mem-cache: Virtualize block print
[gem5.git] / src / mem / cache / cache.cc
index c640d4a606d2cbf1098710a7e9c5ed752a1ebb4b..1b5316383d1f38d628b45870fa0671272a2bd7de 100644 (file)
@@ -1,5 +1,18 @@
 /*
- * Copyright (c) 2004-2005 The Regents of The University of Michigan
+ * Copyright (c) 2010-2018 ARM Limited
+ * All rights reserved.
+ *
+ * The license below extends only to copyright in the software and shall
+ * not be construed as granting a license to any other intellectual
+ * property including but not limited to intellectual property relating
+ * to a hardware implementation of the functionality of the software
+ * licensed hereunder.  You may use the software subject to the license
+ * terms below provided that you ensure that this notice is replicated
+ * unmodified and in its entirety in all distributions of the software,
+ * modified or unmodified, in source code or in binary form.
+ *
+ * Copyright (c) 2002-2005 The Regents of The University of Michigan
+ * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
  * All rights reserved.
  *
  * Redistribution and use in source and binary forms, with or without
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  * Authors: Erik Hallnor
+ *          Dave Greene
+ *          Nathan Binkert
  *          Steve Reinhardt
- *          Lisa Hsu
- *          Kevin Lim
+ *          Ron Dreslinski
+ *          Andreas Sandberg
+ *          Nikos Nikoleris
  */
 
 /**
  * @file
- * Cache template instantiations.
+ * Cache definitions.
  */
 
-#include "mem/config/cache.hh"
+#include "mem/cache/cache.hh"
 
-#if defined(USE_CACHE_LRU)
-#include "mem/cache/tags/lru.hh"
-#endif
+#include <cassert>
 
-#if defined(USE_CACHE_FALRU)
-#include "mem/cache/tags/fa_lru.hh"
-#endif
+#include "base/compiler.hh"
+#include "base/logging.hh"
+#include "base/trace.hh"
+#include "base/types.hh"
+#include "debug/Cache.hh"
+#include "debug/CacheTags.hh"
+#include "debug/CacheVerbose.hh"
+#include "enums/Clusivity.hh"
+#include "mem/cache/blk.hh"
+#include "mem/cache/mshr.hh"
+#include "mem/cache/tags/base.hh"
+#include "mem/cache/write_queue_entry.hh"
+#include "mem/request.hh"
+#include "params/Cache.hh"
 
-#if defined(USE_CACHE_IIC)
-#include "mem/cache/tags/iic.hh"
-#endif
+Cache::Cache(const CacheParams *p)
+    : BaseCache(p, p->system->cacheLineSize()),
+      doFastWrites(true)
+{
+}
 
-#if defined(USE_CACHE_SPLIT)
-#include "mem/cache/tags/split.hh"
-#endif
+void
+Cache::satisfyRequest(PacketPtr pkt, CacheBlk *blk,
+                      bool deferred_response, bool pending_downgrade)
+{
+    BaseCache::satisfyRequest(pkt, blk);
 
-#if defined(USE_CACHE_SPLIT_LIFO)
-#include "mem/cache/tags/split_lifo.hh"
-#endif
+    if (pkt->isRead()) {
+        // determine if this read is from a (coherent) cache or not
+        if (pkt->fromCache()) {
+            assert(pkt->getSize() == blkSize);
+            // special handling for coherent block requests from
+            // upper-level caches
+            if (pkt->needsWritable()) {
+                // sanity check
+                assert(pkt->cmd == MemCmd::ReadExReq ||
+                       pkt->cmd == MemCmd::SCUpgradeFailReq);
+                assert(!pkt->hasSharers());
 
-#include "mem/cache/cache_impl.hh"
+                // if we have a dirty copy, make sure the recipient
+                // keeps it marked dirty (in the modified state)
+                if (blk->isDirty()) {
+                    pkt->setCacheResponding();
+                    blk->status &= ~BlkDirty;
+                }
+            } else if (blk->isWritable() && !pending_downgrade &&
+                       !pkt->hasSharers() &&
+                       pkt->cmd != MemCmd::ReadCleanReq) {
+                // we can give the requester a writable copy on a read
+                // request if:
+                // - we have a writable copy at this level (& below)
+                // - we don't have a pending snoop from below
+                //   signaling another read request
+                // - no other cache above has a copy (otherwise it
+                //   would have set hasSharers flag when
+                //   snooping the packet)
+                // - the read has explicitly asked for a clean
+                //   copy of the line
+                if (blk->isDirty()) {
+                    // special considerations if we're owner:
+                    if (!deferred_response) {
+                        // respond with the line in Modified state
+                        // (cacheResponding set, hasSharers not set)
+                        pkt->setCacheResponding();
 
-// Template Instantiations
-#ifndef DOXYGEN_SHOULD_SKIP_THIS
+                        // if this cache is mostly inclusive, we
+                        // keep the block in the Exclusive state,
+                        // and pass it upwards as Modified
+                        // (writable and dirty), hence we have
+                        // multiple caches, all on the same path
+                        // towards memory, all considering the
+                        // same block writable, but only one
+                        // considering it Modified
 
+                        // we get away with multiple caches (on
+                        // the same path to memory) considering
+                        // the block writeable as we always enter
+                        // the cache hierarchy through a cache,
+                        // and first snoop upwards in all other
+                        // branches
+                        blk->status &= ~BlkDirty;
+                    } else {
+                        // if we're responding after our own miss,
+                        // there's a window where the recipient didn't
+                        // know it was getting ownership and may not
+                        // have responded to snoops correctly, so we
+                        // have to respond with a shared line
+                        pkt->setHasSharers();
+                    }
+                }
+            } else {
+                // otherwise only respond with a shared copy
+                pkt->setHasSharers();
+            }
+        }
+    }
+}
 
-#if defined(USE_CACHE_FALRU)
-template class Cache<FALRU>;
-#endif
+/////////////////////////////////////////////////////
+//
+// Access path: requests coming in from the CPU side
+//
+/////////////////////////////////////////////////////
 
-#if defined(USE_CACHE_IIC)
-template class Cache<IIC>;
-#endif
+bool
+Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
+              PacketList &writebacks)
+{
 
-#if defined(USE_CACHE_LRU)
-template class Cache<LRU>;
-#endif
+    if (pkt->req->isUncacheable()) {
+        assert(pkt->isRequest());
 
-#if defined(USE_CACHE_SPLIT)
-template class Cache<Split>;
-#endif
+        chatty_assert(!(isReadOnly && pkt->isWrite()),
+                      "Should never see a write in a read-only cache %s\n",
+                      name());
+
+        DPRINTF(Cache, "%s for %s\n", __func__, pkt->print());
+
+        // flush and invalidate any existing block
+        CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure()));
+        if (old_blk && old_blk->isValid()) {
+            evictBlock(old_blk, writebacks);
+        }
+
+        blk = nullptr;
+        // lookupLatency is the latency in case the request is uncacheable.
+        lat = lookupLatency;
+        return false;
+    }
+
+    return BaseCache::access(pkt, blk, lat, writebacks);
+}
+
+void
+Cache::doWritebacks(PacketList& writebacks, Tick forward_time)
+{
+    while (!writebacks.empty()) {
+        PacketPtr wbPkt = writebacks.front();
+        // We use forwardLatency here because we are copying writebacks to
+        // write buffer.
+
+        // Call isCachedAbove for Writebacks, CleanEvicts and
+        // WriteCleans to discover if the block is cached above.
+        if (isCachedAbove(wbPkt)) {
+            if (wbPkt->cmd == MemCmd::CleanEvict) {
+                // Delete CleanEvict because cached copies exist above. The
+                // packet destructor will delete the request object because
+                // this is a non-snoop request packet which does not require a
+                // response.
+                delete wbPkt;
+            } else if (wbPkt->cmd == MemCmd::WritebackClean) {
+                // clean writeback, do not send since the block is
+                // still cached above
+                assert(writebackClean);
+                delete wbPkt;
+            } else {
+                assert(wbPkt->cmd == MemCmd::WritebackDirty ||
+                       wbPkt->cmd == MemCmd::WriteClean);
+                // Set BLOCK_CACHED flag in Writeback and send below, so that
+                // the Writeback does not reset the bit corresponding to this
+                // address in the snoop filter below.
+                wbPkt->setBlockCached();
+                allocateWriteBuffer(wbPkt, forward_time);
+            }
+        } else {
+            // If the block is not cached above, send packet below. Both
+            // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
+            // reset the bit corresponding to this address in the snoop filter
+            // below.
+            allocateWriteBuffer(wbPkt, forward_time);
+        }
+        writebacks.pop_front();
+    }
+}
+
+void
+Cache::doWritebacksAtomic(PacketList& writebacks)
+{
+    while (!writebacks.empty()) {
+        PacketPtr wbPkt = writebacks.front();
+        // Call isCachedAbove for both Writebacks and CleanEvicts. If
+        // isCachedAbove returns true we set BLOCK_CACHED flag in Writebacks
+        // and discard CleanEvicts.
+        if (isCachedAbove(wbPkt, false)) {
+            if (wbPkt->cmd == MemCmd::WritebackDirty ||
+                wbPkt->cmd == MemCmd::WriteClean) {
+                // Set BLOCK_CACHED flag in Writeback and send below,
+                // so that the Writeback does not reset the bit
+                // corresponding to this address in the snoop filter
+                // below. We can discard CleanEvicts because cached
+                // copies exist above. Atomic mode isCachedAbove
+                // modifies packet to set BLOCK_CACHED flag
+                memSidePort.sendAtomic(wbPkt);
+            }
+        } else {
+            // If the block is not cached above, send packet below. Both
+            // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
+            // reset the bit corresponding to this address in the snoop filter
+            // below.
+            memSidePort.sendAtomic(wbPkt);
+        }
+        writebacks.pop_front();
+        // In case of CleanEvicts, the packet destructor will delete the
+        // request object because this is a non-snoop request packet which
+        // does not require a response.
+        delete wbPkt;
+    }
+}
+
+
+void
+Cache::recvTimingSnoopResp(PacketPtr pkt)
+{
+    DPRINTF(Cache, "%s for %s\n", __func__, pkt->print());
+
+    // determine if the response is from a snoop request we created
+    // (in which case it should be in the outstandingSnoop), or if we
+    // merely forwarded someone else's snoop request
+    const bool forwardAsSnoop = outstandingSnoop.find(pkt->req) ==
+        outstandingSnoop.end();
+
+    if (!forwardAsSnoop) {
+        // the packet came from this cache, so sink it here and do not
+        // forward it
+        assert(pkt->cmd == MemCmd::HardPFResp);
+
+        outstandingSnoop.erase(pkt->req);
+
+        DPRINTF(Cache, "Got prefetch response from above for addr "
+                "%#llx (%s)\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
+        recvTimingResp(pkt);
+        return;
+    }
+
+    // forwardLatency is set here because there is a response from an
+    // upper level cache.
+    // To pay the delay that occurs if the packet comes from the bus,
+    // we charge also headerDelay.
+    Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay;
+    // Reset the timing of the packet.
+    pkt->headerDelay = pkt->payloadDelay = 0;
+    memSidePort.schedTimingSnoopResp(pkt, snoop_resp_time);
+}
+
+void
+Cache::promoteWholeLineWrites(PacketPtr pkt)
+{
+    // Cache line clearing instructions
+    if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) &&
+        (pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0)) {
+        pkt->cmd = MemCmd::WriteLineReq;
+        DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n");
+    }
+}
+
+void
+Cache::handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, Tick request_time)
+{
+    // should never be satisfying an uncacheable access as we
+    // flush and invalidate any existing block as part of the
+    // lookup
+    assert(!pkt->req->isUncacheable());
+
+    BaseCache::handleTimingReqHit(pkt, blk, request_time);
+}
+
+void
+Cache::handleTimingReqMiss(PacketPtr pkt, CacheBlk *blk, Tick forward_time,
+                           Tick request_time)
+{
+    if (pkt->req->isUncacheable()) {
+        // ignore any existing MSHR if we are dealing with an
+        // uncacheable request
+
+        // should have flushed and have no valid block
+        assert(!blk || !blk->isValid());
+
+        mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++;
+
+        if (pkt->isWrite()) {
+            allocateWriteBuffer(pkt, forward_time);
+        } else {
+            assert(pkt->isRead());
+
+            // uncacheable accesses always allocate a new MSHR
+
+            // Here we are using forward_time, modelling the latency of
+            // a miss (outbound) just as forwardLatency, neglecting the
+            // lookupLatency component.
+            allocateMissBuffer(pkt, forward_time);
+        }
+
+        return;
+    }
+
+    Addr blk_addr = pkt->getBlockAddr(blkSize);
+
+    MSHR *mshr = mshrQueue.findMatch(blk_addr, pkt->isSecure());
+
+    // Software prefetch handling:
+    // To keep the core from waiting on data it won't look at
+    // anyway, send back a response with dummy data. Miss handling
+    // will continue asynchronously. Unfortunately, the core will
+    // insist upon freeing original Packet/Request, so we have to
+    // create a new pair with a different lifecycle. Note that this
+    // processing happens before any MSHR munging on the behalf of
+    // this request because this new Request will be the one stored
+    // into the MSHRs, not the original.
+    if (pkt->cmd.isSWPrefetch()) {
+        assert(pkt->needsResponse());
+        assert(pkt->req->hasPaddr());
+        assert(!pkt->req->isUncacheable());
+
+        // There's no reason to add a prefetch as an additional target
+        // to an existing MSHR. If an outstanding request is already
+        // in progress, there is nothing for the prefetch to do.
+        // If this is the case, we don't even create a request at all.
+        PacketPtr pf = nullptr;
+
+        if (!mshr) {
+            // copy the request and create a new SoftPFReq packet
+            RequestPtr req = std::make_shared<Request>(pkt->req->getPaddr(),
+                                                       pkt->req->getSize(),
+                                                       pkt->req->getFlags(),
+                                                       pkt->req->masterId());
+            pf = new Packet(req, pkt->cmd);
+            pf->allocate();
+            assert(pf->getAddr() == pkt->getAddr());
+            assert(pf->getSize() == pkt->getSize());
+        }
+
+        pkt->makeTimingResponse();
+
+        // request_time is used here, taking into account lat and the delay
+        // charged if the packet comes from the xbar.
+        cpuSidePort.schedTimingResp(pkt, request_time, true);
+
+        // If an outstanding request is in progress (we found an
+        // MSHR) this is set to null
+        pkt = pf;
+    }
+
+    BaseCache::handleTimingReqMiss(pkt, mshr, blk, forward_time, request_time);
+}
+
+void
+Cache::recvTimingReq(PacketPtr pkt)
+{
+    DPRINTF(CacheTags, "%s tags:\n%s\n", __func__, tags->print());
 
-#if defined(USE_CACHE_SPLIT_LIFO)
-template class Cache<SplitLIFO>;
+    promoteWholeLineWrites(pkt);
+
+    if (pkt->cacheResponding()) {
+        // a cache above us (but not where the packet came from) is
+        // responding to the request, in other words it has the line
+        // in Modified or Owned state
+        DPRINTF(Cache, "Cache above responding to %s: not responding\n",
+                pkt->print());
+
+        // if the packet needs the block to be writable, and the cache
+        // that has promised to respond (setting the cache responding
+        // flag) is not providing writable (it is in Owned rather than
+        // the Modified state), we know that there may be other Shared
+        // copies in the system; go out and invalidate them all
+        assert(pkt->needsWritable() && !pkt->responderHadWritable());
+
+        // an upstream cache that had the line in Owned state
+        // (dirty, but not writable), is responding and thus
+        // transferring the dirty line from one branch of the
+        // cache hierarchy to another
+
+        // send out an express snoop and invalidate all other
+        // copies (snooping a packet that needs writable is the
+        // same as an invalidation), thus turning the Owned line
+        // into a Modified line, note that we don't invalidate the
+        // block in the current cache or any other cache on the
+        // path to memory
+
+        // create a downstream express snoop with cleared packet
+        // flags, there is no need to allocate any data as the
+        // packet is merely used to co-ordinate state transitions
+        Packet *snoop_pkt = new Packet(pkt, true, false);
+
+        // also reset the bus time that the original packet has
+        // not yet paid for
+        snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0;
+
+        // make this an instantaneous express snoop, and let the
+        // other caches in the system know that the another cache
+        // is responding, because we have found the authorative
+        // copy (Modified or Owned) that will supply the right
+        // data
+        snoop_pkt->setExpressSnoop();
+        snoop_pkt->setCacheResponding();
+
+        // this express snoop travels towards the memory, and at
+        // every crossbar it is snooped upwards thus reaching
+        // every cache in the system
+        bool M5_VAR_USED success = memSidePort.sendTimingReq(snoop_pkt);
+        // express snoops always succeed
+        assert(success);
+
+        // main memory will delete the snoop packet
+
+        // queue for deletion, as opposed to immediate deletion, as
+        // the sending cache is still relying on the packet
+        pendingDelete.reset(pkt);
+
+        // no need to take any further action in this particular cache
+        // as an upstram cache has already committed to responding,
+        // and we have already sent out any express snoops in the
+        // section above to ensure all other copies in the system are
+        // invalidated
+        return;
+    }
+
+    BaseCache::recvTimingReq(pkt);
+}
+
+PacketPtr
+Cache::createMissPacket(PacketPtr cpu_pkt, CacheBlk *blk,
+                        bool needsWritable) const
+{
+    // should never see evictions here
+    assert(!cpu_pkt->isEviction());
+
+    bool blkValid = blk && blk->isValid();
+
+    if (cpu_pkt->req->isUncacheable() ||
+        (!blkValid && cpu_pkt->isUpgrade()) ||
+        cpu_pkt->cmd == MemCmd::InvalidateReq || cpu_pkt->isClean()) {
+        // uncacheable requests and upgrades from upper-level caches
+        // that missed completely just go through as is
+        return nullptr;
+    }
+
+    assert(cpu_pkt->needsResponse());
+
+    MemCmd cmd;
+    // @TODO make useUpgrades a parameter.
+    // Note that ownership protocols require upgrade, otherwise a
+    // write miss on a shared owned block will generate a ReadExcl,
+    // which will clobber the owned copy.
+    const bool useUpgrades = true;
+    if (cpu_pkt->cmd == MemCmd::WriteLineReq) {
+        assert(!blkValid || !blk->isWritable());
+        // forward as invalidate to all other caches, this gives us
+        // the line in Exclusive state, and invalidates all other
+        // copies
+        cmd = MemCmd::InvalidateReq;
+    } else if (blkValid && useUpgrades) {
+        // only reason to be here is that blk is read only and we need
+        // it to be writable
+        assert(needsWritable);
+        assert(!blk->isWritable());
+        cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq;
+    } else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq ||
+               cpu_pkt->cmd == MemCmd::StoreCondFailReq) {
+        // Even though this SC will fail, we still need to send out the
+        // request and get the data to supply it to other snoopers in the case
+        // where the determination the StoreCond fails is delayed due to
+        // all caches not being on the same local bus.
+        cmd = MemCmd::SCUpgradeFailReq;
+    } else {
+        // block is invalid
+
+        // If the request does not need a writable there are two cases
+        // where we need to ensure the response will not fetch the
+        // block in dirty state:
+        // * this cache is read only and it does not perform
+        //   writebacks,
+        // * this cache is mostly exclusive and will not fill (since
+        //   it does not fill it will have to writeback the dirty data
+        //   immediately which generates uneccesary writebacks).
+        bool force_clean_rsp = isReadOnly || clusivity == Enums::mostly_excl;
+        cmd = needsWritable ? MemCmd::ReadExReq :
+            (force_clean_rsp ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq);
+    }
+    PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize);
+
+    // if there are upstream caches that have already marked the
+    // packet as having sharers (not passing writable), pass that info
+    // downstream
+    if (cpu_pkt->hasSharers() && !needsWritable) {
+        // note that cpu_pkt may have spent a considerable time in the
+        // MSHR queue and that the information could possibly be out
+        // of date, however, there is no harm in conservatively
+        // assuming the block has sharers
+        pkt->setHasSharers();
+        DPRINTF(Cache, "%s: passing hasSharers from %s to %s\n",
+                __func__, cpu_pkt->print(), pkt->print());
+    }
+
+    // the packet should be block aligned
+    assert(pkt->getAddr() == pkt->getBlockAddr(blkSize));
+
+    pkt->allocate();
+    DPRINTF(Cache, "%s: created %s from %s\n", __func__, pkt->print(),
+            cpu_pkt->print());
+    return pkt;
+}
+
+
+Cycles
+Cache::handleAtomicReqMiss(PacketPtr pkt, CacheBlk *&blk,
+                           PacketList &writebacks)
+{
+    // deal with the packets that go through the write path of
+    // the cache, i.e. any evictions and writes
+    if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean ||
+        (pkt->req->isUncacheable() && pkt->isWrite())) {
+        Cycles latency = ticksToCycles(memSidePort.sendAtomic(pkt));
+
+        // at this point, if the request was an uncacheable write
+        // request, it has been satisfied by a memory below and the
+        // packet carries the response back
+        assert(!(pkt->req->isUncacheable() && pkt->isWrite()) ||
+               pkt->isResponse());
+
+        return latency;
+    }
+
+    // only misses left
+
+    PacketPtr bus_pkt = createMissPacket(pkt, blk, pkt->needsWritable());
+
+    bool is_forward = (bus_pkt == nullptr);
+
+    if (is_forward) {
+        // just forwarding the same request to the next level
+        // no local cache operation involved
+        bus_pkt = pkt;
+    }
+
+    DPRINTF(Cache, "%s: Sending an atomic %s\n", __func__,
+            bus_pkt->print());
+
+#if TRACING_ON
+    CacheBlk::State old_state = blk ? blk->status : 0;
 #endif
 
-#endif //DOXYGEN_SHOULD_SKIP_THIS
+    Cycles latency = ticksToCycles(memSidePort.sendAtomic(bus_pkt));
+
+    bool is_invalidate = bus_pkt->isInvalidate();
+
+    // We are now dealing with the response handling
+    DPRINTF(Cache, "%s: Receive response: %s in state %i\n", __func__,
+            bus_pkt->print(), old_state);
+
+    // If packet was a forward, the response (if any) is already
+    // in place in the bus_pkt == pkt structure, so we don't need
+    // to do anything.  Otherwise, use the separate bus_pkt to
+    // generate response to pkt and then delete it.
+    if (!is_forward) {
+        if (pkt->needsResponse()) {
+            assert(bus_pkt->isResponse());
+            if (bus_pkt->isError()) {
+                pkt->makeAtomicResponse();
+                pkt->copyError(bus_pkt);
+            } else if (pkt->cmd == MemCmd::WriteLineReq) {
+                // note the use of pkt, not bus_pkt here.
+
+                // write-line request to the cache that promoted
+                // the write to a whole line
+                blk = handleFill(pkt, blk, writebacks,
+                                 allocOnFill(pkt->cmd));
+                assert(blk != NULL);
+                is_invalidate = false;
+                satisfyRequest(pkt, blk);
+            } else if (bus_pkt->isRead() ||
+                       bus_pkt->cmd == MemCmd::UpgradeResp) {
+                // we're updating cache state to allow us to
+                // satisfy the upstream request from the cache
+                blk = handleFill(bus_pkt, blk, writebacks,
+                                 allocOnFill(pkt->cmd));
+                satisfyRequest(pkt, blk);
+                maintainClusivity(pkt->fromCache(), blk);
+            } else {
+                // we're satisfying the upstream request without
+                // modifying cache state, e.g., a write-through
+                pkt->makeAtomicResponse();
+            }
+        }
+        delete bus_pkt;
+    }
+
+    if (is_invalidate && blk && blk->isValid()) {
+        invalidateBlock(blk);
+    }
+
+    return latency;
+}
+
+Tick
+Cache::recvAtomic(PacketPtr pkt)
+{
+    promoteWholeLineWrites(pkt);
+
+    return BaseCache::recvAtomic(pkt);
+}
+
+
+/////////////////////////////////////////////////////
+//
+// Response handling: responses from the memory side
+//
+/////////////////////////////////////////////////////
+
+
+void
+Cache::serviceMSHRTargets(MSHR *mshr, const PacketPtr pkt, CacheBlk *blk,
+                          PacketList &writebacks)
+{
+    MSHR::Target *initial_tgt = mshr->getTarget();
+    // First offset for critical word first calculations
+    const int initial_offset = initial_tgt->pkt->getOffset(blkSize);
+
+    const bool is_error = pkt->isError();
+    // allow invalidation responses originating from write-line
+    // requests to be discarded
+    bool is_invalidate = pkt->isInvalidate();
+
+    MSHR::TargetList targets = mshr->extractServiceableTargets(pkt);
+    for (auto &target: targets) {
+        Packet *tgt_pkt = target.pkt;
+        switch (target.source) {
+          case MSHR::Target::FromCPU:
+            Tick completion_time;
+            // Here we charge on completion_time the delay of the xbar if the
+            // packet comes from it, charged on headerDelay.
+            completion_time = pkt->headerDelay;
+
+            // Software prefetch handling for cache closest to core
+            if (tgt_pkt->cmd.isSWPrefetch()) {
+                // a software prefetch would have already been ack'd
+                // immediately with dummy data so the core would be able to
+                // retire it. This request completes right here, so we
+                // deallocate it.
+                delete tgt_pkt;
+                break; // skip response
+            }
+
+            // unlike the other packet flows, where data is found in other
+            // caches or memory and brought back, write-line requests always
+            // have the data right away, so the above check for "is fill?"
+            // cannot actually be determined until examining the stored MSHR
+            // state. We "catch up" with that logic here, which is duplicated
+            // from above.
+            if (tgt_pkt->cmd == MemCmd::WriteLineReq) {
+                assert(!is_error);
+                // we got the block in a writable state, so promote
+                // any deferred targets if possible
+                mshr->promoteWritable();
+                // NB: we use the original packet here and not the response!
+                blk = handleFill(tgt_pkt, blk, writebacks,
+                                 targets.allocOnFill);
+                assert(blk);
+
+                // discard the invalidation response
+                is_invalidate = false;
+            }
+
+            if (blk && blk->isValid() && !mshr->isForward) {
+                satisfyRequest(tgt_pkt, blk, true, mshr->hasPostDowngrade());
+
+                // How many bytes past the first request is this one
+                int transfer_offset =
+                    tgt_pkt->getOffset(blkSize) - initial_offset;
+                if (transfer_offset < 0) {
+                    transfer_offset += blkSize;
+                }
+
+                // If not critical word (offset) return payloadDelay.
+                // responseLatency is the latency of the return path
+                // from lower level caches/memory to an upper level cache or
+                // the core.
+                completion_time += clockEdge(responseLatency) +
+                    (transfer_offset ? pkt->payloadDelay : 0);
+
+                assert(!tgt_pkt->req->isUncacheable());
+
+                assert(tgt_pkt->req->masterId() < system->maxMasters());
+                missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] +=
+                    completion_time - target.recvTime;
+            } else if (pkt->cmd == MemCmd::UpgradeFailResp) {
+                // failed StoreCond upgrade
+                assert(tgt_pkt->cmd == MemCmd::StoreCondReq ||
+                       tgt_pkt->cmd == MemCmd::StoreCondFailReq ||
+                       tgt_pkt->cmd == MemCmd::SCUpgradeFailReq);
+                // responseLatency is the latency of the return path
+                // from lower level caches/memory to an upper level cache or
+                // the core.
+                completion_time += clockEdge(responseLatency) +
+                    pkt->payloadDelay;
+                tgt_pkt->req->setExtraData(0);
+            } else {
+                // We are about to send a response to a cache above
+                // that asked for an invalidation; we need to
+                // invalidate our copy immediately as the most
+                // up-to-date copy of the block will now be in the
+                // cache above. It will also prevent this cache from
+                // responding (if the block was previously dirty) to
+                // snoops as they should snoop the caches above where
+                // they will get the response from.
+                if (is_invalidate && blk && blk->isValid()) {
+                    invalidateBlock(blk);
+                }
+                // not a cache fill, just forwarding response
+                // responseLatency is the latency of the return path
+                // from lower level cahces/memory to the core.
+                completion_time += clockEdge(responseLatency) +
+                    pkt->payloadDelay;
+                if (pkt->isRead() && !is_error) {
+                    // sanity check
+                    assert(pkt->getAddr() == tgt_pkt->getAddr());
+                    assert(pkt->getSize() >= tgt_pkt->getSize());
+
+                    tgt_pkt->setData(pkt->getConstPtr<uint8_t>());
+                }
+            }
+            tgt_pkt->makeTimingResponse();
+            // if this packet is an error copy that to the new packet
+            if (is_error)
+                tgt_pkt->copyError(pkt);
+            if (tgt_pkt->cmd == MemCmd::ReadResp &&
+                (is_invalidate || mshr->hasPostInvalidate())) {
+                // If intermediate cache got ReadRespWithInvalidate,
+                // propagate that.  Response should not have
+                // isInvalidate() set otherwise.
+                tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate;
+                DPRINTF(Cache, "%s: updated cmd to %s\n", __func__,
+                        tgt_pkt->print());
+            }
+            // Reset the bus additional time as it is now accounted for
+            tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0;
+            cpuSidePort.schedTimingResp(tgt_pkt, completion_time, true);
+            break;
+
+          case MSHR::Target::FromPrefetcher:
+            assert(tgt_pkt->cmd == MemCmd::HardPFReq);
+            if (blk)
+                blk->status |= BlkHWPrefetched;
+            delete tgt_pkt;
+            break;
+
+          case MSHR::Target::FromSnoop:
+            // I don't believe that a snoop can be in an error state
+            assert(!is_error);
+            // response to snoop request
+            DPRINTF(Cache, "processing deferred snoop...\n");
+            // If the response is invalidating, a snooping target can
+            // be satisfied if it is also invalidating. If the reponse is, not
+            // only invalidating, but more specifically an InvalidateResp and
+            // the MSHR was created due to an InvalidateReq then a cache above
+            // is waiting to satisfy a WriteLineReq. In this case even an
+            // non-invalidating snoop is added as a target here since this is
+            // the ordering point. When the InvalidateResp reaches this cache,
+            // the snooping target will snoop further the cache above with the
+            // WriteLineReq.
+            assert(!is_invalidate || pkt->cmd == MemCmd::InvalidateResp ||
+                   pkt->req->isCacheMaintenance() ||
+                   mshr->hasPostInvalidate());
+            handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate());
+            break;
+
+          default:
+            panic("Illegal target->source enum %d\n", target.source);
+        }
+    }
+
+    maintainClusivity(targets.hasFromCache, blk);
+
+    if (blk && blk->isValid()) {
+        // an invalidate response stemming from a write line request
+        // should not invalidate the block, so check if the
+        // invalidation should be discarded
+        if (is_invalidate || mshr->hasPostInvalidate()) {
+            invalidateBlock(blk);
+        } else if (mshr->hasPostDowngrade()) {
+            blk->status &= ~BlkWritable;
+        }
+    }
+}
+
+PacketPtr
+Cache::evictBlock(CacheBlk *blk)
+{
+    PacketPtr pkt = (blk->isDirty() || writebackClean) ?
+        writebackBlk(blk) : cleanEvictBlk(blk);
+
+    invalidateBlock(blk);
+
+    return pkt;
+}
+
+void
+Cache::evictBlock(CacheBlk *blk, PacketList &writebacks)
+{
+    PacketPtr pkt = evictBlock(blk);
+    if (pkt) {
+        writebacks.push_back(pkt);
+    }
+}
+
+PacketPtr
+Cache::cleanEvictBlk(CacheBlk *blk)
+{
+    assert(!writebackClean);
+    assert(blk && blk->isValid() && !blk->isDirty());
+
+    // Creating a zero sized write, a message to the snoop filter
+    RequestPtr req = std::make_shared<Request>(
+        regenerateBlkAddr(blk), blkSize, 0, Request::wbMasterId);
+
+    if (blk->isSecure())
+        req->setFlags(Request::SECURE);
+
+    req->taskId(blk->task_id);
+
+    PacketPtr pkt = new Packet(req, MemCmd::CleanEvict);
+    pkt->allocate();
+    DPRINTF(Cache, "Create CleanEvict %s\n", pkt->print());
+
+    return pkt;
+}
+
+/////////////////////////////////////////////////////
+//
+// Snoop path: requests coming in from the memory side
+//
+/////////////////////////////////////////////////////
+
+void
+Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data,
+                              bool already_copied, bool pending_inval)
+{
+    // sanity check
+    assert(req_pkt->isRequest());
+    assert(req_pkt->needsResponse());
+
+    DPRINTF(Cache, "%s: for %s\n", __func__, req_pkt->print());
+    // timing-mode snoop responses require a new packet, unless we
+    // already made a copy...
+    PacketPtr pkt = req_pkt;
+    if (!already_copied)
+        // do not clear flags, and allocate space for data if the
+        // packet needs it (the only packets that carry data are read
+        // responses)
+        pkt = new Packet(req_pkt, false, req_pkt->isRead());
+
+    assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() ||
+           pkt->hasSharers());
+    pkt->makeTimingResponse();
+    if (pkt->isRead()) {
+        pkt->setDataFromBlock(blk_data, blkSize);
+    }
+    if (pkt->cmd == MemCmd::ReadResp && pending_inval) {
+        // Assume we defer a response to a read from a far-away cache
+        // A, then later defer a ReadExcl from a cache B on the same
+        // bus as us. We'll assert cacheResponding in both cases, but
+        // in the latter case cacheResponding will keep the
+        // invalidation from reaching cache A. This special response
+        // tells cache A that it gets the block to satisfy its read,
+        // but must immediately invalidate it.
+        pkt->cmd = MemCmd::ReadRespWithInvalidate;
+    }
+    // Here we consider forward_time, paying for just forward latency and
+    // also charging the delay provided by the xbar.
+    // forward_time is used as send_time in next allocateWriteBuffer().
+    Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
+    // Here we reset the timing of the packet.
+    pkt->headerDelay = pkt->payloadDelay = 0;
+    DPRINTF(CacheVerbose, "%s: created response: %s tick: %lu\n", __func__,
+            pkt->print(), forward_time);
+    memSidePort.schedTimingSnoopResp(pkt, forward_time, true);
+}
+
+uint32_t
+Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing,
+                   bool is_deferred, bool pending_inval)
+{
+    DPRINTF(CacheVerbose, "%s: for %s\n", __func__, pkt->print());
+    // deferred snoops can only happen in timing mode
+    assert(!(is_deferred && !is_timing));
+    // pending_inval only makes sense on deferred snoops
+    assert(!(pending_inval && !is_deferred));
+    assert(pkt->isRequest());
+
+    // the packet may get modified if we or a forwarded snooper
+    // responds in atomic mode, so remember a few things about the
+    // original packet up front
+    bool invalidate = pkt->isInvalidate();
+    bool M5_VAR_USED needs_writable = pkt->needsWritable();
+
+    // at the moment we could get an uncacheable write which does not
+    // have the invalidate flag, and we need a suitable way of dealing
+    // with this case
+    panic_if(invalidate && pkt->req->isUncacheable(),
+             "%s got an invalidating uncacheable snoop request %s",
+             name(), pkt->print());
+
+    uint32_t snoop_delay = 0;
+
+    if (forwardSnoops) {
+        // first propagate snoop upward to see if anyone above us wants to
+        // handle it.  save & restore packet src since it will get
+        // rewritten to be relative to cpu-side bus (if any)
+        bool alreadyResponded = pkt->cacheResponding();
+        if (is_timing) {
+            // copy the packet so that we can clear any flags before
+            // forwarding it upwards, we also allocate data (passing
+            // the pointer along in case of static data), in case
+            // there is a snoop hit in upper levels
+            Packet snoopPkt(pkt, true, true);
+            snoopPkt.setExpressSnoop();
+            // the snoop packet does not need to wait any additional
+            // time
+            snoopPkt.headerDelay = snoopPkt.payloadDelay = 0;
+            cpuSidePort.sendTimingSnoopReq(&snoopPkt);
+
+            // add the header delay (including crossbar and snoop
+            // delays) of the upward snoop to the snoop delay for this
+            // cache
+            snoop_delay += snoopPkt.headerDelay;
+
+            if (snoopPkt.cacheResponding()) {
+                // cache-to-cache response from some upper cache
+                assert(!alreadyResponded);
+                pkt->setCacheResponding();
+            }
+            // upstream cache has the block, or has an outstanding
+            // MSHR, pass the flag on
+            if (snoopPkt.hasSharers()) {
+                pkt->setHasSharers();
+            }
+            // If this request is a prefetch or clean evict and an upper level
+            // signals block present, make sure to propagate the block
+            // presence to the requester.
+            if (snoopPkt.isBlockCached()) {
+                pkt->setBlockCached();
+            }
+            // If the request was satisfied by snooping the cache
+            // above, mark the original packet as satisfied too.
+            if (snoopPkt.satisfied()) {
+                pkt->setSatisfied();
+            }
+        } else {
+            cpuSidePort.sendAtomicSnoop(pkt);
+            if (!alreadyResponded && pkt->cacheResponding()) {
+                // cache-to-cache response from some upper cache:
+                // forward response to original requester
+                assert(pkt->isResponse());
+            }
+        }
+    }
+
+    bool respond = false;
+    bool blk_valid = blk && blk->isValid();
+    if (pkt->isClean()) {
+        if (blk_valid && blk->isDirty()) {
+            DPRINTF(CacheVerbose, "%s: packet (snoop) %s found block: %s\n",
+                    __func__, pkt->print(), blk->print());
+            PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id);
+            PacketList writebacks;
+            writebacks.push_back(wb_pkt);
+
+            if (is_timing) {
+                // anything that is merely forwarded pays for the forward
+                // latency and the delay provided by the crossbar
+                Tick forward_time = clockEdge(forwardLatency) +
+                    pkt->headerDelay;
+                doWritebacks(writebacks, forward_time);
+            } else {
+                doWritebacksAtomic(writebacks);
+            }
+            pkt->setSatisfied();
+        }
+    } else if (!blk_valid) {
+        DPRINTF(CacheVerbose, "%s: snoop miss for %s\n", __func__,
+                pkt->print());
+        if (is_deferred) {
+            // we no longer have the block, and will not respond, but a
+            // packet was allocated in MSHR::handleSnoop and we have
+            // to delete it
+            assert(pkt->needsResponse());
+
+            // we have passed the block to a cache upstream, that
+            // cache should be responding
+            assert(pkt->cacheResponding());
+
+            delete pkt;
+        }
+        return snoop_delay;
+    } else {
+        DPRINTF(Cache, "%s: snoop hit for %s, old state is %s\n", __func__,
+                pkt->print(), blk->print());
+
+        // We may end up modifying both the block state and the packet (if
+        // we respond in atomic mode), so just figure out what to do now
+        // and then do it later. We respond to all snoops that need
+        // responses provided we have the block in dirty state. The
+        // invalidation itself is taken care of below. We don't respond to
+        // cache maintenance operations as this is done by the destination
+        // xbar.
+        respond = blk->isDirty() && pkt->needsResponse();
+
+        chatty_assert(!(isReadOnly && blk->isDirty()), "Should never have "
+                      "a dirty block in a read-only cache %s\n", name());
+    }
+
+    // Invalidate any prefetch's from below that would strip write permissions
+    // MemCmd::HardPFReq is only observed by upstream caches.  After missing
+    // above and in it's own cache, a new MemCmd::ReadReq is created that
+    // downstream caches observe.
+    if (pkt->mustCheckAbove()) {
+        DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s "
+                "from lower cache\n", pkt->getAddr(), pkt->print());
+        pkt->setBlockCached();
+        return snoop_delay;
+    }
+
+    if (pkt->isRead() && !invalidate) {
+        // reading without requiring the line in a writable state
+        assert(!needs_writable);
+        pkt->setHasSharers();
+
+        // if the requesting packet is uncacheable, retain the line in
+        // the current state, otherwhise unset the writable flag,
+        // which means we go from Modified to Owned (and will respond
+        // below), remain in Owned (and will respond below), from
+        // Exclusive to Shared, or remain in Shared
+        if (!pkt->req->isUncacheable())
+            blk->status &= ~BlkWritable;
+        DPRINTF(Cache, "new state is %s\n", blk->print());
+    }
+
+    if (respond) {
+        // prevent anyone else from responding, cache as well as
+        // memory, and also prevent any memory from even seeing the
+        // request
+        pkt->setCacheResponding();
+        if (!pkt->isClean() && blk->isWritable()) {
+            // inform the cache hierarchy that this cache had the line
+            // in the Modified state so that we avoid unnecessary
+            // invalidations (see Packet::setResponderHadWritable)
+            pkt->setResponderHadWritable();
+
+            // in the case of an uncacheable request there is no point
+            // in setting the responderHadWritable flag, but since the
+            // recipient does not care there is no harm in doing so
+        } else {
+            // if the packet has needsWritable set we invalidate our
+            // copy below and all other copies will be invalidates
+            // through express snoops, and if needsWritable is not set
+            // we already called setHasSharers above
+        }
+
+        // if we are returning a writable and dirty (Modified) line,
+        // we should be invalidating the line
+        panic_if(!invalidate && !pkt->hasSharers(),
+                 "%s is passing a Modified line through %s, "
+                 "but keeping the block", name(), pkt->print());
+
+        if (is_timing) {
+            doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval);
+        } else {
+            pkt->makeAtomicResponse();
+            // packets such as upgrades do not actually have any data
+            // payload
+            if (pkt->hasData())
+                pkt->setDataFromBlock(blk->data, blkSize);
+        }
+    }
+
+    if (!respond && is_deferred) {
+        assert(pkt->needsResponse());
+        delete pkt;
+    }
+
+    // Do this last in case it deallocates block data or something
+    // like that
+    if (blk_valid && invalidate) {
+        invalidateBlock(blk);
+        DPRINTF(Cache, "new state is %s\n", blk->print());
+    }
+
+    return snoop_delay;
+}
+
+
+void
+Cache::recvTimingSnoopReq(PacketPtr pkt)
+{
+    DPRINTF(CacheVerbose, "%s: for %s\n", __func__, pkt->print());
+
+    // no need to snoop requests that are not in range
+    if (!inRange(pkt->getAddr())) {
+        return;
+    }
+
+    bool is_secure = pkt->isSecure();
+    CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
+
+    Addr blk_addr = pkt->getBlockAddr(blkSize);
+    MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
+
+    // Update the latency cost of the snoop so that the crossbar can
+    // account for it. Do not overwrite what other neighbouring caches
+    // have already done, rather take the maximum. The update is
+    // tentative, for cases where we return before an upward snoop
+    // happens below.
+    pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay,
+                                         lookupLatency * clockPeriod());
+
+    // Inform request(Prefetch, CleanEvict or Writeback) from below of
+    // MSHR hit, set setBlockCached.
+    if (mshr && pkt->mustCheckAbove()) {
+        DPRINTF(Cache, "Setting block cached for %s from lower cache on "
+                "mshr hit\n", pkt->print());
+        pkt->setBlockCached();
+        return;
+    }
+
+    // Bypass any existing cache maintenance requests if the request
+    // has been satisfied already (i.e., the dirty block has been
+    // found).
+    if (mshr && pkt->req->isCacheMaintenance() && pkt->satisfied()) {
+        return;
+    }
+
+    // Let the MSHR itself track the snoop and decide whether we want
+    // to go ahead and do the regular cache snoop
+    if (mshr && mshr->handleSnoop(pkt, order++)) {
+        DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)."
+                "mshrs: %s\n", blk_addr, is_secure ? "s" : "ns",
+                mshr->print());
+
+        if (mshr->getNumTargets() > numTarget)
+            warn("allocating bonus target for snoop"); //handle later
+        return;
+    }
+
+    //We also need to check the writeback buffers and handle those
+    WriteQueueEntry *wb_entry = writeBuffer.findMatch(blk_addr, is_secure);
+    if (wb_entry) {
+        DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n",
+                pkt->getAddr(), is_secure ? "s" : "ns");
+        // Expect to see only Writebacks and/or CleanEvicts here, both of
+        // which should not be generated for uncacheable data.
+        assert(!wb_entry->isUncacheable());
+        // There should only be a single request responsible for generating
+        // Writebacks/CleanEvicts.
+        assert(wb_entry->getNumTargets() == 1);
+        PacketPtr wb_pkt = wb_entry->getTarget()->pkt;
+        assert(wb_pkt->isEviction() || wb_pkt->cmd == MemCmd::WriteClean);
+
+        if (pkt->isEviction()) {
+            // if the block is found in the write queue, set the BLOCK_CACHED
+            // flag for Writeback/CleanEvict snoop. On return the snoop will
+            // propagate the BLOCK_CACHED flag in Writeback packets and prevent
+            // any CleanEvicts from travelling down the memory hierarchy.
+            pkt->setBlockCached();
+            DPRINTF(Cache, "%s: Squashing %s from lower cache on writequeue "
+                    "hit\n", __func__, pkt->print());
+            return;
+        }
+
+        // conceptually writebacks are no different to other blocks in
+        // this cache, so the behaviour is modelled after handleSnoop,
+        // the difference being that instead of querying the block
+        // state to determine if it is dirty and writable, we use the
+        // command and fields of the writeback packet
+        bool respond = wb_pkt->cmd == MemCmd::WritebackDirty &&
+            pkt->needsResponse();
+        bool have_writable = !wb_pkt->hasSharers();
+        bool invalidate = pkt->isInvalidate();
+
+        if (!pkt->req->isUncacheable() && pkt->isRead() && !invalidate) {
+            assert(!pkt->needsWritable());
+            pkt->setHasSharers();
+            wb_pkt->setHasSharers();
+        }
+
+        if (respond) {
+            pkt->setCacheResponding();
+
+            if (have_writable) {
+                pkt->setResponderHadWritable();
+            }
+
+            doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(),
+                                   false, false);
+        }
+
+        if (invalidate && wb_pkt->cmd != MemCmd::WriteClean) {
+            // Invalidation trumps our writeback... discard here
+            // Note: markInService will remove entry from writeback buffer.
+            markInService(wb_entry);
+            delete wb_pkt;
+        }
+    }
+
+    // If this was a shared writeback, there may still be
+    // other shared copies above that require invalidation.
+    // We could be more selective and return here if the
+    // request is non-exclusive or if the writeback is
+    // exclusive.
+    uint32_t snoop_delay = handleSnoop(pkt, blk, true, false, false);
+
+    // Override what we did when we first saw the snoop, as we now
+    // also have the cost of the upwards snoops to account for
+    pkt->snoopDelay = std::max<uint32_t>(pkt->snoopDelay, snoop_delay +
+                                         lookupLatency * clockPeriod());
+}
+
+Tick
+Cache::recvAtomicSnoop(PacketPtr pkt)
+{
+    // no need to snoop requests that are not in range.
+    if (!inRange(pkt->getAddr())) {
+        return 0;
+    }
+
+    CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
+    uint32_t snoop_delay = handleSnoop(pkt, blk, false, false, false);
+    return snoop_delay + lookupLatency * clockPeriod();
+}
+
+bool
+Cache::isCachedAbove(PacketPtr pkt, bool is_timing)
+{
+    if (!forwardSnoops)
+        return false;
+    // Mirroring the flow of HardPFReqs, the cache sends CleanEvict and
+    // Writeback snoops into upper level caches to check for copies of the
+    // same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict
+    // packet, the cache can inform the crossbar below of presence or absence
+    // of the block.
+    if (is_timing) {
+        Packet snoop_pkt(pkt, true, false);
+        snoop_pkt.setExpressSnoop();
+        // Assert that packet is either Writeback or CleanEvict and not a
+        // prefetch request because prefetch requests need an MSHR and may
+        // generate a snoop response.
+        assert(pkt->isEviction() || pkt->cmd == MemCmd::WriteClean);
+        snoop_pkt.senderState = nullptr;
+        cpuSidePort.sendTimingSnoopReq(&snoop_pkt);
+        // Writeback/CleanEvict snoops do not generate a snoop response.
+        assert(!(snoop_pkt.cacheResponding()));
+        return snoop_pkt.isBlockCached();
+    } else {
+        cpuSidePort.sendAtomicSnoop(pkt);
+        return pkt->isBlockCached();
+    }
+}
+
+bool
+Cache::sendMSHRQueuePacket(MSHR* mshr)
+{
+    assert(mshr);
+
+    // use request from 1st target
+    PacketPtr tgt_pkt = mshr->getTarget()->pkt;
+
+    if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) {
+        DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print());
+
+        // we should never have hardware prefetches to allocated
+        // blocks
+        assert(!tags->findBlock(mshr->blkAddr, mshr->isSecure));
+
+        // We need to check the caches above us to verify that
+        // they don't have a copy of this block in the dirty state
+        // at the moment. Without this check we could get a stale
+        // copy from memory that might get used in place of the
+        // dirty one.
+        Packet snoop_pkt(tgt_pkt, true, false);
+        snoop_pkt.setExpressSnoop();
+        // We are sending this packet upwards, but if it hits we will
+        // get a snoop response that we end up treating just like a
+        // normal response, hence it needs the MSHR as its sender
+        // state
+        snoop_pkt.senderState = mshr;
+        cpuSidePort.sendTimingSnoopReq(&snoop_pkt);
+
+        // Check to see if the prefetch was squashed by an upper cache (to
+        // prevent us from grabbing the line) or if a Check to see if a
+        // writeback arrived between the time the prefetch was placed in
+        // the MSHRs and when it was selected to be sent or if the
+        // prefetch was squashed by an upper cache.
+
+        // It is important to check cacheResponding before
+        // prefetchSquashed. If another cache has committed to
+        // responding, it will be sending a dirty response which will
+        // arrive at the MSHR allocated for this request. Checking the
+        // prefetchSquash first may result in the MSHR being
+        // prematurely deallocated.
+        if (snoop_pkt.cacheResponding()) {
+            auto M5_VAR_USED r = outstandingSnoop.insert(snoop_pkt.req);
+            assert(r.second);
+
+            // if we are getting a snoop response with no sharers it
+            // will be allocated as Modified
+            bool pending_modified_resp = !snoop_pkt.hasSharers();
+            markInService(mshr, pending_modified_resp);
+
+            DPRINTF(Cache, "Upward snoop of prefetch for addr"
+                    " %#x (%s) hit\n",
+                    tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns");
+            return false;
+        }
+
+        if (snoop_pkt.isBlockCached()) {
+            DPRINTF(Cache, "Block present, prefetch squashed by cache.  "
+                    "Deallocating mshr target %#x.\n",
+                    mshr->blkAddr);
+
+            // Deallocate the mshr target
+            if (mshrQueue.forceDeallocateTarget(mshr)) {
+                // Clear block if this deallocation resulted freed an
+                // mshr when all had previously been utilized
+                clearBlocked(Blocked_NoMSHRs);
+            }
+
+            // given that no response is expected, delete Request and Packet
+            delete tgt_pkt;
+
+            return false;
+        }
+    }
+
+    return BaseCache::sendMSHRQueuePacket(mshr);
+}
+
+Cache*
+CacheParams::create()
+{
+    assert(tags);
+    assert(replacement_policy);
+
+    return new Cache(this);
+}