anv/query: Add an emit_srm helper
[mesa.git] / src / intel / vulkan / genX_query.c
index 4e6638a0aeb09578d3ec1754009f97ab67a95aa6..7533ec050953ba21ab1e363186db9c305fbddbd5 100644 (file)
@@ -39,37 +39,77 @@ VkResult genX(CreateQueryPool)(
     VkQueryPool*                                pQueryPool)
 {
    ANV_FROM_HANDLE(anv_device, device, _device);
+   const struct anv_physical_device *pdevice = &device->instance->physicalDevice;
    struct anv_query_pool *pool;
    VkResult result;
-   uint32_t slot_size;
-   uint64_t size;
 
    assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO);
 
+   /* Query pool slots are made up of some number of 64-bit values packed
+    * tightly together.  The first 64-bit value is always the "available" bit
+    * which is 0 when the query is unavailable and 1 when it is available.
+    * The 64-bit values that follow are determined by the type of query.
+    */
+   uint32_t uint64s_per_slot = 1;
+
+   VkQueryPipelineStatisticFlags pipeline_statistics = 0;
    switch (pCreateInfo->queryType) {
    case VK_QUERY_TYPE_OCCLUSION:
+      /* Occlusion queries have two values: begin and end. */
+      uint64s_per_slot += 2;
+      break;
    case VK_QUERY_TYPE_TIMESTAMP:
+      /* Timestamps just have the one timestamp value */
+      uint64s_per_slot += 1;
       break;
    case VK_QUERY_TYPE_PIPELINE_STATISTICS:
-      return VK_ERROR_INCOMPATIBLE_DRIVER;
+      pipeline_statistics = pCreateInfo->pipelineStatistics;
+      /* We're going to trust this field implicitly so we need to ensure that
+       * no unhandled extension bits leak in.
+       */
+      pipeline_statistics &= ANV_PIPELINE_STATISTICS_MASK;
+
+      /* Statistics queries have a min and max for every statistic */
+      uint64s_per_slot += 2 * util_bitcount(pipeline_statistics);
+      break;
    default:
       assert(!"Invalid query type");
    }
 
-   slot_size = sizeof(struct anv_query_pool_slot);
    pool = vk_alloc2(&device->alloc, pAllocator, sizeof(*pool), 8,
                      VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
    if (pool == NULL)
       return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
 
    pool->type = pCreateInfo->queryType;
+   pool->pipeline_statistics = pipeline_statistics;
+   pool->stride = uint64s_per_slot * sizeof(uint64_t);
    pool->slots = pCreateInfo->queryCount;
 
-   size = pCreateInfo->queryCount * slot_size;
+   uint64_t size = pool->slots * pool->stride;
    result = anv_bo_init_new(&pool->bo, device, size);
    if (result != VK_SUCCESS)
       goto fail;
 
+   if (pdevice->supports_48bit_addresses)
+      pool->bo.flags |= EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
+
+   if (pdevice->use_softpin)
+      pool->bo.flags |= EXEC_OBJECT_PINNED;
+
+   if (pdevice->has_exec_async)
+      pool->bo.flags |= EXEC_OBJECT_ASYNC;
+
+   anv_vma_alloc(device, &pool->bo);
+
+   /* For query pools, we set the caching mode to I915_CACHING_CACHED.  On LLC
+    * platforms, this does nothing.  On non-LLC platforms, this means snooping
+    * which comes at a slight cost.  However, the buffers aren't big, won't be
+    * written frequently, and trying to handle the flushing manually without
+    * doing too much flushing is extremely painful.
+    */
+   anv_gem_set_caching(device, pool->bo.gem_handle, I915_CACHING_CACHED);
+
    pool->bo.map = anv_gem_mmap(device, pool->bo.gem_handle, 0, size, 0);
 
    *pQueryPool = anv_query_pool_to_handle(pool);
@@ -94,10 +134,79 @@ void genX(DestroyQueryPool)(
       return;
 
    anv_gem_munmap(pool->bo.map, pool->bo.size);
+   anv_vma_free(device, &pool->bo);
    anv_gem_close(device, pool->bo.gem_handle);
    vk_free2(&device->alloc, pAllocator, pool);
 }
 
+static struct anv_address
+anv_query_address(struct anv_query_pool *pool, uint32_t query)
+{
+   return (struct anv_address) {
+      .bo = &pool->bo,
+      .offset = query * pool->stride,
+   };
+}
+
+static void
+cpu_write_query_result(void *dst_slot, VkQueryResultFlags flags,
+                       uint32_t value_index, uint64_t result)
+{
+   if (flags & VK_QUERY_RESULT_64_BIT) {
+      uint64_t *dst64 = dst_slot;
+      dst64[value_index] = result;
+   } else {
+      uint32_t *dst32 = dst_slot;
+      dst32[value_index] = result;
+   }
+}
+
+static bool
+query_is_available(uint64_t *slot)
+{
+   return *(volatile uint64_t *)slot;
+}
+
+static VkResult
+wait_for_available(struct anv_device *device,
+                   struct anv_query_pool *pool, uint64_t *slot)
+{
+   while (true) {
+      if (query_is_available(slot))
+         return VK_SUCCESS;
+
+      int ret = anv_gem_busy(device, pool->bo.gem_handle);
+      if (ret == 1) {
+         /* The BO is still busy, keep waiting. */
+         continue;
+      } else if (ret == -1) {
+         /* We don't know the real error. */
+         device->lost = true;
+         return vk_errorf(device->instance, device, VK_ERROR_DEVICE_LOST,
+                          "gem wait failed: %m");
+      } else {
+         assert(ret == 0);
+         /* The BO is no longer busy. */
+         if (query_is_available(slot)) {
+            return VK_SUCCESS;
+         } else {
+            VkResult status = anv_device_query_status(device);
+            if (status != VK_SUCCESS)
+               return status;
+
+            /* If we haven't seen availability yet, then we never will.  This
+             * can only happen if we have a client error where they call
+             * GetQueryPoolResults on a query that they haven't submitted to
+             * the GPU yet.  The spec allows us to do anything in this case,
+             * but returning VK_SUCCESS doesn't seem right and we shouldn't
+             * just keep spinning.
+             */
+            return VK_NOT_READY;
+         }
+      }
+   }
+}
+
 VkResult genX(GetQueryPoolResults)(
     VkDevice                                    _device,
     VkQueryPool                                 queryPool,
@@ -110,78 +219,122 @@ VkResult genX(GetQueryPoolResults)(
 {
    ANV_FROM_HANDLE(anv_device, device, _device);
    ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
-   int64_t timeout = INT64_MAX;
-   uint64_t result;
-   int ret;
 
    assert(pool->type == VK_QUERY_TYPE_OCCLUSION ||
+          pool->type == VK_QUERY_TYPE_PIPELINE_STATISTICS ||
           pool->type == VK_QUERY_TYPE_TIMESTAMP);
 
+   if (unlikely(device->lost))
+      return VK_ERROR_DEVICE_LOST;
+
    if (pData == NULL)
       return VK_SUCCESS;
 
-   if (flags & VK_QUERY_RESULT_WAIT_BIT) {
-      ret = anv_gem_wait(device, pool->bo.gem_handle, &timeout);
-      if (ret == -1) {
-         /* We don't know the real error. */
-         return vk_errorf(VK_ERROR_OUT_OF_DEVICE_MEMORY,
-                          "gem_wait failed %m");
-      }
-   }
-
    void *data_end = pData + dataSize;
-   struct anv_query_pool_slot *slot = pool->bo.map;
-
-   if (!device->info.has_llc)
-      anv_invalidate_range(slot, MIN2(queryCount * sizeof(*slot), pool->bo.size));
 
+   VkResult status = VK_SUCCESS;
    for (uint32_t i = 0; i < queryCount; i++) {
+      uint64_t *slot = pool->bo.map + (firstQuery + i) * pool->stride;
+
+      /* Availability is always at the start of the slot */
+      bool available = slot[0];
+
+      if (!available && (flags & VK_QUERY_RESULT_WAIT_BIT)) {
+         status = wait_for_available(device, pool, slot);
+         if (status != VK_SUCCESS)
+            return status;
+
+         available = true;
+      }
+
+      /* From the Vulkan 1.0.42 spec:
+       *
+       *    "If VK_QUERY_RESULT_WAIT_BIT and VK_QUERY_RESULT_PARTIAL_BIT are
+       *    both not set then no result values are written to pData for
+       *    queries that are in the unavailable state at the time of the call,
+       *    and vkGetQueryPoolResults returns VK_NOT_READY. However,
+       *    availability state is still written to pData for those queries if
+       *    VK_QUERY_RESULT_WITH_AVAILABILITY_BIT is set."
+       */
+      bool write_results = available || (flags & VK_QUERY_RESULT_PARTIAL_BIT);
+
+      uint32_t idx = 0;
       switch (pool->type) {
-      case VK_QUERY_TYPE_OCCLUSION: {
-         result = slot[firstQuery + i].end - slot[firstQuery + i].begin;
+      case VK_QUERY_TYPE_OCCLUSION:
+         if (write_results)
+            cpu_write_query_result(pData, flags, idx, slot[2] - slot[1]);
+         idx++;
          break;
-      }
-      case VK_QUERY_TYPE_PIPELINE_STATISTICS:
-         unreachable("pipeline stats not supported");
-      case VK_QUERY_TYPE_TIMESTAMP: {
-         result = slot[firstQuery + i].begin;
+
+      case VK_QUERY_TYPE_PIPELINE_STATISTICS: {
+         uint32_t statistics = pool->pipeline_statistics;
+         while (statistics) {
+            uint32_t stat = u_bit_scan(&statistics);
+            if (write_results) {
+               uint64_t result = slot[idx * 2 + 2] - slot[idx * 2 + 1];
+
+               /* WaDividePSInvocationCountBy4:HSW,BDW */
+               if ((device->info.gen == 8 || device->info.is_haswell) &&
+                   (1 << stat) == VK_QUERY_PIPELINE_STATISTIC_FRAGMENT_SHADER_INVOCATIONS_BIT)
+                  result >>= 2;
+
+               cpu_write_query_result(pData, flags, idx, result);
+            }
+            idx++;
+         }
+         assert(idx == util_bitcount(pool->pipeline_statistics));
          break;
       }
+
+      case VK_QUERY_TYPE_TIMESTAMP:
+         if (write_results)
+            cpu_write_query_result(pData, flags, idx, slot[1]);
+         idx++;
+         break;
+
       default:
          unreachable("invalid pool type");
       }
 
-      if (flags & VK_QUERY_RESULT_64_BIT) {
-         uint64_t *dst = pData;
-         dst[0] = result;
-         if (flags & VK_QUERY_RESULT_WITH_AVAILABILITY_BIT)
-            dst[1] = slot[firstQuery + i].available;
-      } else {
-         uint32_t *dst = pData;
-         if (result > UINT32_MAX)
-            result = UINT32_MAX;
-         dst[0] = result;
-         if (flags & VK_QUERY_RESULT_WITH_AVAILABILITY_BIT)
-            dst[1] = slot[firstQuery + i].available;
-      }
+      if (!write_results)
+         status = VK_NOT_READY;
+
+      if (flags & VK_QUERY_RESULT_WITH_AVAILABILITY_BIT)
+         cpu_write_query_result(pData, flags, idx, available);
 
       pData += stride;
       if (pData >= data_end)
          break;
    }
 
-   return VK_SUCCESS;
+   return status;
+}
+
+static void
+emit_srm32(struct anv_batch *batch, struct anv_address addr, uint32_t reg)
+{
+   anv_batch_emit(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
+      srm.MemoryAddress    = addr;
+      srm.RegisterAddress  = reg;
+   }
+}
+
+static void
+emit_srm64(struct anv_batch *batch, struct anv_address addr, uint32_t reg)
+{
+   emit_srm32(batch, anv_address_add(addr, 0), reg + 0);
+   emit_srm32(batch, anv_address_add(addr, 4), reg + 4);
 }
 
 static void
 emit_ps_depth_count(struct anv_cmd_buffer *cmd_buffer,
-                    struct anv_bo *bo, uint32_t offset)
+                    struct anv_address addr)
 {
    anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
       pc.DestinationAddressType  = DAT_PPGTT;
       pc.PostSyncOperation       = WritePSDepthCount;
       pc.DepthStallEnable        = true;
-      pc.Address                 = (struct anv_address) { bo, offset };
+      pc.Address                 = addr;
 
       if (GEN_GEN == 9 && cmd_buffer->device->info.gt == 4)
          pc.CommandStreamerStallEnable = true;
@@ -190,16 +343,34 @@ emit_ps_depth_count(struct anv_cmd_buffer *cmd_buffer,
 
 static void
 emit_query_availability(struct anv_cmd_buffer *cmd_buffer,
-                        struct anv_bo *bo, uint32_t offset)
+                        struct anv_address addr)
 {
    anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
       pc.DestinationAddressType  = DAT_PPGTT;
       pc.PostSyncOperation       = WriteImmediateData;
-      pc.Address                 = (struct anv_address) { bo, offset };
+      pc.Address                 = addr;
       pc.ImmediateData           = 1;
    }
 }
 
+/**
+ * Goes through a series of consecutive query indices in the given pool
+ * setting all element values to 0 and emitting them as available.
+ */
+static void
+emit_zero_queries(struct anv_cmd_buffer *cmd_buffer,
+                  struct anv_query_pool *pool,
+                  uint32_t first_index, uint32_t num_queries)
+{
+   for (uint32_t i = 0; i < num_queries; i++) {
+      struct anv_address slot_addr =
+         anv_query_address(pool, first_index + i);
+      genX(cmd_buffer_mi_memset)(cmd_buffer, anv_address_add(slot_addr, 8),
+                                 0, pool->stride - 8);
+      emit_query_availability(cmd_buffer, slot_addr);
+   }
+}
+
 void genX(CmdResetQueryPool)(
     VkCommandBuffer                             commandBuffer,
     VkQueryPool                                 queryPool,
@@ -210,26 +381,38 @@ void genX(CmdResetQueryPool)(
    ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
 
    for (uint32_t i = 0; i < queryCount; i++) {
-      switch (pool->type) {
-      case VK_QUERY_TYPE_OCCLUSION:
-      case VK_QUERY_TYPE_TIMESTAMP: {
-         anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdm) {
-            sdm.Address = (struct anv_address) {
-               .bo = &pool->bo,
-               .offset = (firstQuery + i) * sizeof(struct anv_query_pool_slot) +
-                         offsetof(struct anv_query_pool_slot, available),
-            };
-            sdm.DataDWord0 = 0;
-            sdm.DataDWord1 = 0;
-         }
-         break;
-      }
-      default:
-         assert(!"Invalid query type");
+      anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdm) {
+         sdm.Address = anv_query_address(pool, firstQuery + i);
+         sdm.ImmediateData = 0;
       }
    }
 }
 
+static const uint32_t vk_pipeline_stat_to_reg[] = {
+   GENX(IA_VERTICES_COUNT_num),
+   GENX(IA_PRIMITIVES_COUNT_num),
+   GENX(VS_INVOCATION_COUNT_num),
+   GENX(GS_INVOCATION_COUNT_num),
+   GENX(GS_PRIMITIVES_COUNT_num),
+   GENX(CL_INVOCATION_COUNT_num),
+   GENX(CL_PRIMITIVES_COUNT_num),
+   GENX(PS_INVOCATION_COUNT_num),
+   GENX(HS_INVOCATION_COUNT_num),
+   GENX(DS_INVOCATION_COUNT_num),
+   GENX(CS_INVOCATION_COUNT_num),
+};
+
+static void
+emit_pipeline_stat(struct anv_cmd_buffer *cmd_buffer, uint32_t stat,
+                   struct anv_address addr)
+{
+   STATIC_ASSERT(ANV_PIPELINE_STATISTICS_MASK ==
+                 (1 << ARRAY_SIZE(vk_pipeline_stat_to_reg)) - 1);
+
+   assert(stat < ARRAY_SIZE(vk_pipeline_stat_to_reg));
+   emit_srm64(&cmd_buffer->batch, addr, vk_pipeline_stat_to_reg[stat]);
+}
+
 void genX(CmdBeginQuery)(
     VkCommandBuffer                             commandBuffer,
     VkQueryPool                                 queryPool,
@@ -238,28 +421,31 @@ void genX(CmdBeginQuery)(
 {
    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
    ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
+   struct anv_address query_addr = anv_query_address(pool, query);
 
-   /* Workaround: When meta uses the pipeline with the VS disabled, it seems
-    * that the pipelining of the depth write breaks. What we see is that
-    * samples from the render pass clear leaks into the first query
-    * immediately after the clear. Doing a pipecontrol with a post-sync
-    * operation and DepthStallEnable seems to work around the issue.
-    */
-   if (cmd_buffer->state.need_query_wa) {
-      cmd_buffer->state.need_query_wa = false;
+   switch (pool->type) {
+   case VK_QUERY_TYPE_OCCLUSION:
+      emit_ps_depth_count(cmd_buffer, anv_address_add(query_addr, 8));
+      break;
+
+   case VK_QUERY_TYPE_PIPELINE_STATISTICS: {
+      /* TODO: This might only be necessary for certain stats */
       anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
-         pc.DepthCacheFlushEnable   = true;
-         pc.DepthStallEnable        = true;
+         pc.CommandStreamerStallEnable = true;
+         pc.StallAtPixelScoreboard = true;
       }
-   }
 
-   switch (pool->type) {
-   case VK_QUERY_TYPE_OCCLUSION:
-      emit_ps_depth_count(cmd_buffer, &pool->bo,
-                          query * sizeof(struct anv_query_pool_slot));
+      uint32_t statistics = pool->pipeline_statistics;
+      uint32_t offset = 8;
+      while (statistics) {
+         uint32_t stat = u_bit_scan(&statistics);
+         emit_pipeline_stat(cmd_buffer, stat,
+                            anv_address_add(query_addr, offset));
+         offset += 16;
+      }
       break;
+   }
 
-   case VK_QUERY_TYPE_PIPELINE_STATISTICS:
    default:
       unreachable("");
    }
@@ -272,20 +458,52 @@ void genX(CmdEndQuery)(
 {
    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
    ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
+   struct anv_address query_addr = anv_query_address(pool, query);
 
    switch (pool->type) {
    case VK_QUERY_TYPE_OCCLUSION:
-      emit_ps_depth_count(cmd_buffer, &pool->bo,
-                          query * sizeof(struct anv_query_pool_slot) + 8);
+      emit_ps_depth_count(cmd_buffer, anv_address_add(query_addr, 16));
+      emit_query_availability(cmd_buffer, query_addr);
+      break;
+
+   case VK_QUERY_TYPE_PIPELINE_STATISTICS: {
+      /* TODO: This might only be necessary for certain stats */
+      anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
+         pc.CommandStreamerStallEnable = true;
+         pc.StallAtPixelScoreboard = true;
+      }
+
+      uint32_t statistics = pool->pipeline_statistics;
+      uint32_t offset = 16;
+      while (statistics) {
+         uint32_t stat = u_bit_scan(&statistics);
+         emit_pipeline_stat(cmd_buffer, stat,
+                            anv_address_add(query_addr, offset));
+         offset += 16;
+      }
 
-      emit_query_availability(cmd_buffer, &pool->bo,
-                              query * sizeof(struct anv_query_pool_slot) + 16);
+      emit_query_availability(cmd_buffer, query_addr);
       break;
+   }
 
-   case VK_QUERY_TYPE_PIPELINE_STATISTICS:
    default:
       unreachable("");
    }
+
+   /* When multiview is active the spec requires that N consecutive query
+    * indices are used, where N is the number of active views in the subpass.
+    * The spec allows that we only write the results to one of the queries
+    * but we still need to manage result availability for all the query indices.
+    * Since we only emit a single query for all active views in the
+    * first index, mark the other query indices as being already available
+    * with result 0.
+    */
+   if (cmd_buffer->state.subpass && cmd_buffer->state.subpass->view_mask) {
+      const uint32_t num_queries =
+         util_bitcount(cmd_buffer->state.subpass->view_mask);
+      if (num_queries > 1)
+         emit_zero_queries(cmd_buffer, pool, query + 1, num_queries - 1);
+   }
 }
 
 #define TIMESTAMP 0x2358
@@ -298,20 +516,13 @@ void genX(CmdWriteTimestamp)(
 {
    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
    ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
-   uint32_t offset = query * sizeof(struct anv_query_pool_slot);
+   struct anv_address query_addr = anv_query_address(pool, query);
 
    assert(pool->type == VK_QUERY_TYPE_TIMESTAMP);
 
    switch (pipelineStage) {
    case VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT:
-      anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
-         srm.RegisterAddress  = TIMESTAMP;
-         srm.MemoryAddress    = (struct anv_address) { &pool->bo, offset };
-      }
-      anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
-         srm.RegisterAddress  = TIMESTAMP + 4;
-         srm.MemoryAddress    = (struct anv_address) { &pool->bo, offset + 4 };
-      }
+      emit_srm64(&cmd_buffer->batch, anv_address_add(query_addr, 8), TIMESTAMP);
       break;
 
    default:
@@ -319,7 +530,7 @@ void genX(CmdWriteTimestamp)(
       anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
          pc.DestinationAddressType  = DAT_PPGTT;
          pc.PostSyncOperation       = WriteTimestamp;
-         pc.Address = (struct anv_address) { &pool->bo, offset };
+         pc.Address                 = anv_address_add(query_addr, 8);
 
          if (GEN_GEN == 9 && cmd_buffer->device->info.gt == 4)
             pc.CommandStreamerStallEnable = true;
@@ -327,72 +538,183 @@ void genX(CmdWriteTimestamp)(
       break;
    }
 
-   emit_query_availability(cmd_buffer, &pool->bo, offset + 16);
+   emit_query_availability(cmd_buffer, query_addr);
+
+   /* When multiview is active the spec requires that N consecutive query
+    * indices are used, where N is the number of active views in the subpass.
+    * The spec allows that we only write the results to one of the queries
+    * but we still need to manage result availability for all the query indices.
+    * Since we only emit a single query for all active views in the
+    * first index, mark the other query indices as being already available
+    * with result 0.
+    */
+   if (cmd_buffer->state.subpass && cmd_buffer->state.subpass->view_mask) {
+      const uint32_t num_queries =
+         util_bitcount(cmd_buffer->state.subpass->view_mask);
+      if (num_queries > 1)
+         emit_zero_queries(cmd_buffer, pool, query + 1, num_queries - 1);
+   }
 }
 
 #if GEN_GEN > 7 || GEN_IS_HASWELL
 
-#define alu_opcode(v)   __gen_uint((v),  20, 31)
-#define alu_operand1(v) __gen_uint((v),  10, 19)
-#define alu_operand2(v) __gen_uint((v),   0,  9)
-#define alu(opcode, operand1, operand2) \
-   alu_opcode(opcode) | alu_operand1(operand1) | alu_operand2(operand2)
-
-#define OPCODE_NOOP      0x000
-#define OPCODE_LOAD      0x080
-#define OPCODE_LOADINV   0x480
-#define OPCODE_LOAD0     0x081
-#define OPCODE_LOAD1     0x481
-#define OPCODE_ADD       0x100
-#define OPCODE_SUB       0x101
-#define OPCODE_AND       0x102
-#define OPCODE_OR        0x103
-#define OPCODE_XOR       0x104
-#define OPCODE_STORE     0x180
-#define OPCODE_STOREINV  0x580
-
-#define OPERAND_R0   0x00
-#define OPERAND_R1   0x01
-#define OPERAND_R2   0x02
-#define OPERAND_R3   0x03
-#define OPERAND_R4   0x04
-#define OPERAND_SRCA 0x20
-#define OPERAND_SRCB 0x21
-#define OPERAND_ACCU 0x31
-#define OPERAND_ZF   0x32
-#define OPERAND_CF   0x33
+static uint32_t
+mi_alu(uint32_t opcode, uint32_t operand1, uint32_t operand2)
+{
+   struct GENX(MI_MATH_ALU_INSTRUCTION) instr = {
+      .ALUOpcode = opcode,
+      .Operand1 = operand1,
+      .Operand2 = operand2,
+   };
+
+   uint32_t dw;
+   GENX(MI_MATH_ALU_INSTRUCTION_pack)(NULL, &dw, &instr);
+
+   return dw;
+}
 
 #define CS_GPR(n) (0x2600 + (n) * 8)
 
 static void
 emit_load_alu_reg_u64(struct anv_batch *batch, uint32_t reg,
-                      struct anv_bo *bo, uint32_t offset)
+                      struct anv_address addr)
 {
    anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
-      lrm.RegisterAddress  = reg,
-      lrm.MemoryAddress    = (struct anv_address) { bo, offset };
+      lrm.RegisterAddress  = reg;
+      lrm.MemoryAddress    = anv_address_add(addr, 0);
    }
    anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
       lrm.RegisterAddress  = reg + 4;
-      lrm.MemoryAddress    = (struct anv_address) { bo, offset + 4 };
+      lrm.MemoryAddress    = anv_address_add(addr, 4);
    }
 }
 
 static void
-store_query_result(struct anv_batch *batch, uint32_t reg,
-                   struct anv_bo *bo, uint32_t offset, VkQueryResultFlags flags)
+emit_load_alu_reg_imm32(struct anv_batch *batch, uint32_t reg, uint32_t imm)
 {
-   anv_batch_emit(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
-      srm.RegisterAddress  = reg;
-      srm.MemoryAddress    = (struct anv_address) { bo, offset };
+   anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
+      lri.RegisterOffset   = reg;
+      lri.DataDWord        = imm;
    }
+}
 
-   if (flags & VK_QUERY_RESULT_64_BIT) {
-      anv_batch_emit(batch, GENX(MI_STORE_REGISTER_MEM), srm) {
-         srm.RegisterAddress  = reg + 4;
-         srm.MemoryAddress    = (struct anv_address) { bo, offset + 4 };
+static void
+emit_load_alu_reg_imm64(struct anv_batch *batch, uint32_t reg, uint64_t imm)
+{
+   emit_load_alu_reg_imm32(batch, reg, (uint32_t)imm);
+   emit_load_alu_reg_imm32(batch, reg + 4, (uint32_t)(imm >> 32));
+}
+
+static void
+emit_load_alu_reg_reg32(struct anv_batch *batch, uint32_t src, uint32_t dst)
+{
+   anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
+      lrr.SourceRegisterAddress      = src;
+      lrr.DestinationRegisterAddress = dst;
+   }
+}
+
+/*
+ * GPR0 = GPR0 & ((1ull << n) - 1);
+ */
+static void
+keep_gpr0_lower_n_bits(struct anv_batch *batch, uint32_t n)
+{
+   assert(n < 64);
+   emit_load_alu_reg_imm64(batch, CS_GPR(1), (1ull << n) - 1);
+
+   uint32_t *dw = anv_batch_emitn(batch, 5, GENX(MI_MATH));
+   if (!dw) {
+      anv_batch_set_error(batch, VK_ERROR_OUT_OF_HOST_MEMORY);
+      return;
+   }
+
+   dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, MI_ALU_REG0);
+   dw[2] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCB, MI_ALU_REG1);
+   dw[3] = mi_alu(MI_ALU_AND, 0, 0);
+   dw[4] = mi_alu(MI_ALU_STORE, MI_ALU_REG0, MI_ALU_ACCU);
+}
+
+/*
+ * GPR0 = GPR0 << 30;
+ */
+static void
+shl_gpr0_by_30_bits(struct anv_batch *batch)
+{
+   /* First we mask 34 bits of GPR0 to prevent overflow */
+   keep_gpr0_lower_n_bits(batch, 34);
+
+   const uint32_t outer_count = 5;
+   const uint32_t inner_count = 6;
+   STATIC_ASSERT(outer_count * inner_count == 30);
+   const uint32_t cmd_len = 1 + inner_count * 4;
+
+   /* We'll emit 5 commands, each shifting GPR0 left by 6 bits, for a total of
+    * 30 left shifts.
+    */
+   for (int o = 0; o < outer_count; o++) {
+      /* Submit one MI_MATH to shift left by 6 bits */
+      uint32_t *dw = anv_batch_emitn(batch, cmd_len, GENX(MI_MATH));
+      if (!dw) {
+         anv_batch_set_error(batch, VK_ERROR_OUT_OF_HOST_MEMORY);
+         return;
       }
+
+      dw++;
+      for (int i = 0; i < inner_count; i++, dw += 4) {
+         dw[0] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, MI_ALU_REG0);
+         dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCB, MI_ALU_REG0);
+         dw[2] = mi_alu(MI_ALU_ADD, 0, 0);
+         dw[3] = mi_alu(MI_ALU_STORE, MI_ALU_REG0, MI_ALU_ACCU);
+      }
+   }
+}
+
+/*
+ * GPR0 = GPR0 >> 2;
+ *
+ * Note that the upper 30 bits of GPR are lost!
+ */
+static void
+shr_gpr0_by_2_bits(struct anv_batch *batch)
+{
+   shl_gpr0_by_30_bits(batch);
+   emit_load_alu_reg_reg32(batch, CS_GPR(0) + 4, CS_GPR(0));
+   emit_load_alu_reg_imm32(batch, CS_GPR(0) + 4, 0);
+}
+
+static void
+gpu_write_query_result(struct anv_batch *batch,
+                       struct anv_address dst_addr,
+                       VkQueryResultFlags flags,
+                       uint32_t value_index, uint32_t reg)
+{
+   if (flags & VK_QUERY_RESULT_64_BIT) {
+      emit_srm64(batch, anv_address_add(dst_addr, value_index * 8), reg);
+   } else {
+      emit_srm32(batch, anv_address_add(dst_addr, value_index * 4), reg);
+   }
+}
+
+static void
+compute_query_result(struct anv_batch *batch, uint32_t dst_reg,
+                     struct anv_address addr)
+{
+   emit_load_alu_reg_u64(batch, CS_GPR(0), anv_address_add(addr, 0));
+   emit_load_alu_reg_u64(batch, CS_GPR(1), anv_address_add(addr, 8));
+
+   /* FIXME: We need to clamp the result for 32 bit. */
+
+   uint32_t *dw = anv_batch_emitn(batch, 5, GENX(MI_MATH));
+   if (!dw) {
+      anv_batch_set_error(batch, VK_ERROR_OUT_OF_HOST_MEMORY);
+      return;
    }
+
+   dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, MI_ALU_REG1);
+   dw[2] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCB, MI_ALU_REG0);
+   dw[3] = mi_alu(MI_ALU_SUB, 0, 0);
+   dw[4] = mi_alu(MI_ALU_STORE, dst_reg, MI_ALU_ACCU);
 }
 
 void genX(CmdCopyQueryPoolResults)(
@@ -408,7 +730,6 @@ void genX(CmdCopyQueryPoolResults)(
    ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
    ANV_FROM_HANDLE(anv_query_pool, pool, queryPool);
    ANV_FROM_HANDLE(anv_buffer, buffer, destBuffer);
-   uint32_t slot_offset, dst_offset;
 
    if (flags & VK_QUERY_RESULT_WAIT_BIT) {
       anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
@@ -417,50 +738,58 @@ void genX(CmdCopyQueryPoolResults)(
       }
    }
 
-   dst_offset = buffer->offset + destOffset;
+   struct anv_address dest_addr = anv_address_add(buffer->address, destOffset);
    for (uint32_t i = 0; i < queryCount; i++) {
-
-      slot_offset = (firstQuery + i) * sizeof(struct anv_query_pool_slot);
+      struct anv_address query_addr = anv_query_address(pool, firstQuery + i);
+      uint32_t idx = 0;
       switch (pool->type) {
       case VK_QUERY_TYPE_OCCLUSION:
-         emit_load_alu_reg_u64(&cmd_buffer->batch,
-                               CS_GPR(0), &pool->bo, slot_offset);
-         emit_load_alu_reg_u64(&cmd_buffer->batch,
-                               CS_GPR(1), &pool->bo, slot_offset + 8);
+         compute_query_result(&cmd_buffer->batch, MI_ALU_REG2,
+                              anv_address_add(query_addr, 8));
+         gpu_write_query_result(&cmd_buffer->batch, dest_addr,
+                                flags, idx++, CS_GPR(2));
+         break;
 
-         /* FIXME: We need to clamp the result for 32 bit. */
+      case VK_QUERY_TYPE_PIPELINE_STATISTICS: {
+         uint32_t statistics = pool->pipeline_statistics;
+         while (statistics) {
+            uint32_t stat = u_bit_scan(&statistics);
 
-         uint32_t *dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(MI_MATH));
-         dw[1] = alu(OPCODE_LOAD, OPERAND_SRCA, OPERAND_R1);
-         dw[2] = alu(OPCODE_LOAD, OPERAND_SRCB, OPERAND_R0);
-         dw[3] = alu(OPCODE_SUB, 0, 0);
-         dw[4] = alu(OPCODE_STORE, OPERAND_R2, OPERAND_ACCU);
+            compute_query_result(&cmd_buffer->batch, MI_ALU_REG0,
+                                 anv_address_add(query_addr, idx * 16 + 8));
+
+            /* WaDividePSInvocationCountBy4:HSW,BDW */
+            if ((cmd_buffer->device->info.gen == 8 ||
+                 cmd_buffer->device->info.is_haswell) &&
+                (1 << stat) == VK_QUERY_PIPELINE_STATISTIC_FRAGMENT_SHADER_INVOCATIONS_BIT) {
+               shr_gpr0_by_2_bits(&cmd_buffer->batch);
+            }
+
+            gpu_write_query_result(&cmd_buffer->batch, dest_addr,
+                                   flags, idx++, CS_GPR(0));
+         }
+         assert(idx == util_bitcount(pool->pipeline_statistics));
          break;
+      }
 
       case VK_QUERY_TYPE_TIMESTAMP:
          emit_load_alu_reg_u64(&cmd_buffer->batch,
-                               CS_GPR(2), &pool->bo, slot_offset);
+                               CS_GPR(2), anv_address_add(query_addr, 8));
+         gpu_write_query_result(&cmd_buffer->batch, dest_addr,
+                                flags, 0, CS_GPR(2));
          break;
 
       default:
          unreachable("unhandled query type");
       }
 
-      store_query_result(&cmd_buffer->batch,
-                         CS_GPR(2), buffer->bo, dst_offset, flags);
-
       if (flags & VK_QUERY_RESULT_WITH_AVAILABILITY_BIT) {
-         emit_load_alu_reg_u64(&cmd_buffer->batch, CS_GPR(0),
-                               &pool->bo, slot_offset + 16);
-         if (flags & VK_QUERY_RESULT_64_BIT)
-            store_query_result(&cmd_buffer->batch,
-                               CS_GPR(0), buffer->bo, dst_offset + 8, flags);
-         else
-            store_query_result(&cmd_buffer->batch,
-                               CS_GPR(0), buffer->bo, dst_offset + 4, flags);
+         emit_load_alu_reg_u64(&cmd_buffer->batch, CS_GPR(0), query_addr);
+         gpu_write_query_result(&cmd_buffer->batch, dest_addr,
+                                flags, idx, CS_GPR(0));
       }
 
-      dst_offset += destStride;
+      dest_addr = anv_address_add(dest_addr, destStride);
    }
 }