countBufferOffset,
+    uint32_t                                    maxDrawCount,
+    uint32_t                                    stride)
+{
+   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
+   ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
+   ANV_FROM_HANDLE(anv_buffer, count_buffer, _countBuffer);
+   struct anv_cmd_state *cmd_state = &cmd_buffer->state;
+   struct anv_pipeline *pipeline = cmd_state->gfx.base.pipeline;
+   const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
+
+   if (anv_batch_has_error(&cmd_buffer->batch))
+      return;
+
+   genX(cmd_buffer_flush_state)(cmd_buffer);
+
+   struct anv_address count_address =
+      anv_address_add(count_buffer->address, countBufferOffset);
+
+   prepare_for_draw_count_predicate(cmd_buffer, count_address,
+                                    cmd_state->conditional_render_enabled);
+
+   for (uint32_t i = 0; i < maxDrawCount; i++) {
+      struct anv_address draw = anv_address_add(buffer->address, offset);
+
+#if GEN_GEN >= 8 || GEN_IS_HASWELL
+      if (cmd_state->conditional_render_enabled) {
+         emit_draw_count_predicate_with_conditional_render(cmd_buffer, i);
+      } else {
+         emit_draw_count_predicate(cmd_buffer, i);
+      }
+#else
+      emit_draw_count_predicate(cmd_buffer, i);
+#endif
+
+      if (vs_prog_data->uses_firstvertex ||
+          vs_prog_data->uses_baseinstance)
+         emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8));
+      if (vs_prog_data->uses_drawid)
+         emit_draw_index(cmd_buffer, i);
+
+      /* Emitting draw index or vertex index BOs may result in needing
+       * additional VF cache flushes.
+       */
+      genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
+
+      load_indirect_parameters(cmd_buffer, draw, false);
+
+      anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
+         prim.IndirectParameterEnable  = true;
+         prim.PredicateEnable          = true;
+         prim.VertexAccessType         = SEQUENTIAL;
+         prim.PrimitiveTopologyType    = pipeline->topology;
+      }
+
+      update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
+
+      offset += stride;
+   }
+}
+
+void genX(CmdDrawIndexedIndirectCount)(
+    VkCommandBuffer                             commandBuffer,
+    VkBuffer                                    _buffer,
+    VkDeviceSize                                offset,
+    VkBuffer                                    _countBuffer,
+    VkDeviceSize                                countBufferOffset,
+    uint32_t                                    maxDrawCount,
+    uint32_t                                    stride)
+{
+   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
+   ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
+   ANV_FROM_HANDLE(anv_buffer, count_buffer, _countBuffer);
+   struct anv_cmd_state *cmd_state = &cmd_buffer->state;
+   struct anv_pipeline *pipeline = cmd_state->gfx.base.pipeline;
+   const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
+
+   if (anv_batch_has_error(&cmd_buffer->batch))
+      return;
+
+   genX(cmd_buffer_flush_state)(cmd_buffer);
+
+   struct anv_address count_address =
+      anv_address_add(count_buffer->address, countBufferOffset);
+
+   prepare_for_draw_count_predicate(cmd_buffer, count_address,
+                                    cmd_state->conditional_render_enabled);
+
+   for (uint32_t i = 0; i < maxDrawCount; i++) {
+      struct anv_address draw = anv_address_add(buffer->address, offset);
+
+#if GEN_GEN >= 8 || GEN_IS_HASWELL
+      if (cmd_state->conditional_render_enabled) {
+         emit_draw_count_predicate_with_conditional_render(cmd_buffer, i);
+      } else {
+         emit_draw_count_predicate(cmd_buffer, i);
+      }
+#else
+      emit_draw_count_predicate(cmd_buffer, i);
+#endif
+
+      /* TODO: We need to stomp base vertex to 0 somehow */
+      if (vs_prog_data->uses_firstvertex ||
+          vs_prog_data->uses_baseinstance)
+         emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12));
+      if (vs_prog_data->uses_drawid)
+         emit_draw_index(cmd_buffer, i);
+
+      /* Emitting draw index or vertex index BOs may result in needing
+       * additional VF cache flushes.
+       */
+      genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
+
+      load_indirect_parameters(cmd_buffer, draw, true);
+
+      anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
+         prim.IndirectParameterEnable  = true;
+         prim.PredicateEnable          = true;
+         prim.VertexAccessType         = RANDOM;
+         prim.PrimitiveTopologyType    = pipeline->topology;
+      }
+
+      update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, RANDOM);
+
+      offset += stride;
+   }
+}
+
+void genX(CmdBeginTransformFeedbackEXT)(
+    VkCommandBuffer                             commandBuffer,
+    uint32_t                                    firstCounterBuffer,
+    uint32_t                                    counterBufferCount,
+    const VkBuffer*                             pCounterBuffers,
+    const VkDeviceSize*                         pCounterBufferOffsets)
+{
+   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
+
+   assert(firstCounterBuffer < MAX_XFB_BUFFERS);
+   assert(counterBufferCount <= MAX_XFB_BUFFERS);
+   assert(firstCounterBuffer + counterBufferCount <= MAX_XFB_BUFFERS);
+
+   /* From the SKL PRM Vol. 2c, SO_WRITE_OFFSET:
+    *
+    *    "Ssoftware must ensure that no HW stream output operations can be in
+    *    process or otherwise pending at the point that the MI_LOAD/STORE
+    *    commands are processed. This will likely require a pipeline flush."
+    */
+   cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
+   genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
+
+   for (uint32_t idx = 0; idx < MAX_XFB_BUFFERS; idx++) {
+      /* If we have a counter buffer, this is a resume so we need to load the
+       * value into the streamout offset register.  Otherwise, this is a begin
+       * and we need to reset it to zero.
+       */
+      if (pCounterBuffers &&
+          idx >= firstCounterBuffer &&
+          idx - firstCounterBuffer < counterBufferCount &&
+          pCounterBuffers[idx - firstCounterBuffer] != VK_NULL_HANDLE) {
+         uint32_t cb_idx = idx - firstCounterBuffer;
+         ANV_FROM_HANDLE(anv_buffer, counter_buffer, pCounterBuffers[cb_idx]);
+         uint64_t offset = pCounterBufferOffsets ?
+                           pCounterBufferOffsets[cb_idx] : 0;
+
+         anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
+            lrm.RegisterAddress  = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
+            lrm.MemoryAddress    = anv_address_add(counter_buffer->address,
+                                                   offset);
+         }
+      } else {
+         anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
+            lri.RegisterOffset   = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
+            lri.DataDWord        = 0;
+         }
+      }
+   }
+
+   cmd_buffer->state.xfb_enabled = true;
+   cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_XFB_ENABLE;
+}
+
+void genX(CmdEndTransformFeedbackEXT)(
+    VkCommandBuffer                             commandBuffer,
+    uint32_t                                    firstCounterBuffer,
+    uint32_t                                    counterBufferCount,
+    const VkBuffer*                             pCounterBuffers,
+    const VkDeviceSize*                         pCounterBufferOffsets)
+{
+   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
+
+   assert(firstCounterBuffer < MAX_XFB_BUFFERS);
+   assert(counterBufferCount <= MAX_XFB_BUFFERS);
+   assert(firstCounterBuffer + counterBufferCount <= MAX_XFB_BUFFERS);
+
+   /* From the SKL PRM Vol. 2c, SO_WRITE_OFFSET:
+    *
+    *    "Ssoftware must ensure that no HW stream output operations can be in
+    *    process or otherwise pending at the point that the MI_LOAD/STORE
+    *    commands are processed. This will likely require a pipeline flush."
+    */
+   cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
+   genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
+
+   for (uint32_t cb_idx = 0; cb_idx < counterBufferCount; cb_idx++) {
+      unsigned idx = firstCounterBuffer + cb_idx;
+
+      /* If we have a counter buffer, this is a resume so we need to load the
+       * value into the streamout offset register.  Otherwise, this is a begin
+       * and we need to reset it to zero.
+       */
+      if (pCounterBuffers &&
+          cb_idx < counterBufferCount &&
+          pCounterBuffers[cb_idx] != VK_NULL_HANDLE) {
+         ANV_FROM_HANDLE(anv_buffer, counter_buffer, pCounterBuffers[cb_idx]);
+         uint64_t offset = pCounterBufferOffsets ?
+                           pCounterBufferOffsets[cb_idx] : 0;
+
+         anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
+            srm.MemoryAddress    = anv_address_add(counter_buffer->address,
+                                                   offset);
+            srm.RegisterAddress  = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
+         }
+      }
+   }
+
+   cmd_buffer->state.xfb_enabled = false;
+   cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_XFB_ENABLE;
+}
+
+void
+genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
+{
+   struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
+
+   assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT);
+
+   genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
+
+   genX(flush_pipeline_select_gpgpu)(cmd_buffer);
+
+#if GEN_GEN >= 12
+   genX(cmd_buffer_aux_map_state)(cmd_buffer);
+#endif
+
+   if (cmd_buffer->state.compute.pipeline_dirty) {
+      /* From the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE:
+       *
+       *    "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
+       *    the only bits that are changed are scoreboard related: Scoreboard
+       *    Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
        *    these scoreboard related states, a MEDIA_STATE_FLUSH is
        *    sufficient."
        */
@@ -3092,16 +3777,38 @@ genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
       genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
 
       anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
+
+      /* The workgroup size of the pipeline affects our push constant layout
+       * so flag push constants as dirty if we change the pipeline.
+       */
+      cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
    }
 
    if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
        cmd_buffer->state.compute.pipeline_dirty) {
-      /* FIXME: figure out descriptors for gen7 */
-      result = flush_compute_descriptor_set(cmd_buffer);
-      if (result != VK_SUCCESS)
-         return;
+      flush_descriptor_sets(cmd_buffer, pipeline);
+
+      uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
+      struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
+         .BindingTablePointer =
+            cmd_buffer->state.binding_tables[MESA_SHADER_COMPUTE].offset,
+         .SamplerStatePointer =
+            cmd_buffer->state.samplers[MESA_SHADER_COMPUTE].offset,
+      };
+      GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc);
+
+      struct anv_state state =
+         anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw,
+                                      pipeline->interface_descriptor_data,
+                                      GENX(INTERFACE_DESCRIPTOR_DATA_length),
+                                      64);
 
-      cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
+      uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
+      anv_batch_emit(&cmd_buffer->batch,
+                     GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) {
+         mid.InterfaceDescriptorTotalLength        = size;
+         mid.InterfaceDescriptorDataStartAddress   = state.offset;
+      }
    }
 
    if (cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_COMPUTE_BIT) {
@@ -3151,22 +3858,14 @@ anv_cmd_buffer_push_base_group_id(struct anv_cmd_buffer *cmd_buffer,
    if (anv_batch_has_error(&cmd_buffer->batch))
       return;
 
-   VkResult result =
-      anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, MESA_SHADER_COMPUTE,
-                                                base_work_group_id);
-   if (result != VK_SUCCESS) {
-      cmd_buffer->batch.status = result;
-      return;
-   }
-
    struct anv_push_constants *push =
-      cmd_buffer->state.push_constants[MESA_SHADER_COMPUTE];
-   if (push->base_work_group_id[0] != baseGroupX ||
-       push->base_work_group_id[1] != baseGroupY ||
-       push->base_work_group_id[2] != baseGroupZ) {
-      push->base_work_group_id[0] = baseGroupX;
-      push->base_work_group_id[1] = baseGroupY;
-      push->base_work_group_id[2] = baseGroupZ;
+      &cmd_buffer->state.push_constants[MESA_SHADER_COMPUTE];
+   if (push->cs.base_work_group_id[0] != baseGroupX ||
+       push->cs.base_work_group_id[1] != baseGroupY ||
+       push->cs.base_work_group_id[2] != baseGroupZ) {
+      push->cs.base_work_group_id[0] = baseGroupX;
+      push->cs.base_work_group_id[1] = baseGroupY;
+      push->cs.base_work_group_id[2] = baseGroupZ;
 
       cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
    }
@@ -3207,16 +3906,22 @@ void genX(CmdDispatchBase)(
       sizes[0] = groupCountX;
       sizes[1] = groupCountY;
       sizes[2] = groupCountZ;
-      anv_state_flush(cmd_buffer->device, state);
       cmd_buffer->state.compute.num_workgroups = (struct anv_address) {
-         .bo = &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
+         .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
          .offset = state.offset,
       };
+
+      /* The num_workgroups buffer goes in the binding table */
+      cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
    }
 
    genX(cmd_buffer_flush_compute_state)(cmd_buffer);
 
+   if (cmd_buffer->state.conditional_render_enabled)
+      genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
+
    anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER), ggw) {
+      ggw.PredicateEnable              = cmd_buffer->state.conditional_render_enabled;
       ggw.SIMDSize                     = prog_data->simd_size / 16;
       ggw.ThreadDepthCounterMaximum    = 0;
       ggw.ThreadHeightCounterMaximum   = 0;
@@ -3258,45 +3963,46 @@ void genX(CmdDispatchIndirect)(
       return;
 #endif
 
-   if (prog_data->uses_num_work_groups)
+   if (prog_data->uses_num_work_groups) {
       cmd_buffer->state.compute.num_workgroups = addr;
 
+      /* The num_workgroups buffer goes in the binding table */
+      cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
+   }
+
    genX(cmd_buffer_flush_compute_state)(cmd_buffer);
 
-   emit_lrm(batch, GPGPU_DISPATCHDIMX, anv_address_add(addr, 0));
-   emit_lrm(batch, GPGPU_DISPATCHDIMY, anv_address_add(addr, 4));
-   emit_lrm(batch, GPGPU_DISPATCHDIMZ, anv_address_add(addr, 8));
+   struct gen_mi_builder b;
+   gen_mi_builder_init(&b, &cmd_buffer->batch);
 
-#if GEN_GEN <= 7
-   /* Clear upper 32-bits of SRC0 and all 64-bits of SRC1 */
-   emit_lri(batch, MI_PREDICATE_SRC0 + 4, 0);
-   emit_lri(batch, MI_PREDICATE_SRC1 + 0, 0);
-   emit_lri(batch, MI_PREDICATE_SRC1 + 4, 0);
+   struct gen_mi_value size_x = gen_mi_mem32(anv_address_add(addr, 0));
+   struct gen_mi_value size_y = gen_mi_mem32(anv_address_add(addr, 4));
+   struct gen_mi_value size_z = gen_mi_mem32(anv_address_add(addr, 8));
 
-   /* Load compute_dispatch_indirect_x_size into SRC0 */
-   emit_lrm(batch, MI_PREDICATE_SRC0, anv_address_add(addr, 0));
+   gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMX), size_x);
+   gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMY), size_y);
+   gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMZ), size_z);
 
+#if GEN_GEN <= 7
    /* predicate = (compute_dispatch_indirect_x_size == 0); */
+   gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), size_x);
+   gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
    anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
       mip.LoadOperation    = LOAD_LOAD;
       mip.CombineOperation = COMBINE_SET;
       mip.CompareOperation = COMPARE_SRCS_EQUAL;
    }
 
-   /* Load compute_dispatch_indirect_y_size into SRC0 */
-   emit_lrm(batch, MI_PREDICATE_SRC0, anv_address_add(addr, 4));
-
    /* predicate |= (compute_dispatch_indirect_y_size == 0); */
+   gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0), size_y);
    anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
       mip.LoadOperation    = LOAD_LOAD;
       mip.CombineOperation = COMBINE_OR;
       mip.CompareOperation = COMPARE_SRCS_EQUAL;
    }
 
-   /* Load compute_dispatch_indirect_z_size into SRC0 */
-   emit_lrm(batch, MI_PREDICATE_SRC0, anv_address_add(addr, 8));
-
    /* predicate |= (compute_dispatch_indirect_z_size == 0); */
+   gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0), size_z);
    anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
       mip.LoadOperation    = LOAD_LOAD;
       mip.CombineOperation = COMBINE_OR;
@@ -3304,17 +4010,34 @@ void genX(CmdDispatchIndirect)(
    }
 
    /* predicate = !predicate; */
-#define COMPARE_FALSE                           1
    anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
       mip.LoadOperation    = LOAD_LOADINV;
       mip.CombineOperation = COMBINE_OR;
       mip.CompareOperation = COMPARE_FALSE;
    }
+
+#if GEN_IS_HASWELL
+   if (cmd_buffer->state.conditional_render_enabled) {
+      /* predicate &= !(conditional_rendering_predicate == 0); */
+      gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0),
+                       gen_mi_reg32(ANV_PREDICATE_RESULT_REG));
+      anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
+         mip.LoadOperation    = LOAD_LOADINV;
+         mip.CombineOperation = COMBINE_AND;
+         mip.CompareOperation = COMPARE_SRCS_EQUAL;
+      }
+   }
+#endif
+
+#else /* GEN_GEN > 7 */
+   if (cmd_buffer->state.conditional_render_enabled)
+      genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
 #endif
 
    anv_batch_emit(batch, GENX(GPGPU_WALKER), ggw) {
       ggw.IndirectParameterEnable      = true;
-      ggw.PredicateEnable              = GEN_GEN <= 7;
+      ggw.PredicateEnable              = GEN_GEN <= 7 ||
+                                         cmd_buffer->state.conditional_render_enabled;
       ggw.SIMDSize                     = prog_data->simd_size / 16;
       ggw.ThreadDepthCounterMaximum    = 0;
       ggw.ThreadHeightCounterMaximum   = 0;
@@ -3349,6 +4072,32 @@ genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
       anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
 #endif
 
+#if GEN_GEN == 9
+   if (pipeline == _3D) {
+      /* There is a mid-object preemption workaround which requires you to
+       * re-emit MEDIA_VFE_STATE after switching from GPGPU to 3D.  However,
+       * even without preemption, we have issues with geometry flickering when
+       * GPGPU and 3D are back-to-back and this seems to fix it.  We don't
+       * really know why.
+       */
+      const uint32_t subslices =
+         MAX2(cmd_buffer->device->instance->physicalDevice.subslice_total, 1);
+      anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_VFE_STATE), vfe) {
+         vfe.MaximumNumberofThreads =
+            devinfo->max_cs_threads * subslices - 1;
+         vfe.NumberofURBEntries     = 2;
+         vfe.URBEntryAllocationSize = 2;
+      }
+
+      /* We just emitted a dummy MEDIA_VFE_STATE so now that packet is
+       * invalid. Set the compute pipeline to dirty to force a re-emit of the
+       * pipeline in case we get back-to-back dispatch calls with the same
+       * pipeline and a PIPELINE_SELECT in between.
+       */
+      cmd_buffer->state.compute.pipeline_dirty = true;
+   }
+#endif
+
    /* From "BXML Â» GT Â» MI Â» vol1a GPU Overview Â» [Instruction]
     * PIPELINE_SELECT [DevBWR+]":
     *
@@ -3365,6 +4114,14 @@ genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
       pc.DCFlushEnable                 = true;
       pc.PostSyncOperation             = NoWrite;
       pc.CommandStreamerStallEnable    = true;
+#if GEN_GEN >= 12
+      pc.TileCacheFlushEnable = true;
+
+      /* GEN:BUG:1409600907: "PIPE_CONTROL with Depth Stall Enable bit must be
+       * set with any PIPE_CONTROL with Depth Flush Enable bit set.
+       */
+      pc.DepthStallEnable = true;
+#endif
    }
 
    anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
@@ -3373,6 +4130,9 @@ genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
       pc.StateCacheInvalidationEnable     = true;
       pc.InstructionCacheInvalidateEnable = true;
       pc.PostSyncOperation                = NoWrite;
+#if GEN_GEN >= 12
+      pc.TileCacheFlushEnable = true;
+#endif
    }
 
    anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) {
@@ -3404,45 +4164,254 @@ genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
    cmd_buffer->state.current_pipeline = pipeline;
 }
 
-void
-genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer)
-{
-   genX(flush_pipeline_select)(cmd_buffer, _3D);
-}
+void
+genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer)
+{
+   genX(flush_pipeline_select)(cmd_buffer, _3D);
+}
+
+void
+genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer)
+{
+   genX(flush_pipeline_select)(cmd_buffer, GPGPU);
+}
+
+void
+genX(cmd_buffer_emit_gen7_depth_flush)(struct anv_cmd_buffer *cmd_buffer)
+{
+   if (GEN_GEN >= 8)
+      return;
+
+   /* From the Haswell PRM, documentation for 3DSTATE_DEPTH_BUFFER:
+    *
+    *    "Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any
+    *    combination of 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS,
+    *    3DSTATE_STENCIL_BUFFER, 3DSTATE_HIER_DEPTH_BUFFER) SW must first
+    *    issue a pipelined depth stall (PIPE_CONTROL with Depth Stall bit
+    *    set), followed by a pipelined depth cache flush (PIPE_CONTROL with
+    *    Depth Flush Bit set, followed by another pipelined depth stall
+    *    (PIPE_CONTROL with Depth Stall Bit set), unless SW can otherwise
+    *    guarantee that the pipeline from WM onwards is already flushed (e.g.,
+    *    via a preceding MI_FLUSH)."
+    */
+   anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
+      pipe.DepthStallEnable = true;
+   }
+   anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
+      pipe.DepthCacheFlushEnable = true;
+#if GEN_GEN >= 12
+      pipe.TileCacheFlushEnable = true;
+#endif
+   }
+   anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
+      pipe.DepthStallEnable = true;
+   }
+}
+
+/* From the Skylake PRM, 3DSTATE_VERTEX_BUFFERS:
+ *
+ *    "The VF cache needs to be invalidated before binding and then using
+ *    Vertex Buffers that overlap with any previously bound Vertex Buffer
+ *    (at a 64B granularity) since the last invalidation.  A VF cache
+ *    invalidate is performed by setting the "VF Cache Invalidation Enable"
+ *    bit in PIPE_CONTROL."
+ *
+ * This is implemented by carefully tracking all vertex and index buffer
+ * bindings and flushing if the cache ever ends up with a range in the cache
+ * that would exceed 4 GiB.  This is implemented in three parts:
+ *
+ *    1. genX(cmd_buffer_set_binding_for_gen8_vb_flush)() which must be called
+ *       every time a 3DSTATE_VERTEX_BUFFER packet is emitted and informs the
+ *       tracking code of the new binding.  If this new binding would cause
+ *       the cache to have a too-large range on the next draw call, a pipeline
+ *       stall and VF cache invalidate are added to pending_pipeline_bits.
+ *
+ *    2. genX(cmd_buffer_apply_pipe_flushes)() resets the cache tracking to
+ *       empty whenever we emit a VF invalidate.
+ *
+ *    3. genX(cmd_buffer_update_dirty_vbs_for_gen8_vb_flush)() must be called
+ *       after every 3DPRIMITIVE and copies the bound range into the dirty
+ *       range for each used buffer.  This has to be a separate step because
+ *       we don't always re-bind all buffers and so 1. can't know which
+ *       buffers are actually bound.
+ */
+void
+genX(cmd_buffer_set_binding_for_gen8_vb_flush)(struct anv_cmd_buffer *cmd_buffer,
+                                               int vb_index,
+                                               struct anv_address vb_address,
+                                               uint32_t vb_size)
+{
+   if (GEN_GEN < 8 || GEN_GEN > 9 ||
+       !cmd_buffer->device->instance->physicalDevice.use_softpin)
+      return;
+
+   struct anv_vb_cache_range *bound, *dirty;
+   if (vb_index == -1) {
+      bound = &cmd_buffer->state.gfx.ib_bound_range;
+      dirty = &cmd_buffer->state.gfx.ib_dirty_range;
+   } else {
+      assert(vb_index >= 0);
+      assert(vb_index < ARRAY_SIZE(cmd_buffer->state.gfx.vb_bound_ranges));
+      assert(vb_index < ARRAY_SIZE(cmd_buffer->state.gfx.vb_dirty_ranges));
+      bound = &cmd_buffer->state.gfx.vb_bound_ranges[vb_index];
+      dirty = &cmd_buffer->state.gfx.vb_dirty_ranges[vb_index];
+   }
+
+   if (vb_size == 0) {
+      bound->start = 0;
+      bound->end = 0;
+      return;
+   }
+
+   assert(vb_address.bo && (vb_address.bo->flags & EXEC_OBJECT_PINNED));
+   bound->start = gen_48b_address(anv_address_physical(vb_address));
+   bound->end = bound->start + vb_size;
+   assert(bound->end > bound->start); /* No overflow */
+
+   /* Align everything to a cache line */
+   bound->start &= ~(64ull - 1ull);
+   bound->end = align_u64(bound->end, 64);
+
+   /* Compute the dirty range */
+   dirty->start = MIN2(dirty->start, bound->start);
+   dirty->end = MAX2(dirty->end, bound->end);
+
+   /* If our range is larger than 32 bits, we have to flush */
+   assert(bound->end - bound->start <= (1ull << 32));
+   if (dirty->end - dirty->start > (1ull << 32)) {
+      cmd_buffer->state.pending_pipe_bits |=
+         ANV_PIPE_CS_STALL_BIT | ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
+   }
+}
+
+void
+genX(cmd_buffer_update_dirty_vbs_for_gen8_vb_flush)(struct anv_cmd_buffer *cmd_buffer,
+                                                    uint32_t access_type,
+                                                    uint64_t vb_used)
+{
+   if (GEN_GEN < 8 || GEN_GEN > 9 ||
+       !cmd_buffer->device->instance->physicalDevice.use_softpin)
+      return;
+
+   if (access_type == RANDOM) {
+      /* We have an index buffer */
+      struct anv_vb_cache_range *bound = &cmd_buffer->state.gfx.ib_bound_range;
+      struct anv_vb_cache_range *dirty = &cmd_buffer->state.gfx.ib_dirty_range;
+
+      if (bound->end > bound->start) {
+         dirty->start = MIN2(dirty->start, bound->start);
+         dirty->end = MAX2(dirty->end, bound->end);
+      }
+   }
+
+   uint64_t mask = vb_used;
+   while (mask) {
+      int i = u_bit_scan64(&mask);
+      assert(i >= 0);
+      assert(i < ARRAY_SIZE(cmd_buffer->state.gfx.vb_bound_ranges));
+      assert(i < ARRAY_SIZE(cmd_buffer->state.gfx.vb_dirty_ranges));
+
+      struct anv_vb_cache_range *bound, *dirty;
+      bound = &cmd_buffer->state.gfx.vb_bound_ranges[i];
+      dirty = &cmd_buffer->state.gfx.vb_dirty_ranges[i];
+
+      if (bound->end > bound->start) {
+         dirty->start = MIN2(dirty->start, bound->start);
+         dirty->end = MAX2(dirty->end, bound->end);
+      }
+   }
+}
+
+/**
+ * Update the pixel hashing modes that determine the balancing of PS threads
+ * across subslices and slices.
+ *
+ * \param width Width bound of the rendering area (already scaled down if \p
+ *              scale is greater than 1).
+ * \param height Height bound of the rendering area (already scaled down if \p
+ *               scale is greater than 1).
+ * \param scale The number of framebuffer samples that could potentially be
+ *              affected by an individual channel of the PS thread.  This is
+ *              typically one for single-sampled rendering, but for operations
+ *              like CCS resolves and fast clears a single PS invocation may
+ *              update a huge number of pixels, in which case a finer
+ *              balancing is desirable in order to maximally utilize the
+ *              bandwidth available.  UINT_MAX can be used as shorthand for
+ *              "finest hashing mode available".
+ */
+void
+genX(cmd_buffer_emit_hashing_mode)(struct anv_cmd_buffer *cmd_buffer,
+                                   unsigned width, unsigned height,
+                                   unsigned scale)
+{
+#if GEN_GEN == 9
+   const struct gen_device_info *devinfo = &cmd_buffer->device->info;
+   const unsigned slice_hashing[] = {
+      /* Because all Gen9 platforms with more than one slice require
+       * three-way subslice hashing, a single "normal" 16x16 slice hashing
+       * block is guaranteed to suffer from substantial imbalance, with one
+       * subslice receiving twice as much work as the other two in the
+       * slice.
+       *
+       * The performance impact of that would be particularly severe when
+       * three-way hashing is also in use for slice balancing (which is the
+       * case for all Gen9 GT4 platforms), because one of the slices
+       * receives one every three 16x16 blocks in either direction, which
+       * is roughly the periodicity of the underlying subslice imbalance
+       * pattern ("roughly" because in reality the hardware's
+       * implementation of three-way hashing doesn't do exact modulo 3
+       * arithmetic, which somewhat decreases the magnitude of this effect
+       * in practice).  This leads to a systematic subslice imbalance
+       * within that slice regardless of the size of the primitive.  The
+       * 32x32 hashing mode guarantees that the subslice imbalance within a
+       * single slice hashing block is minimal, largely eliminating this
+       * effect.
+       */
+      _32x32,
+      /* Finest slice hashing mode available. */
+      NORMAL
+   };
+   const unsigned subslice_hashing[] = {
+      /* 16x16 would provide a slight cache locality benefit especially
+       * visible in the sampler L1 cache efficiency of low-bandwidth
+       * non-LLC platforms, but it comes at the cost of greater subslice
+       * imbalance for primitives of dimensions approximately intermediate
+       * between 16x4 and 16x16.
+       */
+      _16x4,
+      /* Finest subslice hashing mode available. */
+      _8x4
+   };
+   /* Dimensions of the smallest hashing block of a given hashing mode.  If
+    * the rendering area is smaller than this there can't possibly be any
+    * benefit from switching to this mode, so we optimize out the
+    * transition.
+    */
+   const unsigned min_size[][2] = {
+         { 16, 4 },
+         { 8, 4 }
+   };
+   const unsigned idx = scale > 1;
+
+   if (cmd_buffer->state.current_hash_scale != scale &&
+       (width > min_size[idx][0] || height > min_size[idx][1])) {
+      uint32_t gt_mode;
+
+      anv_pack_struct(&gt_mode, GENX(GT_MODE),
+                      .SliceHashing = (devinfo->num_slices > 1 ? slice_hashing[idx] : 0),
+                      .SliceHashingMask = (devinfo->num_slices > 1 ? -1 : 0),
+                      .SubsliceHashing = subslice_hashing[idx],
+                      .SubsliceHashingMask = -1);
 
-void
-genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer)
-{
-   genX(flush_pipeline_select)(cmd_buffer, GPGPU);
-}
+      cmd_buffer->state.pending_pipe_bits |=
+         ANV_PIPE_CS_STALL_BIT | ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
+      genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
 
-void
-genX(cmd_buffer_emit_gen7_depth_flush)(struct anv_cmd_buffer *cmd_buffer)
-{
-   if (GEN_GEN >= 8)
-      return;
+      emit_lri(&cmd_buffer->batch, GENX(GT_MODE_num), gt_mode);
 
-   /* From the Haswell PRM, documentation for 3DSTATE_DEPTH_BUFFER:
-    *
-    *    "Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any
-    *    combination of 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS,
-    *    3DSTATE_STENCIL_BUFFER, 3DSTATE_HIER_DEPTH_BUFFER) SW must first
-    *    issue a pipelined depth stall (PIPE_CONTROL with Depth Stall bit
-    *    set), followed by a pipelined depth cache flush (PIPE_CONTROL with
-    *    Depth Flush Bit set, followed by another pipelined depth stall
-    *    (PIPE_CONTROL with Depth Stall Bit set), unless SW can otherwise
-    *    guarantee that the pipeline from WM onwards is already flushed (e.g.,
-    *    via a preceding MI_FLUSH)."
-    */
-   anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
-      pipe.DepthStallEnable = true;
-   }
-   anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
-      pipe.DepthCacheFlushEnable = true;
-   }
-   anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
-      pipe.DepthStallEnable = true;
+      cmd_buffer->state.current_hash_scale = scale;
    }
+#endif
 }
 
 static void
@@ -3519,6 +4488,20 @@ cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
 
    isl_emit_depth_stencil_hiz_s(&device->isl_dev, dw, &info);
 
+   if (GEN_GEN >= 12) {
+      /* GEN:BUG:1408224581
+       *
+       * Workaround: Gen12LP Astep only An additional pipe control with
+       * post-sync = store dword operation would be required.( w/a is to
+       * have an additional pipe control after the stencil state whenever
+       * the surface state bits of this state is changing).
+       */
+      anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
+         pc.PostSyncOperation = WriteImmediateData;
+         pc.Address =
+            (struct anv_address) { cmd_buffer->device->workaround_bo, 0 };
+      }
+   }
    cmd_buffer->state.hiz_enabled = info.hiz_usage == ISL_AUX_USAGE_HIZ;
 }
 
@@ -3606,7 +4589,7 @@ cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
       assert(a < cmd_state->pass->attachment_count);
       struct anv_attachment_state *att_state = &cmd_state->attachments[a];
 
-      struct anv_image_view *iview = fb->attachments[a];
+      struct anv_image_view *iview = cmd_state->attachments[a].image_view;
       const struct anv_image *image = iview->image;
 
       /* A resolve is necessary before use as an input attachment if the clear
@@ -3616,7 +4599,7 @@ cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
             (att_state->fast_clear && !att_state->clear_color_is_zero_one) ||
             att_state->input_aux_usage != att_state->aux_usage;
 
-      VkImageLayout target_layout;
+      VkImageLayout target_layout, target_stencil_layout;
       if (iview->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV &&
           !input_needs_resolve) {
          /* Layout transitions before the final only help to enable sampling
@@ -3627,33 +4610,44 @@ cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
          target_layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
       } else {
          target_layout = subpass->attachments[i].layout;
+         target_stencil_layout = subpass->attachments[i].stencil_layout;
+      }
+
+      uint32_t base_layer, layer_count;
+      if (image->type == VK_IMAGE_TYPE_3D) {
+         base_layer = 0;
+         layer_count = anv_minify(iview->image->extent.depth,
+                                  iview->planes[0].isl.base_level);
+      } else {
+         base_layer = iview->planes[0].isl.base_array_layer;
+         layer_count = fb->layers;
       }
 
       if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
          assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
-
-         uint32_t base_layer, layer_count;
-         if (image->type == VK_IMAGE_TYPE_3D) {
-            base_layer = 0;
-            layer_count = anv_minify(iview->image->extent.depth,
-                                     iview->planes[0].isl.base_level);
-         } else {
-            base_layer = iview->planes[0].isl.base_array_layer;
-            layer_count = fb->layers;
-         }
-
          transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
                                  iview->planes[0].isl.base_level, 1,
                                  base_layer, layer_count,
                                  att_state->current_layout, target_layout);
-      } else if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
+      }
+
+      if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
          transition_depth_buffer(cmd_buffer, image,
                                  att_state->current_layout, target_layout);
          att_state->aux_usage =
             anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
                                     VK_IMAGE_ASPECT_DEPTH_BIT, target_layout);
       }
+
+      if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
+         transition_stencil_buffer(cmd_buffer, image,
+                                   iview->planes[0].isl.base_level, 1,
+                                   base_layer, layer_count,
+                                   att_state->current_stencil_layout,
+                                   target_stencil_layout);
+      }
       att_state->current_layout = target_layout;
+      att_state->current_stencil_layout = target_stencil_layout;
 
       if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_COLOR_BIT) {
          assert(att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
@@ -3674,12 +4668,16 @@ cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
             union isl_color_value clear_color = {};
             anv_clear_color_from_att_state(&clear_color, att_state, iview);
             if (iview->image->samples == 1) {
-               anv_image_ccs_op(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
+               anv_image_ccs_op(cmd_buffer, image,
+                                iview->planes[0].isl.format,
+                                VK_IMAGE_ASPECT_COLOR_BIT,
                                 0, 0, 1, ISL_AUX_OP_FAST_CLEAR,
                                 &clear_color,
                                 false);
             } else {
-               anv_image_mcs_op(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
+               anv_image_mcs_op(cmd_buffer, image,
+                                iview->planes[0].isl.format,
+                                VK_IMAGE_ASPECT_COLOR_BIT,
                                 0, 1, ISL_AUX_OP_FAST_CLEAR,
                                 &clear_color,
                                 false);
@@ -3874,6 +4872,41 @@ cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
    }
 
    cmd_buffer_emit_depth_stencil(cmd_buffer);
+
+#if GEN_GEN >= 11
+   /* The PIPE_CONTROL command description says:
+    *
+    *    "Whenever a Binding Table Index (BTI) used by a Render Taget Message
+    *     points to a different RENDER_SURFACE_STATE, SW must issue a Render
+    *     Target Cache Flush by enabling this bit. When render target flush
+    *     is set due to new association of BTI, PS Scoreboard Stall bit must
+    *     be set in this packet."
+    */
+   anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
+      pc.RenderTargetCacheFlushEnable  = true;
+      pc.StallAtPixelScoreboard        = true;
+#if GEN_GEN >= 12
+      pc.TileCacheFlushEnable = true;
+#endif
+   }
+#endif
+}
+
+static enum blorp_filter
+vk_to_blorp_resolve_mode(VkResolveModeFlagBitsKHR vk_mode)
+{
+   switch (vk_mode) {
+   case VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR:
+      return BLORP_FILTER_SAMPLE_0;
+   case VK_RESOLVE_MODE_AVERAGE_BIT_KHR:
+      return BLORP_FILTER_AVERAGE;
+   case VK_RESOLVE_MODE_MIN_BIT_KHR:
+      return BLORP_FILTER_MIN_SAMPLE;
+   case VK_RESOLVE_MODE_MAX_BIT_KHR:
+      return BLORP_FILTER_MAX_SAMPLE;
+   default:
+      return BLORP_FILTER_NONE;
+   }
 }
 
 static void
@@ -3882,10 +4915,231 @@ cmd_buffer_end_subpass(struct anv_cmd_buffer *cmd_buffer)
    struct anv_cmd_state *cmd_state = &cmd_buffer->state;
    struct anv_subpass *subpass = cmd_state->subpass;
    uint32_t subpass_id = anv_get_subpass_id(&cmd_buffer->state);
+   struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
 
-   anv_cmd_buffer_resolve_subpass(cmd_buffer);
+   if (subpass->has_color_resolve) {
+      /* We are about to do some MSAA resolves.  We need to flush so that the
+       * result of writes to the MSAA color attachments show up in the sampler
+       * when we blit to the single-sampled resolve target.
+       */
+      cmd_buffer->state.pending_pipe_bits |=
+         ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
+         ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
+
+      for (uint32_t i = 0; i < subpass->color_count; ++i) {
+         uint32_t src_att = subpass->color_attachments[i].attachment;
+         uint32_t dst_att = subpass->resolve_attachments[i].attachment;
+
+         if (dst_att == VK_ATTACHMENT_UNUSED)
+            continue;
+
+         assert(src_att < cmd_buffer->state.pass->attachment_count);
+         assert(dst_att < cmd_buffer->state.pass->attachment_count);
+
+         if (cmd_buffer->state.attachments[dst_att].pending_clear_aspects) {
+            /* From the Vulkan 1.0 spec:
+             *
+             *    If the first use of an attachment in a render pass is as a
+             *    resolve attachment, then the loadOp is effectively ignored
+             *    as the resolve is guaranteed to overwrite all pixels in the
+             *    render area.
+             */
+            cmd_buffer->state.attachments[dst_att].pending_clear_aspects = 0;
+         }
+
+         struct anv_image_view *src_iview = cmd_state->attachments[src_att].image_view;
+         struct anv_image_view *dst_iview = cmd_state->attachments[dst_att].image_view;
+
+         const VkRect2D render_area = cmd_buffer->state.render_area;
+
+         enum isl_aux_usage src_aux_usage =
+            cmd_buffer->state.attachments[src_att].aux_usage;
+         enum isl_aux_usage dst_aux_usage =
+            cmd_buffer->state.attachments[dst_att].aux_usage;
+
+         assert(src_iview->aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT &&
+                dst_iview->aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT);
+
+         anv_image_msaa_resolve(cmd_buffer,
+                                src_iview->image, src_aux_usage,
+                                src_iview->planes[0].isl.base_level,
+                                src_iview->planes[0].isl.base_array_layer,
+                                dst_iview->image, dst_aux_usage,
+                                dst_iview->planes[0].isl.base_level,
+                                dst_iview->planes[0].isl.base_array_layer,
+                                VK_IMAGE_ASPECT_COLOR_BIT,
+                                render_area.offset.x, render_area.offset.y,
+                                render_area.offset.x, render_area.offset.y,
+                                render_area.extent.width,
+                                render_area.extent.height,
+                                fb->layers, BLORP_FILTER_NONE);
+      }
+   }
+
+   if (subpass->ds_resolve_attachment) {
+      /* We are about to do some MSAA resolves.  We need to flush so that the
+       * result of writes to the MSAA depth attachments show up in the sampler
+       * when we blit to the single-sampled resolve target.
+       */
+      cmd_buffer->state.pending_pipe_bits |=
+         ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
+         ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
+
+      uint32_t src_att = subpass->depth_stencil_attachment->attachment;
+      uint32_t dst_att = subpass->ds_resolve_attachment->attachment;
+
+      assert(src_att < cmd_buffer->state.pass->attachment_count);
+      assert(dst_att < cmd_buffer->state.pass->attachment_count);
+
+      if (cmd_buffer->state.attachments[dst_att].pending_clear_aspects) {
+         /* From the Vulkan 1.0 spec:
+          *
+          *    If the first use of an attachment in a render pass is as a
+          *    resolve attachment, then the loadOp is effectively ignored
+          *    as the resolve is guaranteed to overwrite all pixels in the
+          *    render area.
+          */
+         cmd_buffer->state.attachments[dst_att].pending_clear_aspects = 0;
+      }
+
+      struct anv_image_view *src_iview = cmd_state->attachments[src_att].image_view;
+      struct anv_image_view *dst_iview = cmd_state->attachments[dst_att].image_view;
+
+      const VkRect2D render_area = cmd_buffer->state.render_area;
+
+      struct anv_attachment_state *src_state =
+         &cmd_state->attachments[src_att];
+      struct anv_attachment_state *dst_state =
+         &cmd_state->attachments[dst_att];
+
+      if ((src_iview->image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) &&
+          subpass->depth_resolve_mode != VK_RESOLVE_MODE_NONE_KHR) {
+
+         /* MSAA resolves sample from the source attachment.  Transition the
+          * depth attachment first to get rid of any HiZ that we may not be
+          * able to handle.
+          */
+         transition_depth_buffer(cmd_buffer, src_iview->image,
+                                 src_state->current_layout,
+                                 VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
+         src_state->aux_usage =
+            anv_layout_to_aux_usage(&cmd_buffer->device->info, src_iview->image,
+                                    VK_IMAGE_ASPECT_DEPTH_BIT,
+                                    VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
+         src_state->current_layout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
+
+         /* MSAA resolves write to the resolve attachment as if it were any
+          * other transfer op.  Transition the resolve attachment accordingly.
+          */
+         VkImageLayout dst_initial_layout = dst_state->current_layout;
+
+         /* If our render area is the entire size of the image, we're going to
+          * blow it all away so we can claim the initial layout is UNDEFINED
+          * and we'll get a HiZ ambiguate instead of a resolve.
+          */
+         if (dst_iview->image->type != VK_IMAGE_TYPE_3D &&
+             render_area.offset.x == 0 && render_area.offset.y == 0 &&
+             render_area.extent.width == dst_iview->extent.width &&
+             render_area.extent.height == dst_iview->extent.height)
+            dst_initial_layout = VK_IMAGE_LAYOUT_UNDEFINED;
+
+         transition_depth_buffer(cmd_buffer, dst_iview->image,
+                                 dst_initial_layout,
+                                 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
+         dst_state->aux_usage =
+            anv_layout_to_aux_usage(&cmd_buffer->device->info, dst_iview->image,
+                                    VK_IMAGE_ASPECT_DEPTH_BIT,
+                                    VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
+         dst_state->current_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
+
+         enum blorp_filter filter =
+            vk_to_blorp_resolve_mode(subpass->depth_resolve_mode);
+
+         anv_image_msaa_resolve(cmd_buffer,
+                                src_iview->image, src_state->aux_usage,
+                                src_iview->planes[0].isl.base_level,
+                                src_iview->planes[0].isl.base_array_layer,
+                                dst_iview->image, dst_state->aux_usage,
+                                dst_iview->planes[0].isl.base_level,
+                                dst_iview->planes[0].isl.base_array_layer,
+                                VK_IMAGE_ASPECT_DEPTH_BIT,
+                                render_area.offset.x, render_area.offset.y,
+                                render_area.offset.x, render_area.offset.y,
+                                render_area.extent.width,
+                                render_area.extent.height,
+                                fb->layers, filter);
+      }
+
+      if ((src_iview->image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) &&
+          subpass->stencil_resolve_mode != VK_RESOLVE_MODE_NONE_KHR) {
+
+         src_state->current_stencil_layout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
+         dst_state->current_stencil_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
+
+         enum isl_aux_usage src_aux_usage = ISL_AUX_USAGE_NONE;
+         enum isl_aux_usage dst_aux_usage = ISL_AUX_USAGE_NONE;
+
+         enum blorp_filter filter =
+            vk_to_blorp_resolve_mode(subpass->stencil_resolve_mode);
+
+         anv_image_msaa_resolve(cmd_buffer,
+                                src_iview->image, src_aux_usage,
+                                src_iview->planes[0].isl.base_level,
+                                src_iview->planes[0].isl.base_array_layer,
+                                dst_iview->image, dst_aux_usage,
+                                dst_iview->planes[0].isl.base_level,
+                                dst_iview->planes[0].isl.base_array_layer,
+                                VK_IMAGE_ASPECT_STENCIL_BIT,
+                                render_area.offset.x, render_area.offset.y,
+                                render_area.offset.x, render_area.offset.y,
+                                render_area.extent.width,
+                                render_area.extent.height,
+                                fb->layers, filter);
+      }
+   }
+
+#if GEN_GEN == 7
+   /* On gen7, we have to store a texturable version of the stencil buffer in
+    * a shadow whenever VK_IMAGE_USAGE_SAMPLED_BIT is set and copy back and
+    * forth at strategic points. Stencil writes are only allowed in following
+    * layouts:
+    *
+    *  - VK_IMAGE_LAYOUT_GENERAL
+    *  - VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
+    *  - VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL
+    *  - VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL
+    *  - VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR
+    *
+    * For general, we have no nice opportunity to transition so we do the copy
+    * to the shadow unconditionally at the end of the subpass. For transfer
+    * destinations, we can update it as part of the transfer op. For the other
+    * layouts, we delay the copy until a transition into some other layout.
+    */
+   if (subpass->depth_stencil_attachment) {
+      uint32_t a = subpass->depth_stencil_attachment->attachment;
+      assert(a != VK_ATTACHMENT_UNUSED);
+
+      struct anv_attachment_state *att_state = &cmd_state->attachments[a];
+      struct anv_image_view *iview = cmd_state->attachments[a].image_view;;
+      const struct anv_image *image = iview->image;
+
+      if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
+         uint32_t plane = anv_image_aspect_to_plane(image->aspects,
+                                                    VK_IMAGE_ASPECT_STENCIL_BIT);
+
+         if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
+             att_state->current_stencil_layout == VK_IMAGE_LAYOUT_GENERAL) {
+            assert(image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT);
+            anv_image_copy_to_shadow(cmd_buffer, image,
+                                     VK_IMAGE_ASPECT_STENCIL_BIT,
+                                     iview->planes[plane].isl.base_level, 1,
+                                     iview->planes[plane].isl.base_array_layer,
+                                     fb->layers);
+         }
+      }
+   }
+#endif /* GEN_GEN == 7 */
 
-   struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
    for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
       const uint32_t a = subpass->attachments[i].attachment;
       if (a == VK_ATTACHMENT_UNUSED)
@@ -3896,34 +5150,94 @@ cmd_buffer_end_subpass(struct anv_cmd_buffer *cmd_buffer)
 
       assert(a < cmd_state->pass->attachment_count);
       struct anv_attachment_state *att_state = &cmd_state->attachments[a];
-      struct anv_image_view *iview = fb->attachments[a];
+      struct anv_image_view *iview = cmd_state->attachments[a].image_view;
       const struct anv_image *image = iview->image;
 
+      if ((image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) &&
+          image->vk_format != iview->vk_format) {
+         enum anv_fast_clear_type fast_clear_type =
+            anv_layout_to_fast_clear_type(&cmd_buffer->device->info,
+                                          image, VK_IMAGE_ASPECT_COLOR_BIT,
+                                          att_state->current_layout);
+
+         /* If any clear color was used, flush it down the aux surfaces. If we
+          * don't do it now using the view's format we might use the clear
+          * color incorrectly in the following resolves (for example with an
+          * SRGB view & a UNORM image).
+          */
+         if (fast_clear_type != ANV_FAST_CLEAR_NONE) {
+            anv_perf_warn(cmd_buffer->device->instance, iview,
+                          "Doing a partial resolve to get rid of clear color at the "
+                          "end of a renderpass due to an image/view format mismatch");
+
+            uint32_t base_layer, layer_count;
+            if (image->type == VK_IMAGE_TYPE_3D) {
+               base_layer = 0;
+               layer_count = anv_minify(iview->image->extent.depth,
+                                        iview->planes[0].isl.base_level);
+            } else {
+               base_layer = iview->planes[0].isl.base_array_layer;
+               layer_count = fb->layers;
+            }
+
+            for (uint32_t a = 0; a < layer_count; a++) {
+               uint32_t array_layer = base_layer + a;
+               if (image->samples == 1) {
+                  anv_cmd_predicated_ccs_resolve(cmd_buffer, image,
+                                                 iview->planes[0].isl.format,
+                                                 VK_IMAGE_ASPECT_COLOR_BIT,
+                                                 iview->planes[0].isl.base_level,
+                                                 array_layer,
+                                                 ISL_AUX_OP_PARTIAL_RESOLVE,
+                                                 ANV_FAST_CLEAR_NONE);
+               } else {
+                  anv_cmd_predicated_mcs_resolve(cmd_buffer, image,
+                                                 iview->planes[0].isl.format,
+                                                 VK_IMAGE_ASPECT_COLOR_BIT,
+                                                 base_layer,
+                                                 ISL_AUX_OP_PARTIAL_RESOLVE,
+                                                 ANV_FAST_CLEAR_NONE);
+               }
+            }
+         }
+      }
+
       /* Transition the image into the final layout for this render pass */
       VkImageLayout target_layout =
          cmd_state->pass->attachments[a].final_layout;
+      VkImageLayout target_stencil_layout =
+         cmd_state->pass->attachments[a].stencil_final_layout;
+
+      uint32_t base_layer, layer_count;
+      if (image->type == VK_IMAGE_TYPE_3D) {
+         base_layer = 0;
+         layer_count = anv_minify(iview->image->extent.depth,
+                                  iview->planes[0].isl.base_level);
+      } else {
+         base_layer = iview->planes[0].isl.base_array_layer;
+         layer_count = fb->layers;
+      }
 
       if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
          assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
-
-         uint32_t base_layer, layer_count;
-         if (image->type == VK_IMAGE_TYPE_3D) {
-            base_layer = 0;
-            layer_count = anv_minify(iview->image->extent.depth,
-                                     iview->planes[0].isl.base_level);
-         } else {
-            base_layer = iview->planes[0].isl.base_array_layer;
-            layer_count = fb->layers;
-         }
-
          transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
                                  iview->planes[0].isl.base_level, 1,
                                  base_layer, layer_count,
                                  att_state->current_layout, target_layout);
-      } else if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
+      }
+
+      if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
          transition_depth_buffer(cmd_buffer, image,
                                  att_state->current_layout, target_layout);
       }
+
+      if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
+         transition_stencil_buffer(cmd_buffer, image,
+                                   iview->planes[0].isl.base_level, 1,
+                                   base_layer, layer_count,
+                                   att_state->current_stencil_layout,
+                                   target_stencil_layout);
+      }
    }
 
    /* Accumulate any subpass flushes that need to happen after the subpass.
@@ -3961,7 +5275,7 @@ void genX(CmdBeginRenderPass)(
    cmd_buffer_begin_subpass(cmd_buffer, 0);
 }
 
-void genX(CmdBeginRenderPass2KHR)(
+void genX(CmdBeginRenderPass2)(
     VkCommandBuffer                             commandBuffer,
     const VkRenderPassBeginInfo*                pRenderPassBeginInfo,
     const VkSubpassBeginInfoKHR*                pSubpassBeginInfo)
@@ -3986,7 +5300,7 @@ void genX(CmdNextSubpass)(
    cmd_buffer_begin_subpass(cmd_buffer, prev_subpass + 1);
 }
 
-void genX(CmdNextSubpass2KHR)(
+void genX(CmdNextSubpass2)(
     VkCommandBuffer                             commandBuffer,
     const VkSubpassBeginInfoKHR*                pSubpassBeginInfo,
     const VkSubpassEndInfoKHR*                  pSubpassEndInfo)
@@ -4007,7 +5321,7 @@ void genX(CmdEndRenderPass)(
    cmd_buffer->state.hiz_enabled = false;
 
 #ifndef NDEBUG
-   anv_dump_add_framebuffer(cmd_buffer, cmd_buffer->state.framebuffer);
+   anv_dump_add_attachments(cmd_buffer);
 #endif
 
    /* Remove references to render pass specific state. This enables us to
@@ -4018,9 +5332,242 @@ void genX(CmdEndRenderPass)(
    cmd_buffer->state.subpass = NULL;
 }
 
-void genX(CmdEndRenderPass2KHR)(
+void genX(CmdEndRenderPass2)(
     VkCommandBuffer                             commandBuffer,
     const VkSubpassEndInfoKHR*                  pSubpassEndInfo)
 {
    genX(CmdEndRenderPass)(commandBuffer);
 }
+
+void
+genX(cmd_emit_conditional_render_predicate)(struct anv_cmd_buffer *cmd_buffer)
+{
+#if GEN_GEN >= 8 || GEN_IS_HASWELL
+   struct gen_mi_builder b;
+   gen_mi_builder_init(&b, &cmd_buffer->batch);
+
+   gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
+                    gen_mi_reg32(ANV_PREDICATE_RESULT_REG));
+   gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
+
+   anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
+      mip.LoadOperation    = LOAD_LOADINV;
+      mip.CombineOperation = COMBINE_SET;
+      mip.CompareOperation = COMPARE_SRCS_EQUAL;
+   }
+#endif
+}
+
+#if GEN_GEN >= 8 || GEN_IS_HASWELL
+void genX(CmdBeginConditionalRenderingEXT)(
+   VkCommandBuffer                             commandBuffer,
+   const VkConditionalRenderingBeginInfoEXT*   pConditionalRenderingBegin)
+{
+   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
+   ANV_FROM_HANDLE(anv_buffer, buffer, pConditionalRenderingBegin->buffer);
+   struct anv_cmd_state *cmd_state = &cmd_buffer->state;
+   struct anv_address value_address =
+      anv_address_add(buffer->address, pConditionalRenderingBegin->offset);
+
+   const bool isInverted = pConditionalRenderingBegin->flags &
+                           VK_CONDITIONAL_RENDERING_INVERTED_BIT_EXT;
+
+   cmd_state->conditional_render_enabled = true;
+
+   genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
+
+   struct gen_mi_builder b;
+   gen_mi_builder_init(&b, &cmd_buffer->batch);
+
+   /* Section 19.4 of the Vulkan 1.1.85 spec says:
+    *
+    *    If the value of the predicate in buffer memory changes
+    *    while conditional rendering is active, the rendering commands
+    *    may be discarded in an implementation-dependent way.
+    *    Some implementations may latch the value of the predicate
+    *    upon beginning conditional rendering while others
+    *    may read it before every rendering command.
+    *
+    * So it's perfectly fine to read a value from the buffer once.
+    */
+   struct gen_mi_value value =  gen_mi_mem32(value_address);
+
+   /* Precompute predicate result, it is necessary to support secondary
+    * command buffers since it is unknown if conditional rendering is
+    * inverted when populating them.
+    */
+   gen_mi_store(&b, gen_mi_reg64(ANV_PREDICATE_RESULT_REG),
+                    isInverted ? gen_mi_uge(&b, gen_mi_imm(0), value) :
+                                 gen_mi_ult(&b, gen_mi_imm(0), value));
+}
+
+void genX(CmdEndConditionalRenderingEXT)(
+       VkCommandBuffer                             commandBuffer)
+{
+   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
+   struct anv_cmd_state *cmd_state = &cmd_buffer->state;
+
+   cmd_state->conditional_render_enabled = false;
+}
+#endif
+
+/* Set of stage bits for which are pipelined, i.e. they get queued by the
+ * command streamer for later execution.
+ */
+#define ANV_PIPELINE_STAGE_PIPELINED_BITS \
+   (VK_PIPELINE_STAGE_VERTEX_INPUT_BIT | \
+    VK_PIPELINE_STAGE_VERTEX_SHADER_BIT | \
+    VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT | \
+    VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT | \
+    VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT | \
+    VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | \
+    VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | \
+    VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT | \
+    VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT | \
+    VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT | \
+    VK_PIPELINE_STAGE_TRANSFER_BIT | \
+    VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT | \
+    VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT | \
+    VK_PIPELINE_STAGE_ALL_COMMANDS_BIT)
+
+void genX(CmdSetEvent)(
+    VkCommandBuffer                             commandBuffer,
+    VkEvent                                     _event,
+    VkPipelineStageFlags                        stageMask)
+{
+   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
+   ANV_FROM_HANDLE(anv_event, event, _event);
+
+   anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
+      if (stageMask & ANV_PIPELINE_STAGE_PIPELINED_BITS) {
+         pc.StallAtPixelScoreboard = true;
+         pc.CommandStreamerStallEnable = true;
+      }
+
+      pc.DestinationAddressType  = DAT_PPGTT,
+      pc.PostSyncOperation       = WriteImmediateData,
+      pc.Address = (struct anv_address) {
+         cmd_buffer->device->dynamic_state_pool.block_pool.bo,
+         event->state.offset
+      };
+      pc.ImmediateData           = VK_EVENT_SET;
+   }
+}
+
+void genX(CmdResetEvent)(
+    VkCommandBuffer                             commandBuffer,
+    VkEvent                                     _event,
+    VkPipelineStageFlags                        stageMask)
+{
+   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
+   ANV_FROM_HANDLE(anv_event, event, _event);
+
+   anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
+      if (stageMask & ANV_PIPELINE_STAGE_PIPELINED_BITS) {
+         pc.StallAtPixelScoreboard = true;
+         pc.CommandStreamerStallEnable = true;
+      }
+
+      pc.DestinationAddressType  = DAT_PPGTT;
+      pc.PostSyncOperation       = WriteImmediateData;
+      pc.Address = (struct anv_address) {
+         cmd_buffer->device->dynamic_state_pool.block_pool.bo,
+         event->state.offset
+      };
+      pc.ImmediateData           = VK_EVENT_RESET;
+   }
+}
+
+void genX(CmdWaitEvents)(
+    VkCommandBuffer                             commandBuffer,
+    uint32_t                                    eventCount,
+    const VkEvent*                              pEvents,
+    VkPipelineStageFlags                        srcStageMask,
+    VkPipelineStageFlags                        destStageMask,
+    uint32_t                                    memoryBarrierCount,
+    const VkMemoryBarrier*                      pMemoryBarriers,
+    uint32_t                                    bufferMemoryBarrierCount,
+    const VkBufferMemoryBarrier*                pBufferMemoryBarriers,
+    uint32_t                                    imageMemoryBarrierCount,
+    const VkImageMemoryBarrier*                 pImageMemoryBarriers)
+{
+#if GEN_GEN >= 8
+   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
+
+   for (uint32_t i = 0; i < eventCount; i++) {
+      ANV_FROM_HANDLE(anv_event, event, pEvents[i]);
+
+      anv_batch_emit(&cmd_buffer->batch, GENX(MI_SEMAPHORE_WAIT), sem) {
+         sem.WaitMode            = PollingMode,
+         sem.CompareOperation    = COMPARE_SAD_EQUAL_SDD,
+         sem.SemaphoreDataDword  = VK_EVENT_SET,
+         sem.SemaphoreAddress = (struct anv_address) {
+            cmd_buffer->device->dynamic_state_pool.block_pool.bo,
+            event->state.offset
+         };
+      }
+   }
+#else
+   anv_finishme("Implement events on gen7");
+#endif
+
+   genX(CmdPipelineBarrier)(commandBuffer, srcStageMask, destStageMask,
+                            false, /* byRegion */
+                            memoryBarrierCount, pMemoryBarriers,
+                            bufferMemoryBarrierCount, pBufferMemoryBarriers,
+                            imageMemoryBarrierCount, pImageMemoryBarriers);
+}
+
+VkResult genX(CmdSetPerformanceOverrideINTEL)(
+    VkCommandBuffer                             commandBuffer,
+    const VkPerformanceOverrideInfoINTEL*       pOverrideInfo)
+{
+   ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
+
+   switch (pOverrideInfo->type) {
+   case VK_PERFORMANCE_OVERRIDE_TYPE_NULL_HARDWARE_INTEL: {
+      uint32_t dw;
+
+#if GEN_GEN >= 9
+      anv_pack_struct(&dw, GENX(CS_DEBUG_MODE2),
+                      ._3DRenderingInstructionDisable = pOverrideInfo->enable,
+                      .MediaInstructionDisable = pOverrideInfo->enable,
+                      ._3DRenderingInstructionDisableMask = true,
+                      .MediaInstructionDisableMask = true);
+      emit_lri(&cmd_buffer->batch, GENX(CS_DEBUG_MODE2_num), dw);
+#else
+      anv_pack_struct(&dw, GENX(INSTPM),
+                      ._3DRenderingInstructionDisable = pOverrideInfo->enable,
+                      .MediaInstructionDisable = pOverrideInfo->enable,
+                      ._3DRenderingInstructionDisableMask = true,
+                      .MediaInstructionDisableMask = true);
+      emit_lri(&cmd_buffer->batch, GENX(INSTPM_num), dw);
+#endif
+      break;
+   }
+
+   case VK_PERFORMANCE_OVERRIDE_TYPE_FLUSH_GPU_CACHES_INTEL:
+      if (pOverrideInfo->enable) {
+         /* FLUSH ALL THE THINGS! As requested by the MDAPI team. */
+         cmd_buffer->state.pending_pipe_bits |=
+            ANV_PIPE_FLUSH_BITS |
+            ANV_PIPE_INVALIDATE_BITS;
+         genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
+      }
+      break;
+
+   default:
+      unreachable("Invalid override");
+   }
+
+   return VK_SUCCESS;
+}
+
+VkResult genX(CmdSetPerformanceStreamMarkerINTEL)(
+    VkCommandBuffer                             commandBuffer,
+    const VkPerformanceStreamMarkerInfoINTEL*   pMarkerInfo)
+{
+   /* TODO: Waiting on the register to write, might depend on generation. */
+
+   return VK_SUCCESS;
+}