intel/fs: Add fields to wm_prog_data for SIMD32 dispatch
[mesa.git] / src / intel / vulkan / genX_pipeline.c
index 2328920b657e0099f7d56dd0b50aa7e2d7ab00fb..15b1e0b3880c4223aa0369e40cb690b2e71c7632 100644 (file)
 #include "genxml/gen_macros.h"
 #include "genxml/genX_pack.h"
 
-VkResult
-genX(compute_pipeline_create)(
+#include "common/gen_l3_config.h"
+#include "common/gen_sample_positions.h"
+#include "vk_util.h"
+#include "vk_format_info.h"
+
+static uint32_t
+vertex_element_comp_control(enum isl_format format, unsigned comp)
+{
+   uint8_t bits;
+   switch (comp) {
+   case 0: bits = isl_format_layouts[format].channels.r.bits; break;
+   case 1: bits = isl_format_layouts[format].channels.g.bits; break;
+   case 2: bits = isl_format_layouts[format].channels.b.bits; break;
+   case 3: bits = isl_format_layouts[format].channels.a.bits; break;
+   default: unreachable("Invalid component");
+   }
+
+   /*
+    * Take in account hardware restrictions when dealing with 64-bit floats.
+    *
+    * From Broadwell spec, command reference structures, page 586:
+    *  "When SourceElementFormat is set to one of the *64*_PASSTHRU formats,
+    *   64-bit components are stored * in the URB without any conversion. In
+    *   this case, vertex elements must be written as 128 or 256 bits, with
+    *   VFCOMP_STORE_0 being used to pad the output as required. E.g., if
+    *   R64_PASSTHRU is used to copy a 64-bit Red component into the URB,
+    *   Component 1 must be specified as VFCOMP_STORE_0 (with Components 2,3
+    *   set to VFCOMP_NOSTORE) in order to output a 128-bit vertex element, or
+    *   Components 1-3 must be specified as VFCOMP_STORE_0 in order to output
+    *   a 256-bit vertex element. Likewise, use of R64G64B64_PASSTHRU requires
+    *   Component 3 to be specified as VFCOMP_STORE_0 in order to output a
+    *   256-bit vertex element."
+    */
+   if (bits) {
+      return VFCOMP_STORE_SRC;
+   } else if (comp >= 2 &&
+              !isl_format_layouts[format].channels.b.bits &&
+              isl_format_layouts[format].channels.r.type == ISL_RAW) {
+      /* When emitting 64-bit attributes, we need to write either 128 or 256
+       * bit chunks, using VFCOMP_NOSTORE when not writing the chunk, and
+       * VFCOMP_STORE_0 to pad the written chunk */
+      return VFCOMP_NOSTORE;
+   } else if (comp < 3 ||
+              isl_format_layouts[format].channels.r.type == ISL_RAW) {
+      /* Note we need to pad with value 0, not 1, due hardware restrictions
+       * (see comment above) */
+      return VFCOMP_STORE_0;
+   } else if (isl_format_layouts[format].channels.r.type == ISL_UINT ||
+            isl_format_layouts[format].channels.r.type == ISL_SINT) {
+      assert(comp == 3);
+      return VFCOMP_STORE_1_INT;
+   } else {
+      assert(comp == 3);
+      return VFCOMP_STORE_1_FP;
+   }
+}
+
+static void
+emit_vertex_input(struct anv_pipeline *pipeline,
+                  const VkPipelineVertexInputStateCreateInfo *info)
+{
+   const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
+
+   /* Pull inputs_read out of the VS prog data */
+   const uint64_t inputs_read = vs_prog_data->inputs_read;
+   const uint64_t double_inputs_read = vs_prog_data->double_inputs_read;
+   assert((inputs_read & ((1 << VERT_ATTRIB_GENERIC0) - 1)) == 0);
+   const uint32_t elements = inputs_read >> VERT_ATTRIB_GENERIC0;
+   const uint32_t elements_double = double_inputs_read >> VERT_ATTRIB_GENERIC0;
+   const bool needs_svgs_elem = vs_prog_data->uses_vertexid ||
+                                vs_prog_data->uses_instanceid ||
+                                vs_prog_data->uses_firstvertex ||
+                                vs_prog_data->uses_baseinstance;
+
+   uint32_t elem_count = __builtin_popcount(elements) -
+      __builtin_popcount(elements_double) / 2;
+
+   const uint32_t total_elems =
+      elem_count + needs_svgs_elem + vs_prog_data->uses_drawid;
+   if (total_elems == 0)
+      return;
+
+   uint32_t *p;
+
+   const uint32_t num_dwords = 1 + total_elems * 2;
+   p = anv_batch_emitn(&pipeline->batch, num_dwords,
+                       GENX(3DSTATE_VERTEX_ELEMENTS));
+   if (!p)
+      return;
+   memset(p + 1, 0, (num_dwords - 1) * 4);
+
+   for (uint32_t i = 0; i < info->vertexAttributeDescriptionCount; i++) {
+      const VkVertexInputAttributeDescription *desc =
+         &info->pVertexAttributeDescriptions[i];
+      enum isl_format format = anv_get_isl_format(&pipeline->device->info,
+                                                  desc->format,
+                                                  VK_IMAGE_ASPECT_COLOR_BIT,
+                                                  VK_IMAGE_TILING_LINEAR);
+
+      assert(desc->binding < MAX_VBS);
+
+      if ((elements & (1 << desc->location)) == 0)
+         continue; /* Binding unused */
+
+      uint32_t slot =
+         __builtin_popcount(elements & ((1 << desc->location) - 1)) -
+         DIV_ROUND_UP(__builtin_popcount(elements_double &
+                                        ((1 << desc->location) -1)), 2);
+
+      struct GENX(VERTEX_ELEMENT_STATE) element = {
+         .VertexBufferIndex = desc->binding,
+         .Valid = true,
+         .SourceElementFormat = format,
+         .EdgeFlagEnable = false,
+         .SourceElementOffset = desc->offset,
+         .Component0Control = vertex_element_comp_control(format, 0),
+         .Component1Control = vertex_element_comp_control(format, 1),
+         .Component2Control = vertex_element_comp_control(format, 2),
+         .Component3Control = vertex_element_comp_control(format, 3),
+      };
+      GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + slot * 2], &element);
+
+#if GEN_GEN >= 8
+      /* On Broadwell and later, we have a separate VF_INSTANCING packet
+       * that controls instancing.  On Haswell and prior, that's part of
+       * VERTEX_BUFFER_STATE which we emit later.
+       */
+      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_INSTANCING), vfi) {
+         vfi.InstancingEnable = pipeline->instancing_enable[desc->binding];
+         vfi.VertexElementIndex = slot;
+         /* Our implementation of VK_KHR_multiview uses instancing to draw
+          * the different views.  If the client asks for instancing, we
+          * need to use the Instance Data Step Rate to ensure that we
+          * repeat the client's per-instance data once for each view.
+          */
+         vfi.InstanceDataStepRate = anv_subpass_view_count(pipeline->subpass);
+      }
+#endif
+   }
+
+   const uint32_t id_slot = elem_count;
+   if (needs_svgs_elem) {
+      /* From the Broadwell PRM for the 3D_Vertex_Component_Control enum:
+       *    "Within a VERTEX_ELEMENT_STATE structure, if a Component
+       *    Control field is set to something other than VFCOMP_STORE_SRC,
+       *    no higher-numbered Component Control fields may be set to
+       *    VFCOMP_STORE_SRC"
+       *
+       * This means, that if we have BaseInstance, we need BaseVertex as
+       * well.  Just do all or nothing.
+       */
+      uint32_t base_ctrl = (vs_prog_data->uses_firstvertex ||
+                            vs_prog_data->uses_baseinstance) ?
+                           VFCOMP_STORE_SRC : VFCOMP_STORE_0;
+
+      struct GENX(VERTEX_ELEMENT_STATE) element = {
+         .VertexBufferIndex = ANV_SVGS_VB_INDEX,
+         .Valid = true,
+         .SourceElementFormat = ISL_FORMAT_R32G32_UINT,
+         .Component0Control = base_ctrl,
+         .Component1Control = base_ctrl,
+#if GEN_GEN >= 8
+         .Component2Control = VFCOMP_STORE_0,
+         .Component3Control = VFCOMP_STORE_0,
+#else
+         .Component2Control = VFCOMP_STORE_VID,
+         .Component3Control = VFCOMP_STORE_IID,
+#endif
+      };
+      GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + id_slot * 2], &element);
+   }
+
+#if GEN_GEN >= 8
+   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_SGVS), sgvs) {
+      sgvs.VertexIDEnable              = vs_prog_data->uses_vertexid;
+      sgvs.VertexIDComponentNumber     = 2;
+      sgvs.VertexIDElementOffset       = id_slot;
+      sgvs.InstanceIDEnable            = vs_prog_data->uses_instanceid;
+      sgvs.InstanceIDComponentNumber   = 3;
+      sgvs.InstanceIDElementOffset     = id_slot;
+   }
+#endif
+
+   const uint32_t drawid_slot = elem_count + needs_svgs_elem;
+   if (vs_prog_data->uses_drawid) {
+      struct GENX(VERTEX_ELEMENT_STATE) element = {
+         .VertexBufferIndex = ANV_DRAWID_VB_INDEX,
+         .Valid = true,
+         .SourceElementFormat = ISL_FORMAT_R32_UINT,
+         .Component0Control = VFCOMP_STORE_SRC,
+         .Component1Control = VFCOMP_STORE_0,
+         .Component2Control = VFCOMP_STORE_0,
+         .Component3Control = VFCOMP_STORE_0,
+      };
+      GENX(VERTEX_ELEMENT_STATE_pack)(NULL,
+                                      &p[1 + drawid_slot * 2],
+                                      &element);
+
+#if GEN_GEN >= 8
+      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_INSTANCING), vfi) {
+         vfi.VertexElementIndex = drawid_slot;
+      }
+#endif
+   }
+}
+
+void
+genX(emit_urb_setup)(struct anv_device *device, struct anv_batch *batch,
+                     const struct gen_l3_config *l3_config,
+                     VkShaderStageFlags active_stages,
+                     const unsigned entry_size[4])
+{
+   const struct gen_device_info *devinfo = &device->info;
+#if GEN_IS_HASWELL
+   const unsigned push_constant_kb = devinfo->gt == 3 ? 32 : 16;
+#else
+   const unsigned push_constant_kb = GEN_GEN >= 8 ? 32 : 16;
+#endif
+
+   const unsigned urb_size_kb = gen_get_l3_config_urb_size(devinfo, l3_config);
+
+   unsigned entries[4];
+   unsigned start[4];
+   gen_get_urb_config(devinfo,
+                      1024 * push_constant_kb, 1024 * urb_size_kb,
+                      active_stages &
+                         VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT,
+                      active_stages & VK_SHADER_STAGE_GEOMETRY_BIT,
+                      entry_size, entries, start);
+
+#if GEN_GEN == 7 && !GEN_IS_HASWELL
+   /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
+    *
+    *    "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth stall
+    *    needs to be sent just prior to any 3DSTATE_VS, 3DSTATE_URB_VS,
+    *    3DSTATE_CONSTANT_VS, 3DSTATE_BINDING_TABLE_POINTER_VS,
+    *    3DSTATE_SAMPLER_STATE_POINTER_VS command.  Only one PIPE_CONTROL
+    *    needs to be sent before any combination of VS associated 3DSTATE."
+    */
+   anv_batch_emit(batch, GEN7_PIPE_CONTROL, pc) {
+      pc.DepthStallEnable  = true;
+      pc.PostSyncOperation = WriteImmediateData;
+      pc.Address           = (struct anv_address) { &device->workaround_bo, 0 };
+   }
+#endif
+
+   for (int i = 0; i <= MESA_SHADER_GEOMETRY; i++) {
+      anv_batch_emit(batch, GENX(3DSTATE_URB_VS), urb) {
+         urb._3DCommandSubOpcode      += i;
+         urb.VSURBStartingAddress      = start[i];
+         urb.VSURBEntryAllocationSize  = entry_size[i] - 1;
+         urb.VSNumberofURBEntries      = entries[i];
+      }
+   }
+}
+
+static void
+emit_urb_setup(struct anv_pipeline *pipeline)
+{
+   unsigned entry_size[4];
+   for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
+      const struct brw_vue_prog_data *prog_data =
+         !anv_pipeline_has_stage(pipeline, i) ? NULL :
+         (const struct brw_vue_prog_data *) pipeline->shaders[i]->prog_data;
+
+      entry_size[i] = prog_data ? prog_data->urb_entry_size : 1;
+   }
+
+   genX(emit_urb_setup)(pipeline->device, &pipeline->batch,
+                        pipeline->urb.l3_config,
+                        pipeline->active_stages, entry_size);
+}
+
+static void
+emit_3dstate_sbe(struct anv_pipeline *pipeline)
+{
+   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
+
+   if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
+      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SBE), sbe);
+#if GEN_GEN >= 8
+      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SBE_SWIZ), sbe);
+#endif
+      return;
+   }
+
+   const struct brw_vue_map *fs_input_map =
+      &anv_pipeline_get_last_vue_prog_data(pipeline)->vue_map;
+
+   struct GENX(3DSTATE_SBE) sbe = {
+      GENX(3DSTATE_SBE_header),
+      .AttributeSwizzleEnable = true,
+      .PointSpriteTextureCoordinateOrigin = UPPERLEFT,
+      .NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs,
+      .ConstantInterpolationEnable = wm_prog_data->flat_inputs,
+   };
+
+#if GEN_GEN >= 9
+   for (unsigned i = 0; i < 32; i++)
+      sbe.AttributeActiveComponentFormat[i] = ACF_XYZW;
+#endif
+
+#if GEN_GEN >= 8
+   /* On Broadwell, they broke 3DSTATE_SBE into two packets */
+   struct GENX(3DSTATE_SBE_SWIZ) swiz = {
+      GENX(3DSTATE_SBE_SWIZ_header),
+   };
+#else
+#  define swiz sbe
+#endif
+
+   /* Skip the VUE header and position slots by default */
+   unsigned urb_entry_read_offset = 1;
+   int max_source_attr = 0;
+   for (int attr = 0; attr < VARYING_SLOT_MAX; attr++) {
+      int input_index = wm_prog_data->urb_setup[attr];
+
+      if (input_index < 0)
+         continue;
+
+      /* gl_Layer is stored in the VUE header */
+      if (attr == VARYING_SLOT_LAYER) {
+         urb_entry_read_offset = 0;
+         continue;
+      }
+
+      if (attr == VARYING_SLOT_PNTC) {
+         sbe.PointSpriteTextureCoordinateEnable = 1 << input_index;
+         continue;
+      }
+
+      const int slot = fs_input_map->varying_to_slot[attr];
+
+      if (input_index >= 16)
+         continue;
+
+      if (slot == -1) {
+         /* This attribute does not exist in the VUE--that means that the
+          * vertex shader did not write to it.  It could be that it's a
+          * regular varying read by the fragment shader but not written by
+          * the vertex shader or it's gl_PrimitiveID. In the first case the
+          * value is undefined, in the second it needs to be
+          * gl_PrimitiveID.
+          */
+         swiz.Attribute[input_index].ConstantSource = PRIM_ID;
+         swiz.Attribute[input_index].ComponentOverrideX = true;
+         swiz.Attribute[input_index].ComponentOverrideY = true;
+         swiz.Attribute[input_index].ComponentOverrideZ = true;
+         swiz.Attribute[input_index].ComponentOverrideW = true;
+      } else {
+         /* We have to subtract two slots to accout for the URB entry output
+          * read offset in the VS and GS stages.
+          */
+         const int source_attr = slot - 2 * urb_entry_read_offset;
+         assert(source_attr >= 0 && source_attr < 32);
+         max_source_attr = MAX2(max_source_attr, source_attr);
+         swiz.Attribute[input_index].SourceAttribute = source_attr;
+      }
+   }
+
+   sbe.VertexURBEntryReadOffset = urb_entry_read_offset;
+   sbe.VertexURBEntryReadLength = DIV_ROUND_UP(max_source_attr + 1, 2);
+#if GEN_GEN >= 8
+   sbe.ForceVertexURBEntryReadOffset = true;
+   sbe.ForceVertexURBEntryReadLength = true;
+#endif
+
+   uint32_t *dw = anv_batch_emit_dwords(&pipeline->batch,
+                                        GENX(3DSTATE_SBE_length));
+   if (!dw)
+      return;
+   GENX(3DSTATE_SBE_pack)(&pipeline->batch, dw, &sbe);
+
+#if GEN_GEN >= 8
+   dw = anv_batch_emit_dwords(&pipeline->batch, GENX(3DSTATE_SBE_SWIZ_length));
+   if (!dw)
+      return;
+   GENX(3DSTATE_SBE_SWIZ_pack)(&pipeline->batch, dw, &swiz);
+#endif
+}
+
+static const uint32_t vk_to_gen_cullmode[] = {
+   [VK_CULL_MODE_NONE]                       = CULLMODE_NONE,
+   [VK_CULL_MODE_FRONT_BIT]                  = CULLMODE_FRONT,
+   [VK_CULL_MODE_BACK_BIT]                   = CULLMODE_BACK,
+   [VK_CULL_MODE_FRONT_AND_BACK]             = CULLMODE_BOTH
+};
+
+static const uint32_t vk_to_gen_fillmode[] = {
+   [VK_POLYGON_MODE_FILL]                    = FILL_MODE_SOLID,
+   [VK_POLYGON_MODE_LINE]                    = FILL_MODE_WIREFRAME,
+   [VK_POLYGON_MODE_POINT]                   = FILL_MODE_POINT,
+};
+
+static const uint32_t vk_to_gen_front_face[] = {
+   [VK_FRONT_FACE_COUNTER_CLOCKWISE]         = 1,
+   [VK_FRONT_FACE_CLOCKWISE]                 = 0
+};
+
+static void
+emit_rs_state(struct anv_pipeline *pipeline,
+              const VkPipelineRasterizationStateCreateInfo *rs_info,
+              const VkPipelineMultisampleStateCreateInfo *ms_info,
+              const struct anv_render_pass *pass,
+              const struct anv_subpass *subpass)
+{
+   struct GENX(3DSTATE_SF) sf = {
+      GENX(3DSTATE_SF_header),
+   };
+
+   sf.ViewportTransformEnable = true;
+   sf.StatisticsEnable = true;
+   sf.TriangleStripListProvokingVertexSelect = 0;
+   sf.LineStripListProvokingVertexSelect = 0;
+   sf.TriangleFanProvokingVertexSelect = 1;
+
+   const struct brw_vue_prog_data *last_vue_prog_data =
+      anv_pipeline_get_last_vue_prog_data(pipeline);
+
+   if (last_vue_prog_data->vue_map.slots_valid & VARYING_BIT_PSIZ) {
+      sf.PointWidthSource = Vertex;
+   } else {
+      sf.PointWidthSource = State;
+      sf.PointWidth = 1.0;
+   }
+
+#if GEN_GEN >= 8
+   struct GENX(3DSTATE_RASTER) raster = {
+      GENX(3DSTATE_RASTER_header),
+   };
+#else
+#  define raster sf
+#endif
+
+   /* For details on 3DSTATE_RASTER multisample state, see the BSpec table
+    * "Multisample Modes State".
+    */
+#if GEN_GEN >= 8
+   raster.DXMultisampleRasterizationEnable = true;
+   /* NOTE: 3DSTATE_RASTER::ForcedSampleCount affects the BDW and SKL PMA fix
+    * computations.  If we ever set this bit to a different value, they will
+    * need to be updated accordingly.
+    */
+   raster.ForcedSampleCount = FSC_NUMRASTSAMPLES_0;
+   raster.ForceMultisampling = false;
+#else
+   raster.MultisampleRasterizationMode =
+      (ms_info && ms_info->rasterizationSamples > 1) ?
+      MSRASTMODE_ON_PATTERN : MSRASTMODE_OFF_PIXEL;
+#endif
+
+   raster.FrontWinding = vk_to_gen_front_face[rs_info->frontFace];
+   raster.CullMode = vk_to_gen_cullmode[rs_info->cullMode];
+   raster.FrontFaceFillMode = vk_to_gen_fillmode[rs_info->polygonMode];
+   raster.BackFaceFillMode = vk_to_gen_fillmode[rs_info->polygonMode];
+   raster.ScissorRectangleEnable = true;
+
+#if GEN_GEN >= 9
+   /* GEN9+ splits ViewportZClipTestEnable into near and far enable bits */
+   raster.ViewportZFarClipTestEnable = !pipeline->depth_clamp_enable;
+   raster.ViewportZNearClipTestEnable = !pipeline->depth_clamp_enable;
+#elif GEN_GEN >= 8
+   raster.ViewportZClipTestEnable = !pipeline->depth_clamp_enable;
+#endif
+
+   raster.GlobalDepthOffsetEnableSolid = rs_info->depthBiasEnable;
+   raster.GlobalDepthOffsetEnableWireframe = rs_info->depthBiasEnable;
+   raster.GlobalDepthOffsetEnablePoint = rs_info->depthBiasEnable;
+
+#if GEN_GEN == 7
+   /* Gen7 requires that we provide the depth format in 3DSTATE_SF so that it
+    * can get the depth offsets correct.
+    */
+   if (subpass->depth_stencil_attachment.attachment < pass->attachment_count) {
+      VkFormat vk_format =
+         pass->attachments[subpass->depth_stencil_attachment.attachment].format;
+      assert(vk_format_is_depth_or_stencil(vk_format));
+      if (vk_format_aspects(vk_format) & VK_IMAGE_ASPECT_DEPTH_BIT) {
+         enum isl_format isl_format =
+            anv_get_isl_format(&pipeline->device->info, vk_format,
+                               VK_IMAGE_ASPECT_DEPTH_BIT,
+                               VK_IMAGE_TILING_OPTIMAL);
+         sf.DepthBufferSurfaceFormat =
+            isl_format_get_depth_format(isl_format, false);
+      }
+   }
+#endif
+
+#if GEN_GEN >= 8
+   GENX(3DSTATE_SF_pack)(NULL, pipeline->gen8.sf, &sf);
+   GENX(3DSTATE_RASTER_pack)(NULL, pipeline->gen8.raster, &raster);
+#else
+#  undef raster
+   GENX(3DSTATE_SF_pack)(NULL, &pipeline->gen7.sf, &sf);
+#endif
+}
+
+static void
+emit_ms_state(struct anv_pipeline *pipeline,
+              const VkPipelineMultisampleStateCreateInfo *info)
+{
+   uint32_t samples = 1;
+   uint32_t log2_samples = 0;
+
+   /* From the Vulkan 1.0 spec:
+    *    If pSampleMask is NULL, it is treated as if the mask has all bits
+    *    enabled, i.e. no coverage is removed from fragments.
+    *
+    * 3DSTATE_SAMPLE_MASK.SampleMask is 16 bits.
+    */
+#if GEN_GEN >= 8
+   uint32_t sample_mask = 0xffff;
+#else
+   uint32_t sample_mask = 0xff;
+#endif
+
+   if (info) {
+      samples = info->rasterizationSamples;
+      log2_samples = __builtin_ffs(samples) - 1;
+   }
+
+   if (info && info->pSampleMask)
+      sample_mask &= info->pSampleMask[0];
+
+   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_MULTISAMPLE), ms) {
+      ms.NumberofMultisamples       = log2_samples;
+
+      ms.PixelLocation              = CENTER;
+#if GEN_GEN >= 8
+      /* The PRM says that this bit is valid only for DX9:
+       *
+       *    SW can choose to set this bit only for DX9 API. DX10/OGL API's
+       *    should not have any effect by setting or not setting this bit.
+       */
+      ms.PixelPositionOffsetEnable  = false;
+#else
+
+      switch (samples) {
+      case 1:
+         GEN_SAMPLE_POS_1X(ms.Sample);
+         break;
+      case 2:
+         GEN_SAMPLE_POS_2X(ms.Sample);
+         break;
+      case 4:
+         GEN_SAMPLE_POS_4X(ms.Sample);
+         break;
+      case 8:
+         GEN_SAMPLE_POS_8X(ms.Sample);
+         break;
+      default:
+         break;
+      }
+#endif
+   }
+
+   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SAMPLE_MASK), sm) {
+      sm.SampleMask = sample_mask;
+   }
+}
+
+static const uint32_t vk_to_gen_logic_op[] = {
+   [VK_LOGIC_OP_COPY]                        = LOGICOP_COPY,
+   [VK_LOGIC_OP_CLEAR]                       = LOGICOP_CLEAR,
+   [VK_LOGIC_OP_AND]                         = LOGICOP_AND,
+   [VK_LOGIC_OP_AND_REVERSE]                 = LOGICOP_AND_REVERSE,
+   [VK_LOGIC_OP_AND_INVERTED]                = LOGICOP_AND_INVERTED,
+   [VK_LOGIC_OP_NO_OP]                       = LOGICOP_NOOP,
+   [VK_LOGIC_OP_XOR]                         = LOGICOP_XOR,
+   [VK_LOGIC_OP_OR]                          = LOGICOP_OR,
+   [VK_LOGIC_OP_NOR]                         = LOGICOP_NOR,
+   [VK_LOGIC_OP_EQUIVALENT]                  = LOGICOP_EQUIV,
+   [VK_LOGIC_OP_INVERT]                      = LOGICOP_INVERT,
+   [VK_LOGIC_OP_OR_REVERSE]                  = LOGICOP_OR_REVERSE,
+   [VK_LOGIC_OP_COPY_INVERTED]               = LOGICOP_COPY_INVERTED,
+   [VK_LOGIC_OP_OR_INVERTED]                 = LOGICOP_OR_INVERTED,
+   [VK_LOGIC_OP_NAND]                        = LOGICOP_NAND,
+   [VK_LOGIC_OP_SET]                         = LOGICOP_SET,
+};
+
+static const uint32_t vk_to_gen_blend[] = {
+   [VK_BLEND_FACTOR_ZERO]                    = BLENDFACTOR_ZERO,
+   [VK_BLEND_FACTOR_ONE]                     = BLENDFACTOR_ONE,
+   [VK_BLEND_FACTOR_SRC_COLOR]               = BLENDFACTOR_SRC_COLOR,
+   [VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR]     = BLENDFACTOR_INV_SRC_COLOR,
+   [VK_BLEND_FACTOR_DST_COLOR]               = BLENDFACTOR_DST_COLOR,
+   [VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR]     = BLENDFACTOR_INV_DST_COLOR,
+   [VK_BLEND_FACTOR_SRC_ALPHA]               = BLENDFACTOR_SRC_ALPHA,
+   [VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA]     = BLENDFACTOR_INV_SRC_ALPHA,
+   [VK_BLEND_FACTOR_DST_ALPHA]               = BLENDFACTOR_DST_ALPHA,
+   [VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA]     = BLENDFACTOR_INV_DST_ALPHA,
+   [VK_BLEND_FACTOR_CONSTANT_COLOR]          = BLENDFACTOR_CONST_COLOR,
+   [VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR]= BLENDFACTOR_INV_CONST_COLOR,
+   [VK_BLEND_FACTOR_CONSTANT_ALPHA]          = BLENDFACTOR_CONST_ALPHA,
+   [VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA]= BLENDFACTOR_INV_CONST_ALPHA,
+   [VK_BLEND_FACTOR_SRC_ALPHA_SATURATE]      = BLENDFACTOR_SRC_ALPHA_SATURATE,
+   [VK_BLEND_FACTOR_SRC1_COLOR]              = BLENDFACTOR_SRC1_COLOR,
+   [VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR]    = BLENDFACTOR_INV_SRC1_COLOR,
+   [VK_BLEND_FACTOR_SRC1_ALPHA]              = BLENDFACTOR_SRC1_ALPHA,
+   [VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA]    = BLENDFACTOR_INV_SRC1_ALPHA,
+};
+
+static const uint32_t vk_to_gen_blend_op[] = {
+   [VK_BLEND_OP_ADD]                         = BLENDFUNCTION_ADD,
+   [VK_BLEND_OP_SUBTRACT]                    = BLENDFUNCTION_SUBTRACT,
+   [VK_BLEND_OP_REVERSE_SUBTRACT]            = BLENDFUNCTION_REVERSE_SUBTRACT,
+   [VK_BLEND_OP_MIN]                         = BLENDFUNCTION_MIN,
+   [VK_BLEND_OP_MAX]                         = BLENDFUNCTION_MAX,
+};
+
+static const uint32_t vk_to_gen_compare_op[] = {
+   [VK_COMPARE_OP_NEVER]                        = PREFILTEROPNEVER,
+   [VK_COMPARE_OP_LESS]                         = PREFILTEROPLESS,
+   [VK_COMPARE_OP_EQUAL]                        = PREFILTEROPEQUAL,
+   [VK_COMPARE_OP_LESS_OR_EQUAL]                = PREFILTEROPLEQUAL,
+   [VK_COMPARE_OP_GREATER]                      = PREFILTEROPGREATER,
+   [VK_COMPARE_OP_NOT_EQUAL]                    = PREFILTEROPNOTEQUAL,
+   [VK_COMPARE_OP_GREATER_OR_EQUAL]             = PREFILTEROPGEQUAL,
+   [VK_COMPARE_OP_ALWAYS]                       = PREFILTEROPALWAYS,
+};
+
+static const uint32_t vk_to_gen_stencil_op[] = {
+   [VK_STENCIL_OP_KEEP]                         = STENCILOP_KEEP,
+   [VK_STENCIL_OP_ZERO]                         = STENCILOP_ZERO,
+   [VK_STENCIL_OP_REPLACE]                      = STENCILOP_REPLACE,
+   [VK_STENCIL_OP_INCREMENT_AND_CLAMP]          = STENCILOP_INCRSAT,
+   [VK_STENCIL_OP_DECREMENT_AND_CLAMP]          = STENCILOP_DECRSAT,
+   [VK_STENCIL_OP_INVERT]                       = STENCILOP_INVERT,
+   [VK_STENCIL_OP_INCREMENT_AND_WRAP]           = STENCILOP_INCR,
+   [VK_STENCIL_OP_DECREMENT_AND_WRAP]           = STENCILOP_DECR,
+};
+
+/* This function sanitizes the VkStencilOpState by looking at the compare ops
+ * and trying to determine whether or not a given stencil op can ever actually
+ * occur.  Stencil ops which can never occur are set to VK_STENCIL_OP_KEEP.
+ * This function returns true if, after sanitation, any of the stencil ops are
+ * set to something other than VK_STENCIL_OP_KEEP.
+ */
+static bool
+sanitize_stencil_face(VkStencilOpState *face,
+                      VkCompareOp depthCompareOp)
+{
+   /* If compareOp is ALWAYS then the stencil test will never fail and failOp
+    * will never happen.  Set failOp to KEEP in this case.
+    */
+   if (face->compareOp == VK_COMPARE_OP_ALWAYS)
+      face->failOp = VK_STENCIL_OP_KEEP;
+
+   /* If compareOp is NEVER or depthCompareOp is NEVER then one of the depth
+    * or stencil tests will fail and passOp will never happen.
+    */
+   if (face->compareOp == VK_COMPARE_OP_NEVER ||
+       depthCompareOp == VK_COMPARE_OP_NEVER)
+      face->passOp = VK_STENCIL_OP_KEEP;
+
+   /* If compareOp is NEVER or depthCompareOp is ALWAYS then either the
+    * stencil test will fail or the depth test will pass.  In either case,
+    * depthFailOp will never happen.
+    */
+   if (face->compareOp == VK_COMPARE_OP_NEVER ||
+       depthCompareOp == VK_COMPARE_OP_ALWAYS)
+      face->depthFailOp = VK_STENCIL_OP_KEEP;
+
+   return face->failOp != VK_STENCIL_OP_KEEP ||
+          face->depthFailOp != VK_STENCIL_OP_KEEP ||
+          face->passOp != VK_STENCIL_OP_KEEP;
+}
+
+/* Intel hardware is fairly sensitive to whether or not depth/stencil writes
+ * are enabled.  In the presence of discards, it's fairly easy to get into the
+ * non-promoted case which means a fairly big performance hit.  From the Iron
+ * Lake PRM, Vol 2, pt. 1, section 8.4.3.2, "Early Depth Test Cases":
+ *
+ *    "Non-promoted depth (N) is active whenever the depth test can be done
+ *    early but it cannot determine whether or not to write source depth to
+ *    the depth buffer, therefore the depth write must be performed post pixel
+ *    shader. This includes cases where the pixel shader can kill pixels,
+ *    including via sampler chroma key, as well as cases where the alpha test
+ *    function is enabled, which kills pixels based on a programmable alpha
+ *    test. In this case, even if the depth test fails, the pixel cannot be
+ *    killed if a stencil write is indicated. Whether or not the stencil write
+ *    happens depends on whether or not the pixel is killed later. In these
+ *    cases if stencil test fails and stencil writes are off, the pixels can
+ *    also be killed early. If stencil writes are enabled, the pixels must be
+ *    treated as Computed depth (described above)."
+ *
+ * The same thing as mentioned in the stencil case can happen in the depth
+ * case as well if it thinks it writes depth but, thanks to the depth test
+ * being GL_EQUAL, the write doesn't actually matter.  A little extra work
+ * up-front to try and disable depth and stencil writes can make a big
+ * difference.
+ *
+ * Unfortunately, the way depth and stencil testing is specified, there are
+ * many case where, regardless of depth/stencil writes being enabled, nothing
+ * actually gets written due to some other bit of state being set.  This
+ * function attempts to "sanitize" the depth stencil state and disable writes
+ * and sometimes even testing whenever possible.
+ */
+static void
+sanitize_ds_state(VkPipelineDepthStencilStateCreateInfo *state,
+                  bool *stencilWriteEnable,
+                  VkImageAspectFlags ds_aspects)
+{
+   *stencilWriteEnable = state->stencilTestEnable;
+
+   /* If the depth test is disabled, we won't be writing anything. */
+   if (!state->depthTestEnable)
+      state->depthWriteEnable = false;
+
+   /* The Vulkan spec requires that if either depth or stencil is not present,
+    * the pipeline is to act as if the test silently passes.
+    */
+   if (!(ds_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
+      state->depthWriteEnable = false;
+      state->depthCompareOp = VK_COMPARE_OP_ALWAYS;
+   }
+
+   if (!(ds_aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
+      *stencilWriteEnable = false;
+      state->front.compareOp = VK_COMPARE_OP_ALWAYS;
+      state->back.compareOp = VK_COMPARE_OP_ALWAYS;
+   }
+
+   /* If the stencil test is enabled and always fails, then we will never get
+    * to the depth test so we can just disable the depth test entirely.
+    */
+   if (state->stencilTestEnable &&
+       state->front.compareOp == VK_COMPARE_OP_NEVER &&
+       state->back.compareOp == VK_COMPARE_OP_NEVER) {
+      state->depthTestEnable = false;
+      state->depthWriteEnable = false;
+   }
+
+   /* If depthCompareOp is EQUAL then the value we would be writing to the
+    * depth buffer is the same as the value that's already there so there's no
+    * point in writing it.
+    */
+   if (state->depthCompareOp == VK_COMPARE_OP_EQUAL)
+      state->depthWriteEnable = false;
+
+   /* If the stencil ops are such that we don't actually ever modify the
+    * stencil buffer, we should disable writes.
+    */
+   if (!sanitize_stencil_face(&state->front, state->depthCompareOp) &&
+       !sanitize_stencil_face(&state->back, state->depthCompareOp))
+      *stencilWriteEnable = false;
+
+   /* If the depth test always passes and we never write out depth, that's the
+    * same as if the depth test is disabled entirely.
+    */
+   if (state->depthCompareOp == VK_COMPARE_OP_ALWAYS &&
+       !state->depthWriteEnable)
+      state->depthTestEnable = false;
+
+   /* If the stencil test always passes and we never write out stencil, that's
+    * the same as if the stencil test is disabled entirely.
+    */
+   if (state->front.compareOp == VK_COMPARE_OP_ALWAYS &&
+       state->back.compareOp == VK_COMPARE_OP_ALWAYS &&
+       !*stencilWriteEnable)
+      state->stencilTestEnable = false;
+}
+
+static void
+emit_ds_state(struct anv_pipeline *pipeline,
+              const VkPipelineDepthStencilStateCreateInfo *pCreateInfo,
+              const struct anv_render_pass *pass,
+              const struct anv_subpass *subpass)
+{
+#if GEN_GEN == 7
+#  define depth_stencil_dw pipeline->gen7.depth_stencil_state
+#elif GEN_GEN == 8
+#  define depth_stencil_dw pipeline->gen8.wm_depth_stencil
+#else
+#  define depth_stencil_dw pipeline->gen9.wm_depth_stencil
+#endif
+
+   if (pCreateInfo == NULL) {
+      /* We're going to OR this together with the dynamic state.  We need
+       * to make sure it's initialized to something useful.
+       */
+      pipeline->writes_stencil = false;
+      pipeline->stencil_test_enable = false;
+      pipeline->writes_depth = false;
+      pipeline->depth_test_enable = false;
+      memset(depth_stencil_dw, 0, sizeof(depth_stencil_dw));
+      return;
+   }
+
+   VkImageAspectFlags ds_aspects = 0;
+   if (subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED) {
+      VkFormat depth_stencil_format =
+         pass->attachments[subpass->depth_stencil_attachment.attachment].format;
+      ds_aspects = vk_format_aspects(depth_stencil_format);
+   }
+
+   VkPipelineDepthStencilStateCreateInfo info = *pCreateInfo;
+   sanitize_ds_state(&info, &pipeline->writes_stencil, ds_aspects);
+   pipeline->stencil_test_enable = info.stencilTestEnable;
+   pipeline->writes_depth = info.depthWriteEnable;
+   pipeline->depth_test_enable = info.depthTestEnable;
+
+   /* VkBool32 depthBoundsTestEnable; // optional (depth_bounds_test) */
+
+#if GEN_GEN <= 7
+   struct GENX(DEPTH_STENCIL_STATE) depth_stencil = {
+#else
+   struct GENX(3DSTATE_WM_DEPTH_STENCIL) depth_stencil = {
+#endif
+      .DepthTestEnable = info.depthTestEnable,
+      .DepthBufferWriteEnable = info.depthWriteEnable,
+      .DepthTestFunction = vk_to_gen_compare_op[info.depthCompareOp],
+      .DoubleSidedStencilEnable = true,
+
+      .StencilTestEnable = info.stencilTestEnable,
+      .StencilFailOp = vk_to_gen_stencil_op[info.front.failOp],
+      .StencilPassDepthPassOp = vk_to_gen_stencil_op[info.front.passOp],
+      .StencilPassDepthFailOp = vk_to_gen_stencil_op[info.front.depthFailOp],
+      .StencilTestFunction = vk_to_gen_compare_op[info.front.compareOp],
+      .BackfaceStencilFailOp = vk_to_gen_stencil_op[info.back.failOp],
+      .BackfaceStencilPassDepthPassOp = vk_to_gen_stencil_op[info.back.passOp],
+      .BackfaceStencilPassDepthFailOp =vk_to_gen_stencil_op[info.back.depthFailOp],
+      .BackfaceStencilTestFunction = vk_to_gen_compare_op[info.back.compareOp],
+   };
+
+#if GEN_GEN <= 7
+   GENX(DEPTH_STENCIL_STATE_pack)(NULL, depth_stencil_dw, &depth_stencil);
+#else
+   GENX(3DSTATE_WM_DEPTH_STENCIL_pack)(NULL, depth_stencil_dw, &depth_stencil);
+#endif
+}
+
+static void
+emit_cb_state(struct anv_pipeline *pipeline,
+              const VkPipelineColorBlendStateCreateInfo *info,
+              const VkPipelineMultisampleStateCreateInfo *ms_info)
+{
+   struct anv_device *device = pipeline->device;
+
+
+   struct GENX(BLEND_STATE) blend_state = {
+#if GEN_GEN >= 8
+      .AlphaToCoverageEnable = ms_info && ms_info->alphaToCoverageEnable,
+      .AlphaToOneEnable = ms_info && ms_info->alphaToOneEnable,
+#endif
+   };
+
+   uint32_t surface_count = 0;
+   struct anv_pipeline_bind_map *map;
+   if (anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
+      map = &pipeline->shaders[MESA_SHADER_FRAGMENT]->bind_map;
+      surface_count = map->surface_count;
+   }
+
+   const uint32_t num_dwords = GENX(BLEND_STATE_length) +
+      GENX(BLEND_STATE_ENTRY_length) * surface_count;
+   pipeline->blend_state =
+      anv_state_pool_alloc(&device->dynamic_state_pool, num_dwords * 4, 64);
+
+   bool has_writeable_rt = false;
+   uint32_t *state_pos = pipeline->blend_state.map;
+   state_pos += GENX(BLEND_STATE_length);
+#if GEN_GEN >= 8
+   struct GENX(BLEND_STATE_ENTRY) bs0 = { 0 };
+#endif
+   for (unsigned i = 0; i < surface_count; i++) {
+      struct anv_pipeline_binding *binding = &map->surface_to_descriptor[i];
+
+      /* All color attachments are at the beginning of the binding table */
+      if (binding->set != ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS)
+         break;
+
+      /* We can have at most 8 attachments */
+      assert(i < 8);
+
+      if (info == NULL || binding->index >= info->attachmentCount) {
+         /* Default everything to disabled */
+         struct GENX(BLEND_STATE_ENTRY) entry = {
+            .WriteDisableAlpha = true,
+            .WriteDisableRed = true,
+            .WriteDisableGreen = true,
+            .WriteDisableBlue = true,
+         };
+         GENX(BLEND_STATE_ENTRY_pack)(NULL, state_pos, &entry);
+         state_pos += GENX(BLEND_STATE_ENTRY_length);
+         continue;
+      }
+
+      assert(binding->binding == 0);
+      const VkPipelineColorBlendAttachmentState *a =
+         &info->pAttachments[binding->index];
+
+      struct GENX(BLEND_STATE_ENTRY) entry = {
+#if GEN_GEN < 8
+         .AlphaToCoverageEnable = ms_info && ms_info->alphaToCoverageEnable,
+         .AlphaToOneEnable = ms_info && ms_info->alphaToOneEnable,
+#endif
+         .LogicOpEnable = info->logicOpEnable,
+         .LogicOpFunction = vk_to_gen_logic_op[info->logicOp],
+         .ColorBufferBlendEnable = a->blendEnable,
+         .ColorClampRange = COLORCLAMP_RTFORMAT,
+         .PreBlendColorClampEnable = true,
+         .PostBlendColorClampEnable = true,
+         .SourceBlendFactor = vk_to_gen_blend[a->srcColorBlendFactor],
+         .DestinationBlendFactor = vk_to_gen_blend[a->dstColorBlendFactor],
+         .ColorBlendFunction = vk_to_gen_blend_op[a->colorBlendOp],
+         .SourceAlphaBlendFactor = vk_to_gen_blend[a->srcAlphaBlendFactor],
+         .DestinationAlphaBlendFactor = vk_to_gen_blend[a->dstAlphaBlendFactor],
+         .AlphaBlendFunction = vk_to_gen_blend_op[a->alphaBlendOp],
+         .WriteDisableAlpha = !(a->colorWriteMask & VK_COLOR_COMPONENT_A_BIT),
+         .WriteDisableRed = !(a->colorWriteMask & VK_COLOR_COMPONENT_R_BIT),
+         .WriteDisableGreen = !(a->colorWriteMask & VK_COLOR_COMPONENT_G_BIT),
+         .WriteDisableBlue = !(a->colorWriteMask & VK_COLOR_COMPONENT_B_BIT),
+      };
+
+      if (a->srcColorBlendFactor != a->srcAlphaBlendFactor ||
+          a->dstColorBlendFactor != a->dstAlphaBlendFactor ||
+          a->colorBlendOp != a->alphaBlendOp) {
+#if GEN_GEN >= 8
+         blend_state.IndependentAlphaBlendEnable = true;
+#else
+         entry.IndependentAlphaBlendEnable = true;
+#endif
+      }
+
+      if (a->colorWriteMask != 0)
+         has_writeable_rt = true;
+
+      /* Our hardware applies the blend factor prior to the blend function
+       * regardless of what function is used.  Technically, this means the
+       * hardware can do MORE than GL or Vulkan specify.  However, it also
+       * means that, for MIN and MAX, we have to stomp the blend factor to
+       * ONE to make it a no-op.
+       */
+      if (a->colorBlendOp == VK_BLEND_OP_MIN ||
+          a->colorBlendOp == VK_BLEND_OP_MAX) {
+         entry.SourceBlendFactor = BLENDFACTOR_ONE;
+         entry.DestinationBlendFactor = BLENDFACTOR_ONE;
+      }
+      if (a->alphaBlendOp == VK_BLEND_OP_MIN ||
+          a->alphaBlendOp == VK_BLEND_OP_MAX) {
+         entry.SourceAlphaBlendFactor = BLENDFACTOR_ONE;
+         entry.DestinationAlphaBlendFactor = BLENDFACTOR_ONE;
+      }
+      GENX(BLEND_STATE_ENTRY_pack)(NULL, state_pos, &entry);
+      state_pos += GENX(BLEND_STATE_ENTRY_length);
+#if GEN_GEN >= 8
+      if (i == 0)
+         bs0 = entry;
+#endif
+   }
+
+#if GEN_GEN >= 8
+   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_BLEND), blend) {
+      blend.AlphaToCoverageEnable         = blend_state.AlphaToCoverageEnable;
+      blend.HasWriteableRT                = has_writeable_rt;
+      blend.ColorBufferBlendEnable        = bs0.ColorBufferBlendEnable;
+      blend.SourceAlphaBlendFactor        = bs0.SourceAlphaBlendFactor;
+      blend.DestinationAlphaBlendFactor   = bs0.DestinationAlphaBlendFactor;
+      blend.SourceBlendFactor             = bs0.SourceBlendFactor;
+      blend.DestinationBlendFactor        = bs0.DestinationBlendFactor;
+      blend.AlphaTestEnable               = false;
+      blend.IndependentAlphaBlendEnable   =
+         blend_state.IndependentAlphaBlendEnable;
+   }
+#else
+   (void)has_writeable_rt;
+#endif
+
+   GENX(BLEND_STATE_pack)(NULL, pipeline->blend_state.map, &blend_state);
+   anv_state_flush(device, pipeline->blend_state);
+
+   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_BLEND_STATE_POINTERS), bsp) {
+      bsp.BlendStatePointer      = pipeline->blend_state.offset;
+#if GEN_GEN >= 8
+      bsp.BlendStatePointerValid = true;
+#endif
+   }
+}
+
+static void
+emit_3dstate_clip(struct anv_pipeline *pipeline,
+                  const VkPipelineViewportStateCreateInfo *vp_info,
+                  const VkPipelineRasterizationStateCreateInfo *rs_info)
+{
+   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
+   (void) wm_prog_data;
+   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_CLIP), clip) {
+      clip.ClipEnable               = true;
+      clip.StatisticsEnable         = true;
+      clip.EarlyCullEnable          = true;
+      clip.APIMode                  = APIMODE_D3D,
+      clip.ViewportXYClipTestEnable = true;
+
+      clip.ClipMode = CLIPMODE_NORMAL;
+
+      clip.TriangleStripListProvokingVertexSelect = 0;
+      clip.LineStripListProvokingVertexSelect     = 0;
+      clip.TriangleFanProvokingVertexSelect       = 1;
+
+      clip.MinimumPointWidth = 0.125;
+      clip.MaximumPointWidth = 255.875;
+
+      const struct brw_vue_prog_data *last =
+         anv_pipeline_get_last_vue_prog_data(pipeline);
+
+      /* From the Vulkan 1.0.45 spec:
+       *
+       *    "If the last active vertex processing stage shader entry point's
+       *    interface does not include a variable decorated with
+       *    ViewportIndex, then the first viewport is used."
+       */
+      if (vp_info && (last->vue_map.slots_valid & VARYING_BIT_VIEWPORT)) {
+         clip.MaximumVPIndex = vp_info->viewportCount - 1;
+      } else {
+         clip.MaximumVPIndex = 0;
+      }
+
+      /* From the Vulkan 1.0.45 spec:
+       *
+       *    "If the last active vertex processing stage shader entry point's
+       *    interface does not include a variable decorated with Layer, then
+       *    the first layer is used."
+       */
+      clip.ForceZeroRTAIndexEnable =
+         !(last->vue_map.slots_valid & VARYING_BIT_LAYER);
+
+#if GEN_GEN == 7
+      clip.FrontWinding            = vk_to_gen_front_face[rs_info->frontFace];
+      clip.CullMode                = vk_to_gen_cullmode[rs_info->cullMode];
+      clip.ViewportZClipTestEnable = !pipeline->depth_clamp_enable;
+      if (last) {
+         clip.UserClipDistanceClipTestEnableBitmask = last->clip_distance_mask;
+         clip.UserClipDistanceCullTestEnableBitmask = last->cull_distance_mask;
+      }
+#else
+      clip.NonPerspectiveBarycentricEnable = wm_prog_data ?
+         (wm_prog_data->barycentric_interp_modes &
+          BRW_BARYCENTRIC_NONPERSPECTIVE_BITS) != 0 : 0;
+#endif
+   }
+}
+
+static void
+emit_3dstate_streamout(struct anv_pipeline *pipeline,
+                       const VkPipelineRasterizationStateCreateInfo *rs_info)
+{
+   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_STREAMOUT), so) {
+      so.RenderingDisable = rs_info->rasterizerDiscardEnable;
+   }
+}
+
+static uint32_t
+get_sampler_count(const struct anv_shader_bin *bin)
+{
+   uint32_t count_by_4 = DIV_ROUND_UP(bin->bind_map.sampler_count, 4);
+
+   /* We can potentially have way more than 32 samplers and that's ok.
+    * However, the 3DSTATE_XS packets only have 3 bits to specify how
+    * many to pre-fetch and all values above 4 are marked reserved.
+    */
+   return MIN2(count_by_4, 4);
+}
+
+static uint32_t
+get_binding_table_entry_count(const struct anv_shader_bin *bin)
+{
+   return DIV_ROUND_UP(bin->bind_map.surface_count, 32);
+}
+
+static struct anv_address
+get_scratch_address(struct anv_pipeline *pipeline,
+                    gl_shader_stage stage,
+                    const struct anv_shader_bin *bin)
+{
+   return (struct anv_address) {
+      .bo = anv_scratch_pool_alloc(pipeline->device,
+                                   &pipeline->device->scratch_pool,
+                                   stage, bin->prog_data->total_scratch),
+      .offset = 0,
+   };
+}
+
+static uint32_t
+get_scratch_space(const struct anv_shader_bin *bin)
+{
+   return ffs(bin->prog_data->total_scratch / 2048);
+}
+
+static void
+emit_3dstate_vs(struct anv_pipeline *pipeline)
+{
+   const struct gen_device_info *devinfo = &pipeline->device->info;
+   const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
+   const struct anv_shader_bin *vs_bin =
+      pipeline->shaders[MESA_SHADER_VERTEX];
+
+   assert(anv_pipeline_has_stage(pipeline, MESA_SHADER_VERTEX));
+
+   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VS), vs) {
+      vs.Enable               = true;
+      vs.StatisticsEnable     = true;
+      vs.KernelStartPointer   = vs_bin->kernel.offset;
+#if GEN_GEN >= 8
+      vs.SIMD8DispatchEnable  =
+         vs_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8;
+#endif
+
+      assert(!vs_prog_data->base.base.use_alt_mode);
+#if GEN_GEN < 11
+      vs.SingleVertexDispatch       = false;
+#endif
+      vs.VectorMaskEnable           = false;
+      vs.SamplerCount               = get_sampler_count(vs_bin);
+      vs.BindingTableEntryCount     = get_binding_table_entry_count(vs_bin);
+      vs.FloatingPointMode          = IEEE754;
+      vs.IllegalOpcodeExceptionEnable = false;
+      vs.SoftwareExceptionEnable    = false;
+      vs.MaximumNumberofThreads     = devinfo->max_vs_threads - 1;
+      vs.VertexCacheDisable         = false;
+
+      vs.VertexURBEntryReadLength      = vs_prog_data->base.urb_read_length;
+      vs.VertexURBEntryReadOffset      = 0;
+      vs.DispatchGRFStartRegisterForURBData =
+         vs_prog_data->base.base.dispatch_grf_start_reg;
+
+#if GEN_GEN >= 8
+      vs.UserClipDistanceClipTestEnableBitmask =
+         vs_prog_data->base.clip_distance_mask;
+      vs.UserClipDistanceCullTestEnableBitmask =
+         vs_prog_data->base.cull_distance_mask;
+#endif
+
+      vs.PerThreadScratchSpace   = get_scratch_space(vs_bin);
+      vs.ScratchSpaceBasePointer =
+         get_scratch_address(pipeline, MESA_SHADER_VERTEX, vs_bin);
+   }
+}
+
+static void
+emit_3dstate_hs_te_ds(struct anv_pipeline *pipeline,
+                      const VkPipelineTessellationStateCreateInfo *tess_info)
+{
+   if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL)) {
+      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_HS), hs);
+      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_TE), te);
+      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_DS), ds);
+      return;
+   }
+
+   const struct gen_device_info *devinfo = &pipeline->device->info;
+   const struct anv_shader_bin *tcs_bin =
+      pipeline->shaders[MESA_SHADER_TESS_CTRL];
+   const struct anv_shader_bin *tes_bin =
+      pipeline->shaders[MESA_SHADER_TESS_EVAL];
+
+   const struct brw_tcs_prog_data *tcs_prog_data = get_tcs_prog_data(pipeline);
+   const struct brw_tes_prog_data *tes_prog_data = get_tes_prog_data(pipeline);
+
+   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_HS), hs) {
+      hs.Enable = true;
+      hs.StatisticsEnable = true;
+      hs.KernelStartPointer = tcs_bin->kernel.offset;
+
+      hs.SamplerCount = get_sampler_count(tcs_bin);
+      hs.BindingTableEntryCount = get_binding_table_entry_count(tcs_bin);
+      hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
+      hs.IncludeVertexHandles = true;
+      hs.InstanceCount = tcs_prog_data->instances - 1;
+
+      hs.VertexURBEntryReadLength = 0;
+      hs.VertexURBEntryReadOffset = 0;
+      hs.DispatchGRFStartRegisterForURBData =
+         tcs_prog_data->base.base.dispatch_grf_start_reg;
+
+      hs.PerThreadScratchSpace = get_scratch_space(tcs_bin);
+      hs.ScratchSpaceBasePointer =
+         get_scratch_address(pipeline, MESA_SHADER_TESS_CTRL, tcs_bin);
+   }
+
+   const VkPipelineTessellationDomainOriginStateCreateInfoKHR *domain_origin_state =
+      tess_info ? vk_find_struct_const(tess_info, PIPELINE_TESSELLATION_DOMAIN_ORIGIN_STATE_CREATE_INFO_KHR) : NULL;
+
+   VkTessellationDomainOriginKHR uv_origin =
+      domain_origin_state ? domain_origin_state->domainOrigin :
+                            VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT_KHR;
+
+   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_TE), te) {
+      te.Partitioning = tes_prog_data->partitioning;
+
+      if (uv_origin == VK_TESSELLATION_DOMAIN_ORIGIN_LOWER_LEFT_KHR) {
+         te.OutputTopology = tes_prog_data->output_topology;
+      } else {
+         /* When the origin is upper-left, we have to flip the winding order */
+         if (tes_prog_data->output_topology == OUTPUT_TRI_CCW) {
+            te.OutputTopology = OUTPUT_TRI_CW;
+         } else if (tes_prog_data->output_topology == OUTPUT_TRI_CW) {
+            te.OutputTopology = OUTPUT_TRI_CCW;
+         } else {
+            te.OutputTopology = tes_prog_data->output_topology;
+         }
+      }
+
+      te.TEDomain = tes_prog_data->domain;
+      te.TEEnable = true;
+      te.MaximumTessellationFactorOdd = 63.0;
+      te.MaximumTessellationFactorNotOdd = 64.0;
+   }
+
+   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_DS), ds) {
+      ds.Enable = true;
+      ds.StatisticsEnable = true;
+      ds.KernelStartPointer = tes_bin->kernel.offset;
+
+      ds.SamplerCount = get_sampler_count(tes_bin);
+      ds.BindingTableEntryCount = get_binding_table_entry_count(tes_bin);
+      ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
+
+      ds.ComputeWCoordinateEnable =
+         tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
+
+      ds.PatchURBEntryReadLength = tes_prog_data->base.urb_read_length;
+      ds.PatchURBEntryReadOffset = 0;
+      ds.DispatchGRFStartRegisterForURBData =
+         tes_prog_data->base.base.dispatch_grf_start_reg;
+
+#if GEN_GEN >= 8
+#if GEN_GEN < 11
+      ds.DispatchMode =
+         tes_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8 ?
+            DISPATCH_MODE_SIMD8_SINGLE_PATCH :
+            DISPATCH_MODE_SIMD4X2;
+#else
+      assert(tes_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8);
+      ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
+#endif
+
+      ds.UserClipDistanceClipTestEnableBitmask =
+         tes_prog_data->base.clip_distance_mask;
+      ds.UserClipDistanceCullTestEnableBitmask =
+         tes_prog_data->base.cull_distance_mask;
+#endif
+
+      ds.PerThreadScratchSpace = get_scratch_space(tes_bin);
+      ds.ScratchSpaceBasePointer =
+         get_scratch_address(pipeline, MESA_SHADER_TESS_EVAL, tes_bin);
+   }
+}
+
+static void
+emit_3dstate_gs(struct anv_pipeline *pipeline)
+{
+   const struct gen_device_info *devinfo = &pipeline->device->info;
+   const struct anv_shader_bin *gs_bin =
+      pipeline->shaders[MESA_SHADER_GEOMETRY];
+
+   if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) {
+      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_GS), gs);
+      return;
+   }
+
+   const struct brw_gs_prog_data *gs_prog_data = get_gs_prog_data(pipeline);
+
+   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_GS), gs) {
+      gs.Enable                  = true;
+      gs.StatisticsEnable        = true;
+      gs.KernelStartPointer      = gs_bin->kernel.offset;
+      gs.DispatchMode            = gs_prog_data->base.dispatch_mode;
+
+      gs.SingleProgramFlow       = false;
+      gs.VectorMaskEnable        = false;
+      gs.SamplerCount            = get_sampler_count(gs_bin);
+      gs.BindingTableEntryCount  = get_binding_table_entry_count(gs_bin);
+      gs.IncludeVertexHandles    = gs_prog_data->base.include_vue_handles;
+      gs.IncludePrimitiveID      = gs_prog_data->include_primitive_id;
+
+      if (GEN_GEN == 8) {
+         /* Broadwell is weird.  It needs us to divide by 2. */
+         gs.MaximumNumberofThreads = devinfo->max_gs_threads / 2 - 1;
+      } else {
+         gs.MaximumNumberofThreads = devinfo->max_gs_threads - 1;
+      }
+
+      gs.OutputVertexSize        = gs_prog_data->output_vertex_size_hwords * 2 - 1;
+      gs.OutputTopology          = gs_prog_data->output_topology;
+      gs.VertexURBEntryReadLength = gs_prog_data->base.urb_read_length;
+      gs.ControlDataFormat       = gs_prog_data->control_data_format;
+      gs.ControlDataHeaderSize   = gs_prog_data->control_data_header_size_hwords;
+      gs.InstanceControl         = MAX2(gs_prog_data->invocations, 1) - 1;
+      gs.ReorderMode             = TRAILING;
+
+#if GEN_GEN >= 8
+      gs.ExpectedVertexCount     = gs_prog_data->vertices_in;
+      gs.StaticOutput            = gs_prog_data->static_vertex_count >= 0;
+      gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count >= 0 ?
+                                   gs_prog_data->static_vertex_count : 0;
+#endif
+
+      gs.VertexURBEntryReadOffset = 0;
+      gs.VertexURBEntryReadLength = gs_prog_data->base.urb_read_length;
+      gs.DispatchGRFStartRegisterForURBData =
+         gs_prog_data->base.base.dispatch_grf_start_reg;
+
+#if GEN_GEN >= 8
+      gs.UserClipDistanceClipTestEnableBitmask =
+         gs_prog_data->base.clip_distance_mask;
+      gs.UserClipDistanceCullTestEnableBitmask =
+         gs_prog_data->base.cull_distance_mask;
+#endif
+
+      gs.PerThreadScratchSpace   = get_scratch_space(gs_bin);
+      gs.ScratchSpaceBasePointer =
+         get_scratch_address(pipeline, MESA_SHADER_GEOMETRY, gs_bin);
+   }
+}
+
+static bool
+has_color_buffer_write_enabled(const struct anv_pipeline *pipeline,
+                               const VkPipelineColorBlendStateCreateInfo *blend)
+{
+   const struct anv_shader_bin *shader_bin =
+      pipeline->shaders[MESA_SHADER_FRAGMENT];
+   if (!shader_bin)
+      return false;
+
+   const struct anv_pipeline_bind_map *bind_map = &shader_bin->bind_map;
+   for (int i = 0; i < bind_map->surface_count; i++) {
+      struct anv_pipeline_binding *binding = &bind_map->surface_to_descriptor[i];
+
+      if (binding->set != ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS)
+         continue;
+
+      if (binding->index == UINT32_MAX)
+         continue;
+
+      if (blend && blend->pAttachments[binding->index].colorWriteMask != 0)
+         return true;
+   }
+
+   return false;
+}
+
+static void
+emit_3dstate_wm(struct anv_pipeline *pipeline, struct anv_subpass *subpass,
+                const VkPipelineColorBlendStateCreateInfo *blend,
+                const VkPipelineMultisampleStateCreateInfo *multisample)
+{
+   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
+
+   MAYBE_UNUSED uint32_t samples =
+      multisample ? multisample->rasterizationSamples : 1;
+
+   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_WM), wm) {
+      wm.StatisticsEnable                    = true;
+      wm.LineEndCapAntialiasingRegionWidth   = _05pixels;
+      wm.LineAntialiasingRegionWidth         = _10pixels;
+      wm.PointRasterizationRule              = RASTRULE_UPPER_RIGHT;
+
+      if (anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
+         if (wm_prog_data->early_fragment_tests) {
+            wm.EarlyDepthStencilControl         = EDSC_PREPS;
+         } else if (wm_prog_data->has_side_effects) {
+            wm.EarlyDepthStencilControl         = EDSC_PSEXEC;
+         } else {
+            wm.EarlyDepthStencilControl         = EDSC_NORMAL;
+         }
+
+         wm.BarycentricInterpolationMode =
+            wm_prog_data->barycentric_interp_modes;
+
+#if GEN_GEN < 8
+         wm.PixelShaderComputedDepthMode  = wm_prog_data->computed_depth_mode;
+         wm.PixelShaderUsesSourceDepth    = wm_prog_data->uses_src_depth;
+         wm.PixelShaderUsesSourceW        = wm_prog_data->uses_src_w;
+         wm.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
+
+         /* If the subpass has a depth or stencil self-dependency, then we
+          * need to force the hardware to do the depth/stencil write *after*
+          * fragment shader execution.  Otherwise, the writes may hit memory
+          * before we get around to fetching from the input attachment and we
+          * may get the depth or stencil value from the current draw rather
+          * than the previous one.
+          */
+         wm.PixelShaderKillsPixel         = subpass->has_ds_self_dep ||
+                                            wm_prog_data->uses_kill;
+
+         if (wm.PixelShaderComputedDepthMode != PSCDEPTH_OFF ||
+             wm_prog_data->has_side_effects ||
+             wm.PixelShaderKillsPixel ||
+             has_color_buffer_write_enabled(pipeline, blend))
+            wm.ThreadDispatchEnable = true;
+
+         if (samples > 1) {
+            wm.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
+            if (wm_prog_data->persample_dispatch) {
+               wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
+            } else {
+               wm.MultisampleDispatchMode = MSDISPMODE_PERPIXEL;
+            }
+         } else {
+            wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
+            wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
+         }
+#endif
+      }
+   }
+}
+
+UNUSED static bool
+is_dual_src_blend_factor(VkBlendFactor factor)
+{
+   return factor == VK_BLEND_FACTOR_SRC1_COLOR ||
+          factor == VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR ||
+          factor == VK_BLEND_FACTOR_SRC1_ALPHA ||
+          factor == VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA;
+}
+
+static void
+emit_3dstate_ps(struct anv_pipeline *pipeline,
+                const VkPipelineColorBlendStateCreateInfo *blend)
+{
+   MAYBE_UNUSED const struct gen_device_info *devinfo = &pipeline->device->info;
+   const struct anv_shader_bin *fs_bin =
+      pipeline->shaders[MESA_SHADER_FRAGMENT];
+
+   if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
+      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS), ps) {
+#if GEN_GEN == 7
+         /* Even if no fragments are ever dispatched, gen7 hardware hangs if
+          * we don't at least set the maximum number of threads.
+          */
+         ps.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
+#endif
+      }
+      return;
+   }
+
+   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
+
+#if GEN_GEN < 8
+   /* The hardware wedges if you have this bit set but don't turn on any dual
+    * source blend factors.
+    */
+   bool dual_src_blend = false;
+   if (wm_prog_data->dual_src_blend && blend) {
+      for (uint32_t i = 0; i < blend->attachmentCount; i++) {
+         const VkPipelineColorBlendAttachmentState *bstate =
+            &blend->pAttachments[i];
+
+         if (bstate->blendEnable &&
+             (is_dual_src_blend_factor(bstate->srcColorBlendFactor) ||
+              is_dual_src_blend_factor(bstate->dstColorBlendFactor) ||
+              is_dual_src_blend_factor(bstate->srcAlphaBlendFactor) ||
+              is_dual_src_blend_factor(bstate->dstAlphaBlendFactor))) {
+            dual_src_blend = true;
+            break;
+         }
+      }
+   }
+#endif
+
+   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS), ps) {
+      ps._8PixelDispatchEnable      = wm_prog_data->dispatch_8;
+      ps._16PixelDispatchEnable     = wm_prog_data->dispatch_16;
+      ps._32PixelDispatchEnable     = wm_prog_data->dispatch_32;
+
+      ps.KernelStartPointer0 = fs_bin->kernel.offset +
+                               brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
+      ps.KernelStartPointer1 = fs_bin->kernel.offset +
+                               brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
+      ps.KernelStartPointer2 = fs_bin->kernel.offset +
+                               brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
+
+      ps.SingleProgramFlow          = false;
+      ps.VectorMaskEnable           = true;
+      ps.SamplerCount               = get_sampler_count(fs_bin);
+      ps.BindingTableEntryCount     = get_binding_table_entry_count(fs_bin);
+      ps.PushConstantEnable         = wm_prog_data->base.nr_params > 0 ||
+                                      wm_prog_data->base.ubo_ranges[0].length;
+      ps.PositionXYOffsetSelect     = wm_prog_data->uses_pos_offset ?
+                                      POSOFFSET_SAMPLE: POSOFFSET_NONE;
+#if GEN_GEN < 8
+      ps.AttributeEnable            = wm_prog_data->num_varying_inputs > 0;
+      ps.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
+      ps.DualSourceBlendEnable      = dual_src_blend;
+#endif
+
+#if GEN_IS_HASWELL
+      /* Haswell requires the sample mask to be set in this packet as well
+       * as in 3DSTATE_SAMPLE_MASK; the values should match.
+       */
+      ps.SampleMask                 = 0xff;
+#endif
+
+#if GEN_GEN >= 9
+      ps.MaximumNumberofThreadsPerPSD  = 64 - 1;
+#elif GEN_GEN >= 8
+      ps.MaximumNumberofThreadsPerPSD  = 64 - 2;
+#else
+      ps.MaximumNumberofThreads        = devinfo->max_wm_threads - 1;
+#endif
+
+      ps.DispatchGRFStartRegisterForConstantSetupData0 =
+         brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
+      ps.DispatchGRFStartRegisterForConstantSetupData1 =
+         brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
+      ps.DispatchGRFStartRegisterForConstantSetupData2 =
+         brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
+
+      ps.PerThreadScratchSpace   = get_scratch_space(fs_bin);
+      ps.ScratchSpaceBasePointer =
+         get_scratch_address(pipeline, MESA_SHADER_FRAGMENT, fs_bin);
+   }
+}
+
+#if GEN_GEN >= 8
+static void
+emit_3dstate_ps_extra(struct anv_pipeline *pipeline,
+                      struct anv_subpass *subpass,
+                      const VkPipelineColorBlendStateCreateInfo *blend)
+{
+   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
+
+   if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
+      anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_EXTRA), ps);
+      return;
+   }
+
+   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_EXTRA), ps) {
+      ps.PixelShaderValid              = true;
+      ps.AttributeEnable               = wm_prog_data->num_varying_inputs > 0;
+      ps.oMaskPresenttoRenderTarget    = wm_prog_data->uses_omask;
+      ps.PixelShaderIsPerSample        = wm_prog_data->persample_dispatch;
+      ps.PixelShaderComputedDepthMode  = wm_prog_data->computed_depth_mode;
+      ps.PixelShaderUsesSourceDepth    = wm_prog_data->uses_src_depth;
+      ps.PixelShaderUsesSourceW        = wm_prog_data->uses_src_w;
+
+      /* If the subpass has a depth or stencil self-dependency, then we need
+       * to force the hardware to do the depth/stencil write *after* fragment
+       * shader execution.  Otherwise, the writes may hit memory before we get
+       * around to fetching from the input attachment and we may get the depth
+       * or stencil value from the current draw rather than the previous one.
+       */
+      ps.PixelShaderKillsPixel         = subpass->has_ds_self_dep ||
+                                         wm_prog_data->uses_kill;
+
+      /* The stricter cross-primitive coherency guarantees that the hardware
+       * gives us with the "Accesses UAV" bit set for at least one shader stage
+       * and the "UAV coherency required" bit set on the 3DPRIMITIVE command are
+       * redundant within the current image, atomic counter and SSBO GL APIs,
+       * which all have very loose ordering and coherency requirements and
+       * generally rely on the application to insert explicit barriers when a
+       * shader invocation is expected to see the memory writes performed by the
+       * invocations of some previous primitive.  Regardless of the value of
+       * "UAV coherency required", the "Accesses UAV" bits will implicitly cause
+       * an in most cases useless DC flush when the lowermost stage with the bit
+       * set finishes execution.
+       *
+       * It would be nice to disable it, but in some cases we can't because on
+       * Gen8+ it also has an influence on rasterization via the PS UAV-only
+       * signal (which could be set independently from the coherency mechanism
+       * in the 3DSTATE_WM command on Gen7), and because in some cases it will
+       * determine whether the hardware skips execution of the fragment shader
+       * or not via the ThreadDispatchEnable signal.  However if we know that
+       * GEN8_PS_BLEND_HAS_WRITEABLE_RT is going to be set and
+       * GEN8_PSX_PIXEL_SHADER_NO_RT_WRITE is not set it shouldn't make any
+       * difference so we may just disable it here.
+       *
+       * Gen8 hardware tries to compute ThreadDispatchEnable for us but doesn't
+       * take into account KillPixels when no depth or stencil writes are
+       * enabled. In order for occlusion queries to work correctly with no
+       * attachments, we need to force-enable here.
+       */
+      if ((wm_prog_data->has_side_effects || wm_prog_data->uses_kill) &&
+          !has_color_buffer_write_enabled(pipeline, blend))
+         ps.PixelShaderHasUAV = true;
+
+#if GEN_GEN >= 9
+      ps.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
+      ps.PixelShaderPullsBary    = wm_prog_data->pulls_bary;
+      ps.InputCoverageMaskState  = wm_prog_data->uses_sample_mask ?
+                                   ICMS_INNER_CONSERVATIVE : ICMS_NONE;
+#else
+      ps.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
+#endif
+   }
+}
+
+static void
+emit_3dstate_vf_topology(struct anv_pipeline *pipeline)
+{
+   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_TOPOLOGY), vft) {
+      vft.PrimitiveTopologyType = pipeline->topology;
+   }
+}
+#endif
+
+static void
+emit_3dstate_vf_statistics(struct anv_pipeline *pipeline)
+{
+   anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_STATISTICS), vfs) {
+      vfs.StatisticsEnable = true;
+   }
+}
+
+static void
+compute_kill_pixel(struct anv_pipeline *pipeline,
+                   const VkPipelineMultisampleStateCreateInfo *ms_info,
+                   const struct anv_subpass *subpass)
+{
+   if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
+      pipeline->kill_pixel = false;
+      return;
+   }
+
+   const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
+
+   /* This computes the KillPixel portion of the computation for whether or
+    * not we want to enable the PMA fix on gen8 or gen9.  It's given by this
+    * chunk of the giant formula:
+    *
+    *    (3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
+    *     3DSTATE_PS_EXTRA::oMask Present to RenderTarget ||
+    *     3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
+    *     3DSTATE_PS_BLEND::AlphaTestEnable ||
+    *     3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable)
+    *
+    * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable is always false and so is
+    * 3DSTATE_PS_BLEND::AlphaTestEnable since Vulkan doesn't have a concept
+    * of an alpha test.
+    */
+   pipeline->kill_pixel =
+      subpass->has_ds_self_dep || wm_prog_data->uses_kill ||
+      wm_prog_data->uses_omask ||
+      (ms_info && ms_info->alphaToCoverageEnable);
+}
+
+static VkResult
+genX(graphics_pipeline_create)(
+    VkDevice                                    _device,
+    struct anv_pipeline_cache *                 cache,
+    const VkGraphicsPipelineCreateInfo*         pCreateInfo,
+    const VkAllocationCallbacks*                pAllocator,
+    VkPipeline*                                 pPipeline)
+{
+   ANV_FROM_HANDLE(anv_device, device, _device);
+   ANV_FROM_HANDLE(anv_render_pass, pass, pCreateInfo->renderPass);
+   struct anv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
+   struct anv_pipeline *pipeline;
+   VkResult result;
+
+   assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
+
+   pipeline = vk_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
+                         VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
+   if (pipeline == NULL)
+      return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
+
+   result = anv_pipeline_init(pipeline, device, cache,
+                              pCreateInfo, pAllocator);
+   if (result != VK_SUCCESS) {
+      vk_free2(&device->alloc, pAllocator, pipeline);
+      return result;
+   }
+
+   assert(pCreateInfo->pVertexInputState);
+   emit_vertex_input(pipeline, pCreateInfo->pVertexInputState);
+   assert(pCreateInfo->pRasterizationState);
+   emit_rs_state(pipeline, pCreateInfo->pRasterizationState,
+                 pCreateInfo->pMultisampleState, pass, subpass);
+   emit_ms_state(pipeline, pCreateInfo->pMultisampleState);
+   emit_ds_state(pipeline, pCreateInfo->pDepthStencilState, pass, subpass);
+   emit_cb_state(pipeline, pCreateInfo->pColorBlendState,
+                           pCreateInfo->pMultisampleState);
+   compute_kill_pixel(pipeline, pCreateInfo->pMultisampleState, subpass);
+
+   emit_urb_setup(pipeline);
+
+   emit_3dstate_clip(pipeline, pCreateInfo->pViewportState,
+                     pCreateInfo->pRasterizationState);
+   emit_3dstate_streamout(pipeline, pCreateInfo->pRasterizationState);
+
+#if 0
+   /* From gen7_vs_state.c */
+
+   /**
+    * From Graphics BSpec: 3D-Media-GPGPU Engine > 3D Pipeline Stages >
+    * Geometry > Geometry Shader > State:
+    *
+    *     "Note: Because of corruption in IVB:GT2, software needs to flush the
+    *     whole fixed function pipeline when the GS enable changes value in
+    *     the 3DSTATE_GS."
+    *
+    * The hardware architects have clarified that in this context "flush the
+    * whole fixed function pipeline" means to emit a PIPE_CONTROL with the "CS
+    * Stall" bit set.
+    */
+   if (!device->info.is_haswell && !device->info.is_baytrail)
+      gen7_emit_vs_workaround_flush(brw);
+#endif
+
+   emit_3dstate_vs(pipeline);
+   emit_3dstate_hs_te_ds(pipeline, pCreateInfo->pTessellationState);
+   emit_3dstate_gs(pipeline);
+   emit_3dstate_sbe(pipeline);
+   emit_3dstate_wm(pipeline, subpass, pCreateInfo->pColorBlendState,
+                   pCreateInfo->pMultisampleState);
+   emit_3dstate_ps(pipeline, pCreateInfo->pColorBlendState);
+#if GEN_GEN >= 8
+   emit_3dstate_ps_extra(pipeline, subpass, pCreateInfo->pColorBlendState);
+   emit_3dstate_vf_topology(pipeline);
+#endif
+   emit_3dstate_vf_statistics(pipeline);
+
+   *pPipeline = anv_pipeline_to_handle(pipeline);
+
+   return pipeline->batch.status;
+}
+
+static VkResult
+compute_pipeline_create(
     VkDevice                                    _device,
     struct anv_pipeline_cache *                 cache,
     const VkComputePipelineCreateInfo*          pCreateInfo,
@@ -35,66 +1754,60 @@ genX(compute_pipeline_create)(
     VkPipeline*                                 pPipeline)
 {
    ANV_FROM_HANDLE(anv_device, device, _device);
+   const struct anv_physical_device *physical_device =
+      &device->instance->physicalDevice;
+   const struct gen_device_info *devinfo = &physical_device->info;
    struct anv_pipeline *pipeline;
    VkResult result;
 
    assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO);
 
-   pipeline = anv_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
+   pipeline = vk_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
                          VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
    if (pipeline == NULL)
       return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
 
    pipeline->device = device;
-   pipeline->layout = anv_pipeline_layout_from_handle(pCreateInfo->layout);
 
    pipeline->blend_state.map = NULL;
 
    result = anv_reloc_list_init(&pipeline->batch_relocs,
                                 pAllocator ? pAllocator : &device->alloc);
    if (result != VK_SUCCESS) {
-      anv_free2(&device->alloc, pAllocator, pipeline);
+      vk_free2(&device->alloc, pAllocator, pipeline);
       return result;
    }
    pipeline->batch.next = pipeline->batch.start = pipeline->batch_data;
    pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data);
    pipeline->batch.relocs = &pipeline->batch_relocs;
+   pipeline->batch.status = VK_SUCCESS;
 
    /* When we free the pipeline, we detect stages based on the NULL status
     * of various prog_data pointers.  Make them NULL by default.
     */
-   memset(pipeline->prog_data, 0, sizeof(pipeline->prog_data));
-   memset(pipeline->scratch_start, 0, sizeof(pipeline->scratch_start));
-   memset(pipeline->bindings, 0, sizeof(pipeline->bindings));
-
-   pipeline->vs_simd8 = NO_KERNEL;
-   pipeline->vs_vec4 = NO_KERNEL;
-   pipeline->gs_kernel = NO_KERNEL;
+   memset(pipeline->shaders, 0, sizeof(pipeline->shaders));
 
    pipeline->active_stages = 0;
-   pipeline->total_scratch = 0;
+
+   pipeline->needs_data_cache = false;
 
    assert(pCreateInfo->stage.stage == VK_SHADER_STAGE_COMPUTE_BIT);
+   pipeline->active_stages |= VK_SHADER_STAGE_COMPUTE_BIT;
    ANV_FROM_HANDLE(anv_shader_module, module,  pCreateInfo->stage.module);
-   anv_pipeline_compile_cs(pipeline, cache, pCreateInfo, module,
-                           pCreateInfo->stage.pName,
-                           pCreateInfo->stage.pSpecializationInfo);
-
-   pipeline->use_repclear = false;
+   result = anv_pipeline_compile_cs(pipeline, cache, pCreateInfo, module,
+                                    pCreateInfo->stage.pName,
+                                    pCreateInfo->stage.pSpecializationInfo);
+   if (result != VK_SUCCESS) {
+      vk_free2(&device->alloc, pAllocator, pipeline);
+      return result;
+   }
 
    const struct brw_cs_prog_data *cs_prog_data = get_cs_prog_data(pipeline);
-   const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
 
-   unsigned local_id_dwords = cs_prog_data->local_invocation_id_regs * 8;
-   unsigned push_constant_data_size =
-      (prog_data->nr_params + local_id_dwords) * 4;
-   unsigned reg_aligned_constant_size = ALIGN(push_constant_data_size, 32);
-   unsigned push_constant_regs = reg_aligned_constant_size / 32;
+   anv_pipeline_setup_l3_config(pipeline, cs_prog_data->base.total_shared > 0);
 
    uint32_t group_size = cs_prog_data->local_size[0] *
       cs_prog_data->local_size[1] * cs_prog_data->local_size[2];
-   pipeline->cs_thread_width_max =
-      DIV_ROUND_UP(group_size, cs_prog_data->simd_size);
    uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
 
    if (remainder > 0)
@@ -103,28 +1816,123 @@ genX(compute_pipeline_create)(
       pipeline->cs_right_mask = ~0u >> (32 - cs_prog_data->simd_size);
 
    const uint32_t vfe_curbe_allocation =
-      push_constant_regs * pipeline->cs_thread_width_max;
+      ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
+            cs_prog_data->push.cross_thread.regs, 2);
+
+   const uint32_t subslices = MAX2(physical_device->subslice_total, 1);
+
+   const struct anv_shader_bin *cs_bin =
+      pipeline->shaders[MESA_SHADER_COMPUTE];
 
    anv_batch_emit(&pipeline->batch, GENX(MEDIA_VFE_STATE), vfe) {
-      vfe.ScratchSpaceBasePointer = pipeline->scratch_start[MESA_SHADER_COMPUTE];
-      vfe.PerThreadScratchSpace  = ffs(cs_prog_data->base.total_scratch / 2048);
 #if GEN_GEN > 7
-      vfe.ScratchSpaceBasePointerHigh = 0;
       vfe.StackSize              = 0;
 #else
       vfe.GPGPUMode              = true;
 #endif
-      vfe.MaximumNumberofThreads = device->info.max_cs_threads - 1;
+      vfe.MaximumNumberofThreads =
+         devinfo->max_cs_threads * subslices - 1;
       vfe.NumberofURBEntries     = GEN_GEN <= 7 ? 0 : 2;
+#if GEN_GEN < 11
       vfe.ResetGatewayTimer      = true;
+#endif
 #if GEN_GEN <= 8
       vfe.BypassGatewayControl   = true;
 #endif
       vfe.URBEntryAllocationSize = GEN_GEN <= 7 ? 0 : 2;
       vfe.CURBEAllocationSize    = vfe_curbe_allocation;
+
+      vfe.PerThreadScratchSpace = get_scratch_space(cs_bin);
+      vfe.ScratchSpaceBasePointer =
+         get_scratch_address(pipeline, MESA_SHADER_COMPUTE, cs_bin);
    }
 
+   struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
+      .KernelStartPointer     = cs_bin->kernel.offset,
+
+      .SamplerCount           = get_sampler_count(cs_bin),
+      .BindingTableEntryCount = get_binding_table_entry_count(cs_bin),
+      .BarrierEnable          = cs_prog_data->uses_barrier,
+      .SharedLocalMemorySize  =
+         encode_slm_size(GEN_GEN, cs_prog_data->base.total_shared),
+
+#if !GEN_IS_HASWELL
+      .ConstantURBEntryReadOffset = 0,
+#endif
+      .ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs,
+#if GEN_GEN >= 8 || GEN_IS_HASWELL
+      .CrossThreadConstantDataReadLength =
+         cs_prog_data->push.cross_thread.regs,
+#endif
+
+      .NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads,
+   };
+   GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL,
+                                        pipeline->interface_descriptor_data,
+                                        &desc);
+
    *pPipeline = anv_pipeline_to_handle(pipeline);
 
-   return VK_SUCCESS;
+   return pipeline->batch.status;
+}
+
+VkResult genX(CreateGraphicsPipelines)(
+    VkDevice                                    _device,
+    VkPipelineCache                             pipelineCache,
+    uint32_t                                    count,
+    const VkGraphicsPipelineCreateInfo*         pCreateInfos,
+    const VkAllocationCallbacks*                pAllocator,
+    VkPipeline*                                 pPipelines)
+{
+   ANV_FROM_HANDLE(anv_pipeline_cache, pipeline_cache, pipelineCache);
+
+   VkResult result = VK_SUCCESS;
+
+   unsigned i;
+   for (i = 0; i < count; i++) {
+      result = genX(graphics_pipeline_create)(_device,
+                                              pipeline_cache,
+                                              &pCreateInfos[i],
+                                              pAllocator, &pPipelines[i]);
+
+      /* Bail out on the first error as it is not obvious what error should be
+       * report upon 2 different failures. */
+      if (result != VK_SUCCESS)
+         break;
+   }
+
+   for (; i < count; i++)
+      pPipelines[i] = VK_NULL_HANDLE;
+
+   return result;
+}
+
+VkResult genX(CreateComputePipelines)(
+    VkDevice                                    _device,
+    VkPipelineCache                             pipelineCache,
+    uint32_t                                    count,
+    const VkComputePipelineCreateInfo*          pCreateInfos,
+    const VkAllocationCallbacks*                pAllocator,
+    VkPipeline*                                 pPipelines)
+{
+   ANV_FROM_HANDLE(anv_pipeline_cache, pipeline_cache, pipelineCache);
+
+   VkResult result = VK_SUCCESS;
+
+   unsigned i;
+   for (i = 0; i < count; i++) {
+      result = compute_pipeline_create(_device, pipeline_cache,
+                                       &pCreateInfos[i],
+                                       pAllocator, &pPipelines[i]);
+
+      /* Bail out on the first error as it is not obvious what error should be
+       * report upon 2 different failures. */
+      if (result != VK_SUCCESS)
+         break;
+   }
+
+   for (; i < count; i++)
+      pPipelines[i] = VK_NULL_HANDLE;
+
+   return result;
 }