misc: Replaced master/slave terminology
[gem5.git] / src / mem / cache / base.cc
index 2c7d9fb68be70c241392918c5a77a319e3f95dbb..c42071453819095f86c27a5d9f1a4dfda91d96ba 100644 (file)
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2012-2013 ARM Limited
+ * Copyright (c) 2012-2013, 2018-2019 ARM Limited
  * All rights reserved.
  *
  * The license below extends only to copyright in the software and shall
@@ -36,8 +36,6 @@
  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- * Authors: Erik Hallnor
  */
 
 /**
 
 #include "mem/cache/base.hh"
 
+#include "base/compiler.hh"
+#include "base/logging.hh"
 #include "debug/Cache.hh"
-#include "debug/Drain.hh"
-#include "mem/cache/cache.hh"
+#include "debug/CacheComp.hh"
+#include "debug/CachePort.hh"
+#include "debug/CacheRepl.hh"
+#include "debug/CacheVerbose.hh"
+#include "mem/cache/compressors/base.hh"
 #include "mem/cache/mshr.hh"
-#include "mem/cache/tags/fa_lru.hh"
-#include "sim/full_system.hh"
+#include "mem/cache/prefetch/base.hh"
+#include "mem/cache/queue_entry.hh"
+#include "mem/cache/tags/super_blk.hh"
+#include "params/BaseCache.hh"
+#include "params/WriteAllocator.hh"
+#include "sim/core.hh"
 
 using namespace std;
 
-BaseCache::CacheSlavePort::CacheSlavePort(const std::string &_name,
+BaseCache::CacheResponsePort::CacheResponsePort(const std::string &_name,
                                           BaseCache *_cache,
                                           const std::string &_label)
-    : QueuedSlavePort(_name, _cache, queue), queue(*_cache, *this, _label),
+    : QueuedResponsePort(_name, _cache, queue),
+      queue(*_cache, *this, true, _label),
       blocked(false), mustSendRetry(false),
       sendRetryEvent([this]{ processSendRetry(); }, _name)
 {
 }
 
 BaseCache::BaseCache(const BaseCacheParams *p, unsigned blk_size)
-    : MemObject(p),
-      cpuSidePort(nullptr), memSidePort(nullptr),
+    : ClockedObject(p),
+      cpuSidePort (p->name + ".cpu_side_port", this, "CpuSidePort"),
+      memSidePort(p->name + ".mem_side_port", this, "MemSidePort"),
       mshrQueue("MSHRs", p->mshrs, 0, p->demand_mshr_reserve), // see below
       writeBuffer("write buffer", p->write_buffers, p->mshrs), // see below
+      tags(p->tags),
+      compressor(p->compressor),
+      prefetcher(p->prefetcher),
+      writeAllocator(p->write_allocator),
+      writebackClean(p->writeback_clean),
+      tempBlockWriteback(nullptr),
+      writebackTempBlockAtomicEvent([this]{ writebackTempBlockAtomic(); },
+                                    name(), false,
+                                    EventBase::Delayed_Writeback_Pri),
       blkSize(blk_size),
       lookupLatency(p->tag_latency),
       dataLatency(p->data_latency),
       forwardLatency(p->tag_latency),
       fillLatency(p->data_latency),
       responseLatency(p->response_latency),
+      sequentialAccess(p->sequential_access),
       numTarget(p->tgts_per_mshr),
       forwardSnoops(true),
+      clusivity(p->clusivity),
       isReadOnly(p->is_read_only),
       blocked(0),
       order(0),
       noTargetMSHR(nullptr),
       missCount(p->max_miss_count),
       addrRanges(p->addr_ranges.begin(), p->addr_ranges.end()),
-      system(p->system)
+      system(p->system),
+      stats(*this)
 {
     // the MSHR queue has no reserve entries as we check the MSHR
     // queue on every single allocation, whereas the write queue has
@@ -93,11 +114,22 @@ BaseCache::BaseCache(const BaseCacheParams *p, unsigned blk_size)
     // buffer before committing to an MSHR
 
     // forward snoops is overridden in init() once we can query
-    // whether the connected master is actually snooping or not
+    // whether the connected requestor is actually snooping or not
+
+    tempBlock = new TempCacheBlk(blkSize);
+
+    tags->tagsInit();
+    if (prefetcher)
+        prefetcher->setCache(this);
+}
+
+BaseCache::~BaseCache()
+{
+    delete tempBlock;
 }
 
 void
-BaseCache::CacheSlavePort::setBlocked()
+BaseCache::CacheResponsePort::setBlocked()
 {
     assert(!blocked);
     DPRINTF(CachePort, "Port is blocking new requests\n");
@@ -112,7 +144,7 @@ BaseCache::CacheSlavePort::setBlocked()
 }
 
 void
-BaseCache::CacheSlavePort::clearBlocked()
+BaseCache::CacheResponsePort::clearBlocked()
 {
     assert(blocked);
     DPRINTF(CachePort, "Port is accepting new requests\n");
@@ -124,7 +156,7 @@ BaseCache::CacheSlavePort::clearBlocked()
 }
 
 void
-BaseCache::CacheSlavePort::processSendRetry()
+BaseCache::CacheResponsePort::processSendRetry()
 {
     DPRINTF(CachePort, "Port is sending retry\n");
 
@@ -133,32 +165,34 @@ BaseCache::CacheSlavePort::processSendRetry()
     sendRetryReq();
 }
 
+Addr
+BaseCache::regenerateBlkAddr(CacheBlk* blk)
+{
+    if (blk != tempBlock) {
+        return tags->regenerateBlkAddr(blk);
+    } else {
+        return tempBlock->getAddr();
+    }
+}
+
 void
 BaseCache::init()
 {
-    if (!cpuSidePort->isConnected() || !memSidePort->isConnected())
+    if (!cpuSidePort.isConnected() || !memSidePort.isConnected())
         fatal("Cache ports on %s are not connected\n", name());
-    cpuSidePort->sendRangeChange();
-    forwardSnoops = cpuSidePort->isSnooping();
+    cpuSidePort.sendRangeChange();
+    forwardSnoops = cpuSidePort.isSnooping();
 }
 
-BaseMasterPort &
-BaseCache::getMasterPort(const std::string &if_name, PortID idx)
+Port &
+BaseCache::getPort(const std::string &if_name, PortID idx)
 {
     if (if_name == "mem_side") {
-        return *memSidePort;
+        return memSidePort;
+    } else if (if_name == "cpu_side") {
+        return cpuSidePort;
     }  else {
-        return MemObject::getMasterPort(if_name, idx);
-    }
-}
-
-BaseSlavePort &
-BaseCache::getSlavePort(const std::string &if_name, PortID idx)
-{
-    if (if_name == "cpu_side") {
-        return *cpuSidePort;
-    } else {
-        return MemObject::getSlavePort(if_name, idx);
+        return ClockedObject::getPort(if_name, idx);
     }
 }
 
@@ -174,588 +208,2292 @@ BaseCache::inRange(Addr addr) const
 }
 
 void
-BaseCache::regStats()
+BaseCache::handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, Tick request_time)
 {
-    MemObject::regStats();
-
-    using namespace Stats;
+    if (pkt->needsResponse()) {
+        // These delays should have been consumed by now
+        assert(pkt->headerDelay == 0);
+        assert(pkt->payloadDelay == 0);
+
+        pkt->makeTimingResponse();
+
+        // In this case we are considering request_time that takes
+        // into account the delay of the xbar, if any, and just
+        // lat, neglecting responseLatency, modelling hit latency
+        // just as the value of lat overriden by access(), which calls
+        // the calculateAccessLatency() function.
+        cpuSidePort.schedTimingResp(pkt, request_time);
+    } else {
+        DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__,
+                pkt->print());
+
+        // queue the packet for deletion, as the sending cache is
+        // still relying on it; if the block is found in access(),
+        // CleanEvict and Writeback messages will be deleted
+        // here as well
+        pendingDelete.reset(pkt);
+    }
+}
 
-    // Hit statistics
-    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
-        MemCmd cmd(access_idx);
-        const string &cstr = cmd.toString();
+void
+BaseCache::handleTimingReqMiss(PacketPtr pkt, MSHR *mshr, CacheBlk *blk,
+                               Tick forward_time, Tick request_time)
+{
+    if (writeAllocator &&
+        pkt && pkt->isWrite() && !pkt->req->isUncacheable()) {
+        writeAllocator->updateMode(pkt->getAddr(), pkt->getSize(),
+                                   pkt->getBlockAddr(blkSize));
+    }
 
-        hits[access_idx]
-            .init(system->maxMasters())
-            .name(name() + "." + cstr + "_hits")
-            .desc("number of " + cstr + " hits")
-            .flags(total | nozero | nonan)
-            ;
-        for (int i = 0; i < system->maxMasters(); i++) {
-            hits[access_idx].subname(i, system->getMasterName(i));
+    if (mshr) {
+        /// MSHR hit
+        /// @note writebacks will be checked in getNextMSHR()
+        /// for any conflicting requests to the same block
+
+        //@todo remove hw_pf here
+
+        // Coalesce unless it was a software prefetch (see above).
+        if (pkt) {
+            assert(!pkt->isWriteback());
+            // CleanEvicts corresponding to blocks which have
+            // outstanding requests in MSHRs are simply sunk here
+            if (pkt->cmd == MemCmd::CleanEvict) {
+                pendingDelete.reset(pkt);
+            } else if (pkt->cmd == MemCmd::WriteClean) {
+                // A WriteClean should never coalesce with any
+                // outstanding cache maintenance requests.
+
+                // We use forward_time here because there is an
+                // uncached memory write, forwarded to WriteBuffer.
+                allocateWriteBuffer(pkt, forward_time);
+            } else {
+                DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__,
+                        pkt->print());
+
+                assert(pkt->req->requestorId() < system->maxRequestors());
+                stats.cmdStats(pkt).mshr_hits[pkt->req->requestorId()]++;
+
+                // We use forward_time here because it is the same
+                // considering new targets. We have multiple
+                // requests for the same address here. It
+                // specifies the latency to allocate an internal
+                // buffer and to schedule an event to the queued
+                // port and also takes into account the additional
+                // delay of the xbar.
+                mshr->allocateTarget(pkt, forward_time, order++,
+                                     allocOnFill(pkt->cmd));
+                if (mshr->getNumTargets() == numTarget) {
+                    noTargetMSHR = mshr;
+                    setBlocked(Blocked_NoTargets);
+                    // need to be careful with this... if this mshr isn't
+                    // ready yet (i.e. time > curTick()), we don't want to
+                    // move it ahead of mshrs that are ready
+                    // mshrQueue.moveToFront(mshr);
+                }
+            }
+        }
+    } else {
+        // no MSHR
+        assert(pkt->req->requestorId() < system->maxRequestors());
+        stats.cmdStats(pkt).mshr_misses[pkt->req->requestorId()]++;
+
+        if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean) {
+            // We use forward_time here because there is an
+            // writeback or writeclean, forwarded to WriteBuffer.
+            allocateWriteBuffer(pkt, forward_time);
+        } else {
+            if (blk && blk->isValid()) {
+                // If we have a write miss to a valid block, we
+                // need to mark the block non-readable.  Otherwise
+                // if we allow reads while there's an outstanding
+                // write miss, the read could return stale data
+                // out of the cache block... a more aggressive
+                // system could detect the overlap (if any) and
+                // forward data out of the MSHRs, but we don't do
+                // that yet.  Note that we do need to leave the
+                // block valid so that it stays in the cache, in
+                // case we get an upgrade response (and hence no
+                // new data) when the write miss completes.
+                // As long as CPUs do proper store/load forwarding
+                // internally, and have a sufficiently weak memory
+                // model, this is probably unnecessary, but at some
+                // point it must have seemed like we needed it...
+                assert((pkt->needsWritable() && !blk->isWritable()) ||
+                       pkt->req->isCacheMaintenance());
+                blk->status &= ~BlkReadable;
+            }
+            // Here we are using forward_time, modelling the latency of
+            // a miss (outbound) just as forwardLatency, neglecting the
+            // lookupLatency component.
+            allocateMissBuffer(pkt, forward_time);
         }
     }
+}
 
-// These macros make it easier to sum the right subset of commands and
-// to change the subset of commands that are considered "demand" vs
-// "non-demand"
-#define SUM_DEMAND(s) \
-    (s[MemCmd::ReadReq] + s[MemCmd::WriteReq] + s[MemCmd::WriteLineReq] + \
-     s[MemCmd::ReadExReq] + s[MemCmd::ReadCleanReq] + s[MemCmd::ReadSharedReq])
+void
+BaseCache::recvTimingReq(PacketPtr pkt)
+{
+    // anything that is merely forwarded pays for the forward latency and
+    // the delay provided by the crossbar
+    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
+
+    Cycles lat;
+    CacheBlk *blk = nullptr;
+    bool satisfied = false;
+    {
+        PacketList writebacks;
+        // Note that lat is passed by reference here. The function
+        // access() will set the lat value.
+        satisfied = access(pkt, blk, lat, writebacks);
+
+        // After the evicted blocks are selected, they must be forwarded
+        // to the write buffer to ensure they logically precede anything
+        // happening below
+        doWritebacks(writebacks, clockEdge(lat + forwardLatency));
+    }
 
-// should writebacks be included here?  prior code was inconsistent...
-#define SUM_NON_DEMAND(s) \
-    (s[MemCmd::SoftPFReq] + s[MemCmd::HardPFReq])
+    // Here we charge the headerDelay that takes into account the latencies
+    // of the bus, if the packet comes from it.
+    // The latency charged is just the value set by the access() function.
+    // In case of a hit we are neglecting response latency.
+    // In case of a miss we are neglecting forward latency.
+    Tick request_time = clockEdge(lat);
+    // Here we reset the timing of the packet.
+    pkt->headerDelay = pkt->payloadDelay = 0;
+
+    if (satisfied) {
+        // notify before anything else as later handleTimingReqHit might turn
+        // the packet in a response
+        ppHit->notify(pkt);
+
+        if (prefetcher && blk && blk->wasPrefetched()) {
+            blk->status &= ~BlkHWPrefetched;
+        }
 
-    demandHits
-        .name(name() + ".demand_hits")
-        .desc("number of demand (read+write) hits")
-        .flags(total | nozero | nonan)
-        ;
-    demandHits = SUM_DEMAND(hits);
-    for (int i = 0; i < system->maxMasters(); i++) {
-        demandHits.subname(i, system->getMasterName(i));
-    }
+        handleTimingReqHit(pkt, blk, request_time);
+    } else {
+        handleTimingReqMiss(pkt, blk, forward_time, request_time);
 
-    overallHits
-        .name(name() + ".overall_hits")
-        .desc("number of overall hits")
-        .flags(total | nozero | nonan)
-        ;
-    overallHits = demandHits + SUM_NON_DEMAND(hits);
-    for (int i = 0; i < system->maxMasters(); i++) {
-        overallHits.subname(i, system->getMasterName(i));
+        ppMiss->notify(pkt);
     }
 
-    // Miss statistics
-    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
-        MemCmd cmd(access_idx);
-        const string &cstr = cmd.toString();
-
-        misses[access_idx]
-            .init(system->maxMasters())
-            .name(name() + "." + cstr + "_misses")
-            .desc("number of " + cstr + " misses")
-            .flags(total | nozero | nonan)
-            ;
-        for (int i = 0; i < system->maxMasters(); i++) {
-            misses[access_idx].subname(i, system->getMasterName(i));
+    if (prefetcher) {
+        // track time of availability of next prefetch, if any
+        Tick next_pf_time = prefetcher->nextPrefetchReadyTime();
+        if (next_pf_time != MaxTick) {
+            schedMemSideSendEvent(next_pf_time);
         }
     }
+}
 
-    demandMisses
-        .name(name() + ".demand_misses")
-        .desc("number of demand (read+write) misses")
-        .flags(total | nozero | nonan)
-        ;
-    demandMisses = SUM_DEMAND(misses);
-    for (int i = 0; i < system->maxMasters(); i++) {
-        demandMisses.subname(i, system->getMasterName(i));
-    }
+void
+BaseCache::handleUncacheableWriteResp(PacketPtr pkt)
+{
+    Tick completion_time = clockEdge(responseLatency) +
+        pkt->headerDelay + pkt->payloadDelay;
 
-    overallMisses
-        .name(name() + ".overall_misses")
-        .desc("number of overall misses")
-        .flags(total | nozero | nonan)
-        ;
-    overallMisses = demandMisses + SUM_NON_DEMAND(misses);
-    for (int i = 0; i < system->maxMasters(); i++) {
-        overallMisses.subname(i, system->getMasterName(i));
-    }
+    // Reset the bus additional time as it is now accounted for
+    pkt->headerDelay = pkt->payloadDelay = 0;
 
-    // Miss latency statistics
-    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
-        MemCmd cmd(access_idx);
-        const string &cstr = cmd.toString();
+    cpuSidePort.schedTimingResp(pkt, completion_time);
+}
 
-        missLatency[access_idx]
-            .init(system->maxMasters())
-            .name(name() + "." + cstr + "_miss_latency")
-            .desc("number of " + cstr + " miss cycles")
-            .flags(total | nozero | nonan)
-            ;
-        for (int i = 0; i < system->maxMasters(); i++) {
-            missLatency[access_idx].subname(i, system->getMasterName(i));
-        }
-    }
+void
+BaseCache::recvTimingResp(PacketPtr pkt)
+{
+    assert(pkt->isResponse());
 
-    demandMissLatency
-        .name(name() + ".demand_miss_latency")
-        .desc("number of demand (read+write) miss cycles")
-        .flags(total | nozero | nonan)
-        ;
-    demandMissLatency = SUM_DEMAND(missLatency);
-    for (int i = 0; i < system->maxMasters(); i++) {
-        demandMissLatency.subname(i, system->getMasterName(i));
-    }
+    // all header delay should be paid for by the crossbar, unless
+    // this is a prefetch response from above
+    panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
+             "%s saw a non-zero packet delay\n", name());
 
-    overallMissLatency
-        .name(name() + ".overall_miss_latency")
-        .desc("number of overall miss cycles")
-        .flags(total | nozero | nonan)
-        ;
-    overallMissLatency = demandMissLatency + SUM_NON_DEMAND(missLatency);
-    for (int i = 0; i < system->maxMasters(); i++) {
-        overallMissLatency.subname(i, system->getMasterName(i));
-    }
+    const bool is_error = pkt->isError();
 
-    // access formulas
-    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
-        MemCmd cmd(access_idx);
-        const string &cstr = cmd.toString();
+    if (is_error) {
+        DPRINTF(Cache, "%s: Cache received %s with error\n", __func__,
+                pkt->print());
+    }
 
-        accesses[access_idx]
-            .name(name() + "." + cstr + "_accesses")
-            .desc("number of " + cstr + " accesses(hits+misses)")
-            .flags(total | nozero | nonan)
-            ;
-        accesses[access_idx] = hits[access_idx] + misses[access_idx];
+    DPRINTF(Cache, "%s: Handling response %s\n", __func__,
+            pkt->print());
 
-        for (int i = 0; i < system->maxMasters(); i++) {
-            accesses[access_idx].subname(i, system->getMasterName(i));
-        }
+    // if this is a write, we should be looking at an uncacheable
+    // write
+    if (pkt->isWrite()) {
+        assert(pkt->req->isUncacheable());
+        handleUncacheableWriteResp(pkt);
+        return;
     }
 
-    demandAccesses
-        .name(name() + ".demand_accesses")
-        .desc("number of demand (read+write) accesses")
-        .flags(total | nozero | nonan)
-        ;
-    demandAccesses = demandHits + demandMisses;
-    for (int i = 0; i < system->maxMasters(); i++) {
-        demandAccesses.subname(i, system->getMasterName(i));
+    // we have dealt with any (uncacheable) writes above, from here on
+    // we know we are dealing with an MSHR due to a miss or a prefetch
+    MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState());
+    assert(mshr);
+
+    if (mshr == noTargetMSHR) {
+        // we always clear at least one target
+        clearBlocked(Blocked_NoTargets);
+        noTargetMSHR = nullptr;
     }
 
-    overallAccesses
-        .name(name() + ".overall_accesses")
-        .desc("number of overall (read+write) accesses")
-        .flags(total | nozero | nonan)
-        ;
-    overallAccesses = overallHits + overallMisses;
-    for (int i = 0; i < system->maxMasters(); i++) {
-        overallAccesses.subname(i, system->getMasterName(i));
+    // Initial target is used just for stats
+    const QueueEntry::Target *initial_tgt = mshr->getTarget();
+    const Tick miss_latency = curTick() - initial_tgt->recvTime;
+    if (pkt->req->isUncacheable()) {
+        assert(pkt->req->requestorId() < system->maxRequestors());
+        stats.cmdStats(initial_tgt->pkt)
+            .mshr_uncacheable_lat[pkt->req->requestorId()] += miss_latency;
+    } else {
+        assert(pkt->req->requestorId() < system->maxRequestors());
+        stats.cmdStats(initial_tgt->pkt)
+            .mshr_miss_latency[pkt->req->requestorId()] += miss_latency;
     }
 
-    // miss rate formulas
-    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
-        MemCmd cmd(access_idx);
-        const string &cstr = cmd.toString();
+    PacketList writebacks;
 
-        missRate[access_idx]
-            .name(name() + "." + cstr + "_miss_rate")
-            .desc("miss rate for " + cstr + " accesses")
-            .flags(total | nozero | nonan)
-            ;
-        missRate[access_idx] = misses[access_idx] / accesses[access_idx];
+    bool is_fill = !mshr->isForward &&
+        (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp ||
+         mshr->wasWholeLineWrite);
 
-        for (int i = 0; i < system->maxMasters(); i++) {
-            missRate[access_idx].subname(i, system->getMasterName(i));
-        }
+    // make sure that if the mshr was due to a whole line write then
+    // the response is an invalidation
+    assert(!mshr->wasWholeLineWrite || pkt->isInvalidate());
+
+    CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
+
+    if (is_fill && !is_error) {
+        DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
+                pkt->getAddr());
+
+        const bool allocate = (writeAllocator && mshr->wasWholeLineWrite) ?
+            writeAllocator->allocate() : mshr->allocOnFill();
+        blk = handleFill(pkt, blk, writebacks, allocate);
+        assert(blk != nullptr);
+        ppFill->notify(pkt);
     }
 
-    demandMissRate
-        .name(name() + ".demand_miss_rate")
-        .desc("miss rate for demand accesses")
-        .flags(total | nozero | nonan)
-        ;
-    demandMissRate = demandMisses / demandAccesses;
-    for (int i = 0; i < system->maxMasters(); i++) {
-        demandMissRate.subname(i, system->getMasterName(i));
+    if (blk && blk->isValid() && pkt->isClean() && !pkt->isInvalidate()) {
+        // The block was marked not readable while there was a pending
+        // cache maintenance operation, restore its flag.
+        blk->status |= BlkReadable;
+
+        // This was a cache clean operation (without invalidate)
+        // and we have a copy of the block already. Since there
+        // is no invalidation, we can promote targets that don't
+        // require a writable copy
+        mshr->promoteReadable();
     }
 
-    overallMissRate
-        .name(name() + ".overall_miss_rate")
-        .desc("miss rate for overall accesses")
-        .flags(total | nozero | nonan)
-        ;
-    overallMissRate = overallMisses / overallAccesses;
-    for (int i = 0; i < system->maxMasters(); i++) {
-        overallMissRate.subname(i, system->getMasterName(i));
+    if (blk && blk->isWritable() && !pkt->req->isCacheInvalidate()) {
+        // If at this point the referenced block is writable and the
+        // response is not a cache invalidate, we promote targets that
+        // were deferred as we couldn't guarrantee a writable copy
+        mshr->promoteWritable();
     }
 
-    // miss latency formulas
-    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
-        MemCmd cmd(access_idx);
-        const string &cstr = cmd.toString();
+    serviceMSHRTargets(mshr, pkt, blk);
 
-        avgMissLatency[access_idx]
-            .name(name() + "." + cstr + "_avg_miss_latency")
-            .desc("average " + cstr + " miss latency")
-            .flags(total | nozero | nonan)
-            ;
-        avgMissLatency[access_idx] =
-            missLatency[access_idx] / misses[access_idx];
+    if (mshr->promoteDeferredTargets()) {
+        // avoid later read getting stale data while write miss is
+        // outstanding.. see comment in timingAccess()
+        if (blk) {
+            blk->status &= ~BlkReadable;
+        }
+        mshrQueue.markPending(mshr);
+        schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
+    } else {
+        // while we deallocate an mshr from the queue we still have to
+        // check the isFull condition before and after as we might
+        // have been using the reserved entries already
+        const bool was_full = mshrQueue.isFull();
+        mshrQueue.deallocate(mshr);
+        if (was_full && !mshrQueue.isFull()) {
+            clearBlocked(Blocked_NoMSHRs);
+        }
 
-        for (int i = 0; i < system->maxMasters(); i++) {
-            avgMissLatency[access_idx].subname(i, system->getMasterName(i));
+        // Request the bus for a prefetch if this deallocation freed enough
+        // MSHRs for a prefetch to take place
+        if (prefetcher && mshrQueue.canPrefetch() && !isBlocked()) {
+            Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
+                                         clockEdge());
+            if (next_pf_time != MaxTick)
+                schedMemSideSendEvent(next_pf_time);
         }
     }
 
-    demandAvgMissLatency
-        .name(name() + ".demand_avg_miss_latency")
-        .desc("average overall miss latency")
-        .flags(total | nozero | nonan)
-        ;
-    demandAvgMissLatency = demandMissLatency / demandMisses;
-    for (int i = 0; i < system->maxMasters(); i++) {
-        demandAvgMissLatency.subname(i, system->getMasterName(i));
+    // if we used temp block, check to see if its valid and then clear it out
+    if (blk == tempBlock && tempBlock->isValid()) {
+        evictBlock(blk, writebacks);
     }
 
-    overallAvgMissLatency
-        .name(name() + ".overall_avg_miss_latency")
-        .desc("average overall miss latency")
-        .flags(total | nozero | nonan)
-        ;
-    overallAvgMissLatency = overallMissLatency / overallMisses;
-    for (int i = 0; i < system->maxMasters(); i++) {
-        overallAvgMissLatency.subname(i, system->getMasterName(i));
-    }
+    const Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
+    // copy writebacks to write buffer
+    doWritebacks(writebacks, forward_time);
 
-    blocked_cycles.init(NUM_BLOCKED_CAUSES);
-    blocked_cycles
-        .name(name() + ".blocked_cycles")
-        .desc("number of cycles access was blocked")
-        .subname(Blocked_NoMSHRs, "no_mshrs")
-        .subname(Blocked_NoTargets, "no_targets")
-        ;
+    DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print());
+    delete pkt;
+}
 
 
-    blocked_causes.init(NUM_BLOCKED_CAUSES);
-    blocked_causes
-        .name(name() + ".blocked")
-        .desc("number of cycles access was blocked")
-        .subname(Blocked_NoMSHRs, "no_mshrs")
-        .subname(Blocked_NoTargets, "no_targets")
-        ;
+Tick
+BaseCache::recvAtomic(PacketPtr pkt)
+{
+    // should assert here that there are no outstanding MSHRs or
+    // writebacks... that would mean that someone used an atomic
+    // access in timing mode
+
+    // We use lookupLatency here because it is used to specify the latency
+    // to access.
+    Cycles lat = lookupLatency;
+
+    CacheBlk *blk = nullptr;
+    PacketList writebacks;
+    bool satisfied = access(pkt, blk, lat, writebacks);
+
+    if (pkt->isClean() && blk && blk->isDirty()) {
+        // A cache clean opearation is looking for a dirty
+        // block. If a dirty block is encountered a WriteClean
+        // will update any copies to the path to the memory
+        // until the point of reference.
+        DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
+                __func__, pkt->print(), blk->print());
+        PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id);
+        writebacks.push_back(wb_pkt);
+        pkt->setSatisfied();
+    }
 
-    avg_blocked
-        .name(name() + ".avg_blocked_cycles")
-        .desc("average number of cycles each access was blocked")
-        .subname(Blocked_NoMSHRs, "no_mshrs")
-        .subname(Blocked_NoTargets, "no_targets")
-        ;
+    // handle writebacks resulting from the access here to ensure they
+    // logically precede anything happening below
+    doWritebacksAtomic(writebacks);
+    assert(writebacks.empty());
 
-    avg_blocked = blocked_cycles / blocked_causes;
+    if (!satisfied) {
+        lat += handleAtomicReqMiss(pkt, blk, writebacks);
+    }
 
-    unusedPrefetches
-        .name(name() + ".unused_prefetches")
-        .desc("number of HardPF blocks evicted w/o reference")
-        .flags(nozero)
-        ;
+    // Note that we don't invoke the prefetcher at all in atomic mode.
+    // It's not clear how to do it properly, particularly for
+    // prefetchers that aggressively generate prefetch candidates and
+    // rely on bandwidth contention to throttle them; these will tend
+    // to pollute the cache in atomic mode since there is no bandwidth
+    // contention.  If we ever do want to enable prefetching in atomic
+    // mode, though, this is the place to do it... see timingAccess()
+    // for an example (though we'd want to issue the prefetch(es)
+    // immediately rather than calling requestMemSideBus() as we do
+    // there).
+
+    // do any writebacks resulting from the response handling
+    doWritebacksAtomic(writebacks);
+
+    // if we used temp block, check to see if its valid and if so
+    // clear it out, but only do so after the call to recvAtomic is
+    // finished so that any downstream observers (such as a snoop
+    // filter), first see the fill, and only then see the eviction
+    if (blk == tempBlock && tempBlock->isValid()) {
+        // the atomic CPU calls recvAtomic for fetch and load/store
+        // sequentuially, and we may already have a tempBlock
+        // writeback from the fetch that we have not yet sent
+        if (tempBlockWriteback) {
+            // if that is the case, write the prevoius one back, and
+            // do not schedule any new event
+            writebackTempBlockAtomic();
+        } else {
+            // the writeback/clean eviction happens after the call to
+            // recvAtomic has finished (but before any successive
+            // calls), so that the response handling from the fill is
+            // allowed to happen first
+            schedule(writebackTempBlockAtomicEvent, curTick());
+        }
 
-    writebacks
-        .init(system->maxMasters())
-        .name(name() + ".writebacks")
-        .desc("number of writebacks")
-        .flags(total | nozero | nonan)
-        ;
-    for (int i = 0; i < system->maxMasters(); i++) {
-        writebacks.subname(i, system->getMasterName(i));
+        tempBlockWriteback = evictBlock(blk);
     }
 
-    // MSHR statistics
-    // MSHR hit statistics
-    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
-        MemCmd cmd(access_idx);
-        const string &cstr = cmd.toString();
+    if (pkt->needsResponse()) {
+        pkt->makeAtomicResponse();
+    }
+
+    return lat * clockPeriod();
+}
 
-        mshr_hits[access_idx]
-            .init(system->maxMasters())
-            .name(name() + "." + cstr + "_mshr_hits")
-            .desc("number of " + cstr + " MSHR hits")
-            .flags(total | nozero | nonan)
-            ;
-        for (int i = 0; i < system->maxMasters(); i++) {
-            mshr_hits[access_idx].subname(i, system->getMasterName(i));
+void
+BaseCache::functionalAccess(PacketPtr pkt, bool from_cpu_side)
+{
+    Addr blk_addr = pkt->getBlockAddr(blkSize);
+    bool is_secure = pkt->isSecure();
+    CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
+    MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
+
+    pkt->pushLabel(name());
+
+    CacheBlkPrintWrapper cbpw(blk);
+
+    // Note that just because an L2/L3 has valid data doesn't mean an
+    // L1 doesn't have a more up-to-date modified copy that still
+    // needs to be found.  As a result we always update the request if
+    // we have it, but only declare it satisfied if we are the owner.
+
+    // see if we have data at all (owned or otherwise)
+    bool have_data = blk && blk->isValid()
+        && pkt->trySatisfyFunctional(&cbpw, blk_addr, is_secure, blkSize,
+                                     blk->data);
+
+    // data we have is dirty if marked as such or if we have an
+    // in-service MSHR that is pending a modified line
+    bool have_dirty =
+        have_data && (blk->isDirty() ||
+                      (mshr && mshr->inService && mshr->isPendingModified()));
+
+    bool done = have_dirty ||
+        cpuSidePort.trySatisfyFunctional(pkt) ||
+        mshrQueue.trySatisfyFunctional(pkt) ||
+        writeBuffer.trySatisfyFunctional(pkt) ||
+        memSidePort.trySatisfyFunctional(pkt);
+
+    DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__,  pkt->print(),
+            (blk && blk->isValid()) ? "valid " : "",
+            have_data ? "data " : "", done ? "done " : "");
+
+    // We're leaving the cache, so pop cache->name() label
+    pkt->popLabel();
+
+    if (done) {
+        pkt->makeResponse();
+    } else {
+        // if it came as a request from the CPU side then make sure it
+        // continues towards the memory side
+        if (from_cpu_side) {
+            memSidePort.sendFunctional(pkt);
+        } else if (cpuSidePort.isSnooping()) {
+            // if it came from the memory side, it must be a snoop request
+            // and we should only forward it if we are forwarding snoops
+            cpuSidePort.sendFunctionalSnoop(pkt);
         }
     }
+}
 
-    demandMshrHits
-        .name(name() + ".demand_mshr_hits")
-        .desc("number of demand (read+write) MSHR hits")
-        .flags(total | nozero | nonan)
-        ;
-    demandMshrHits = SUM_DEMAND(mshr_hits);
-    for (int i = 0; i < system->maxMasters(); i++) {
-        demandMshrHits.subname(i, system->getMasterName(i));
+
+void
+BaseCache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
+{
+    assert(pkt->isRequest());
+
+    uint64_t overwrite_val;
+    bool overwrite_mem;
+    uint64_t condition_val64;
+    uint32_t condition_val32;
+
+    int offset = pkt->getOffset(blkSize);
+    uint8_t *blk_data = blk->data + offset;
+
+    assert(sizeof(uint64_t) >= pkt->getSize());
+
+    overwrite_mem = true;
+    // keep a copy of our possible write value, and copy what is at the
+    // memory address into the packet
+    pkt->writeData((uint8_t *)&overwrite_val);
+    pkt->setData(blk_data);
+
+    if (pkt->req->isCondSwap()) {
+        if (pkt->getSize() == sizeof(uint64_t)) {
+            condition_val64 = pkt->req->getExtraData();
+            overwrite_mem = !std::memcmp(&condition_val64, blk_data,
+                                         sizeof(uint64_t));
+        } else if (pkt->getSize() == sizeof(uint32_t)) {
+            condition_val32 = (uint32_t)pkt->req->getExtraData();
+            overwrite_mem = !std::memcmp(&condition_val32, blk_data,
+                                         sizeof(uint32_t));
+        } else
+            panic("Invalid size for conditional read/write\n");
     }
 
-    overallMshrHits
-        .name(name() + ".overall_mshr_hits")
-        .desc("number of overall MSHR hits")
-        .flags(total | nozero | nonan)
-        ;
-    overallMshrHits = demandMshrHits + SUM_NON_DEMAND(mshr_hits);
-    for (int i = 0; i < system->maxMasters(); i++) {
-        overallMshrHits.subname(i, system->getMasterName(i));
+    if (overwrite_mem) {
+        std::memcpy(blk_data, &overwrite_val, pkt->getSize());
+        blk->status |= BlkDirty;
     }
+}
 
-    // MSHR miss statistics
-    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
-        MemCmd cmd(access_idx);
-        const string &cstr = cmd.toString();
+QueueEntry*
+BaseCache::getNextQueueEntry()
+{
+    // Check both MSHR queue and write buffer for potential requests,
+    // note that null does not mean there is no request, it could
+    // simply be that it is not ready
+    MSHR *miss_mshr  = mshrQueue.getNext();
+    WriteQueueEntry *wq_entry = writeBuffer.getNext();
+
+    // If we got a write buffer request ready, first priority is a
+    // full write buffer, otherwise we favour the miss requests
+    if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) {
+        // need to search MSHR queue for conflicting earlier miss.
+        MSHR *conflict_mshr = mshrQueue.findPending(wq_entry);
+
+        if (conflict_mshr && conflict_mshr->order < wq_entry->order) {
+            // Service misses in order until conflict is cleared.
+            return conflict_mshr;
+
+            // @todo Note that we ignore the ready time of the conflict here
+        }
 
-        mshr_misses[access_idx]
-            .init(system->maxMasters())
-            .name(name() + "." + cstr + "_mshr_misses")
-            .desc("number of " + cstr + " MSHR misses")
-            .flags(total | nozero | nonan)
-            ;
-        for (int i = 0; i < system->maxMasters(); i++) {
-            mshr_misses[access_idx].subname(i, system->getMasterName(i));
+        // No conflicts; issue write
+        return wq_entry;
+    } else if (miss_mshr) {
+        // need to check for conflicting earlier writeback
+        WriteQueueEntry *conflict_mshr = writeBuffer.findPending(miss_mshr);
+        if (conflict_mshr) {
+            // not sure why we don't check order here... it was in the
+            // original code but commented out.
+
+            // The only way this happens is if we are
+            // doing a write and we didn't have permissions
+            // then subsequently saw a writeback (owned got evicted)
+            // We need to make sure to perform the writeback first
+            // To preserve the dirty data, then we can issue the write
+
+            // should we return wq_entry here instead?  I.e. do we
+            // have to flush writes in order?  I don't think so... not
+            // for Alpha anyway.  Maybe for x86?
+            return conflict_mshr;
+
+            // @todo Note that we ignore the ready time of the conflict here
         }
-    }
 
-    demandMshrMisses
-        .name(name() + ".demand_mshr_misses")
-        .desc("number of demand (read+write) MSHR misses")
-        .flags(total | nozero | nonan)
-        ;
-    demandMshrMisses = SUM_DEMAND(mshr_misses);
-    for (int i = 0; i < system->maxMasters(); i++) {
-        demandMshrMisses.subname(i, system->getMasterName(i));
+        // No conflicts; issue read
+        return miss_mshr;
     }
 
-    overallMshrMisses
-        .name(name() + ".overall_mshr_misses")
-        .desc("number of overall MSHR misses")
-        .flags(total | nozero | nonan)
-        ;
-    overallMshrMisses = demandMshrMisses + SUM_NON_DEMAND(mshr_misses);
-    for (int i = 0; i < system->maxMasters(); i++) {
-        overallMshrMisses.subname(i, system->getMasterName(i));
+    // fall through... no pending requests.  Try a prefetch.
+    assert(!miss_mshr && !wq_entry);
+    if (prefetcher && mshrQueue.canPrefetch() && !isBlocked()) {
+        // If we have a miss queue slot, we can try a prefetch
+        PacketPtr pkt = prefetcher->getPacket();
+        if (pkt) {
+            Addr pf_addr = pkt->getBlockAddr(blkSize);
+            if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
+                !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
+                !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
+                // Update statistic on number of prefetches issued
+                // (hwpf_mshr_misses)
+                assert(pkt->req->requestorId() < system->maxRequestors());
+                stats.cmdStats(pkt).mshr_misses[pkt->req->requestorId()]++;
+
+                // allocate an MSHR and return it, note
+                // that we send the packet straight away, so do not
+                // schedule the send
+                return allocateMissBuffer(pkt, curTick(), false);
+            } else {
+                // free the request and packet
+                delete pkt;
+            }
+        }
     }
 
-    // MSHR miss latency statistics
-    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
-        MemCmd cmd(access_idx);
-        const string &cstr = cmd.toString();
+    return nullptr;
+}
 
-        mshr_miss_latency[access_idx]
-            .init(system->maxMasters())
-            .name(name() + "." + cstr + "_mshr_miss_latency")
-            .desc("number of " + cstr + " MSHR miss cycles")
-            .flags(total | nozero | nonan)
-            ;
-        for (int i = 0; i < system->maxMasters(); i++) {
-            mshr_miss_latency[access_idx].subname(i, system->getMasterName(i));
+bool
+BaseCache::handleEvictions(std::vector<CacheBlk*> &evict_blks,
+    PacketList &writebacks)
+{
+    bool replacement = false;
+    for (const auto& blk : evict_blks) {
+        if (blk->isValid()) {
+            replacement = true;
+
+            const MSHR* mshr =
+                mshrQueue.findMatch(regenerateBlkAddr(blk), blk->isSecure());
+            if (mshr) {
+                // Must be an outstanding upgrade or clean request on a block
+                // we're about to replace
+                assert((!blk->isWritable() && mshr->needsWritable()) ||
+                       mshr->isCleaning());
+                return false;
+            }
         }
     }
 
-    demandMshrMissLatency
-        .name(name() + ".demand_mshr_miss_latency")
-        .desc("number of demand (read+write) MSHR miss cycles")
-        .flags(total | nozero | nonan)
-        ;
-    demandMshrMissLatency = SUM_DEMAND(mshr_miss_latency);
-    for (int i = 0; i < system->maxMasters(); i++) {
-        demandMshrMissLatency.subname(i, system->getMasterName(i));
+    // The victim will be replaced by a new entry, so increase the replacement
+    // counter if a valid block is being replaced
+    if (replacement) {
+        stats.replacements++;
+
+        // Evict valid blocks associated to this victim block
+        for (auto& blk : evict_blks) {
+            if (blk->isValid()) {
+                evictBlock(blk, writebacks);
+            }
+        }
     }
 
-    overallMshrMissLatency
-        .name(name() + ".overall_mshr_miss_latency")
-        .desc("number of overall MSHR miss cycles")
-        .flags(total | nozero | nonan)
-        ;
-    overallMshrMissLatency =
-        demandMshrMissLatency + SUM_NON_DEMAND(mshr_miss_latency);
-    for (int i = 0; i < system->maxMasters(); i++) {
-        overallMshrMissLatency.subname(i, system->getMasterName(i));
+    return true;
+}
+
+bool
+BaseCache::updateCompressionData(CacheBlk *blk, const uint64_t* data,
+                                 PacketList &writebacks)
+{
+    // tempBlock does not exist in the tags, so don't do anything for it.
+    if (blk == tempBlock) {
+        return true;
     }
 
-    // MSHR uncacheable statistics
-    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
-        MemCmd cmd(access_idx);
-        const string &cstr = cmd.toString();
+    // Get superblock of the given block
+    CompressionBlk* compression_blk = static_cast<CompressionBlk*>(blk);
+    const SuperBlk* superblock = static_cast<const SuperBlk*>(
+        compression_blk->getSectorBlock());
+
+    // The compressor is called to compress the updated data, so that its
+    // metadata can be updated.
+    Cycles compression_lat = Cycles(0);
+    Cycles decompression_lat = Cycles(0);
+    const auto comp_data =
+        compressor->compress(data, compression_lat, decompression_lat);
+    std::size_t compression_size = comp_data->getSizeBits();
+
+    // If block's compression factor increased, it may not be co-allocatable
+    // anymore. If so, some blocks might need to be evicted to make room for
+    // the bigger block
+
+    // Get previous compressed size
+    const std::size_t M5_VAR_USED prev_size = compression_blk->getSizeBits();
+
+    // Check if new data is co-allocatable
+    const bool is_co_allocatable = superblock->isCompressed(compression_blk) &&
+        superblock->canCoAllocate(compression_size);
+
+    // If block was compressed, possibly co-allocated with other blocks, and
+    // cannot be co-allocated anymore, one or more blocks must be evicted to
+    // make room for the expanded block. As of now we decide to evict the co-
+    // allocated blocks to make room for the expansion, but other approaches
+    // that take the replacement data of the superblock into account may
+    // generate better results
+    const bool was_compressed = compression_blk->isCompressed();
+    if (was_compressed && !is_co_allocatable) {
+        std::vector<CacheBlk*> evict_blks;
+        for (const auto& sub_blk : superblock->blks) {
+            if (sub_blk->isValid() && (compression_blk != sub_blk)) {
+                evict_blks.push_back(sub_blk);
+            }
+        }
 
-        mshr_uncacheable[access_idx]
-            .init(system->maxMasters())
-            .name(name() + "." + cstr + "_mshr_uncacheable")
-            .desc("number of " + cstr + " MSHR uncacheable")
-            .flags(total | nozero | nonan)
-            ;
-        for (int i = 0; i < system->maxMasters(); i++) {
-            mshr_uncacheable[access_idx].subname(i, system->getMasterName(i));
+        // Try to evict blocks; if it fails, give up on update
+        if (!handleEvictions(evict_blks, writebacks)) {
+            return false;
         }
+
+        // Update the number of data expansions
+        stats.dataExpansions++;
+
+        DPRINTF(CacheComp, "Data expansion: expanding [%s] from %d to %d bits"
+                "\n", blk->print(), prev_size, compression_size);
     }
 
-    overallMshrUncacheable
-        .name(name() + ".overall_mshr_uncacheable_misses")
-        .desc("number of overall MSHR uncacheable misses")
-        .flags(total | nozero | nonan)
-        ;
-    overallMshrUncacheable =
-        SUM_DEMAND(mshr_uncacheable) + SUM_NON_DEMAND(mshr_uncacheable);
-    for (int i = 0; i < system->maxMasters(); i++) {
-        overallMshrUncacheable.subname(i, system->getMasterName(i));
+    // We always store compressed blocks when possible
+    if (is_co_allocatable) {
+        compression_blk->setCompressed();
+    } else {
+        compression_blk->setUncompressed();
     }
+    compression_blk->setSizeBits(compression_size);
+    compression_blk->setDecompressionLatency(decompression_lat);
 
-    // MSHR miss latency statistics
-    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
-        MemCmd cmd(access_idx);
-        const string &cstr = cmd.toString();
+    return true;
+}
 
-        mshr_uncacheable_lat[access_idx]
-            .init(system->maxMasters())
-            .name(name() + "." + cstr + "_mshr_uncacheable_latency")
-            .desc("number of " + cstr + " MSHR uncacheable cycles")
-            .flags(total | nozero | nonan)
-            ;
-        for (int i = 0; i < system->maxMasters(); i++) {
-            mshr_uncacheable_lat[access_idx].subname(
-                i, system->getMasterName(i));
+void
+BaseCache::satisfyRequest(PacketPtr pkt, CacheBlk *blk, bool, bool)
+{
+    assert(pkt->isRequest());
+
+    assert(blk && blk->isValid());
+    // Occasionally this is not true... if we are a lower-level cache
+    // satisfying a string of Read and ReadEx requests from
+    // upper-level caches, a Read will mark the block as shared but we
+    // can satisfy a following ReadEx anyway since we can rely on the
+    // Read requestor(s) to have buffered the ReadEx snoop and to
+    // invalidate their blocks after receiving them.
+    // assert(!pkt->needsWritable() || blk->isWritable());
+    assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
+
+    // Check RMW operations first since both isRead() and
+    // isWrite() will be true for them
+    if (pkt->cmd == MemCmd::SwapReq) {
+        if (pkt->isAtomicOp()) {
+            // extract data from cache and save it into the data field in
+            // the packet as a return value from this atomic op
+            int offset = tags->extractBlkOffset(pkt->getAddr());
+            uint8_t *blk_data = blk->data + offset;
+            pkt->setData(blk_data);
+
+            // execute AMO operation
+            (*(pkt->getAtomicOp()))(blk_data);
+
+            // set block status to dirty
+            blk->status |= BlkDirty;
+        } else {
+            cmpAndSwap(blk, pkt);
+        }
+    } else if (pkt->isWrite()) {
+        // we have the block in a writable state and can go ahead,
+        // note that the line may be also be considered writable in
+        // downstream caches along the path to memory, but always
+        // Exclusive, and never Modified
+        assert(blk->isWritable());
+        // Write or WriteLine at the first cache with block in writable state
+        if (blk->checkWrite(pkt)) {
+            pkt->writeDataToBlock(blk->data, blkSize);
+        }
+        // Always mark the line as dirty (and thus transition to the
+        // Modified state) even if we are a failed StoreCond so we
+        // supply data to any snoops that have appended themselves to
+        // this cache before knowing the store will fail.
+        blk->status |= BlkDirty;
+        DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print());
+    } else if (pkt->isRead()) {
+        if (pkt->isLLSC()) {
+            blk->trackLoadLocked(pkt);
         }
-    }
 
-    overallMshrUncacheableLatency
-        .name(name() + ".overall_mshr_uncacheable_latency")
-        .desc("number of overall MSHR uncacheable cycles")
-        .flags(total | nozero | nonan)
-        ;
-    overallMshrUncacheableLatency =
-        SUM_DEMAND(mshr_uncacheable_lat) +
-        SUM_NON_DEMAND(mshr_uncacheable_lat);
-    for (int i = 0; i < system->maxMasters(); i++) {
-        overallMshrUncacheableLatency.subname(i, system->getMasterName(i));
+        // all read responses have a data payload
+        assert(pkt->hasRespData());
+        pkt->setDataFromBlock(blk->data, blkSize);
+    } else if (pkt->isUpgrade()) {
+        // sanity check
+        assert(!pkt->hasSharers());
+
+        if (blk->isDirty()) {
+            // we were in the Owned state, and a cache above us that
+            // has the line in Shared state needs to be made aware
+            // that the data it already has is in fact dirty
+            pkt->setCacheResponding();
+            blk->status &= ~BlkDirty;
+        }
+    } else if (pkt->isClean()) {
+        blk->status &= ~BlkDirty;
+    } else {
+        assert(pkt->isInvalidate());
+        invalidateBlock(blk);
+        DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__,
+                pkt->print());
     }
+}
+
+/////////////////////////////////////////////////////
+//
+// Access path: requests coming in from the CPU side
+//
+/////////////////////////////////////////////////////
+Cycles
+BaseCache::calculateTagOnlyLatency(const uint32_t delay,
+                                   const Cycles lookup_lat) const
+{
+    // A tag-only access has to wait for the packet to arrive in order to
+    // perform the tag lookup.
+    return ticksToCycles(delay) + lookup_lat;
+}
 
-#if 0
-    // MSHR access formulas
-    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
-        MemCmd cmd(access_idx);
-        const string &cstr = cmd.toString();
+Cycles
+BaseCache::calculateAccessLatency(const CacheBlk* blk, const uint32_t delay,
+                                  const Cycles lookup_lat) const
+{
+    Cycles lat(0);
+
+    if (blk != nullptr) {
+        // As soon as the access arrives, for sequential accesses first access
+        // tags, then the data entry. In the case of parallel accesses the
+        // latency is dictated by the slowest of tag and data latencies.
+        if (sequentialAccess) {
+            lat = ticksToCycles(delay) + lookup_lat + dataLatency;
+        } else {
+            lat = ticksToCycles(delay) + std::max(lookup_lat, dataLatency);
+        }
 
-        mshrAccesses[access_idx]
-            .name(name() + "." + cstr + "_mshr_accesses")
-            .desc("number of " + cstr + " mshr accesses(hits+misses)")
-            .flags(total | nozero | nonan)
-            ;
-        mshrAccesses[access_idx] =
-            mshr_hits[access_idx] + mshr_misses[access_idx]
-            + mshr_uncacheable[access_idx];
+        // Check if the block to be accessed is available. If not, apply the
+        // access latency on top of when the block is ready to be accessed.
+        const Tick tick = curTick() + delay;
+        const Tick when_ready = blk->getWhenReady();
+        if (when_ready > tick &&
+            ticksToCycles(when_ready - tick) > lat) {
+            lat += ticksToCycles(when_ready - tick);
+        }
+    } else {
+        // In case of a miss, we neglect the data access in a parallel
+        // configuration (i.e., the data access will be stopped as soon as
+        // we find out it is a miss), and use the tag-only latency.
+        lat = calculateTagOnlyLatency(delay, lookup_lat);
     }
 
-    demandMshrAccesses
-        .name(name() + ".demand_mshr_accesses")
-        .desc("number of demand (read+write) mshr accesses")
-        .flags(total | nozero | nonan)
-        ;
-    demandMshrAccesses = demandMshrHits + demandMshrMisses;
+    return lat;
+}
 
-    overallMshrAccesses
-        .name(name() + ".overall_mshr_accesses")
-        .desc("number of overall (read+write) mshr accesses")
-        .flags(total | nozero | nonan)
-        ;
-    overallMshrAccesses = overallMshrHits + overallMshrMisses
-        + overallMshrUncacheable;
-#endif
+bool
+BaseCache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
+                  PacketList &writebacks)
+{
+    // sanity check
+    assert(pkt->isRequest());
 
-    // MSHR miss rate formulas
-    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
-        MemCmd cmd(access_idx);
-        const string &cstr = cmd.toString();
+    chatty_assert(!(isReadOnly && pkt->isWrite()),
+                  "Should never see a write in a read-only cache %s\n",
+                  name());
 
-        mshrMissRate[access_idx]
-            .name(name() + "." + cstr + "_mshr_miss_rate")
-            .desc("mshr miss rate for " + cstr + " accesses")
-            .flags(total | nozero | nonan)
-            ;
-        mshrMissRate[access_idx] =
-            mshr_misses[access_idx] / accesses[access_idx];
+    // Access block in the tags
+    Cycles tag_latency(0);
+    blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), tag_latency);
 
-        for (int i = 0; i < system->maxMasters(); i++) {
-            mshrMissRate[access_idx].subname(i, system->getMasterName(i));
-        }
-    }
+    DPRINTF(Cache, "%s for %s %s\n", __func__, pkt->print(),
+            blk ? "hit " + blk->print() : "miss");
 
-    demandMshrMissRate
-        .name(name() + ".demand_mshr_miss_rate")
-        .desc("mshr miss rate for demand accesses")
-        .flags(total | nozero | nonan)
-        ;
-    demandMshrMissRate = demandMshrMisses / demandAccesses;
-    for (int i = 0; i < system->maxMasters(); i++) {
-        demandMshrMissRate.subname(i, system->getMasterName(i));
-    }
+    if (pkt->req->isCacheMaintenance()) {
+        // A cache maintenance operation is always forwarded to the
+        // memory below even if the block is found in dirty state.
 
-    overallMshrMissRate
-        .name(name() + ".overall_mshr_miss_rate")
-        .desc("mshr miss rate for overall accesses")
-        .flags(total | nozero | nonan)
-        ;
-    overallMshrMissRate = overallMshrMisses / overallAccesses;
-    for (int i = 0; i < system->maxMasters(); i++) {
-        overallMshrMissRate.subname(i, system->getMasterName(i));
-    }
+        // We defer any changes to the state of the block until we
+        // create and mark as in service the mshr for the downstream
+        // packet.
 
-    // mshrMiss latency formulas
-    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
-        MemCmd cmd(access_idx);
-        const string &cstr = cmd.toString();
+        // Calculate access latency on top of when the packet arrives. This
+        // takes into account the bus delay.
+        lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
 
-        avgMshrMissLatency[access_idx]
-            .name(name() + "." + cstr + "_avg_mshr_miss_latency")
-            .desc("average " + cstr + " mshr miss latency")
-            .flags(total | nozero | nonan)
-            ;
-        avgMshrMissLatency[access_idx] =
-            mshr_miss_latency[access_idx] / mshr_misses[access_idx];
+        return false;
+    }
 
-        for (int i = 0; i < system->maxMasters(); i++) {
-            avgMshrMissLatency[access_idx].subname(
-                i, system->getMasterName(i));
+    if (pkt->isEviction()) {
+        // We check for presence of block in above caches before issuing
+        // Writeback or CleanEvict to write buffer. Therefore the only
+        // possible cases can be of a CleanEvict packet coming from above
+        // encountering a Writeback generated in this cache peer cache and
+        // waiting in the write buffer. Cases of upper level peer caches
+        // generating CleanEvict and Writeback or simply CleanEvict and
+        // CleanEvict almost simultaneously will be caught by snoops sent out
+        // by crossbar.
+        WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(),
+                                                          pkt->isSecure());
+        if (wb_entry) {
+            assert(wb_entry->getNumTargets() == 1);
+            PacketPtr wbPkt = wb_entry->getTarget()->pkt;
+            assert(wbPkt->isWriteback());
+
+            if (pkt->isCleanEviction()) {
+                // The CleanEvict and WritebackClean snoops into other
+                // peer caches of the same level while traversing the
+                // crossbar. If a copy of the block is found, the
+                // packet is deleted in the crossbar. Hence, none of
+                // the other upper level caches connected to this
+                // cache have the block, so we can clear the
+                // BLOCK_CACHED flag in the Writeback if set and
+                // discard the CleanEvict by returning true.
+                wbPkt->clearBlockCached();
+
+                // A clean evict does not need to access the data array
+                lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
+
+                return true;
+            } else {
+                assert(pkt->cmd == MemCmd::WritebackDirty);
+                // Dirty writeback from above trumps our clean
+                // writeback... discard here
+                // Note: markInService will remove entry from writeback buffer.
+                markInService(wb_entry);
+                delete wbPkt;
+            }
         }
     }
 
-    demandAvgMshrMissLatency
-        .name(name() + ".demand_avg_mshr_miss_latency")
-        .desc("average overall mshr miss latency")
-        .flags(total | nozero | nonan)
-        ;
-    demandAvgMshrMissLatency = demandMshrMissLatency / demandMshrMisses;
-    for (int i = 0; i < system->maxMasters(); i++) {
-        demandAvgMshrMissLatency.subname(i, system->getMasterName(i));
+    // The critical latency part of a write depends only on the tag access
+    if (pkt->isWrite()) {
+        lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
     }
 
-    overallAvgMshrMissLatency
-        .name(name() + ".overall_avg_mshr_miss_latency")
-        .desc("average overall mshr miss latency")
-        .flags(total | nozero | nonan)
-        ;
-    overallAvgMshrMissLatency = overallMshrMissLatency / overallMshrMisses;
-    for (int i = 0; i < system->maxMasters(); i++) {
-        overallAvgMshrMissLatency.subname(i, system->getMasterName(i));
-    }
+    // Writeback handling is special case.  We can write the block into
+    // the cache without having a writeable copy (or any copy at all).
+    if (pkt->isWriteback()) {
+        assert(blkSize == pkt->getSize());
+
+        // we could get a clean writeback while we are having
+        // outstanding accesses to a block, do the simple thing for
+        // now and drop the clean writeback so that we do not upset
+        // any ordering/decisions about ownership already taken
+        if (pkt->cmd == MemCmd::WritebackClean &&
+            mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
+            DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
+                    "dropping\n", pkt->getAddr());
+
+            // A writeback searches for the block, then writes the data.
+            // As the writeback is being dropped, the data is not touched,
+            // and we just had to wait for the time to find a match in the
+            // MSHR. As of now assume a mshr queue search takes as long as
+            // a tag lookup for simplicity.
+            return true;
+        }
 
-    // mshrUncacheable latency formulas
-    for (int access_idx = 0; access_idx < MemCmd::NUM_MEM_CMDS; ++access_idx) {
-        MemCmd cmd(access_idx);
-        const string &cstr = cmd.toString();
+        if (!blk) {
+            // need to do a replacement
+            blk = allocateBlock(pkt, writebacks);
+            if (!blk) {
+                // no replaceable block available: give up, fwd to next level.
+                incMissCount(pkt);
+                return false;
+            }
+
+            blk->status |= BlkReadable;
+        } else if (compressor) {
+            // This is an overwrite to an existing block, therefore we need
+            // to check for data expansion (i.e., block was compressed with
+            // a smaller size, and now it doesn't fit the entry anymore).
+            // If that is the case we might need to evict blocks.
+            if (!updateCompressionData(blk, pkt->getConstPtr<uint64_t>(),
+                writebacks)) {
+                invalidateBlock(blk);
+                return false;
+            }
+        }
 
-        avgMshrUncacheableLatency[access_idx]
-            .name(name() + "." + cstr + "_avg_mshr_uncacheable_latency")
-            .desc("average " + cstr + " mshr uncacheable latency")
-            .flags(total | nozero | nonan)
-            ;
-        avgMshrUncacheableLatency[access_idx] =
-            mshr_uncacheable_lat[access_idx] / mshr_uncacheable[access_idx];
+        // only mark the block dirty if we got a writeback command,
+        // and leave it as is for a clean writeback
+        if (pkt->cmd == MemCmd::WritebackDirty) {
+            // TODO: the coherent cache can assert(!blk->isDirty());
+            blk->status |= BlkDirty;
+        }
+        // if the packet does not have sharers, it is passing
+        // writable, and we got the writeback in Modified or Exclusive
+        // state, if not we are in the Owned or Shared state
+        if (!pkt->hasSharers()) {
+            blk->status |= BlkWritable;
+        }
+        // nothing else to do; writeback doesn't expect response
+        assert(!pkt->needsResponse());
+        pkt->writeDataToBlock(blk->data, blkSize);
+        DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
+        incHitCount(pkt);
+
+        // When the packet metadata arrives, the tag lookup will be done while
+        // the payload is arriving. Then the block will be ready to access as
+        // soon as the fill is done
+        blk->setWhenReady(clockEdge(fillLatency) + pkt->headerDelay +
+            std::max(cyclesToTicks(tag_latency), (uint64_t)pkt->payloadDelay));
+
+        return true;
+    } else if (pkt->cmd == MemCmd::CleanEvict) {
+        // A CleanEvict does not need to access the data array
+        lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
+
+        if (blk) {
+            // Found the block in the tags, need to stop CleanEvict from
+            // propagating further down the hierarchy. Returning true will
+            // treat the CleanEvict like a satisfied write request and delete
+            // it.
+            return true;
+        }
+        // We didn't find the block here, propagate the CleanEvict further
+        // down the memory hierarchy. Returning false will treat the CleanEvict
+        // like a Writeback which could not find a replaceable block so has to
+        // go to next level.
+        return false;
+    } else if (pkt->cmd == MemCmd::WriteClean) {
+        // WriteClean handling is a special case. We can allocate a
+        // block directly if it doesn't exist and we can update the
+        // block immediately. The WriteClean transfers the ownership
+        // of the block as well.
+        assert(blkSize == pkt->getSize());
+
+        if (!blk) {
+            if (pkt->writeThrough()) {
+                // if this is a write through packet, we don't try to
+                // allocate if the block is not present
+                return false;
+            } else {
+                // a writeback that misses needs to allocate a new block
+                blk = allocateBlock(pkt, writebacks);
+                if (!blk) {
+                    // no replaceable block available: give up, fwd to
+                    // next level.
+                    incMissCount(pkt);
+                    return false;
+                }
+
+                blk->status |= BlkReadable;
+            }
+        } else if (compressor) {
+            // This is an overwrite to an existing block, therefore we need
+            // to check for data expansion (i.e., block was compressed with
+            // a smaller size, and now it doesn't fit the entry anymore).
+            // If that is the case we might need to evict blocks.
+            if (!updateCompressionData(blk, pkt->getConstPtr<uint64_t>(),
+                writebacks)) {
+                invalidateBlock(blk);
+                return false;
+            }
+        }
 
-        for (int i = 0; i < system->maxMasters(); i++) {
-            avgMshrUncacheableLatency[access_idx].subname(
-                i, system->getMasterName(i));
+        // at this point either this is a writeback or a write-through
+        // write clean operation and the block is already in this
+        // cache, we need to update the data and the block flags
+        assert(blk);
+        // TODO: the coherent cache can assert(!blk->isDirty());
+        if (!pkt->writeThrough()) {
+            blk->status |= BlkDirty;
+        }
+        // nothing else to do; writeback doesn't expect response
+        assert(!pkt->needsResponse());
+        pkt->writeDataToBlock(blk->data, blkSize);
+        DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
+
+        incHitCount(pkt);
+
+        // When the packet metadata arrives, the tag lookup will be done while
+        // the payload is arriving. Then the block will be ready to access as
+        // soon as the fill is done
+        blk->setWhenReady(clockEdge(fillLatency) + pkt->headerDelay +
+            std::max(cyclesToTicks(tag_latency), (uint64_t)pkt->payloadDelay));
+
+        // If this a write-through packet it will be sent to cache below
+        return !pkt->writeThrough();
+    } else if (blk && (pkt->needsWritable() ? blk->isWritable() :
+                       blk->isReadable())) {
+        // OK to satisfy access
+        incHitCount(pkt);
+
+        // Calculate access latency based on the need to access the data array
+        if (pkt->isRead()) {
+            lat = calculateAccessLatency(blk, pkt->headerDelay, tag_latency);
+
+            // When a block is compressed, it must first be decompressed
+            // before being read. This adds to the access latency.
+            if (compressor) {
+                lat += compressor->getDecompressionLatency(blk);
+            }
+        } else {
+            lat = calculateTagOnlyLatency(pkt->headerDelay, tag_latency);
         }
+
+        satisfyRequest(pkt, blk);
+        maintainClusivity(pkt->fromCache(), blk);
+
+        return true;
     }
 
-    overallAvgMshrUncacheableLatency
-        .name(name() + ".overall_avg_mshr_uncacheable_latency")
-        .desc("average overall mshr uncacheable latency")
-        .flags(total | nozero | nonan)
-        ;
-    overallAvgMshrUncacheableLatency =
-        overallMshrUncacheableLatency / overallMshrUncacheable;
-    for (int i = 0; i < system->maxMasters(); i++) {
-        overallAvgMshrUncacheableLatency.subname(i, system->getMasterName(i));
+    // Can't satisfy access normally... either no block (blk == nullptr)
+    // or have block but need writable
+
+    incMissCount(pkt);
+
+    lat = calculateAccessLatency(blk, pkt->headerDelay, tag_latency);
+
+    if (!blk && pkt->isLLSC() && pkt->isWrite()) {
+        // complete miss on store conditional... just give up now
+        pkt->req->setExtraData(0);
+        return true;
     }
 
+    return false;
+}
+
+void
+BaseCache::maintainClusivity(bool from_cache, CacheBlk *blk)
+{
+    if (from_cache && blk && blk->isValid() && !blk->isDirty() &&
+        clusivity == Enums::mostly_excl) {
+        // if we have responded to a cache, and our block is still
+        // valid, but not dirty, and this cache is mostly exclusive
+        // with respect to the cache above, drop the block
+        invalidateBlock(blk);
+    }
+}
+
+CacheBlk*
+BaseCache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
+                      bool allocate)
+{
+    assert(pkt->isResponse());
+    Addr addr = pkt->getAddr();
+    bool is_secure = pkt->isSecure();
+#if TRACING_ON
+    CacheBlk::State old_state = blk ? blk->status : 0;
+#endif
+
+    // When handling a fill, we should have no writes to this line.
+    assert(addr == pkt->getBlockAddr(blkSize));
+    assert(!writeBuffer.findMatch(addr, is_secure));
+
+    if (!blk) {
+        // better have read new data...
+        assert(pkt->hasData() || pkt->cmd == MemCmd::InvalidateResp);
+
+        // need to do a replacement if allocating, otherwise we stick
+        // with the temporary storage
+        blk = allocate ? allocateBlock(pkt, writebacks) : nullptr;
+
+        if (!blk) {
+            // No replaceable block or a mostly exclusive
+            // cache... just use temporary storage to complete the
+            // current request and then get rid of it
+            blk = tempBlock;
+            tempBlock->insert(addr, is_secure);
+            DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
+                    is_secure ? "s" : "ns");
+        }
+    } else {
+        // existing block... probably an upgrade
+        // don't clear block status... if block is already dirty we
+        // don't want to lose that
+    }
+
+    // Block is guaranteed to be valid at this point
+    assert(blk->isValid());
+    assert(blk->isSecure() == is_secure);
+    assert(regenerateBlkAddr(blk) == addr);
+
+    blk->status |= BlkReadable;
+
+    // sanity check for whole-line writes, which should always be
+    // marked as writable as part of the fill, and then later marked
+    // dirty as part of satisfyRequest
+    if (pkt->cmd == MemCmd::InvalidateResp) {
+        assert(!pkt->hasSharers());
+    }
+
+    // here we deal with setting the appropriate state of the line,
+    // and we start by looking at the hasSharers flag, and ignore the
+    // cacheResponding flag (normally signalling dirty data) if the
+    // packet has sharers, thus the line is never allocated as Owned
+    // (dirty but not writable), and always ends up being either
+    // Shared, Exclusive or Modified, see Packet::setCacheResponding
+    // for more details
+    if (!pkt->hasSharers()) {
+        // we could get a writable line from memory (rather than a
+        // cache) even in a read-only cache, note that we set this bit
+        // even for a read-only cache, possibly revisit this decision
+        blk->status |= BlkWritable;
+
+        // check if we got this via cache-to-cache transfer (i.e., from a
+        // cache that had the block in Modified or Owned state)
+        if (pkt->cacheResponding()) {
+            // we got the block in Modified state, and invalidated the
+            // owners copy
+            blk->status |= BlkDirty;
+
+            chatty_assert(!isReadOnly, "Should never see dirty snoop response "
+                          "in read-only cache %s\n", name());
+
+        }
+    }
+
+    DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
+            addr, is_secure ? "s" : "ns", old_state, blk->print());
+
+    // if we got new data, copy it in (checking for a read response
+    // and a response that has data is the same in the end)
+    if (pkt->isRead()) {
+        // sanity checks
+        assert(pkt->hasData());
+        assert(pkt->getSize() == blkSize);
+
+        pkt->writeDataToBlock(blk->data, blkSize);
+    }
+    // The block will be ready when the payload arrives and the fill is done
+    blk->setWhenReady(clockEdge(fillLatency) + pkt->headerDelay +
+                      pkt->payloadDelay);
+
+    return blk;
+}
+
+CacheBlk*
+BaseCache::allocateBlock(const PacketPtr pkt, PacketList &writebacks)
+{
+    // Get address
+    const Addr addr = pkt->getAddr();
+
+    // Get secure bit
+    const bool is_secure = pkt->isSecure();
+
+    // Block size and compression related access latency. Only relevant if
+    // using a compressor, otherwise there is no extra delay, and the block
+    // is fully sized
+    std::size_t blk_size_bits = blkSize*8;
+    Cycles compression_lat = Cycles(0);
+    Cycles decompression_lat = Cycles(0);
+
+    // If a compressor is being used, it is called to compress data before
+    // insertion. Although in Gem5 the data is stored uncompressed, even if a
+    // compressor is used, the compression/decompression methods are called to
+    // calculate the amount of extra cycles needed to read or write compressed
+    // blocks.
+    if (compressor && pkt->hasData()) {
+        const auto comp_data = compressor->compress(
+            pkt->getConstPtr<uint64_t>(), compression_lat, decompression_lat);
+        blk_size_bits = comp_data->getSizeBits();
+    }
+
+    // Find replacement victim
+    std::vector<CacheBlk*> evict_blks;
+    CacheBlk *victim = tags->findVictim(addr, is_secure, blk_size_bits,
+                                        evict_blks);
+
+    // It is valid to return nullptr if there is no victim
+    if (!victim)
+        return nullptr;
+
+    // Print victim block's information
+    DPRINTF(CacheRepl, "Replacement victim: %s\n", victim->print());
+
+    // Try to evict blocks; if it fails, give up on allocation
+    if (!handleEvictions(evict_blks, writebacks)) {
+        return nullptr;
+    }
+
+    // If using a compressor, set compression data. This must be done before
+    // block insertion, as compressed tags use this information.
+    if (compressor) {
+        compressor->setSizeBits(victim, blk_size_bits);
+        compressor->setDecompressionLatency(victim, decompression_lat);
+    }
+
+    // Insert new block at victimized entry
+    tags->insertBlock(pkt, victim);
+
+    return victim;
+}
+
+void
+BaseCache::invalidateBlock(CacheBlk *blk)
+{
+    // If block is still marked as prefetched, then it hasn't been used
+    if (blk->wasPrefetched()) {
+        stats.unusedPrefetches++;
+    }
+
+    // If handling a block present in the Tags, let it do its invalidation
+    // process, which will update stats and invalidate the block itself
+    if (blk != tempBlock) {
+        tags->invalidate(blk);
+    } else {
+        tempBlock->invalidate();
+    }
+}
+
+void
+BaseCache::evictBlock(CacheBlk *blk, PacketList &writebacks)
+{
+    PacketPtr pkt = evictBlock(blk);
+    if (pkt) {
+        writebacks.push_back(pkt);
+    }
+}
+
+PacketPtr
+BaseCache::writebackBlk(CacheBlk *blk)
+{
+    chatty_assert(!isReadOnly || writebackClean,
+                  "Writeback from read-only cache");
+    assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
+
+    stats.writebacks[Request::wbRequestorId]++;
+
+    RequestPtr req = std::make_shared<Request>(
+        regenerateBlkAddr(blk), blkSize, 0, Request::wbRequestorId);
+
+    if (blk->isSecure())
+        req->setFlags(Request::SECURE);
+
+    req->taskId(blk->task_id);
+
+    PacketPtr pkt =
+        new Packet(req, blk->isDirty() ?
+                   MemCmd::WritebackDirty : MemCmd::WritebackClean);
+
+    DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n",
+            pkt->print(), blk->isWritable(), blk->isDirty());
+
+    if (blk->isWritable()) {
+        // not asserting shared means we pass the block in modified
+        // state, mark our own block non-writeable
+        blk->status &= ~BlkWritable;
+    } else {
+        // we are in the Owned state, tell the receiver
+        pkt->setHasSharers();
+    }
+
+    // make sure the block is not marked dirty
+    blk->status &= ~BlkDirty;
+
+    pkt->allocate();
+    pkt->setDataFromBlock(blk->data, blkSize);
+
+    // When a block is compressed, it must first be decompressed before being
+    // sent for writeback.
+    if (compressor) {
+        pkt->payloadDelay = compressor->getDecompressionLatency(blk);
+    }
+
+    return pkt;
+}
+
+PacketPtr
+BaseCache::writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id)
+{
+    RequestPtr req = std::make_shared<Request>(
+        regenerateBlkAddr(blk), blkSize, 0, Request::wbRequestorId);
+
+    if (blk->isSecure()) {
+        req->setFlags(Request::SECURE);
+    }
+    req->taskId(blk->task_id);
+
+    PacketPtr pkt = new Packet(req, MemCmd::WriteClean, blkSize, id);
+
+    if (dest) {
+        req->setFlags(dest);
+        pkt->setWriteThrough();
+    }
+
+    DPRINTF(Cache, "Create %s writable: %d, dirty: %d\n", pkt->print(),
+            blk->isWritable(), blk->isDirty());
+
+    if (blk->isWritable()) {
+        // not asserting shared means we pass the block in modified
+        // state, mark our own block non-writeable
+        blk->status &= ~BlkWritable;
+    } else {
+        // we are in the Owned state, tell the receiver
+        pkt->setHasSharers();
+    }
+
+    // make sure the block is not marked dirty
+    blk->status &= ~BlkDirty;
+
+    pkt->allocate();
+    pkt->setDataFromBlock(blk->data, blkSize);
+
+    // When a block is compressed, it must first be decompressed before being
+    // sent for writeback.
+    if (compressor) {
+        pkt->payloadDelay = compressor->getDecompressionLatency(blk);
+    }
+
+    return pkt;
+}
+
+
+void
+BaseCache::memWriteback()
+{
+    tags->forEachBlk([this](CacheBlk &blk) { writebackVisitor(blk); });
+}
+
+void
+BaseCache::memInvalidate()
+{
+    tags->forEachBlk([this](CacheBlk &blk) { invalidateVisitor(blk); });
+}
+
+bool
+BaseCache::isDirty() const
+{
+    return tags->anyBlk([](CacheBlk &blk) { return blk.isDirty(); });
+}
+
+bool
+BaseCache::coalesce() const
+{
+    return writeAllocator && writeAllocator->coalesce();
+}
+
+void
+BaseCache::writebackVisitor(CacheBlk &blk)
+{
+    if (blk.isDirty()) {
+        assert(blk.isValid());
+
+        RequestPtr request = std::make_shared<Request>(
+            regenerateBlkAddr(&blk), blkSize, 0, Request::funcRequestorId);
+
+        request->taskId(blk.task_id);
+        if (blk.isSecure()) {
+            request->setFlags(Request::SECURE);
+        }
+
+        Packet packet(request, MemCmd::WriteReq);
+        packet.dataStatic(blk.data);
+
+        memSidePort.sendFunctional(&packet);
+
+        blk.status &= ~BlkDirty;
+    }
+}
+
+void
+BaseCache::invalidateVisitor(CacheBlk &blk)
+{
+    if (blk.isDirty())
+        warn_once("Invalidating dirty cache lines. " \
+                  "Expect things to break.\n");
+
+    if (blk.isValid()) {
+        assert(!blk.isDirty());
+        invalidateBlock(&blk);
+    }
+}
+
+Tick
+BaseCache::nextQueueReadyTime() const
+{
+    Tick nextReady = std::min(mshrQueue.nextReadyTime(),
+                              writeBuffer.nextReadyTime());
+
+    // Don't signal prefetch ready time if no MSHRs available
+    // Will signal once enoguh MSHRs are deallocated
+    if (prefetcher && mshrQueue.canPrefetch() && !isBlocked()) {
+        nextReady = std::min(nextReady,
+                             prefetcher->nextPrefetchReadyTime());
+    }
+
+    return nextReady;
+}
+
+
+bool
+BaseCache::sendMSHRQueuePacket(MSHR* mshr)
+{
+    assert(mshr);
+
+    // use request from 1st target
+    PacketPtr tgt_pkt = mshr->getTarget()->pkt;
+
+    DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print());
+
+    // if the cache is in write coalescing mode or (additionally) in
+    // no allocation mode, and we have a write packet with an MSHR
+    // that is not a whole-line write (due to incompatible flags etc),
+    // then reset the write mode
+    if (writeAllocator && writeAllocator->coalesce() && tgt_pkt->isWrite()) {
+        if (!mshr->isWholeLineWrite()) {
+            // if we are currently write coalescing, hold on the
+            // MSHR as many cycles extra as we need to completely
+            // write a cache line
+            if (writeAllocator->delay(mshr->blkAddr)) {
+                Tick delay = blkSize / tgt_pkt->getSize() * clockPeriod();
+                DPRINTF(CacheVerbose, "Delaying pkt %s %llu ticks to allow "
+                        "for write coalescing\n", tgt_pkt->print(), delay);
+                mshrQueue.delay(mshr, delay);
+                return false;
+            } else {
+                writeAllocator->reset();
+            }
+        } else {
+            writeAllocator->resetDelay(mshr->blkAddr);
+        }
+    }
+
+    CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
+
+    // either a prefetch that is not present upstream, or a normal
+    // MSHR request, proceed to get the packet to send downstream
+    PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable(),
+                                     mshr->isWholeLineWrite());
+
+    mshr->isForward = (pkt == nullptr);
+
+    if (mshr->isForward) {
+        // not a cache block request, but a response is expected
+        // make copy of current packet to forward, keep current
+        // copy for response handling
+        pkt = new Packet(tgt_pkt, false, true);
+        assert(!pkt->isWrite());
+    }
+
+    // play it safe and append (rather than set) the sender state,
+    // as forwarded packets may already have existing state
+    pkt->pushSenderState(mshr);
+
+    if (pkt->isClean() && blk && blk->isDirty()) {
+        // A cache clean opearation is looking for a dirty block. Mark
+        // the packet so that the destination xbar can determine that
+        // there will be a follow-up write packet as well.
+        pkt->setSatisfied();
+    }
+
+    if (!memSidePort.sendTimingReq(pkt)) {
+        // we are awaiting a retry, but we
+        // delete the packet and will be creating a new packet
+        // when we get the opportunity
+        delete pkt;
+
+        // note that we have now masked any requestBus and
+        // schedSendEvent (we will wait for a retry before
+        // doing anything), and this is so even if we do not
+        // care about this packet and might override it before
+        // it gets retried
+        return true;
+    } else {
+        // As part of the call to sendTimingReq the packet is
+        // forwarded to all neighbouring caches (and any caches
+        // above them) as a snoop. Thus at this point we know if
+        // any of the neighbouring caches are responding, and if
+        // so, we know it is dirty, and we can determine if it is
+        // being passed as Modified, making our MSHR the ordering
+        // point
+        bool pending_modified_resp = !pkt->hasSharers() &&
+            pkt->cacheResponding();
+        markInService(mshr, pending_modified_resp);
+
+        if (pkt->isClean() && blk && blk->isDirty()) {
+            // A cache clean opearation is looking for a dirty
+            // block. If a dirty block is encountered a WriteClean
+            // will update any copies to the path to the memory
+            // until the point of reference.
+            DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
+                    __func__, pkt->print(), blk->print());
+            PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(),
+                                             pkt->id);
+            PacketList writebacks;
+            writebacks.push_back(wb_pkt);
+            doWritebacks(writebacks, 0);
+        }
+
+        return false;
+    }
+}
+
+bool
+BaseCache::sendWriteQueuePacket(WriteQueueEntry* wq_entry)
+{
+    assert(wq_entry);
+
+    // always a single target for write queue entries
+    PacketPtr tgt_pkt = wq_entry->getTarget()->pkt;
+
+    DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print());
+
+    // forward as is, both for evictions and uncacheable writes
+    if (!memSidePort.sendTimingReq(tgt_pkt)) {
+        // note that we have now masked any requestBus and
+        // schedSendEvent (we will wait for a retry before
+        // doing anything), and this is so even if we do not
+        // care about this packet and might override it before
+        // it gets retried
+        return true;
+    } else {
+        markInService(wq_entry);
+        return false;
+    }
+}
+
+void
+BaseCache::serialize(CheckpointOut &cp) const
+{
+    bool dirty(isDirty());
+
+    if (dirty) {
+        warn("*** The cache still contains dirty data. ***\n");
+        warn("    Make sure to drain the system using the correct flags.\n");
+        warn("    This checkpoint will not restore correctly " \
+             "and dirty data in the cache will be lost!\n");
+    }
+
+    // Since we don't checkpoint the data in the cache, any dirty data
+    // will be lost when restoring from a checkpoint of a system that
+    // wasn't drained properly. Flag the checkpoint as invalid if the
+    // cache contains dirty data.
+    bool bad_checkpoint(dirty);
+    SERIALIZE_SCALAR(bad_checkpoint);
+}
+
+void
+BaseCache::unserialize(CheckpointIn &cp)
+{
+    bool bad_checkpoint;
+    UNSERIALIZE_SCALAR(bad_checkpoint);
+    if (bad_checkpoint) {
+        fatal("Restoring from checkpoints with dirty caches is not "
+              "supported in the classic memory system. Please remove any "
+              "caches or drain them properly before taking checkpoints.\n");
+    }
+}
+
+
+BaseCache::CacheCmdStats::CacheCmdStats(BaseCache &c,
+                                        const std::string &name)
+    : Stats::Group(&c), cache(c),
+
+    hits(
+        this, (name + "_hits").c_str(),
+        ("number of " + name + " hits").c_str()),
+    misses(
+        this, (name + "_misses").c_str(),
+        ("number of " + name + " misses").c_str()),
+    missLatency(
+        this, (name + "_miss_latency").c_str(),
+        ("number of " + name + " miss cycles").c_str()),
+    accesses(
+        this, (name + "_accesses").c_str(),
+        ("number of " + name + " accesses(hits+misses)").c_str()),
+    missRate(
+        this, (name + "_miss_rate").c_str(),
+        ("miss rate for " + name + " accesses").c_str()),
+    avgMissLatency(
+        this, (name + "_avg_miss_latency").c_str(),
+        ("average " + name + " miss latency").c_str()),
+    mshr_hits(
+        this, (name + "_mshr_hits").c_str(),
+        ("number of " + name + " MSHR hits").c_str()),
+    mshr_misses(
+        this, (name + "_mshr_misses").c_str(),
+        ("number of " + name + " MSHR misses").c_str()),
+    mshr_uncacheable(
+        this, (name + "_mshr_uncacheable").c_str(),
+        ("number of " + name + " MSHR uncacheable").c_str()),
+    mshr_miss_latency(
+        this, (name + "_mshr_miss_latency").c_str(),
+        ("number of " + name + " MSHR miss cycles").c_str()),
+    mshr_uncacheable_lat(
+        this, (name + "_mshr_uncacheable_latency").c_str(),
+        ("number of " + name + " MSHR uncacheable cycles").c_str()),
+    mshrMissRate(
+        this, (name + "_mshr_miss_rate").c_str(),
+        ("mshr miss rate for " + name + " accesses").c_str()),
+    avgMshrMissLatency(
+        this, (name + "_avg_mshr_miss_latency").c_str(),
+        ("average " + name + " mshr miss latency").c_str()),
+    avgMshrUncacheableLatency(
+        this, (name + "_avg_mshr_uncacheable_latency").c_str(),
+        ("average " + name + " mshr uncacheable latency").c_str())
+{
+}
+
+void
+BaseCache::CacheCmdStats::regStatsFromParent()
+{
+    using namespace Stats;
+
+    Stats::Group::regStats();
+    System *system = cache.system;
+    const auto max_requestors = system->maxRequestors();
+
+    hits
+        .init(max_requestors)
+        .flags(total | nozero | nonan)
+        ;
+    for (int i = 0; i < max_requestors; i++) {
+        hits.subname(i, system->getRequestorName(i));
+    }
+
+    // Miss statistics
+    misses
+        .init(max_requestors)
+        .flags(total | nozero | nonan)
+        ;
+    for (int i = 0; i < max_requestors; i++) {
+        misses.subname(i, system->getRequestorName(i));
+    }
+
+    // Miss latency statistics
+    missLatency
+        .init(max_requestors)
+        .flags(total | nozero | nonan)
+        ;
+    for (int i = 0; i < max_requestors; i++) {
+        missLatency.subname(i, system->getRequestorName(i));
+    }
+
+    // access formulas
+    accesses.flags(total | nozero | nonan);
+    accesses = hits + misses;
+    for (int i = 0; i < max_requestors; i++) {
+        accesses.subname(i, system->getRequestorName(i));
+    }
+
+    // miss rate formulas
+    missRate.flags(total | nozero | nonan);
+    missRate = misses / accesses;
+    for (int i = 0; i < max_requestors; i++) {
+        missRate.subname(i, system->getRequestorName(i));
+    }
+
+    // miss latency formulas
+    avgMissLatency.flags(total | nozero | nonan);
+    avgMissLatency = missLatency / misses;
+    for (int i = 0; i < max_requestors; i++) {
+        avgMissLatency.subname(i, system->getRequestorName(i));
+    }
+
+    // MSHR statistics
+    // MSHR hit statistics
+    mshr_hits
+        .init(max_requestors)
+        .flags(total | nozero | nonan)
+        ;
+    for (int i = 0; i < max_requestors; i++) {
+        mshr_hits.subname(i, system->getRequestorName(i));
+    }
+
+    // MSHR miss statistics
+    mshr_misses
+        .init(max_requestors)
+        .flags(total | nozero | nonan)
+        ;
+    for (int i = 0; i < max_requestors; i++) {
+        mshr_misses.subname(i, system->getRequestorName(i));
+    }
+
+    // MSHR miss latency statistics
+    mshr_miss_latency
+        .init(max_requestors)
+        .flags(total | nozero | nonan)
+        ;
+    for (int i = 0; i < max_requestors; i++) {
+        mshr_miss_latency.subname(i, system->getRequestorName(i));
+    }
+
+    // MSHR uncacheable statistics
+    mshr_uncacheable
+        .init(max_requestors)
+        .flags(total | nozero | nonan)
+        ;
+    for (int i = 0; i < max_requestors; i++) {
+        mshr_uncacheable.subname(i, system->getRequestorName(i));
+    }
+
+    // MSHR miss latency statistics
+    mshr_uncacheable_lat
+        .init(max_requestors)
+        .flags(total | nozero | nonan)
+        ;
+    for (int i = 0; i < max_requestors; i++) {
+        mshr_uncacheable_lat.subname(i, system->getRequestorName(i));
+    }
+
+    // MSHR miss rate formulas
+    mshrMissRate.flags(total | nozero | nonan);
+    mshrMissRate = mshr_misses / accesses;
+
+    for (int i = 0; i < max_requestors; i++) {
+        mshrMissRate.subname(i, system->getRequestorName(i));
+    }
+
+    // mshrMiss latency formulas
+    avgMshrMissLatency.flags(total | nozero | nonan);
+    avgMshrMissLatency = mshr_miss_latency / mshr_misses;
+    for (int i = 0; i < max_requestors; i++) {
+        avgMshrMissLatency.subname(i, system->getRequestorName(i));
+    }
+
+    // mshrUncacheable latency formulas
+    avgMshrUncacheableLatency.flags(total | nozero | nonan);
+    avgMshrUncacheableLatency = mshr_uncacheable_lat / mshr_uncacheable;
+    for (int i = 0; i < max_requestors; i++) {
+        avgMshrUncacheableLatency.subname(i, system->getRequestorName(i));
+    }
+}
+
+BaseCache::CacheStats::CacheStats(BaseCache &c)
+    : Stats::Group(&c), cache(c),
+
+    demandHits(this, "demand_hits", "number of demand (read+write) hits"),
+
+    overallHits(this, "overall_hits", "number of overall hits"),
+    demandMisses(this, "demand_misses",
+                 "number of demand (read+write) misses"),
+    overallMisses(this, "overall_misses", "number of overall misses"),
+    demandMissLatency(this, "demand_miss_latency",
+                      "number of demand (read+write) miss cycles"),
+    overallMissLatency(this, "overall_miss_latency",
+                       "number of overall miss cycles"),
+    demandAccesses(this, "demand_accesses",
+                   "number of demand (read+write) accesses"),
+    overallAccesses(this, "overall_accesses",
+                    "number of overall (read+write) accesses"),
+    demandMissRate(this, "demand_miss_rate",
+                   "miss rate for demand accesses"),
+    overallMissRate(this, "overall_miss_rate",
+                    "miss rate for overall accesses"),
+    demandAvgMissLatency(this, "demand_avg_miss_latency",
+                         "average overall miss latency"),
+    overallAvgMissLatency(this, "overall_avg_miss_latency",
+                          "average overall miss latency"),
+    blocked_cycles(this, "blocked_cycles",
+                   "number of cycles access was blocked"),
+    blocked_causes(this, "blocked", "number of cycles access was blocked"),
+    avg_blocked(this, "avg_blocked_cycles",
+                "average number of cycles each access was blocked"),
+    unusedPrefetches(this, "unused_prefetches",
+                     "number of HardPF blocks evicted w/o reference"),
+    writebacks(this, "writebacks", "number of writebacks"),
+    demandMshrHits(this, "demand_mshr_hits",
+                   "number of demand (read+write) MSHR hits"),
+    overallMshrHits(this, "overall_mshr_hits",
+                    "number of overall MSHR hits"),
+    demandMshrMisses(this, "demand_mshr_misses",
+                     "number of demand (read+write) MSHR misses"),
+    overallMshrMisses(this, "overall_mshr_misses",
+                      "number of overall MSHR misses"),
+    overallMshrUncacheable(this, "overall_mshr_uncacheable_misses",
+                           "number of overall MSHR uncacheable misses"),
+    demandMshrMissLatency(this, "demand_mshr_miss_latency",
+                          "number of demand (read+write) MSHR miss cycles"),
+    overallMshrMissLatency(this, "overall_mshr_miss_latency",
+                           "number of overall MSHR miss cycles"),
+    overallMshrUncacheableLatency(this, "overall_mshr_uncacheable_latency",
+                                  "number of overall MSHR uncacheable cycles"),
+    demandMshrMissRate(this, "demand_mshr_miss_rate",
+                       "mshr miss rate for demand accesses"),
+    overallMshrMissRate(this, "overall_mshr_miss_rate",
+                        "mshr miss rate for overall accesses"),
+    demandAvgMshrMissLatency(this, "demand_avg_mshr_miss_latency",
+                             "average overall mshr miss latency"),
+    overallAvgMshrMissLatency(this, "overall_avg_mshr_miss_latency",
+                              "average overall mshr miss latency"),
+    overallAvgMshrUncacheableLatency(
+        this, "overall_avg_mshr_uncacheable_latency",
+        "average overall mshr uncacheable latency"),
+    replacements(this, "replacements", "number of replacements"),
+
+    dataExpansions(this, "data_expansions", "number of data expansions"),
+    cmd(MemCmd::NUM_MEM_CMDS)
+{
+    for (int idx = 0; idx < MemCmd::NUM_MEM_CMDS; ++idx)
+        cmd[idx].reset(new CacheCmdStats(c, MemCmd(idx).toString()));
+}
+
+void
+BaseCache::CacheStats::regStats()
+{
+    using namespace Stats;
+
+    Stats::Group::regStats();
+
+    System *system = cache.system;
+    const auto max_requestors = system->maxRequestors();
+
+    for (auto &cs : cmd)
+        cs->regStatsFromParent();
+
+// These macros make it easier to sum the right subset of commands and
+// to change the subset of commands that are considered "demand" vs
+// "non-demand"
+#define SUM_DEMAND(s)                                                   \
+    (cmd[MemCmd::ReadReq]->s + cmd[MemCmd::WriteReq]->s +               \
+     cmd[MemCmd::WriteLineReq]->s + cmd[MemCmd::ReadExReq]->s +         \
+     cmd[MemCmd::ReadCleanReq]->s + cmd[MemCmd::ReadSharedReq]->s)
+
+// should writebacks be included here?  prior code was inconsistent...
+#define SUM_NON_DEMAND(s)                                       \
+    (cmd[MemCmd::SoftPFReq]->s + cmd[MemCmd::HardPFReq]->s +    \
+     cmd[MemCmd::SoftPFExReq]->s)
+
+    demandHits.flags(total | nozero | nonan);
+    demandHits = SUM_DEMAND(hits);
+    for (int i = 0; i < max_requestors; i++) {
+        demandHits.subname(i, system->getRequestorName(i));
+    }
+
+    overallHits.flags(total | nozero | nonan);
+    overallHits = demandHits + SUM_NON_DEMAND(hits);
+    for (int i = 0; i < max_requestors; i++) {
+        overallHits.subname(i, system->getRequestorName(i));
+    }
+
+    demandMisses.flags(total | nozero | nonan);
+    demandMisses = SUM_DEMAND(misses);
+    for (int i = 0; i < max_requestors; i++) {
+        demandMisses.subname(i, system->getRequestorName(i));
+    }
+
+    overallMisses.flags(total | nozero | nonan);
+    overallMisses = demandMisses + SUM_NON_DEMAND(misses);
+    for (int i = 0; i < max_requestors; i++) {
+        overallMisses.subname(i, system->getRequestorName(i));
+    }
+
+    demandMissLatency.flags(total | nozero | nonan);
+    demandMissLatency = SUM_DEMAND(missLatency);
+    for (int i = 0; i < max_requestors; i++) {
+        demandMissLatency.subname(i, system->getRequestorName(i));
+    }
+
+    overallMissLatency.flags(total | nozero | nonan);
+    overallMissLatency = demandMissLatency + SUM_NON_DEMAND(missLatency);
+    for (int i = 0; i < max_requestors; i++) {
+        overallMissLatency.subname(i, system->getRequestorName(i));
+    }
+
+    demandAccesses.flags(total | nozero | nonan);
+    demandAccesses = demandHits + demandMisses;
+    for (int i = 0; i < max_requestors; i++) {
+        demandAccesses.subname(i, system->getRequestorName(i));
+    }
+
+    overallAccesses.flags(total | nozero | nonan);
+    overallAccesses = overallHits + overallMisses;
+    for (int i = 0; i < max_requestors; i++) {
+        overallAccesses.subname(i, system->getRequestorName(i));
+    }
+
+    demandMissRate.flags(total | nozero | nonan);
+    demandMissRate = demandMisses / demandAccesses;
+    for (int i = 0; i < max_requestors; i++) {
+        demandMissRate.subname(i, system->getRequestorName(i));
+    }
+
+    overallMissRate.flags(total | nozero | nonan);
+    overallMissRate = overallMisses / overallAccesses;
+    for (int i = 0; i < max_requestors; i++) {
+        overallMissRate.subname(i, system->getRequestorName(i));
+    }
+
+    demandAvgMissLatency.flags(total | nozero | nonan);
+    demandAvgMissLatency = demandMissLatency / demandMisses;
+    for (int i = 0; i < max_requestors; i++) {
+        demandAvgMissLatency.subname(i, system->getRequestorName(i));
+    }
+
+    overallAvgMissLatency.flags(total | nozero | nonan);
+    overallAvgMissLatency = overallMissLatency / overallMisses;
+    for (int i = 0; i < max_requestors; i++) {
+        overallAvgMissLatency.subname(i, system->getRequestorName(i));
+    }
+
+    blocked_cycles.init(NUM_BLOCKED_CAUSES);
+    blocked_cycles
+        .subname(Blocked_NoMSHRs, "no_mshrs")
+        .subname(Blocked_NoTargets, "no_targets")
+        ;
+
+
+    blocked_causes.init(NUM_BLOCKED_CAUSES);
+    blocked_causes
+        .subname(Blocked_NoMSHRs, "no_mshrs")
+        .subname(Blocked_NoTargets, "no_targets")
+        ;
+
+    avg_blocked
+        .subname(Blocked_NoMSHRs, "no_mshrs")
+        .subname(Blocked_NoTargets, "no_targets")
+        ;
+    avg_blocked = blocked_cycles / blocked_causes;
+
+    unusedPrefetches.flags(nozero);
+
+    writebacks
+        .init(max_requestors)
+        .flags(total | nozero | nonan)
+        ;
+    for (int i = 0; i < max_requestors; i++) {
+        writebacks.subname(i, system->getRequestorName(i));
+    }
+
+    demandMshrHits.flags(total | nozero | nonan);
+    demandMshrHits = SUM_DEMAND(mshr_hits);
+    for (int i = 0; i < max_requestors; i++) {
+        demandMshrHits.subname(i, system->getRequestorName(i));
+    }
+
+    overallMshrHits.flags(total | nozero | nonan);
+    overallMshrHits = demandMshrHits + SUM_NON_DEMAND(mshr_hits);
+    for (int i = 0; i < max_requestors; i++) {
+        overallMshrHits.subname(i, system->getRequestorName(i));
+    }
+
+    demandMshrMisses.flags(total | nozero | nonan);
+    demandMshrMisses = SUM_DEMAND(mshr_misses);
+    for (int i = 0; i < max_requestors; i++) {
+        demandMshrMisses.subname(i, system->getRequestorName(i));
+    }
+
+    overallMshrMisses.flags(total | nozero | nonan);
+    overallMshrMisses = demandMshrMisses + SUM_NON_DEMAND(mshr_misses);
+    for (int i = 0; i < max_requestors; i++) {
+        overallMshrMisses.subname(i, system->getRequestorName(i));
+    }
+
+    demandMshrMissLatency.flags(total | nozero | nonan);
+    demandMshrMissLatency = SUM_DEMAND(mshr_miss_latency);
+    for (int i = 0; i < max_requestors; i++) {
+        demandMshrMissLatency.subname(i, system->getRequestorName(i));
+    }
+
+    overallMshrMissLatency.flags(total | nozero | nonan);
+    overallMshrMissLatency =
+        demandMshrMissLatency + SUM_NON_DEMAND(mshr_miss_latency);
+    for (int i = 0; i < max_requestors; i++) {
+        overallMshrMissLatency.subname(i, system->getRequestorName(i));
+    }
+
+    overallMshrUncacheable.flags(total | nozero | nonan);
+    overallMshrUncacheable =
+        SUM_DEMAND(mshr_uncacheable) + SUM_NON_DEMAND(mshr_uncacheable);
+    for (int i = 0; i < max_requestors; i++) {
+        overallMshrUncacheable.subname(i, system->getRequestorName(i));
+    }
+
+
+    overallMshrUncacheableLatency.flags(total | nozero | nonan);
+    overallMshrUncacheableLatency =
+        SUM_DEMAND(mshr_uncacheable_lat) +
+        SUM_NON_DEMAND(mshr_uncacheable_lat);
+    for (int i = 0; i < max_requestors; i++) {
+        overallMshrUncacheableLatency.subname(i, system->getRequestorName(i));
+    }
+
+    demandMshrMissRate.flags(total | nozero | nonan);
+    demandMshrMissRate = demandMshrMisses / demandAccesses;
+    for (int i = 0; i < max_requestors; i++) {
+        demandMshrMissRate.subname(i, system->getRequestorName(i));
+    }
+
+    overallMshrMissRate.flags(total | nozero | nonan);
+    overallMshrMissRate = overallMshrMisses / overallAccesses;
+    for (int i = 0; i < max_requestors; i++) {
+        overallMshrMissRate.subname(i, system->getRequestorName(i));
+    }
+
+    demandAvgMshrMissLatency.flags(total | nozero | nonan);
+    demandAvgMshrMissLatency = demandMshrMissLatency / demandMshrMisses;
+    for (int i = 0; i < max_requestors; i++) {
+        demandAvgMshrMissLatency.subname(i, system->getRequestorName(i));
+    }
+
+    overallAvgMshrMissLatency.flags(total | nozero | nonan);
+    overallAvgMshrMissLatency = overallMshrMissLatency / overallMshrMisses;
+    for (int i = 0; i < max_requestors; i++) {
+        overallAvgMshrMissLatency.subname(i, system->getRequestorName(i));
+    }
+
+    overallAvgMshrUncacheableLatency.flags(total | nozero | nonan);
+    overallAvgMshrUncacheableLatency =
+        overallMshrUncacheableLatency / overallMshrUncacheable;
+    for (int i = 0; i < max_requestors; i++) {
+        overallAvgMshrUncacheableLatency.subname(i, system->getRequestorName(i));
+    }
+
+    dataExpansions.flags(nozero | nonan);
+}
+
+void
+BaseCache::regProbePoints()
+{
+    ppHit = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Hit");
+    ppMiss = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Miss");
+    ppFill = new ProbePointArg<PacketPtr>(this->getProbeManager(), "Fill");
+}
+
+///////////////
+//
+// CpuSidePort
+//
+///////////////
+bool
+BaseCache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
+{
+    // Snoops shouldn't happen when bypassing caches
+    assert(!cache->system->bypassCaches());
+
+    assert(pkt->isResponse());
+
+    // Express snoop responses from requestor to responder, e.g., from L1 to L2
+    cache->recvTimingSnoopResp(pkt);
+    return true;
+}
+
+
+bool
+BaseCache::CpuSidePort::tryTiming(PacketPtr pkt)
+{
+    if (cache->system->bypassCaches() || pkt->isExpressSnoop()) {
+        // always let express snoop packets through even if blocked
+        return true;
+    } else if (blocked || mustSendRetry) {
+        // either already committed to send a retry, or blocked
+        mustSendRetry = true;
+        return false;
+    }
+    mustSendRetry = false;
+    return true;
+}
+
+bool
+BaseCache::CpuSidePort::recvTimingReq(PacketPtr pkt)
+{
+    assert(pkt->isRequest());
+
+    if (cache->system->bypassCaches()) {
+        // Just forward the packet if caches are disabled.
+        // @todo This should really enqueue the packet rather
+        bool M5_VAR_USED success = cache->memSidePort.sendTimingReq(pkt);
+        assert(success);
+        return true;
+    } else if (tryTiming(pkt)) {
+        cache->recvTimingReq(pkt);
+        return true;
+    }
+    return false;
+}
+
+Tick
+BaseCache::CpuSidePort::recvAtomic(PacketPtr pkt)
+{
+    if (cache->system->bypassCaches()) {
+        // Forward the request if the system is in cache bypass mode.
+        return cache->memSidePort.sendAtomic(pkt);
+    } else {
+        return cache->recvAtomic(pkt);
+    }
+}
+
+void
+BaseCache::CpuSidePort::recvFunctional(PacketPtr pkt)
+{
+    if (cache->system->bypassCaches()) {
+        // The cache should be flushed if we are in cache bypass mode,
+        // so we don't need to check if we need to update anything.
+        cache->memSidePort.sendFunctional(pkt);
+        return;
+    }
+
+    // functional request
+    cache->functionalAccess(pkt, true);
+}
+
+AddrRangeList
+BaseCache::CpuSidePort::getAddrRanges() const
+{
+    return cache->getAddrRanges();
+}
+
+
+BaseCache::
+CpuSidePort::CpuSidePort(const std::string &_name, BaseCache *_cache,
+                         const std::string &_label)
+    : CacheResponsePort(_name, _cache, _label), cache(_cache)
+{
+}
+
+///////////////
+//
+// MemSidePort
+//
+///////////////
+bool
+BaseCache::MemSidePort::recvTimingResp(PacketPtr pkt)
+{
+    cache->recvTimingResp(pkt);
+    return true;
+}
+
+// Express snooping requests to memside port
+void
+BaseCache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
+{
+    // Snoops shouldn't happen when bypassing caches
+    assert(!cache->system->bypassCaches());
+
+    // handle snooping requests
+    cache->recvTimingSnoopReq(pkt);
+}
+
+Tick
+BaseCache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
+{
+    // Snoops shouldn't happen when bypassing caches
+    assert(!cache->system->bypassCaches());
+
+    return cache->recvAtomicSnoop(pkt);
+}
+
+void
+BaseCache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
+{
+    // Snoops shouldn't happen when bypassing caches
+    assert(!cache->system->bypassCaches());
+
+    // functional snoop (note that in contrast to atomic we don't have
+    // a specific functionalSnoop method, as they have the same
+    // behaviour regardless)
+    cache->functionalAccess(pkt, false);
+}
+
+void
+BaseCache::CacheReqPacketQueue::sendDeferredPacket()
+{
+    // sanity check
+    assert(!waitingOnRetry);
+
+    // there should never be any deferred request packets in the
+    // queue, instead we resly on the cache to provide the packets
+    // from the MSHR queue or write queue
+    assert(deferredPacketReadyTime() == MaxTick);
+
+    // check for request packets (requests & writebacks)
+    QueueEntry* entry = cache.getNextQueueEntry();
+
+    if (!entry) {
+        // can happen if e.g. we attempt a writeback and fail, but
+        // before the retry, the writeback is eliminated because
+        // we snoop another cache's ReadEx.
+    } else {
+        // let our snoop responses go first if there are responses to
+        // the same addresses
+        if (checkConflictingSnoop(entry->getTarget()->pkt)) {
+            return;
+        }
+        waitingOnRetry = entry->sendPacket(cache);
+    }
+
+    // if we succeeded and are not waiting for a retry, schedule the
+    // next send considering when the next queue is ready, note that
+    // snoop responses have their own packet queue and thus schedule
+    // their own events
+    if (!waitingOnRetry) {
+        schedSendEvent(cache.nextQueueReadyTime());
+    }
+}
+
+BaseCache::MemSidePort::MemSidePort(const std::string &_name,
+                                    BaseCache *_cache,
+                                    const std::string &_label)
+    : CacheRequestPort(_name, _cache, _reqQueue, _snoopRespQueue),
+      _reqQueue(*_cache, *this, _snoopRespQueue, _label),
+      _snoopRespQueue(*_cache, *this, true, _label), cache(_cache)
+{
+}
+
+void
+WriteAllocator::updateMode(Addr write_addr, unsigned write_size,
+                           Addr blk_addr)
+{
+    // check if we are continuing where the last write ended
+    if (nextAddr == write_addr) {
+        delayCtr[blk_addr] = delayThreshold;
+        // stop if we have already saturated
+        if (mode != WriteMode::NO_ALLOCATE) {
+            byteCount += write_size;
+            // switch to streaming mode if we have passed the lower
+            // threshold
+            if (mode == WriteMode::ALLOCATE &&
+                byteCount > coalesceLimit) {
+                mode = WriteMode::COALESCE;
+                DPRINTF(Cache, "Switched to write coalescing\n");
+            } else if (mode == WriteMode::COALESCE &&
+                       byteCount > noAllocateLimit) {
+                // and continue and switch to non-allocating mode if we
+                // pass the upper threshold
+                mode = WriteMode::NO_ALLOCATE;
+                DPRINTF(Cache, "Switched to write-no-allocate\n");
+            }
+        }
+    } else {
+        // we did not see a write matching the previous one, start
+        // over again
+        byteCount = write_size;
+        mode = WriteMode::ALLOCATE;
+        resetDelay(blk_addr);
+    }
+    nextAddr = write_addr + write_size;
+}
+
+WriteAllocator*
+WriteAllocatorParams::create()
+{
+    return new WriteAllocator(this);
 }