cpu: Apply the ARM TLB rework to the O3 checker CPU.
[gem5.git] / src / mem / dram_ctrl.cc
index 8378debf1f29a8783abdc0598f2dd88f213a7768..37db27ce07974d0651923cca39d2c588716dd682 100644 (file)
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2010-2014 ARM Limited
+ * Copyright (c) 2010-2019 ARM Limited
  * All rights reserved
  *
  * The license below extends only to copyright in the software and shall
  * Authors: Andreas Hansson
  *          Ani Udipi
  *          Neha Agarwal
+ *          Omar Naji
+ *          Wendy Elsasser
+ *          Radhika Jagtap
  */
 
+#include "mem/dram_ctrl.hh"
+
 #include "base/bitfield.hh"
 #include "base/trace.hh"
 #include "debug/DRAM.hh"
 #include "debug/DRAMPower.hh"
 #include "debug/DRAMState.hh"
 #include "debug/Drain.hh"
-#include "mem/dram_ctrl.hh"
+#include "debug/QOS.hh"
 #include "sim/system.hh"
 
 using namespace std;
 using namespace Data;
 
 DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
-    AbstractMemory(p),
-    port(name() + ".port", *this),
+    QoS::MemCtrl(p),
+    port(name() + ".port", *this), isTimingMode(false),
     retryRdReq(false), retryWrReq(false),
-    busState(READ),
-    nextReqEvent(this), respondEvent(this), activateEvent(this),
-    prechargeEvent(this), refreshEvent(this), powerEvent(this),
-    drainManager(NULL),
+    nextReqEvent([this]{ processNextReqEvent(); }, name()),
+    respondEvent([this]{ processRespondEvent(); }, name()),
     deviceSize(p->device_size),
     deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
     deviceRowBufferSize(p->device_rowbuffer_size),
@@ -69,7 +72,7 @@ DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
     burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
     rowBufferSize(devicesPerRank * deviceRowBufferSize),
     columnsPerRowBuffer(rowBufferSize / burstSize),
-    columnsPerStripe(range.granularity() / burstSize),
+    columnsPerStripe(range.interleaved() ? range.granularity() / burstSize : 1),
     ranksPerChannel(p->ranks_per_channel),
     bankGroupsPerRank(p->bank_groups_per_rank),
     bankGroupArch(p->bank_groups_per_rank > 0),
@@ -80,58 +83,38 @@ DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
     writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
     minWritesPerSwitch(p->min_writes_per_switch),
     writesThisTime(0), readsThisTime(0),
-    tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST),
+    tCK(p->tCK), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST),
+    tCCD_L_WR(p->tCCD_L_WR),
     tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS),
     tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
-    tRRD_L(p->tRRD_L), tXAW(p->tXAW), activationLimit(p->activation_limit),
+    tRRD_L(p->tRRD_L), tXAW(p->tXAW), tXP(p->tXP), tXS(p->tXS),
+    activationLimit(p->activation_limit), rankToRankDly(tCS + tBURST),
+    wrToRdDly(tCL + tBURST + p->tWTR), rdToWrDly(tRTW + tBURST),
     memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
     pageMgmt(p->page_policy),
     maxAccessesPerRow(p->max_accesses_per_row),
     frontendLatency(p->static_frontend_latency),
     backendLatency(p->static_backend_latency),
-    busBusyUntil(0), refreshDueAt(0), refreshState(REF_IDLE),
-    pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), prevArrival(0),
-    nextReqTime(0), pwrStateTick(0), numBanksActive(0),
-    activeRank(0), timeStampOffset(0)
+    nextBurstAt(0), prevArrival(0),
+    nextReqTime(0),
+    stats(*this),
+    activeRank(0), timeStampOffset(0),
+    lastStatsResetTick(0), enableDRAMPowerdown(p->enable_dram_powerdown)
 {
-    // create the bank states based on the dimensions of the ranks and
-    // banks
-    banks.resize(ranksPerChannel);
+    // sanity check the ranks since we rely on bit slicing for the
+    // address decoding
+    fatal_if(!isPowerOf2(ranksPerChannel), "DRAM rank count of %d is not "
+             "allowed, must be a power of two\n", ranksPerChannel);
+
+    fatal_if(!isPowerOf2(burstSize), "DRAM burst size %d is not allowed, "
+             "must be a power of two\n", burstSize);
+    readQueue.resize(p->qos_priorities);
+    writeQueue.resize(p->qos_priorities);
+
 
-    //create list of drampower objects. For each rank 1 drampower instance.
     for (int i = 0; i < ranksPerChannel; i++) {
-        DRAMPower drampower = DRAMPower(p, false);
-        rankPower.emplace_back(drampower);
-    }
-
-    actTicks.resize(ranksPerChannel);
-    for (size_t c = 0; c < ranksPerChannel; ++c) {
-        banks[c].resize(banksPerRank);
-        actTicks[c].resize(activationLimit, 0);
-    }
-
-    // set the bank indices
-    for (int r = 0; r < ranksPerChannel; r++) {
-        for (int b = 0; b < banksPerRank; b++) {
-            banks[r][b].rank = r;
-            banks[r][b].bank = b;
-            // GDDR addressing of banks to BG is linear.
-            // Here we assume that all DRAM generations address bank groups as
-            // follows:
-            if (bankGroupArch) {
-                // Simply assign lower bits to bank group in order to
-                // rotate across bank groups as banks are incremented
-                // e.g. with 4 banks per bank group and 16 banks total:
-                //    banks 0,4,8,12  are in bank group 0
-                //    banks 1,5,9,13  are in bank group 1
-                //    banks 2,6,10,14 are in bank group 2
-                //    banks 3,7,11,15 are in bank group 3
-                banks[r][b].bankgr = b % bankGroupsPerRank;
-            } else {
-                // No bank groups; simply assign to bank number
-                banks[r][b].bankgr = b;
-            }
-        }
+        Rank* rank = new Rank(*this, p, i);
+        ranks.push_back(rank);
     }
 
     // perform a basic check of the write thresholds
@@ -161,45 +144,6 @@ DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
 
     rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
 
-    // a bit of sanity checks on the interleaving
-    if (range.interleaved()) {
-        if (channels != range.stripes())
-            fatal("%s has %d interleaved address stripes but %d channel(s)\n",
-                  name(), range.stripes(), channels);
-
-        if (addrMapping == Enums::RoRaBaChCo) {
-            if (rowBufferSize != range.granularity()) {
-                fatal("Channel interleaving of %s doesn't match RoRaBaChCo "
-                      "address map\n", name());
-            }
-        } else if (addrMapping == Enums::RoRaBaCoCh ||
-                   addrMapping == Enums::RoCoRaBaCh) {
-            // for the interleavings with channel bits in the bottom,
-            // if the system uses a channel striping granularity that
-            // is larger than the DRAM burst size, then map the
-            // sequential accesses within a stripe to a number of
-            // columns in the DRAM, effectively placing some of the
-            // lower-order column bits as the least-significant bits
-            // of the address (above the ones denoting the burst size)
-            assert(columnsPerStripe >= 1);
-
-            // channel striping has to be done at a granularity that
-            // is equal or larger to a cache line
-            if (system()->cacheLineSize() > range.granularity()) {
-                fatal("Channel interleaving of %s must be at least as large "
-                      "as the cache line size\n", name());
-            }
-
-            // ...and equal or smaller than the row-buffer size
-            if (rowBufferSize < range.granularity()) {
-                fatal("Channel interleaving of %s must be at most as large "
-                      "as the row-buffer size\n", name());
-            }
-            // this is essentially the check above, so just to be sure
-            assert(columnsPerStripe <= columnsPerRowBuffer);
-        }
-    }
-
     // some basic sanity checks
     if (tREFI <= tRP || tREFI <= tRFC) {
         fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n",
@@ -226,6 +170,12 @@ DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
                   "bank groups per rank (%d) is greater than 1\n",
                   tCCD_L, tBURST, bankGroupsPerRank);
         }
+        // tCCD_L_WR should be greater than minimal, back-to-back burst delay
+        if (tCCD_L_WR <= tBURST) {
+            fatal("tCCD_L_WR (%d) should be larger than tBURST (%d) when "
+                  "bank groups per rank (%d) is greater than 1\n",
+                  tCCD_L_WR, tBURST, bankGroupsPerRank);
+        }
         // tRRD_L is greater than minimal, same bank group ACT-to-ACT delay
         // some datasheets might specify it equal to tRRD
         if (tRRD_L < tRRD) {
@@ -240,33 +190,77 @@ DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
 void
 DRAMCtrl::init()
 {
-    AbstractMemory::init();
+    MemCtrl::init();
 
    if (!port.isConnected()) {
         fatal("DRAMCtrl %s is unconnected!\n", name());
     } else {
         port.sendRangeChange();
     }
+
+    // a bit of sanity checks on the interleaving, save it for here to
+    // ensure that the system pointer is initialised
+    if (range.interleaved()) {
+        if (channels != range.stripes())
+            fatal("%s has %d interleaved address stripes but %d channel(s)\n",
+                  name(), range.stripes(), channels);
+
+        if (addrMapping == Enums::RoRaBaChCo) {
+            if (rowBufferSize != range.granularity()) {
+                fatal("Channel interleaving of %s doesn't match RoRaBaChCo "
+                      "address map\n", name());
+            }
+        } else if (addrMapping == Enums::RoRaBaCoCh ||
+                   addrMapping == Enums::RoCoRaBaCh) {
+            // for the interleavings with channel bits in the bottom,
+            // if the system uses a channel striping granularity that
+            // is larger than the DRAM burst size, then map the
+            // sequential accesses within a stripe to a number of
+            // columns in the DRAM, effectively placing some of the
+            // lower-order column bits as the least-significant bits
+            // of the address (above the ones denoting the burst size)
+            assert(columnsPerStripe >= 1);
+
+            // channel striping has to be done at a granularity that
+            // is equal or larger to a cache line
+            if (system()->cacheLineSize() > range.granularity()) {
+                fatal("Channel interleaving of %s must be at least as large "
+                      "as the cache line size\n", name());
+            }
+
+            // ...and equal or smaller than the row-buffer size
+            if (rowBufferSize < range.granularity()) {
+                fatal("Channel interleaving of %s must be at most as large "
+                      "as the row-buffer size\n", name());
+            }
+            // this is essentially the check above, so just to be sure
+            assert(columnsPerStripe <= columnsPerRowBuffer);
+        }
+    }
 }
 
 void
 DRAMCtrl::startup()
 {
-    // timestamp offset should be in clock cycles for DRAMPower
-    timeStampOffset = divCeil(curTick(), tCK);
-    // update the start tick for the precharge accounting to the
-    // current tick
-    pwrStateTick = curTick();
+    // remember the memory system mode of operation
+    isTimingMode = system()->isTimingMode();
 
-    // shift the bus busy time sufficiently far ahead that we never
-    // have to worry about negative values when computing the time for
-    // the next request, this will add an insignificant bubble at the
-    // start of simulation
-    busBusyUntil = curTick() + tRP + tRCD + tCL;
+    if (isTimingMode) {
+        // timestamp offset should be in clock cycles for DRAMPower
+        timeStampOffset = divCeil(curTick(), tCK);
 
-    // kick off the refresh, and give ourselves enough time to
-    // precharge
-    schedule(refreshEvent, curTick() + tREFI - tRP);
+        // update the start tick for the precharge accounting to the
+        // current tick
+        for (auto r : ranks) {
+            r->startup(curTick() + tREFI - tRP);
+        }
+
+        // shift the bus busy time sufficiently far ahead that we never
+        // have to worry about negative values when computing the time for
+        // the next request, this will add an insignificant bubble at the
+        // start of simulation
+        nextBurstAt = curTick() + tRP + tRCD;
+    }
 }
 
 Tick
@@ -274,11 +268,14 @@ DRAMCtrl::recvAtomic(PacketPtr pkt)
 {
     DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
 
+    panic_if(pkt->cacheResponding(), "Should not see packets where cache "
+             "is responding");
+
     // do the actual memory access and turn the packet into a response
     access(pkt);
 
     Tick latency = 0;
-    if (!pkt->memInhibitAsserted() && pkt->hasData()) {
+    if (pkt->hasData()) {
         // this value is not supposed to be accurate, just enough to
         // keep things going, mimic a closed page
         latency = tRP + tRCD + tCL;
@@ -290,24 +287,26 @@ bool
 DRAMCtrl::readQueueFull(unsigned int neededEntries) const
 {
     DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
-            readBufferSize, readQueue.size() + respQueue.size(),
+            readBufferSize, totalReadQueueSize + respQueue.size(),
             neededEntries);
 
-    return
-        (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
+    auto rdsize_new = totalReadQueueSize + respQueue.size() + neededEntries;
+    return rdsize_new > readBufferSize;
 }
 
 bool
 DRAMCtrl::writeQueueFull(unsigned int neededEntries) const
 {
     DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
-            writeBufferSize, writeQueue.size(), neededEntries);
-    return (writeQueue.size() + neededEntries) > writeBufferSize;
+            writeBufferSize, totalWriteQueueSize, neededEntries);
+
+    auto wrsize_new = (totalWriteQueueSize + neededEntries);
+    return  wrsize_new > writeBufferSize;
 }
 
 DRAMCtrl::DRAMPacket*
-DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
-                       bool isRead)
+DRAMCtrl::decodeAddr(const PacketPtr pkt, Addr dramPktAddr, unsigned size,
+                     bool isRead) const
 {
     // decode the address based on the address mapping scheme, with
     // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
@@ -342,9 +341,8 @@ DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
         rank = addr % ranksPerChannel;
         addr = addr / ranksPerChannel;
 
-        // lastly, get the row bits
+        // lastly, get the row bits, no need to remove them from addr
         row = addr % rowsPerBank;
-        addr = addr / rowsPerBank;
     } else if (addrMapping == Enums::RoRaBaCoCh) {
         // take out the lower-order column bits
         addr = addr / columnsPerStripe;
@@ -365,9 +363,8 @@ DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
         rank = addr % ranksPerChannel;
         addr = addr / ranksPerChannel;
 
-        // lastly, get the row bits
+        // lastly, get the row bits, no need to remove them from addr
         row = addr % rowsPerBank;
-        addr = addr / rowsPerBank;
     } else if (addrMapping == Enums::RoCoRaBaCh) {
         // optimise for closed page mode and utilise maximum
         // parallelism of the DRAM (at the cost of power)
@@ -392,9 +389,8 @@ DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
         // next, the higher-order column bites
         addr = addr / (columnsPerRowBuffer / columnsPerStripe);
 
-        // lastly, get the row bits
+        // lastly, get the row bits, no need to remove them from addr
         row = addr % rowsPerBank;
-        addr = addr / rowsPerBank;
     } else
         panic("Unknown address mapping policy chosen!");
 
@@ -411,7 +407,7 @@ DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
     // later
     uint16_t bank_id = banksPerRank * rank + bank;
     return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
-                          size, banks[rank][bank]);
+                          size, ranks[rank]->banks[bank], *ranks[rank]);
 }
 
 void
@@ -435,24 +431,35 @@ DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
     for (int cnt = 0; cnt < pktCount; ++cnt) {
         unsigned size = std::min((addr | (burstSize - 1)) + 1,
                         pkt->getAddr() + pkt->getSize()) - addr;
-        readPktSize[ceilLog2(size)]++;
-        readBursts++;
+        stats.readPktSize[ceilLog2(size)]++;
+        stats.readBursts++;
+        stats.masterReadAccesses[pkt->masterId()]++;
 
         // First check write buffer to see if the data is already at
         // the controller
         bool foundInWrQ = false;
-        for (auto i = writeQueue.begin(); i != writeQueue.end(); ++i) {
-            // check if the read is subsumed in the write entry we are
-            // looking at
-            if ((*i)->addr <= addr &&
-                (addr + size) <= ((*i)->addr + (*i)->size)) {
-                foundInWrQ = true;
-                servicedByWrQ++;
-                pktsServicedByWrQ++;
-                DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
-                        "write queue\n", addr, size);
-                bytesReadWrQ += burstSize;
-                break;
+        Addr burst_addr = burstAlign(addr);
+        // if the burst address is not present then there is no need
+        // looking any further
+        if (isInWriteQueue.find(burst_addr) != isInWriteQueue.end()) {
+            for (const auto& vec : writeQueue) {
+                for (const auto& p : vec) {
+                    // check if the read is subsumed in the write queue
+                    // packet we are looking at
+                    if (p->addr <= addr &&
+                       ((addr + size) <= (p->addr + p->size))) {
+
+                        foundInWrQ = true;
+                        stats.servicedByWrQ++;
+                        pktsServicedByWrQ++;
+                        DPRINTF(DRAM,
+                                "Read to addr %lld with size %d serviced by "
+                                "write queue\n",
+                                addr, size);
+                        stats.bytesReadWrQ += burstSize;
+                        break;
+                    }
+                }
             }
         }
 
@@ -471,14 +478,20 @@ DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
             dram_pkt->burstHelper = burst_helper;
 
             assert(!readQueueFull(1));
-            rdQLenPdf[readQueue.size() + respQueue.size()]++;
+            stats.rdQLenPdf[totalReadQueueSize + respQueue.size()]++;
 
             DPRINTF(DRAM, "Adding to read queue\n");
 
-            readQueue.push_back(dram_pkt);
+            readQueue[dram_pkt->qosValue()].push_back(dram_pkt);
+
+            ++dram_pkt->rankRef.readEntries;
+
+            // log packet
+            logRequest(MemCtrl::READ, pkt->masterId(), pkt->qosValue(),
+                       dram_pkt->addr, 1);
 
             // Update stats
-            avgRdQLen = readQueue.size() + respQueue.size();
+            stats.avgRdQLen = totalReadQueueSize + respQueue.size();
         }
 
         // Starting address of next dram pkt (aligend to burstSize boundary)
@@ -516,86 +529,45 @@ DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
     for (int cnt = 0; cnt < pktCount; ++cnt) {
         unsigned size = std::min((addr | (burstSize - 1)) + 1,
                         pkt->getAddr() + pkt->getSize()) - addr;
-        writePktSize[ceilLog2(size)]++;
-        writeBursts++;
+        stats.writePktSize[ceilLog2(size)]++;
+        stats.writeBursts++;
+        stats.masterWriteAccesses[pkt->masterId()]++;
 
         // see if we can merge with an existing item in the write
-        // queue and keep track of whether we have merged or not so we
-        // can stop at that point and also avoid enqueueing a new
-        // request
-        bool merged = false;
-        auto w = writeQueue.begin();
-
-        while(!merged && w != writeQueue.end()) {
-            // either of the two could be first, if they are the same
-            // it does not matter which way we go
-            if ((*w)->addr >= addr) {
-                // the existing one starts after the new one, figure
-                // out where the new one ends with respect to the
-                // existing one
-                if ((addr + size) >= ((*w)->addr + (*w)->size)) {
-                    // check if the existing one is completely
-                    // subsumed in the new one
-                    DPRINTF(DRAM, "Merging write covering existing burst\n");
-                    merged = true;
-                    // update both the address and the size
-                    (*w)->addr = addr;
-                    (*w)->size = size;
-                } else if ((addr + size) >= (*w)->addr &&
-                           ((*w)->addr + (*w)->size - addr) <= burstSize) {
-                    // the new one is just before or partially
-                    // overlapping with the existing one, and together
-                    // they fit within a burst
-                    DPRINTF(DRAM, "Merging write before existing burst\n");
-                    merged = true;
-                    // the existing queue item needs to be adjusted with
-                    // respect to both address and size
-                    (*w)->size = (*w)->addr + (*w)->size - addr;
-                    (*w)->addr = addr;
-                }
-            } else {
-                // the new one starts after the current one, figure
-                // out where the existing one ends with respect to the
-                // new one
-                if (((*w)->addr + (*w)->size) >= (addr + size)) {
-                    // check if the new one is completely subsumed in the
-                    // existing one
-                    DPRINTF(DRAM, "Merging write into existing burst\n");
-                    merged = true;
-                    // no adjustments necessary
-                } else if (((*w)->addr + (*w)->size) >= addr &&
-                           (addr + size - (*w)->addr) <= burstSize) {
-                    // the existing one is just before or partially
-                    // overlapping with the new one, and together
-                    // they fit within a burst
-                    DPRINTF(DRAM, "Merging write after existing burst\n");
-                    merged = true;
-                    // the address is right, and only the size has
-                    // to be adjusted
-                    (*w)->size = addr + size - (*w)->addr;
-                }
-            }
-            ++w;
-        }
+        // queue and keep track of whether we have merged or not
+        bool merged = isInWriteQueue.find(burstAlign(addr)) !=
+            isInWriteQueue.end();
 
         // if the item was not merged we need to create a new write
         // and enqueue it
         if (!merged) {
             DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
 
-            assert(writeQueue.size() < writeBufferSize);
-            wrQLenPdf[writeQueue.size()]++;
+            assert(totalWriteQueueSize < writeBufferSize);
+            stats.wrQLenPdf[totalWriteQueueSize]++;
 
             DPRINTF(DRAM, "Adding to write queue\n");
 
-            writeQueue.push_back(dram_pkt);
+            writeQueue[dram_pkt->qosValue()].push_back(dram_pkt);
+            isInWriteQueue.insert(burstAlign(addr));
+
+            // log packet
+            logRequest(MemCtrl::WRITE, pkt->masterId(), pkt->qosValue(),
+                       dram_pkt->addr, 1);
+
+            assert(totalWriteQueueSize == isInWriteQueue.size());
 
             // Update stats
-            avgWrQLen = writeQueue.size();
+            stats.avgWrQLen = totalWriteQueueSize;
+
+            // increment write entries of the rank
+            ++dram_pkt->rankRef.writeEntries;
         } else {
+            DPRINTF(DRAM, "Merging write burst with existing queue entry\n");
+
             // keep track of the fact that this burst effectively
             // disappeared as it was merged with an existing one
-            mergedWrBursts++;
+            stats.mergedWrBursts++;
         }
 
         // Starting address of next dram pkt (aligend to burstSize boundary)
@@ -618,44 +590,46 @@ DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
 }
 
 void
-DRAMCtrl::printQs() const {
+DRAMCtrl::printQs() const
+{
+#if TRACING_ON
     DPRINTF(DRAM, "===READ QUEUE===\n\n");
-    for (auto i = readQueue.begin() ;  i != readQueue.end() ; ++i) {
-        DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
+    for (const auto& queue : readQueue) {
+        for (const auto& packet : queue) {
+            DPRINTF(DRAM, "Read %lu\n", packet->addr);
+        }
     }
+
     DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
-    for (auto i = respQueue.begin() ;  i != respQueue.end() ; ++i) {
-        DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
+    for (const auto& packet : respQueue) {
+        DPRINTF(DRAM, "Response %lu\n", packet->addr);
     }
+
     DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
-    for (auto i = writeQueue.begin() ;  i != writeQueue.end() ; ++i) {
-        DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
+    for (const auto& queue : writeQueue) {
+        for (const auto& packet : queue) {
+            DPRINTF(DRAM, "Write %lu\n", packet->addr);
+        }
     }
+#endif // TRACING_ON
 }
 
 bool
 DRAMCtrl::recvTimingReq(PacketPtr pkt)
 {
-    /// @todo temporary hack to deal with memory corruption issues until
-    /// 4-phase transactions are complete
-    for (int x = 0; x < pendingDelete.size(); x++)
-        delete pendingDelete[x];
-    pendingDelete.clear();
-
     // This is where we enter from the outside world
     DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
             pkt->cmdString(), pkt->getAddr(), pkt->getSize());
 
-    // simply drop inhibited packets for now
-    if (pkt->memInhibitAsserted()) {
-        DPRINTF(DRAM, "Inhibited packet -- Dropping it now\n");
-        pendingDelete.push_back(pkt);
-        return true;
-    }
+    panic_if(pkt->cacheResponding(), "Should not see packets where cache "
+             "is responding");
+
+    panic_if(!(pkt->isRead() || pkt->isWrite()),
+             "Should only see read and writes at memory controller\n");
 
     // Calc avg gap between requests
     if (prevArrival != 0) {
-        totGap += curTick() - prevArrival;
+        stats.totGap += curTick() - prevArrival;
     }
     prevArrival = curTick();
 
@@ -668,37 +642,37 @@ DRAMCtrl::recvTimingReq(PacketPtr pkt)
     unsigned offset = pkt->getAddr() & (burstSize - 1);
     unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
 
+    // run the QoS scheduler and assign a QoS priority value to the packet
+    qosSchedule( { &readQueue, &writeQueue }, burstSize, pkt);
+
     // check local buffers and do not accept if full
-    if (pkt->isRead()) {
-        assert(size != 0);
-        if (readQueueFull(dram_pkt_count)) {
-            DPRINTF(DRAM, "Read queue full, not accepting\n");
-            // remember that we have to retry this port
-            retryRdReq = true;
-            numRdRetry++;
-            return false;
-        } else {
-            addToReadQueue(pkt, dram_pkt_count);
-            readReqs++;
-            bytesReadSys += size;
-        }
-    } else if (pkt->isWrite()) {
+    if (pkt->isWrite()) {
         assert(size != 0);
         if (writeQueueFull(dram_pkt_count)) {
             DPRINTF(DRAM, "Write queue full, not accepting\n");
             // remember that we have to retry this port
             retryWrReq = true;
-            numWrRetry++;
+            stats.numWrRetry++;
             return false;
         } else {
             addToWriteQueue(pkt, dram_pkt_count);
-            writeReqs++;
-            bytesWrittenSys += size;
+            stats.writeReqs++;
+            stats.bytesWrittenSys += size;
         }
     } else {
-        DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
-        neitherReadNorWrite++;
-        accessAndRespond(pkt, 1);
+        assert(pkt->isRead());
+        assert(size != 0);
+        if (readQueueFull(dram_pkt_count)) {
+            DPRINTF(DRAM, "Read queue full, not accepting\n");
+            // remember that we have to retry this port
+            retryRdReq = true;
+            stats.numRdRetry++;
+            return false;
+        } else {
+            addToReadQueue(pkt, dram_pkt_count);
+            stats.readReqs++;
+            stats.bytesReadSys += size;
+        }
     }
 
     return true;
@@ -712,6 +686,47 @@ DRAMCtrl::processRespondEvent()
 
     DRAMPacket* dram_pkt = respQueue.front();
 
+    // if a read has reached its ready-time, decrement the number of reads
+    // At this point the packet has been handled and there is a possibility
+    // to switch to low-power mode if no other packet is available
+    --dram_pkt->rankRef.readEntries;
+    DPRINTF(DRAM, "number of read entries for rank %d is %d\n",
+            dram_pkt->rank, dram_pkt->rankRef.readEntries);
+
+    // counter should at least indicate one outstanding request
+    // for this read
+    assert(dram_pkt->rankRef.outstandingEvents > 0);
+    // read response received, decrement count
+    --dram_pkt->rankRef.outstandingEvents;
+
+    // at this moment should not have transitioned to a low-power state
+    assert((dram_pkt->rankRef.pwrState != PWR_SREF) &&
+           (dram_pkt->rankRef.pwrState != PWR_PRE_PDN) &&
+           (dram_pkt->rankRef.pwrState != PWR_ACT_PDN));
+
+    // track if this is the last packet before idling
+    // and that there are no outstanding commands to this rank
+    if (dram_pkt->rankRef.isQueueEmpty() &&
+        dram_pkt->rankRef.outstandingEvents == 0 && enableDRAMPowerdown) {
+        // verify that there are no events scheduled
+        assert(!dram_pkt->rankRef.activateEvent.scheduled());
+        assert(!dram_pkt->rankRef.prechargeEvent.scheduled());
+
+        // if coming from active state, schedule power event to
+        // active power-down else go to precharge power-down
+        DPRINTF(DRAMState, "Rank %d sleep at tick %d; current power state is "
+                "%d\n", dram_pkt->rank, curTick(), dram_pkt->rankRef.pwrState);
+
+        // default to ACT power-down unless already in IDLE state
+        // could be in IDLE if PRE issued before data returned
+        PowerState next_pwr_state = PWR_ACT_PDN;
+        if (dram_pkt->rankRef.pwrState == PWR_IDLE) {
+            next_pwr_state = PWR_PRE_PDN;
+        }
+
+        dram_pkt->rankRef.powerDownSleep(next_pwr_state, curTick());
+    }
+
     if (dram_pkt->burstHelper) {
         // it is a split packet
         dram_pkt->burstHelper->burstsServiced++;
@@ -739,11 +754,11 @@ DRAMCtrl::processRespondEvent()
         schedule(respondEvent, respQueue.front()->readyTime);
     } else {
         // if there is nothing left in any queue, signal a drain
-        if (writeQueue.empty() && readQueue.empty() &&
-            drainManager) {
+        if (drainState() == DrainState::Draining &&
+            !totalWriteQueueSize && !totalReadQueueSize && allRanksDrained()) {
+
             DPRINTF(Drain, "DRAM controller done draining\n");
-            drainManager->signalDrainDone();
-            drainManager = NULL;
+            signalDrainDone();
         }
     }
 
@@ -751,84 +766,153 @@ DRAMCtrl::processRespondEvent()
     // so if there is a read that was forced to wait, retry now
     if (retryRdReq) {
         retryRdReq = false;
-        port.sendRetry();
+        port.sendRetryReq();
     }
 }
 
-void
-DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue, bool switched_cmd_type)
+DRAMCtrl::DRAMPacketQueue::iterator
+DRAMCtrl::chooseNext(DRAMPacketQueue& queue, Tick extra_col_delay)
 {
-    // This method does the arbitration between requests. The chosen
-    // packet is simply moved to the head of the queue. The other
-    // methods know that this is the place to look. For example, with
-    // FCFS, this method does nothing
-    assert(!queue.empty());
-
-    if (queue.size() == 1) {
-        DPRINTF(DRAM, "Single request, nothing to do\n");
-        return;
-    }
+    // This method does the arbitration between requests.
 
-    if (memSchedPolicy == Enums::fcfs) {
-        // Do nothing, since the correct request is already head
-    } else if (memSchedPolicy == Enums::frfcfs) {
-        reorderQueue(queue, switched_cmd_type);
-    } else
-        panic("No scheduling policy chosen\n");
+    DRAMCtrl::DRAMPacketQueue::iterator ret = queue.end();
+
+    if (!queue.empty()) {
+        if (queue.size() == 1) {
+            // available rank corresponds to state refresh idle
+            DRAMPacket* dram_pkt = *(queue.begin());
+            if (ranks[dram_pkt->rank]->inRefIdleState()) {
+                ret = queue.begin();
+                DPRINTF(DRAM, "Single request, going to a free rank\n");
+            } else {
+                DPRINTF(DRAM, "Single request, going to a busy rank\n");
+            }
+        } else if (memSchedPolicy == Enums::fcfs) {
+            // check if there is a packet going to a free rank
+            for (auto i = queue.begin(); i != queue.end(); ++i) {
+                DRAMPacket* dram_pkt = *i;
+                if (ranks[dram_pkt->rank]->inRefIdleState()) {
+                    ret = i;
+                    break;
+                }
+            }
+        } else if (memSchedPolicy == Enums::frfcfs) {
+            ret = chooseNextFRFCFS(queue, extra_col_delay);
+        } else {
+            panic("No scheduling policy chosen\n");
+        }
+    }
+    return ret;
 }
 
-void
-DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue, bool switched_cmd_type)
+DRAMCtrl::DRAMPacketQueue::iterator
+DRAMCtrl::chooseNextFRFCFS(DRAMPacketQueue& queue, Tick extra_col_delay)
 {
-    // Only determine this when needed
-    uint64_t earliest_banks = 0;
-
-    // Search for row hits first, if no row hit is found then schedule the
-    // packet to one of the earliest banks available
+    // Only determine this if needed
+    vector<uint32_t> earliest_banks(ranksPerChannel, 0);
+
+    // Has minBankPrep been called to populate earliest_banks?
+    bool filled_earliest_banks = false;
+    // can the PRE/ACT sequence be done without impacting utlization?
+    bool hidden_bank_prep = false;
+
+    // search for seamless row hits first, if no seamless row hit is
+    // found then determine if there are other packets that can be issued
+    // without incurring additional bus delay due to bank timing
+    // Will select closed rows first to enable more open row possibilies
+    // in future selections
+    bool found_hidden_bank = false;
+
+    // remember if we found a row hit, not seamless, but bank prepped
+    // and ready
+    bool found_prepped_pkt = false;
+
+    // if we have no row hit, prepped or not, and no seamless packet,
+    // just go for the earliest possible
     bool found_earliest_pkt = false;
-    bool found_prepped_diff_rank_pkt = false;
-    auto selected_pkt_it = queue.begin();
+
+    auto selected_pkt_it = queue.end();
+
+    // time we need to issue a column command to be seamless
+    const Tick min_col_at = std::max(nextBurstAt + extra_col_delay, curTick());
 
     for (auto i = queue.begin(); i != queue.end() ; ++i) {
         DRAMPacket* dram_pkt = *i;
         const Bank& bank = dram_pkt->bankRef;
-        // Check if it is a row hit
-        if (bank.openRow == dram_pkt->row) {
-            if (dram_pkt->rank == activeRank || switched_cmd_type) {
-                // FCFS within the hits, giving priority to commands
-                // that access the same rank as the previous burst
-                // to minimize bus turnaround delays
-                // Only give rank prioity when command type is not changing
-                DPRINTF(DRAM, "Row buffer hit\n");
-                selected_pkt_it = i;
-                break;
-            } else if (!found_prepped_diff_rank_pkt) {
-                // found row hit for command on different rank than prev burst
-                selected_pkt_it = i;
-                found_prepped_diff_rank_pkt = true;
-            }
-        } else if (!found_earliest_pkt & !found_prepped_diff_rank_pkt) {
-            // No row hit and
-            // haven't found an entry with a row hit to a new rank
-            if (earliest_banks == 0)
-                // Determine entries with earliest bank prep delay
-                // Function will give priority to commands that access the
-                // same rank as previous burst and can prep the bank seamlessly
-                earliest_banks = minBankPrep(queue, switched_cmd_type);
-
-            // FCFS - Bank is first available bank
-            if (bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) {
-                // Remember the packet to be scheduled to one of the earliest
-                // banks available, FCFS amongst the earliest banks
-                selected_pkt_it = i;
-                found_earliest_pkt = true;
+        const Tick col_allowed_at = dram_pkt->isRead() ? bank.rdAllowedAt :
+                                                         bank.wrAllowedAt;
+
+        DPRINTF(DRAM, "%s checking packet in bank %d\n",
+                __func__, dram_pkt->bankRef.bank);
+
+        // check if rank is not doing a refresh and thus is available, if not,
+        // jump to the next packet
+        if (dram_pkt->rankRef.inRefIdleState()) {
+
+            DPRINTF(DRAM,
+                    "%s bank %d - Rank %d available\n", __func__,
+                    dram_pkt->bankRef.bank, dram_pkt->rankRef.rank);
+
+            // check if it is a row hit
+            if (bank.openRow == dram_pkt->row) {
+                // no additional rank-to-rank or same bank-group
+                // delays, or we switched read/write and might as well
+                // go for the row hit
+                if (col_allowed_at <= min_col_at) {
+                    // FCFS within the hits, giving priority to
+                    // commands that can issue seamlessly, without
+                    // additional delay, such as same rank accesses
+                    // and/or different bank-group accesses
+                    DPRINTF(DRAM, "%s Seamless row buffer hit\n", __func__);
+                    selected_pkt_it = i;
+                    // no need to look through the remaining queue entries
+                    break;
+                } else if (!found_hidden_bank && !found_prepped_pkt) {
+                    // if we did not find a packet to a closed row that can
+                    // issue the bank commands without incurring delay, and
+                    // did not yet find a packet to a prepped row, remember
+                    // the current one
+                    selected_pkt_it = i;
+                    found_prepped_pkt = true;
+                    DPRINTF(DRAM, "%s Prepped row buffer hit\n", __func__);
+                }
+            } else if (!found_earliest_pkt) {
+                // if we have not initialised the bank status, do it
+                // now, and only once per scheduling decisions
+                if (!filled_earliest_banks) {
+                    // determine entries with earliest bank delay
+                    std::tie(earliest_banks, hidden_bank_prep) =
+                        minBankPrep(queue, min_col_at);
+                    filled_earliest_banks = true;
+                }
+
+                // bank is amongst first available banks
+                // minBankPrep will give priority to packets that can
+                // issue seamlessly
+                if (bits(earliest_banks[dram_pkt->rank],
+                         dram_pkt->bank, dram_pkt->bank)) {
+                    found_earliest_pkt = true;
+                    found_hidden_bank = hidden_bank_prep;
+
+                    // give priority to packets that can issue
+                    // bank commands 'behind the scenes'
+                    // any additional delay if any will be due to
+                    // col-to-col command requirements
+                    if (hidden_bank_prep || !found_prepped_pkt)
+                        selected_pkt_it = i;
+                }
             }
+        } else {
+            DPRINTF(DRAM, "%s bank %d - Rank %d not available\n", __func__,
+                    dram_pkt->bankRef.bank, dram_pkt->rankRef.rank);
         }
     }
 
-    DRAMPacket* selected_pkt = *selected_pkt_it;
-    queue.erase(selected_pkt_it);
-    queue.push_front(selected_pkt);
+    if (selected_pkt_it == queue.end()) {
+        DPRINTF(DRAM, "%s no available ranks found\n", __func__);
+    }
+
+    return selected_pkt_it;
 }
 
 void
@@ -845,17 +929,22 @@ DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
     if (needsResponse) {
         // access already turned the packet into a response
         assert(pkt->isResponse());
-
-        // @todo someone should pay for this
-        pkt->firstWordDelay = pkt->lastWordDelay = 0;
+        // response_time consumes the static latency and is charged also
+        // with headerDelay that takes into account the delay provided by
+        // the xbar and also the payloadDelay that takes into account the
+        // number of data beats.
+        Tick response_time = curTick() + static_latency + pkt->headerDelay +
+                             pkt->payloadDelay;
+        // Here we reset the timing of the packet before sending it out.
+        pkt->headerDelay = pkt->payloadDelay = 0;
 
         // queue the packet in the response queue to be sent out after
         // the static latency has passed
-        port.schedTimingResp(pkt, curTick() + static_latency);
+        port.schedTimingResp(pkt, response_time);
     } else {
         // @todo the packet is going to be deleted, and the DRAMPacket
         // is still having a pointer to it
-        pendingDelete.push_back(pkt);
+        pendingDelete.reset(pkt);
     }
 
     DPRINTF(DRAM, "Done\n");
@@ -864,126 +953,115 @@ DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
 }
 
 void
-DRAMCtrl::activateBank(Bank& bank, Tick act_tick, uint32_t row)
+DRAMCtrl::activateBank(Rank& rank_ref, Bank& bank_ref,
+                       Tick act_tick, uint32_t row)
 {
-    // get the rank index from the bank
-    uint8_t rank = bank.rank;
-
-    assert(actTicks[rank].size() == activationLimit);
+    assert(rank_ref.actTicks.size() == activationLimit);
 
     DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
 
     // update the open row
-    assert(bank.openRow == Bank::NO_ROW);
-    bank.openRow = row;
+    assert(bank_ref.openRow == Bank::NO_ROW);
+    bank_ref.openRow = row;
 
     // start counting anew, this covers both the case when we
     // auto-precharged, and when this access is forced to
     // precharge
-    bank.bytesAccessed = 0;
-    bank.rowAccesses = 0;
+    bank_ref.bytesAccessed = 0;
+    bank_ref.rowAccesses = 0;
 
-    ++numBanksActive;
-    assert(numBanksActive <= banksPerRank * ranksPerChannel);
+    ++rank_ref.numBanksActive;
+    assert(rank_ref.numBanksActive <= banksPerRank);
 
     DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n",
-            bank.bank, bank.rank, act_tick, numBanksActive);
+            bank_ref.bank, rank_ref.rank, act_tick,
+            ranks[rank_ref.rank]->numBanksActive);
 
-    rankPower[bank.rank].powerlib.doCommand(MemCommand::ACT, bank.bank,
-                                            divCeil(act_tick, tCK) -
-                                            timeStampOffset);
+    rank_ref.cmdList.push_back(Command(MemCommand::ACT, bank_ref.bank,
+                               act_tick));
 
     DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK) -
-            timeStampOffset, bank.bank, bank.rank);
+            timeStampOffset, bank_ref.bank, rank_ref.rank);
 
     // The next access has to respect tRAS for this bank
-    bank.preAllowedAt = act_tick + tRAS;
+    bank_ref.preAllowedAt = act_tick + tRAS;
 
-    // Respect the row-to-column command delay
-    bank.colAllowedAt = std::max(act_tick + tRCD, bank.colAllowedAt);
+    // Respect the row-to-column command delay for both read and write cmds
+    bank_ref.rdAllowedAt = std::max(act_tick + tRCD, bank_ref.rdAllowedAt);
+    bank_ref.wrAllowedAt = std::max(act_tick + tRCD, bank_ref.wrAllowedAt);
 
     // start by enforcing tRRD
-    for(int i = 0; i < banksPerRank; i++) {
+    for (int i = 0; i < banksPerRank; i++) {
         // next activate to any bank in this rank must not happen
         // before tRRD
-        if (bankGroupArch && (bank.bankgr == banks[rank][i].bankgr)) {
+        if (bankGroupArch && (bank_ref.bankgr == rank_ref.banks[i].bankgr)) {
             // bank group architecture requires longer delays between
             // ACT commands within the same bank group.  Use tRRD_L
             // in this case
-            banks[rank][i].actAllowedAt = std::max(act_tick + tRRD_L,
-                                                   banks[rank][i].actAllowedAt);
+            rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD_L,
+                                             rank_ref.banks[i].actAllowedAt);
         } else {
             // use shorter tRRD value when either
             // 1) bank group architecture is not supportted
             // 2) bank is in a different bank group
-            banks[rank][i].actAllowedAt = std::max(act_tick + tRRD,
-                                                   banks[rank][i].actAllowedAt);
+            rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD,
+                                             rank_ref.banks[i].actAllowedAt);
         }
     }
 
     // next, we deal with tXAW, if the activation limit is disabled
     // then we directly schedule an activate power event
-    if (!actTicks[rank].empty()) {
+    if (!rank_ref.actTicks.empty()) {
         // sanity check
-        if (actTicks[rank].back() &&
-           (act_tick - actTicks[rank].back()) < tXAW) {
+        if (rank_ref.actTicks.back() &&
+           (act_tick - rank_ref.actTicks.back()) < tXAW) {
             panic("Got %d activates in window %d (%llu - %llu) which "
                   "is smaller than %llu\n", activationLimit, act_tick -
-                  actTicks[rank].back(), act_tick, actTicks[rank].back(),
-                  tXAW);
+                  rank_ref.actTicks.back(), act_tick,
+                  rank_ref.actTicks.back(), tXAW);
         }
 
         // shift the times used for the book keeping, the last element
         // (highest index) is the oldest one and hence the lowest value
-        actTicks[rank].pop_back();
+        rank_ref.actTicks.pop_back();
 
         // record an new activation (in the future)
-        actTicks[rank].push_front(act_tick);
+        rank_ref.actTicks.push_front(act_tick);
 
         // cannot activate more than X times in time window tXAW, push the
         // next one (the X + 1'st activate) to be tXAW away from the
         // oldest in our window of X
-        if (actTicks[rank].back() &&
-           (act_tick - actTicks[rank].back()) < tXAW) {
+        if (rank_ref.actTicks.back() &&
+           (act_tick - rank_ref.actTicks.back()) < tXAW) {
             DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate "
                     "no earlier than %llu\n", activationLimit,
-                    actTicks[rank].back() + tXAW);
-            for(int j = 0; j < banksPerRank; j++)
+                    rank_ref.actTicks.back() + tXAW);
+            for (int j = 0; j < banksPerRank; j++)
                 // next activate must not happen before end of window
-                banks[rank][j].actAllowedAt =
-                    std::max(actTicks[rank].back() + tXAW,
-                             banks[rank][j].actAllowedAt);
+                rank_ref.banks[j].actAllowedAt =
+                    std::max(rank_ref.actTicks.back() + tXAW,
+                             rank_ref.banks[j].actAllowedAt);
         }
     }
 
     // at the point when this activate takes place, make sure we
     // transition to the active power state
-    if (!activateEvent.scheduled())
-        schedule(activateEvent, act_tick);
-    else if (activateEvent.when() > act_tick)
+    if (!rank_ref.activateEvent.scheduled())
+        schedule(rank_ref.activateEvent, act_tick);
+    else if (rank_ref.activateEvent.when() > act_tick)
         // move it sooner in time
-        reschedule(activateEvent, act_tick);
-}
-
-void
-DRAMCtrl::processActivateEvent()
-{
-    // we should transition to the active state as soon as any bank is active
-    if (pwrState != PWR_ACT)
-        // note that at this point numBanksActive could be back at
-        // zero again due to a precharge scheduled in the future
-        schedulePowerEvent(PWR_ACT, curTick());
+        reschedule(rank_ref.activateEvent, act_tick);
 }
 
 void
-DRAMCtrl::prechargeBank(Bank& bank, Tick pre_at, bool trace)
+DRAMCtrl::prechargeBank(Rank& rank_ref, Bank& bank, Tick pre_at, bool trace)
 {
     // make sure the bank has an open row
     assert(bank.openRow != Bank::NO_ROW);
 
     // sample the bytes per activate here since we are closing
     // the page
-    bytesPerActivate.sample(bank.bytesAccessed);
+    stats.bytesPerActivate.sample(bank.bytesAccessed);
 
     bank.openRow = Bank::NO_ROW;
 
@@ -994,19 +1072,19 @@ DRAMCtrl::prechargeBank(Bank& bank, Tick pre_at, bool trace)
 
     bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at);
 
-    assert(numBanksActive != 0);
-    --numBanksActive;
+    assert(rank_ref.numBanksActive != 0);
+    --rank_ref.numBanksActive;
 
     DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got "
-            "%d active\n", bank.bank, bank.rank, pre_at, numBanksActive);
+            "%d active\n", bank.bank, rank_ref.rank, pre_at,
+            rank_ref.numBanksActive);
 
     if (trace) {
 
-        rankPower[bank.rank].powerlib.doCommand(MemCommand::PRE, bank.bank,
-                                                divCeil(pre_at, tCK) -
-                                                timeStampOffset);
+        rank_ref.cmdList.push_back(Command(MemCommand::PRE, bank.bank,
+                                   pre_at));
         DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK) -
-                timeStampOffset, bank.bank, bank.rank);
+                timeStampOffset, bank.bank, rank_ref.rank);
     }
     // if we look at the current number of active banks we might be
     // tempted to think the DRAM is now idle, however this can be
@@ -1014,21 +1092,12 @@ DRAMCtrl::prechargeBank(Bank& bank, Tick pre_at, bool trace)
     // would have reached the idle state, so schedule an event and
     // rather check once we actually make it to the point in time when
     // the (last) precharge takes place
-    if (!prechargeEvent.scheduled())
-        schedule(prechargeEvent, pre_done_at);
-    else if (prechargeEvent.when() < pre_done_at)
-        reschedule(prechargeEvent, pre_done_at);
-}
-
-void
-DRAMCtrl::processPrechargeEvent()
-{
-    // if we reached zero, then special conditions apply as we track
-    // if all banks are precharged for the power models
-    if (numBanksActive == 0) {
-        // we should transition to the idle state when the last bank
-        // is precharged
-        schedulePowerEvent(PWR_IDLE, curTick());
+    if (!rank_ref.prechargeEvent.scheduled()) {
+        schedule(rank_ref.prechargeEvent, pre_done_at);
+        // New event, increment count
+        ++rank_ref.outstandingEvents;
+    } else if (rank_ref.prechargeEvent.when() < pre_done_at) {
+        reschedule(rank_ref.prechargeEvent, pre_done_at);
     }
 }
 
@@ -1038,15 +1107,23 @@ DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
     DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
             dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
 
+    // get the rank
+    Rank& rank = dram_pkt->rankRef;
+
+    // are we in or transitioning to a low-power state and have not scheduled
+    // a power-up event?
+    // if so, wake up from power down to issue RD/WR burst
+    if (rank.inLowPowerState) {
+        assert(rank.pwrState != PWR_SREF);
+        rank.scheduleWakeUpEvent(tXP);
+    }
+
     // get the bank
     Bank& bank = dram_pkt->bankRef;
 
     // for the state we need to track if it is a row hit or not
     bool row_hit = true;
 
-    // respect any constraints on the command (e.g. tRCD or tCCD)
-    Tick cmd_at = std::max(bank.colAllowedAt, curTick());
-
     // Determine the access latency and update the bank state
     if (bank.openRow == dram_pkt->row) {
         // nothing to do
@@ -1055,7 +1132,7 @@ DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
 
         // If there is a page open, precharge it.
         if (bank.openRow != Bank::NO_ROW) {
-            prechargeBank(bank, std::max(bank.preAllowedAt, curTick()));
+            prechargeBank(rank, bank, std::max(bank.preAllowedAt, curTick()));
         }
 
         // next we need to account for the delay in activating the
@@ -1064,52 +1141,58 @@ DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
 
         // Record the activation and deal with all the global timing
         // constraints caused be a new activation (tRRD and tXAW)
-        activateBank(bank, act_tick, dram_pkt->row);
-
-        // issue the command as early as possible
-        cmd_at = bank.colAllowedAt;
+        activateBank(rank, bank, act_tick, dram_pkt->row);
     }
 
+    // respect any constraints on the command (e.g. tRCD or tCCD)
+    const Tick col_allowed_at = dram_pkt->isRead() ?
+                                          bank.rdAllowedAt : bank.wrAllowedAt;
+
     // we need to wait until the bus is available before we can issue
-    // the command
-    cmd_at = std::max(cmd_at, busBusyUntil - tCL);
+    // the command; need minimum of tBURST between commands
+    Tick cmd_at = std::max({col_allowed_at, nextBurstAt, curTick()});
 
     // update the packet ready time
     dram_pkt->readyTime = cmd_at + tCL + tBURST;
 
-    // only one burst can use the bus at any one point in time
-    assert(dram_pkt->readyTime - busBusyUntil >= tBURST);
-
     // update the time for the next read/write burst for each
-    // bank (add a max with tCCD/tCCD_L here)
-    Tick cmd_dly;
-    for(int j = 0; j < ranksPerChannel; j++) {
-        for(int i = 0; i < banksPerRank; i++) {
+    // bank (add a max with tCCD/tCCD_L/tCCD_L_WR here)
+    Tick dly_to_rd_cmd;
+    Tick dly_to_wr_cmd;
+    for (int j = 0; j < ranksPerChannel; j++) {
+        for (int i = 0; i < banksPerRank; i++) {
             // next burst to same bank group in this rank must not happen
             // before tCCD_L.  Different bank group timing requirement is
             // tBURST; Add tCS for different ranks
             if (dram_pkt->rank == j) {
-                if (bankGroupArch && (bank.bankgr == banks[j][i].bankgr)) {
+                if (bankGroupArch &&
+                   (bank.bankgr == ranks[j]->banks[i].bankgr)) {
                     // bank group architecture requires longer delays between
                     // RD/WR burst commands to the same bank group.
-                    // Use tCCD_L in this case
-                    cmd_dly = tCCD_L;
+                    // tCCD_L is default requirement for same BG timing
+                    // tCCD_L_WR is required for write-to-write
+                    // Need to also take bus turnaround delays into account
+                    dly_to_rd_cmd = dram_pkt->isRead() ?
+                                    tCCD_L : std::max(tCCD_L, wrToRdDly);
+                    dly_to_wr_cmd = dram_pkt->isRead() ?
+                                    std::max(tCCD_L, rdToWrDly) : tCCD_L_WR;
                 } else {
-                    // use tBURST (equivalent to tCCD_S), the shorter
-                    // cas-to-cas delay value, when either:
-                    // 1) bank group architecture is not supportted
-                    // 2) bank is in a different bank group
-                    cmd_dly = tBURST;
+                    // tBURST is default requirement for diff BG timing
+                    // Need to also take bus turnaround delays into account
+                    dly_to_rd_cmd = dram_pkt->isRead() ? tBURST : wrToRdDly;
+                    dly_to_wr_cmd = dram_pkt->isRead() ? rdToWrDly : tBURST;
                 }
             } else {
-                // different rank is by default in a different bank group
-                // use tBURST (equivalent to tCCD_S), which is the shorter
-                // cas-to-cas delay in this case
-                // Add tCS to account for rank-to-rank bus delay requirements
-                cmd_dly = tBURST + tCS;
+                // different rank is by default in a different bank group and
+                // doesn't require longer tCCD or additional RTW, WTR delays
+                // Need to account for rank-to-rank switching with tCS
+                dly_to_wr_cmd = rankToRankDly;
+                dly_to_rd_cmd = rankToRankDly;
             }
-            banks[j][i].colAllowedAt = std::max(cmd_at + cmd_dly,
-                                                banks[j][i].colAllowedAt);
+            ranks[j]->banks[i].rdAllowedAt = std::max(cmd_at + dly_to_rd_cmd,
+                                             ranks[j]->banks[i].rdAllowedAt);
+            ranks[j]->banks[i].wrAllowedAt = std::max(cmd_at + dly_to_wr_cmd,
+                                             ranks[j]->banks[i].wrAllowedAt);
         }
     }
 
@@ -1120,7 +1203,7 @@ DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
     // time before a precharge, in the case of a read, respect the
     // read to precharge constraint
     bank.preAllowedAt = std::max(bank.preAllowedAt,
-                                 dram_pkt->isRead ? cmd_at + tRTP :
+                                 dram_pkt->isRead() ? cmd_at + tRTP :
                                  dram_pkt->readyTime + tWR);
 
     // increment the bytes accessed and the accesses per row
@@ -1148,24 +1231,32 @@ DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
         bool got_bank_conflict = false;
 
         // either look at the read queue or write queue
-        const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue :
-            writeQueue;
-        auto p = queue.begin();
-        // make sure we are not considering the packet that we are
-        // currently dealing with (which is the head of the queue)
-        ++p;
-
-        // keep on looking until we have found required condition or
-        // reached the end
-        while (!(got_more_hits &&
-                 (got_bank_conflict || pageMgmt == Enums::close_adaptive)) &&
-               p != queue.end()) {
-            bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
-                (dram_pkt->bank == (*p)->bank);
-            bool same_row = dram_pkt->row == (*p)->row;
-            got_more_hits |= same_rank_bank && same_row;
-            got_bank_conflict |= same_rank_bank && !same_row;
-            ++p;
+        const std::vector<DRAMPacketQueue>& queue =
+                dram_pkt->isRead() ? readQueue : writeQueue;
+
+        for (uint8_t i = 0; i < numPriorities(); ++i) {
+            auto p = queue[i].begin();
+            // keep on looking until we find a hit or reach the end of the queue
+            // 1) if a hit is found, then both open and close adaptive policies keep
+            // the page open
+            // 2) if no hit is found, got_bank_conflict is set to true if a bank
+            // conflict request is waiting in the queue
+            // 3) make sure we are not considering the packet that we are
+            // currently dealing with
+            while (!got_more_hits && p != queue[i].end()) {
+                if (dram_pkt != (*p)) {
+                    bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
+                                          (dram_pkt->bank == (*p)->bank);
+
+                    bool same_row = dram_pkt->row == (*p)->row;
+                    got_more_hits |= same_rank_bank && same_row;
+                    got_bank_conflict |= same_rank_bank && !same_row;
+                }
+                ++p;
+            }
+
+            if (got_more_hits)
+                break;
         }
 
         // auto pre-charge when either
@@ -1177,104 +1268,144 @@ DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
     }
 
     // DRAMPower trace command to be written
-    std::string mem_cmd = dram_pkt->isRead ? "RD" : "WR";
+    std::string mem_cmd = dram_pkt->isRead() ? "RD" : "WR";
 
     // MemCommand required for DRAMPower library
     MemCommand::cmds command = (mem_cmd == "RD") ? MemCommand::RD :
                                                    MemCommand::WR;
 
+    // Update bus state to reflect when previous command was issued
+    nextBurstAt = cmd_at + tBURST;
+
+    DPRINTF(DRAM, "Access to %lld, ready at %lld next burst at %lld.\n",
+            dram_pkt->addr, dram_pkt->readyTime, nextBurstAt);
+
+    dram_pkt->rankRef.cmdList.push_back(Command(command, dram_pkt->bank,
+                                        cmd_at));
+
+    DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK) -
+            timeStampOffset, mem_cmd, dram_pkt->bank, dram_pkt->rank);
+
     // if this access should use auto-precharge, then we are
-    // closing the row
+    // closing the row after the read/write burst
     if (auto_precharge) {
         // if auto-precharge push a PRE command at the correct tick to the
         // list used by DRAMPower library to calculate power
-        prechargeBank(bank, std::max(curTick(), bank.preAllowedAt));
+        prechargeBank(rank, bank, std::max(curTick(), bank.preAllowedAt));
 
         DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
     }
 
-    // Update bus state
-    busBusyUntil = dram_pkt->readyTime;
-
-    DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n",
-            dram_pkt->addr, dram_pkt->readyTime, busBusyUntil);
-
-    rankPower[dram_pkt->rank].powerlib.doCommand(command, dram_pkt->bank,
-                                                 divCeil(cmd_at, tCK) -
-                                                 timeStampOffset);
-
-    DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK) -
-            timeStampOffset, mem_cmd, dram_pkt->bank, dram_pkt->rank);
-
     // Update the minimum timing between the requests, this is a
     // conservative estimate of when we have to schedule the next
     // request to not introduce any unecessary bubbles. In most cases
     // we will wake up sooner than we have to.
-    nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
+    nextReqTime = nextBurstAt - (tRP + tRCD);
 
     // Update the stats and schedule the next request
-    if (dram_pkt->isRead) {
+    if (dram_pkt->isRead()) {
         ++readsThisTime;
         if (row_hit)
-            readRowHits++;
-        bytesReadDRAM += burstSize;
-        perBankRdBursts[dram_pkt->bankId]++;
+            stats.readRowHits++;
+        stats.bytesReadDRAM += burstSize;
+        stats.perBankRdBursts[dram_pkt->bankId]++;
 
         // Update latency stats
-        totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
-        totBusLat += tBURST;
-        totQLat += cmd_at - dram_pkt->entryTime;
+        stats.totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
+        stats.masterReadTotalLat[dram_pkt->masterId()] +=
+            dram_pkt->readyTime - dram_pkt->entryTime;
+
+        stats.totBusLat += tBURST;
+        stats.totQLat += cmd_at - dram_pkt->entryTime;
+        stats.masterReadBytes[dram_pkt->masterId()] += dram_pkt->size;
     } else {
         ++writesThisTime;
         if (row_hit)
-            writeRowHits++;
-        bytesWritten += burstSize;
-        perBankWrBursts[dram_pkt->bankId]++;
+            stats.writeRowHits++;
+        stats.bytesWritten += burstSize;
+        stats.perBankWrBursts[dram_pkt->bankId]++;
+        stats.masterWriteBytes[dram_pkt->masterId()] += dram_pkt->size;
+        stats.masterWriteTotalLat[dram_pkt->masterId()] +=
+            dram_pkt->readyTime - dram_pkt->entryTime;
     }
 }
 
 void
 DRAMCtrl::processNextReqEvent()
 {
-    // pre-emptively set to false.  Overwrite if in READ_TO_WRITE
-    // or WRITE_TO_READ state
-    bool switched_cmd_type = false;
-    if (busState == READ_TO_WRITE) {
-        DPRINTF(DRAM, "Switching to writes after %d reads with %d reads "
-                "waiting\n", readsThisTime, readQueue.size());
-
-        // sample and reset the read-related stats as we are now
-        // transitioning to writes, and all reads are done
-        rdPerTurnAround.sample(readsThisTime);
-        readsThisTime = 0;
-
-        // now proceed to do the actual writes
-        busState = WRITE;
-        switched_cmd_type = true;
-    } else if (busState == WRITE_TO_READ) {
-        DPRINTF(DRAM, "Switching to reads after %d writes with %d writes "
-                "waiting\n", writesThisTime, writeQueue.size());
-
-        wrPerTurnAround.sample(writesThisTime);
-        writesThisTime = 0;
-
-        busState = READ;
-        switched_cmd_type = true;
-    }
-
-    if (refreshState != REF_IDLE) {
-        // if a refresh waiting for this event loop to finish, then hand
-        // over now, and do not schedule a new nextReqEvent
-        if (refreshState == REF_DRAIN) {
-            DPRINTF(DRAM, "Refresh drain done, now precharging\n");
+    // transition is handled by QoS algorithm if enabled
+    if (turnPolicy) {
+        // select bus state - only done if QoS algorithms are in use
+        busStateNext = selectNextBusState();
+    }
 
-            refreshState = REF_PRE;
+    // detect bus state change
+    bool switched_cmd_type = (busState != busStateNext);
+    // record stats
+    recordTurnaroundStats();
+
+    DPRINTF(DRAM, "QoS Turnarounds selected state %s %s\n",
+            (busState==MemCtrl::READ)?"READ":"WRITE",
+            switched_cmd_type?"[turnaround triggered]":"");
+
+    if (switched_cmd_type) {
+        if (busState == READ) {
+            DPRINTF(DRAM,
+                    "Switching to writes after %d reads with %d reads "
+                    "waiting\n", readsThisTime, totalReadQueueSize);
+            stats.rdPerTurnAround.sample(readsThisTime);
+            readsThisTime = 0;
+        } else {
+            DPRINTF(DRAM,
+                    "Switching to reads after %d writes with %d writes "
+                    "waiting\n", writesThisTime, totalWriteQueueSize);
+            stats.wrPerTurnAround.sample(writesThisTime);
+            writesThisTime = 0;
+        }
+    }
 
-            // hand control back to the refresh event loop
-            schedule(refreshEvent, curTick());
+    // updates current state
+    busState = busStateNext;
+
+    // check ranks for refresh/wakeup - uses busStateNext, so done after turnaround
+    // decisions
+    int busyRanks = 0;
+    for (auto r : ranks) {
+        if (!r->inRefIdleState()) {
+            if (r->pwrState != PWR_SREF) {
+                // rank is busy refreshing
+                DPRINTF(DRAMState, "Rank %d is not available\n", r->rank);
+                busyRanks++;
+
+                // let the rank know that if it was waiting to drain, it
+                // is now done and ready to proceed
+                r->checkDrainDone();
+            }
+
+            // check if we were in self-refresh and haven't started
+            // to transition out
+            if ((r->pwrState == PWR_SREF) && r->inLowPowerState) {
+                DPRINTF(DRAMState, "Rank %d is in self-refresh\n", r->rank);
+                // if we have commands queued to this rank and we don't have
+                // a minimum number of active commands enqueued,
+                // exit self-refresh
+                if (r->forceSelfRefreshExit()) {
+                    DPRINTF(DRAMState, "rank %d was in self refresh and"
+                           " should wake up\n", r->rank);
+                    //wake up from self-refresh
+                    r->scheduleWakeUpEvent(tXS);
+                    // things are brought back into action once a refresh is
+                    // performed after self-refresh
+                    // continue with selection for other ranks
+                }
+            }
         }
+    }
 
-        // let the refresh finish before issuing any further requests
+    if (busyRanks == ranksPerChannel) {
+        // if all ranks are refreshing wait for them to finish
+        // and stall this state machine without taking any further
+        // action, and do not schedule a new nextReqEvent
         return;
     }
 
@@ -1284,20 +1415,26 @@ DRAMCtrl::processNextReqEvent()
         // track if we should switch or not
         bool switch_to_writes = false;
 
-        if (readQueue.empty()) {
+        if (totalReadQueueSize == 0) {
             // In the case there is no read request to go next,
             // trigger writes if we have passed the low threshold (or
             // if we are draining)
-            if (!writeQueue.empty() &&
-                (drainManager || writeQueue.size() > writeLowThreshold)) {
+            if (!(totalWriteQueueSize == 0) &&
+                (drainState() == DrainState::Draining ||
+                 totalWriteQueueSize > writeLowThreshold)) {
 
+                DPRINTF(DRAM, "Switching to writes due to read queue empty\n");
                 switch_to_writes = true;
             } else {
                 // check if we are drained
-                if (respQueue.empty () && drainManager) {
+                // not done draining until in PWR_IDLE state
+                // ensuring all banks are closed and
+                // have exited low power states
+                if (drainState() == DrainState::Draining &&
+                    respQueue.empty() && allRanksDrained()) {
+
                     DPRINTF(Drain, "DRAM controller done draining\n");
-                    drainManager->signalDrainDone();
-                    drainManager = NULL;
+                    signalDrainDone();
                 }
 
                 // nothing to do, not even any point in scheduling an
@@ -1305,32 +1442,62 @@ DRAMCtrl::processNextReqEvent()
                 return;
             }
         } else {
-            // Figure out which read request goes next, and move it to the
-            // front of the read queue
-            chooseNext(readQueue, switched_cmd_type);
-
-            DRAMPacket* dram_pkt = readQueue.front();
-
-            // here we get a bit creative and shift the bus busy time not
-            // just the tWTR, but also a CAS latency to capture the fact
-            // that we are allowed to prepare a new bank, but not issue a
-            // read command until after tWTR, in essence we capture a
-            // bubble on the data bus that is tWTR + tCL
-            if (switched_cmd_type && dram_pkt->rank == activeRank) {
-                busBusyUntil += tWTR + tCL;
+
+            bool read_found = false;
+            DRAMPacketQueue::iterator to_read;
+            uint8_t prio = numPriorities();
+
+            for (auto queue = readQueue.rbegin();
+                 queue != readQueue.rend(); ++queue) {
+
+                prio--;
+
+                DPRINTF(QOS,
+                        "DRAM controller checking READ queue [%d] priority [%d elements]\n",
+                        prio, queue->size());
+
+                // Figure out which read request goes next
+                // If we are changing command type, incorporate the minimum
+                // bus turnaround delay which will be tCS (different rank) case
+                to_read = chooseNext((*queue), switched_cmd_type ? tCS : 0);
+
+                if (to_read != queue->end()) {
+                    // candidate read found
+                    read_found = true;
+                    break;
+                }
             }
 
-            doDRAMAccess(dram_pkt);
+            // if no read to an available rank is found then return
+            // at this point. There could be writes to the available ranks
+            // which are above the required threshold. However, to
+            // avoid adding more complexity to the code, return and wait
+            // for a refresh event to kick things into action again.
+            if (!read_found) {
+                DPRINTF(DRAM, "No Reads Found - exiting\n");
+                return;
+            }
 
-            // At this point we're done dealing with the request
-            readQueue.pop_front();
+            auto dram_pkt = *to_read;
 
+            assert(dram_pkt->rankRef.inRefIdleState());
+
+            doDRAMAccess(dram_pkt);
+
+            // Every respQueue which will generate an event, increment count
+            ++dram_pkt->rankRef.outstandingEvents;
             // sanity check
             assert(dram_pkt->size <= burstSize);
             assert(dram_pkt->readyTime >= curTick());
 
+            // log the response
+            logResponse(MemCtrl::READ, (*to_read)->masterId(),
+                        dram_pkt->qosValue(), dram_pkt->getAddr(), 1,
+                        dram_pkt->readyTime - dram_pkt->entryTime);
+
+
             // Insert into response queue. It will be sent back to the
-            // requestor at its readyTime
+            // requester at its readyTime
             if (respQueue.empty()) {
                 assert(!respondEvent.scheduled());
                 schedule(respondEvent, dram_pkt->readyTime);
@@ -1342,9 +1509,12 @@ DRAMCtrl::processNextReqEvent()
             respQueue.push_back(dram_pkt);
 
             // we have so many writes that we have to transition
-            if (writeQueue.size() > writeHighThreshold) {
+            if (totalWriteQueueSize > writeHighThreshold) {
                 switch_to_writes = true;
             }
+
+            // remove the request from the queue - the iterator is no longer valid .
+            readQueue[dram_pkt->qosValue()].erase(to_read);
         }
 
         // switching to writes, either because the read queue is empty
@@ -1352,169 +1522,415 @@ DRAMCtrl::processNextReqEvent()
         // draining), or because the writes hit the hight threshold
         if (switch_to_writes) {
             // transition to writing
-            busState = READ_TO_WRITE;
+            busStateNext = WRITE;
         }
     } else {
-        chooseNext(writeQueue, switched_cmd_type);
-        DRAMPacket* dram_pkt = writeQueue.front();
-        // sanity check
-        assert(dram_pkt->size <= burstSize);
 
-        // add a bubble to the data bus, as defined by the
-        // tRTW when access is to the same rank as previous burst
-        // Different rank timing is handled with tCS, which is
-        // applied to colAllowedAt
-        if (switched_cmd_type && dram_pkt->rank == activeRank) {
-            busBusyUntil += tRTW;
-        }
+        bool write_found = false;
+        DRAMPacketQueue::iterator to_write;
+        uint8_t prio = numPriorities();
 
-        doDRAMAccess(dram_pkt);
+        for (auto queue = writeQueue.rbegin();
+             queue != writeQueue.rend(); ++queue) {
 
-        writeQueue.pop_front();
-        delete dram_pkt;
+            prio--;
 
-        // If we emptied the write queue, or got sufficiently below the
-        // threshold (using the minWritesPerSwitch as the hysteresis) and
-        // are not draining, or we have reads waiting and have done enough
-        // writes, then switch to reads.
-        if (writeQueue.empty() ||
-            (writeQueue.size() + minWritesPerSwitch < writeLowThreshold &&
-             !drainManager) ||
-            (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
-            // turn the bus back around for reads again
-            busState = WRITE_TO_READ;
+            DPRINTF(QOS,
+                    "DRAM controller checking WRITE queue [%d] priority [%d elements]\n",
+                    prio, queue->size());
 
-            // note that the we switch back to reads also in the idle
-            // case, which eventually will check for any draining and
-            // also pause any further scheduling if there is really
-            // nothing to do
+            // If we are changing command type, incorporate the minimum
+            // bus turnaround delay
+            to_write = chooseNext((*queue),
+                                  switched_cmd_type ? std::min(tRTW, tCS) : 0);
+
+            if (to_write != queue->end()) {
+                write_found = true;
+                break;
+            }
         }
-    }
 
-    schedule(nextReqEvent, std::max(nextReqTime, curTick()));
+        // if there are no writes to a rank that is available to service
+        // requests (i.e. rank is in refresh idle state) are found then
+        // return. There could be reads to the available ranks. However, to
+        // avoid adding more complexity to the code, return at this point and
+        // wait for a refresh event to kick things into action again.
+        if (!write_found) {
+            DPRINTF(DRAM, "No Writes Found - exiting\n");
+            return;
+        }
+
+        auto dram_pkt = *to_write;
+
+        assert(dram_pkt->rankRef.inRefIdleState());
+        // sanity check
+        assert(dram_pkt->size <= burstSize);
+
+        doDRAMAccess(dram_pkt);
+
+        // removed write from queue, decrement count
+        --dram_pkt->rankRef.writeEntries;
+
+        // Schedule write done event to decrement event count
+        // after the readyTime has been reached
+        // Only schedule latest write event to minimize events
+        // required; only need to ensure that final event scheduled covers
+        // the time that writes are outstanding and bus is active
+        // to holdoff power-down entry events
+        if (!dram_pkt->rankRef.writeDoneEvent.scheduled()) {
+            schedule(dram_pkt->rankRef.writeDoneEvent, dram_pkt->readyTime);
+            // New event, increment count
+            ++dram_pkt->rankRef.outstandingEvents;
+
+        } else if (dram_pkt->rankRef.writeDoneEvent.when() <
+                   dram_pkt->readyTime) {
+
+            reschedule(dram_pkt->rankRef.writeDoneEvent, dram_pkt->readyTime);
+        }
+
+        isInWriteQueue.erase(burstAlign(dram_pkt->addr));
+
+        // log the response
+        logResponse(MemCtrl::WRITE, dram_pkt->masterId(),
+                    dram_pkt->qosValue(), dram_pkt->getAddr(), 1,
+                    dram_pkt->readyTime - dram_pkt->entryTime);
+
+
+        // remove the request from the queue - the iterator is no longer valid
+        writeQueue[dram_pkt->qosValue()].erase(to_write);
+
+        delete dram_pkt;
+
+        // If we emptied the write queue, or got sufficiently below the
+        // threshold (using the minWritesPerSwitch as the hysteresis) and
+        // are not draining, or we have reads waiting and have done enough
+        // writes, then switch to reads.
+        bool below_threshold =
+            totalWriteQueueSize + minWritesPerSwitch < writeLowThreshold;
+
+        if (totalWriteQueueSize == 0 ||
+            (below_threshold && drainState() != DrainState::Draining) ||
+            (totalReadQueueSize && writesThisTime >= minWritesPerSwitch)) {
+
+            // turn the bus back around for reads again
+            busStateNext = READ;
+
+            // note that the we switch back to reads also in the idle
+            // case, which eventually will check for any draining and
+            // also pause any further scheduling if there is really
+            // nothing to do
+        }
+    }
+    // It is possible that a refresh to another rank kicks things back into
+    // action before reaching this point.
+    if (!nextReqEvent.scheduled())
+        schedule(nextReqEvent, std::max(nextReqTime, curTick()));
 
     // If there is space available and we have writes waiting then let
     // them retry. This is done here to ensure that the retry does not
     // cause a nextReqEvent to be scheduled before we do so as part of
     // the next request processing
-    if (retryWrReq && writeQueue.size() < writeBufferSize) {
+    if (retryWrReq && totalWriteQueueSize < writeBufferSize) {
         retryWrReq = false;
-        port.sendRetry();
+        port.sendRetryReq();
     }
 }
 
-uint64_t
-DRAMCtrl::minBankPrep(const deque<DRAMPacket*>& queue,
-                      bool switched_cmd_type) const
+pair<vector<uint32_t>, bool>
+DRAMCtrl::minBankPrep(const DRAMPacketQueue& queue,
+                      Tick min_col_at) const
 {
-    uint64_t bank_mask = 0;
     Tick min_act_at = MaxTick;
+    vector<uint32_t> bank_mask(ranksPerChannel, 0);
 
-    uint64_t bank_mask_same_rank = 0;
-    Tick min_act_at_same_rank = MaxTick;
+    // latest Tick for which ACT can occur without incurring additoinal
+    // delay on the data bus
+    const Tick hidden_act_max = std::max(min_col_at - tRCD, curTick());
 
-    // Give precedence to commands that access same rank as previous command
-    bool same_rank_match = false;
+    // Flag condition when burst can issue back-to-back with previous burst
+    bool found_seamless_bank = false;
+
+    // Flag condition when bank can be opened without incurring additional
+    // delay on the data bus
+    bool hidden_bank_prep = false;
 
     // determine if we have queued transactions targetting the
     // bank in question
     vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
-    for (auto p = queue.begin(); p != queue.end(); ++p) {
-        got_waiting[(*p)->bankId] = true;
+    for (const auto& p : queue) {
+        if (p->rankRef.inRefIdleState())
+            got_waiting[p->bankId] = true;
     }
 
+    // Find command with optimal bank timing
+    // Will prioritize commands that can issue seamlessly.
     for (int i = 0; i < ranksPerChannel; i++) {
         for (int j = 0; j < banksPerRank; j++) {
-            uint8_t bank_id = i * banksPerRank + j;
+            uint16_t bank_id = i * banksPerRank + j;
 
             // if we have waiting requests for the bank, and it is
             // amongst the first available, update the mask
             if (got_waiting[bank_id]) {
+                // make sure this rank is not currently refreshing.
+                assert(ranks[i]->inRefIdleState());
                 // simplistic approximation of when the bank can issue
                 // an activate, ignoring any rank-to-rank switching
                 // cost in this calculation
-                Tick act_at = banks[i][j].openRow == Bank::NO_ROW ?
-                    banks[i][j].actAllowedAt :
-                    std::max(banks[i][j].preAllowedAt, curTick()) + tRP;
-
-                // prioritize commands that access the
-                // same rank as previous burst
-                // Calculate bank mask separately for the case and
-                // evaluate after loop iterations complete
-                if (i == activeRank && ranksPerChannel > 1) {
-                    if (act_at <= min_act_at_same_rank) {
-                        // reset same rank bank mask if new minimum is found
-                        // and previous minimum could not immediately send ACT
-                        if (act_at < min_act_at_same_rank &&
-                            min_act_at_same_rank > curTick())
-                            bank_mask_same_rank = 0;
-
-                        // Set flag indicating that a same rank
-                        // opportunity was found
-                        same_rank_match = true;
-
-                        // set the bit corresponding to the available bank
-                        replaceBits(bank_mask_same_rank, bank_id, bank_id, 1);
-                        min_act_at_same_rank = act_at;
-                    }
-                } else {
-                    if (act_at <= min_act_at) {
-                        // reset bank mask if new minimum is found
-                        // and either previous minimum could not immediately send ACT
-                        if (act_at < min_act_at && min_act_at > curTick())
-                            bank_mask = 0;
-                        // set the bit corresponding to the available bank
-                        replaceBits(bank_mask, bank_id, bank_id, 1);
-                        min_act_at = act_at;
+                Tick act_at = ranks[i]->banks[j].openRow == Bank::NO_ROW ?
+                    std::max(ranks[i]->banks[j].actAllowedAt, curTick()) :
+                    std::max(ranks[i]->banks[j].preAllowedAt, curTick()) + tRP;
+
+                // When is the earliest the R/W burst can issue?
+                const Tick col_allowed_at = (busState == READ) ?
+                                              ranks[i]->banks[j].rdAllowedAt :
+                                              ranks[i]->banks[j].wrAllowedAt;
+                Tick col_at = std::max(col_allowed_at, act_at + tRCD);
+
+                // bank can issue burst back-to-back (seamlessly) with
+                // previous burst
+                bool new_seamless_bank = col_at <= min_col_at;
+
+                // if we found a new seamless bank or we have no
+                // seamless banks, and got a bank with an earlier
+                // activate time, it should be added to the bit mask
+                if (new_seamless_bank ||
+                    (!found_seamless_bank && act_at <= min_act_at)) {
+                    // if we did not have a seamless bank before, and
+                    // we do now, reset the bank mask, also reset it
+                    // if we have not yet found a seamless bank and
+                    // the activate time is smaller than what we have
+                    // seen so far
+                    if (!found_seamless_bank &&
+                        (new_seamless_bank || act_at < min_act_at)) {
+                        std::fill(bank_mask.begin(), bank_mask.end(), 0);
                     }
+
+                    found_seamless_bank |= new_seamless_bank;
+
+                    // ACT can occur 'behind the scenes'
+                    hidden_bank_prep = act_at <= hidden_act_max;
+
+                    // set the bit corresponding to the available bank
+                    replaceBits(bank_mask[i], j, j, 1);
+                    min_act_at = act_at;
                 }
             }
         }
     }
 
-    // Determine the earliest time when the next burst can issue based
-    // on the current busBusyUntil delay.
-    // Offset by tRCD to correlate with ACT timing variables
-    Tick min_cmd_at = busBusyUntil - tCL - tRCD;
+    return make_pair(bank_mask, hidden_bank_prep);
+}
 
-    // Prioritize same rank accesses that can issue B2B
-    // Only optimize for same ranks when the command type
-    // does not change; do not want to unnecessarily incur tWTR
-    //
-    // Resulting FCFS prioritization Order is:
-    // 1) Commands that access the same rank as previous burst
-    //    and can prep the bank seamlessly.
-    // 2) Commands (any rank) with earliest bank prep
-    if (!switched_cmd_type && same_rank_match &&
-        min_act_at_same_rank <= min_cmd_at) {
-        bank_mask = bank_mask_same_rank;
+DRAMCtrl::Rank::Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p, int rank)
+    : EventManager(&_memory), memory(_memory),
+      pwrStateTrans(PWR_IDLE), pwrStatePostRefresh(PWR_IDLE),
+      pwrStateTick(0), refreshDueAt(0), pwrState(PWR_IDLE),
+      refreshState(REF_IDLE), inLowPowerState(false), rank(rank),
+      readEntries(0), writeEntries(0), outstandingEvents(0),
+      wakeUpAllowedAt(0), power(_p, false), banks(_p->banks_per_rank),
+      numBanksActive(0), actTicks(_p->activation_limit, 0),
+      writeDoneEvent([this]{ processWriteDoneEvent(); }, name()),
+      activateEvent([this]{ processActivateEvent(); }, name()),
+      prechargeEvent([this]{ processPrechargeEvent(); }, name()),
+      refreshEvent([this]{ processRefreshEvent(); }, name()),
+      powerEvent([this]{ processPowerEvent(); }, name()),
+      wakeUpEvent([this]{ processWakeUpEvent(); }, name()),
+      stats(_memory, *this)
+{
+    for (int b = 0; b < _p->banks_per_rank; b++) {
+        banks[b].bank = b;
+        // GDDR addressing of banks to BG is linear.
+        // Here we assume that all DRAM generations address bank groups as
+        // follows:
+        if (_p->bank_groups_per_rank > 0) {
+            // Simply assign lower bits to bank group in order to
+            // rotate across bank groups as banks are incremented
+            // e.g. with 4 banks per bank group and 16 banks total:
+            //    banks 0,4,8,12  are in bank group 0
+            //    banks 1,5,9,13  are in bank group 1
+            //    banks 2,6,10,14 are in bank group 2
+            //    banks 3,7,11,15 are in bank group 3
+            banks[b].bankgr = b % _p->bank_groups_per_rank;
+        } else {
+            // No bank groups; simply assign to bank number
+            banks[b].bankgr = b;
+        }
     }
+}
+
+void
+DRAMCtrl::Rank::startup(Tick ref_tick)
+{
+    assert(ref_tick > curTick());
+
+    pwrStateTick = curTick();
+
+    // kick off the refresh, and give ourselves enough time to
+    // precharge
+    schedule(refreshEvent, ref_tick);
+}
 
-    return bank_mask;
+void
+DRAMCtrl::Rank::suspend()
+{
+    deschedule(refreshEvent);
+
+    // Update the stats
+    updatePowerStats();
+
+    // don't automatically transition back to LP state after next REF
+    pwrStatePostRefresh = PWR_IDLE;
+}
+
+bool
+DRAMCtrl::Rank::isQueueEmpty() const
+{
+    // check commmands in Q based on current bus direction
+    bool no_queued_cmds = ((memory.busStateNext == READ) && (readEntries == 0))
+                          || ((memory.busStateNext == WRITE) &&
+                              (writeEntries == 0));
+    return no_queued_cmds;
+}
+
+void
+DRAMCtrl::Rank::checkDrainDone()
+{
+    // if this rank was waiting to drain it is now able to proceed to
+    // precharge
+    if (refreshState == REF_DRAIN) {
+        DPRINTF(DRAM, "Refresh drain done, now precharging\n");
+
+        refreshState = REF_PD_EXIT;
+
+        // hand control back to the refresh event loop
+        schedule(refreshEvent, curTick());
+    }
 }
 
 void
-DRAMCtrl::processRefreshEvent()
+DRAMCtrl::Rank::flushCmdList()
+{
+    // at the moment sort the list of commands and update the counters
+    // for DRAMPower libray when doing a refresh
+    sort(cmdList.begin(), cmdList.end(), DRAMCtrl::sortTime);
+
+    auto next_iter = cmdList.begin();
+    // push to commands to DRAMPower
+    for ( ; next_iter != cmdList.end() ; ++next_iter) {
+         Command cmd = *next_iter;
+         if (cmd.timeStamp <= curTick()) {
+             // Move all commands at or before curTick to DRAMPower
+             power.powerlib.doCommand(cmd.type, cmd.bank,
+                                      divCeil(cmd.timeStamp, memory.tCK) -
+                                      memory.timeStampOffset);
+         } else {
+             // done - found all commands at or before curTick()
+             // next_iter references the 1st command after curTick
+             break;
+         }
+    }
+    // reset cmdList to only contain commands after curTick
+    // if there are no commands after curTick, updated cmdList will be empty
+    // in this case, next_iter is cmdList.end()
+    cmdList.assign(next_iter, cmdList.end());
+}
+
+void
+DRAMCtrl::Rank::processActivateEvent()
+{
+    // we should transition to the active state as soon as any bank is active
+    if (pwrState != PWR_ACT)
+        // note that at this point numBanksActive could be back at
+        // zero again due to a precharge scheduled in the future
+        schedulePowerEvent(PWR_ACT, curTick());
+}
+
+void
+DRAMCtrl::Rank::processPrechargeEvent()
+{
+    // counter should at least indicate one outstanding request
+    // for this precharge
+    assert(outstandingEvents > 0);
+    // precharge complete, decrement count
+    --outstandingEvents;
+
+    // if we reached zero, then special conditions apply as we track
+    // if all banks are precharged for the power models
+    if (numBanksActive == 0) {
+        // no reads to this rank in the Q and no pending
+        // RD/WR or refresh commands
+        if (isQueueEmpty() && outstandingEvents == 0 &&
+            memory.enableDRAMPowerdown) {
+            // should still be in ACT state since bank still open
+            assert(pwrState == PWR_ACT);
+
+            // All banks closed - switch to precharge power down state.
+            DPRINTF(DRAMState, "Rank %d sleep at tick %d\n",
+                    rank, curTick());
+            powerDownSleep(PWR_PRE_PDN, curTick());
+        } else {
+            // we should transition to the idle state when the last bank
+            // is precharged
+            schedulePowerEvent(PWR_IDLE, curTick());
+        }
+    }
+}
+
+void
+DRAMCtrl::Rank::processWriteDoneEvent()
+{
+    // counter should at least indicate one outstanding request
+    // for this write
+    assert(outstandingEvents > 0);
+    // Write transfer on bus has completed
+    // decrement per rank counter
+    --outstandingEvents;
+}
+
+void
+DRAMCtrl::Rank::processRefreshEvent()
 {
     // when first preparing the refresh, remember when it was due
-    if (refreshState == REF_IDLE) {
+    if ((refreshState == REF_IDLE) || (refreshState == REF_SREF_EXIT)) {
         // remember when the refresh is due
         refreshDueAt = curTick();
 
         // proceed to drain
         refreshState = REF_DRAIN;
 
+        // make nonzero while refresh is pending to ensure
+        // power down and self-refresh are not entered
+        ++outstandingEvents;
+
         DPRINTF(DRAM, "Refresh due\n");
     }
 
-    // let any scheduled read or write go ahead, after which it will
+    // let any scheduled read or write to the same rank go ahead,
+    // after which it will
     // hand control back to this event loop
     if (refreshState == REF_DRAIN) {
-        if (nextReqEvent.scheduled()) {
+        // if a request is at the moment being handled and this request is
+        // accessing the current rank then wait for it to finish
+        if ((rank == memory.activeRank)
+            && (memory.nextReqEvent.scheduled())) {
             // hand control over to the request loop until it is
             // evaluated next
             DPRINTF(DRAM, "Refresh awaiting draining\n");
 
+            return;
+        } else {
+            refreshState = REF_PD_EXIT;
+        }
+    }
+
+    // at this point, ensure that rank is not in a power-down state
+    if (refreshState == REF_PD_EXIT) {
+        // if rank was sleeping and we have't started exit process,
+        // wake-up for refresh
+        if (inLowPowerState) {
+            DPRINTF(DRAM, "Wake Up for refresh\n");
+            // save state and return after refresh completes
+            scheduleWakeUpEvent(memory.tXP);
             return;
         } else {
             refreshState = REF_PRE;
@@ -1523,57 +1939,57 @@ DRAMCtrl::processRefreshEvent()
 
     // at this point, ensure that all banks are precharged
     if (refreshState == REF_PRE) {
-        // precharge any active bank if we are not already in the idle
-        // state
-        if (pwrState != PWR_IDLE) {
+        // precharge any active bank
+        if (numBanksActive != 0) {
             // at the moment, we use a precharge all even if there is
             // only a single bank open
             DPRINTF(DRAM, "Precharging all\n");
 
             // first determine when we can precharge
             Tick pre_at = curTick();
-            for (int i = 0; i < ranksPerChannel; i++) {
-                for (int j = 0; j < banksPerRank; j++) {
-                    // respect both causality and any existing bank
-                    // constraints, some banks could already have a
-                    // (auto) precharge scheduled
-                    pre_at = std::max(banks[i][j].preAllowedAt, pre_at);
-                }
+
+            for (auto &b : banks) {
+                // respect both causality and any existing bank
+                // constraints, some banks could already have a
+                // (auto) precharge scheduled
+                pre_at = std::max(b.preAllowedAt, pre_at);
             }
 
-            // make sure all banks are precharged, and for those that
+            // make sure all banks per rank are precharged, and for those that
             // already are, update their availability
-            Tick act_allowed_at = pre_at + tRP;
-
-            for (int i = 0; i < ranksPerChannel; i++) {
-                for (int j = 0; j < banksPerRank; j++) {
-                    if (banks[i][j].openRow != Bank::NO_ROW) {
-                        prechargeBank(banks[i][j], pre_at, false);
-                    } else {
-                        banks[i][j].actAllowedAt =
-                            std::max(banks[i][j].actAllowedAt, act_allowed_at);
-                        banks[i][j].preAllowedAt =
-                            std::max(banks[i][j].preAllowedAt, pre_at);
-                    }
+            Tick act_allowed_at = pre_at + memory.tRP;
+
+            for (auto &b : banks) {
+                if (b.openRow != Bank::NO_ROW) {
+                    memory.prechargeBank(*this, b, pre_at, false);
+                } else {
+                    b.actAllowedAt = std::max(b.actAllowedAt, act_allowed_at);
+                    b.preAllowedAt = std::max(b.preAllowedAt, pre_at);
                 }
+            }
 
-                // at the moment this affects all ranks
-                rankPower[i].powerlib.doCommand(MemCommand::PREA, 0,
-                                                divCeil(pre_at, tCK) -
-                                                timeStampOffset);
+            // precharge all banks in rank
+            cmdList.push_back(Command(MemCommand::PREA, 0, pre_at));
 
-                DPRINTF(DRAMPower, "%llu,PREA,0,%d\n", divCeil(pre_at, tCK) -
-                        timeStampOffset, i);
-            }
-        } else {
+            DPRINTF(DRAMPower, "%llu,PREA,0,%d\n",
+                    divCeil(pre_at, memory.tCK) -
+                            memory.timeStampOffset, rank);
+        } else if ((pwrState == PWR_IDLE) && (outstandingEvents == 1))  {
+            // Banks are closed, have transitioned to IDLE state, and
+            // no outstanding ACT,RD/WR,Auto-PRE sequence scheduled
             DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
 
-            // go ahead and kick the power state machine into gear if
+            // go ahead and kick the power state machine into gear since
             // we are already idle
             schedulePowerEvent(PWR_REF, curTick());
+        } else {
+            // banks state is closed but haven't transitioned pwrState to IDLE
+            // or have outstanding ACT,RD/WR,Auto-PRE sequence scheduled
+            // should have outstanding precharge event in this case
+            assert(prechargeEvent.scheduled());
+            // will start refresh when pwrState transitions to IDLE
         }
 
-        refreshState = REF_RUN;
         assert(numBanksActive == 0);
 
         // wait for all banks to be precharged, at which point the
@@ -1584,72 +2000,97 @@ DRAMCtrl::processRefreshEvent()
     }
 
     // last but not least we perform the actual refresh
-    if (refreshState == REF_RUN) {
+    if (refreshState == REF_START) {
         // should never get here with any banks active
         assert(numBanksActive == 0);
         assert(pwrState == PWR_REF);
 
-        Tick ref_done_at = curTick() + tRFC;
-
-        for (int i = 0; i < ranksPerChannel; i++) {
-            for (int j = 0; j < banksPerRank; j++) {
-                banks[i][j].actAllowedAt = ref_done_at;
-            }
+        Tick ref_done_at = curTick() + memory.tRFC;
 
-            // at the moment this affects all ranks
-            rankPower[i].powerlib.doCommand(MemCommand::REF, 0,
-                                            divCeil(curTick(), tCK) -
-                                            timeStampOffset);
-
-            // at the moment sort the list of commands and update the counters
-            // for DRAMPower libray when doing a refresh
-            sort(rankPower[i].powerlib.cmdList.begin(),
-                 rankPower[i].powerlib.cmdList.end(), DRAMCtrl::sortTime);
-
-            // update the counters for DRAMPower, passing false to
-            // indicate that this is not the last command in the
-            // list. DRAMPower requires this information for the
-            // correct calculation of the background energy at the end
-            // of the simulation. Ideally we would want to call this
-            // function with true once at the end of the
-            // simulation. However, the discarded energy is extremly
-            // small and does not effect the final results.
-            rankPower[i].powerlib.updateCounters(false);
-
-            // call the energy function
-            rankPower[i].powerlib.calcEnergy();
-
-            // Update the stats
-            updatePowerStats(i);
-
-            DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), tCK) -
-                    timeStampOffset, i);
+        for (auto &b : banks) {
+            b.actAllowedAt = ref_done_at;
         }
 
+        // at the moment this affects all ranks
+        cmdList.push_back(Command(MemCommand::REF, 0, curTick()));
+
+        // Update the stats
+        updatePowerStats();
+
+        DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), memory.tCK) -
+                memory.timeStampOffset, rank);
+
+        // Update for next refresh
+        refreshDueAt += memory.tREFI;
+
         // make sure we did not wait so long that we cannot make up
         // for it
-        if (refreshDueAt + tREFI < ref_done_at) {
+        if (refreshDueAt < ref_done_at) {
             fatal("Refresh was delayed so long we cannot catch up\n");
         }
 
-        // compensate for the delay in actually performing the refresh
-        // when scheduling the next one
-        schedule(refreshEvent, refreshDueAt + tREFI - tRP);
+        // Run the refresh and schedule event to transition power states
+        // when refresh completes
+        refreshState = REF_RUN;
+        schedule(refreshEvent, ref_done_at);
+        return;
+    }
+
+    if (refreshState == REF_RUN) {
+        // should never get here with any banks active
+        assert(numBanksActive == 0);
+        assert(pwrState == PWR_REF);
 
         assert(!powerEvent.scheduled());
 
-        // move to the idle power state once the refresh is done, this
-        // will also move the refresh state machine to the refresh
-        // idle state
-        schedulePowerEvent(PWR_IDLE, ref_done_at);
+        if ((memory.drainState() == DrainState::Draining) ||
+            (memory.drainState() == DrainState::Drained)) {
+            // if draining, do not re-enter low-power mode.
+            // simply go to IDLE and wait
+            schedulePowerEvent(PWR_IDLE, curTick());
+        } else {
+            // At the moment, we sleep when the refresh ends and wait to be
+            // woken up again if previously in a low-power state.
+            if (pwrStatePostRefresh != PWR_IDLE) {
+                // power State should be power Refresh
+                assert(pwrState == PWR_REF);
+                DPRINTF(DRAMState, "Rank %d sleeping after refresh and was in "
+                        "power state %d before refreshing\n", rank,
+                        pwrStatePostRefresh);
+                powerDownSleep(pwrState, curTick());
+
+            // Force PRE power-down if there are no outstanding commands
+            // in Q after refresh.
+            } else if (isQueueEmpty() && memory.enableDRAMPowerdown) {
+                // still have refresh event outstanding but there should
+                // be no other events outstanding
+                assert(outstandingEvents == 1);
+                DPRINTF(DRAMState, "Rank %d sleeping after refresh but was NOT"
+                        " in a low power state before refreshing\n", rank);
+                powerDownSleep(PWR_PRE_PDN, curTick());
 
-        DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n",
-                ref_done_at, refreshDueAt + tREFI);
+            } else {
+                // move to the idle power state once the refresh is done, this
+                // will also move the refresh state machine to the refresh
+                // idle state
+                schedulePowerEvent(PWR_IDLE, curTick());
+            }
+        }
+
+        // At this point, we have completed the current refresh.
+        // In the SREF bypass case, we do not get to this state in the
+        // refresh STM and therefore can always schedule next event.
+        // Compensate for the delay in actually performing the refresh
+        // when scheduling the next one
+        schedule(refreshEvent, refreshDueAt - memory.tRP);
+
+        DPRINTF(DRAMState, "Refresh done at %llu and next refresh"
+                " at %llu\n", curTick(), refreshDueAt);
     }
 }
 
 void
-DRAMCtrl::schedulePowerEvent(PowerState pwr_state, Tick tick)
+DRAMCtrl::Rank::schedulePowerEvent(PowerState pwr_state, Tick tick)
 {
     // respect causality
     assert(tick >= curTick());
@@ -1670,388 +2111,623 @@ DRAMCtrl::schedulePowerEvent(PowerState pwr_state, Tick tick)
 }
 
 void
-DRAMCtrl::processPowerEvent()
+DRAMCtrl::Rank::powerDownSleep(PowerState pwr_state, Tick tick)
+{
+    // if low power state is active low, schedule to active low power state.
+    // in reality tCKE is needed to enter active low power. This is neglected
+    // here and could be added in the future.
+    if (pwr_state == PWR_ACT_PDN) {
+        schedulePowerEvent(pwr_state, tick);
+        // push command to DRAMPower
+        cmdList.push_back(Command(MemCommand::PDN_F_ACT, 0, tick));
+        DPRINTF(DRAMPower, "%llu,PDN_F_ACT,0,%d\n", divCeil(tick,
+                memory.tCK) - memory.timeStampOffset, rank);
+    } else if (pwr_state == PWR_PRE_PDN) {
+        // if low power state is precharge low, schedule to precharge low
+        // power state. In reality tCKE is needed to enter active low power.
+        // This is neglected here.
+        schedulePowerEvent(pwr_state, tick);
+        //push Command to DRAMPower
+        cmdList.push_back(Command(MemCommand::PDN_F_PRE, 0, tick));
+        DPRINTF(DRAMPower, "%llu,PDN_F_PRE,0,%d\n", divCeil(tick,
+                memory.tCK) - memory.timeStampOffset, rank);
+    } else if (pwr_state == PWR_REF) {
+        // if a refresh just occurred
+        // transition to PRE_PDN now that all banks are closed
+        // precharge power down requires tCKE to enter. For simplicity
+        // this is not considered.
+        schedulePowerEvent(PWR_PRE_PDN, tick);
+        //push Command to DRAMPower
+        cmdList.push_back(Command(MemCommand::PDN_F_PRE, 0, tick));
+        DPRINTF(DRAMPower, "%llu,PDN_F_PRE,0,%d\n", divCeil(tick,
+                memory.tCK) - memory.timeStampOffset, rank);
+    } else if (pwr_state == PWR_SREF) {
+        // should only enter SREF after PRE-PD wakeup to do a refresh
+        assert(pwrStatePostRefresh == PWR_PRE_PDN);
+        // self refresh requires time tCKESR to enter. For simplicity,
+        // this is not considered.
+        schedulePowerEvent(PWR_SREF, tick);
+        // push Command to DRAMPower
+        cmdList.push_back(Command(MemCommand::SREN, 0, tick));
+        DPRINTF(DRAMPower, "%llu,SREN,0,%d\n", divCeil(tick,
+                memory.tCK) - memory.timeStampOffset, rank);
+    }
+    // Ensure that we don't power-down and back up in same tick
+    // Once we commit to PD entry, do it and wait for at least 1tCK
+    // This could be replaced with tCKE if/when that is added to the model
+    wakeUpAllowedAt = tick + memory.tCK;
+
+    // Transitioning to a low power state, set flag
+    inLowPowerState = true;
+}
+
+void
+DRAMCtrl::Rank::scheduleWakeUpEvent(Tick exit_delay)
+{
+    Tick wake_up_tick = std::max(curTick(), wakeUpAllowedAt);
+
+    DPRINTF(DRAMState, "Scheduling wake-up for rank %d at tick %d\n",
+            rank, wake_up_tick);
+
+    // if waking for refresh, hold previous state
+    // else reset state back to IDLE
+    if (refreshState == REF_PD_EXIT) {
+        pwrStatePostRefresh = pwrState;
+    } else {
+        // don't automatically transition back to LP state after next REF
+        pwrStatePostRefresh = PWR_IDLE;
+    }
+
+    // schedule wake-up with event to ensure entry has completed before
+    // we try to wake-up
+    schedule(wakeUpEvent, wake_up_tick);
+
+    for (auto &b : banks) {
+        // respect both causality and any existing bank
+        // constraints, some banks could already have a
+        // (auto) precharge scheduled
+        b.wrAllowedAt = std::max(wake_up_tick + exit_delay, b.wrAllowedAt);
+        b.rdAllowedAt = std::max(wake_up_tick + exit_delay, b.rdAllowedAt);
+        b.preAllowedAt = std::max(wake_up_tick + exit_delay, b.preAllowedAt);
+        b.actAllowedAt = std::max(wake_up_tick + exit_delay, b.actAllowedAt);
+    }
+    // Transitioning out of low power state, clear flag
+    inLowPowerState = false;
+
+    // push to DRAMPower
+    // use pwrStateTrans for cases where we have a power event scheduled
+    // to enter low power that has not yet been processed
+    if (pwrStateTrans == PWR_ACT_PDN) {
+        cmdList.push_back(Command(MemCommand::PUP_ACT, 0, wake_up_tick));
+        DPRINTF(DRAMPower, "%llu,PUP_ACT,0,%d\n", divCeil(wake_up_tick,
+                memory.tCK) - memory.timeStampOffset, rank);
+
+    } else if (pwrStateTrans == PWR_PRE_PDN) {
+        cmdList.push_back(Command(MemCommand::PUP_PRE, 0, wake_up_tick));
+        DPRINTF(DRAMPower, "%llu,PUP_PRE,0,%d\n", divCeil(wake_up_tick,
+                memory.tCK) - memory.timeStampOffset, rank);
+    } else if (pwrStateTrans == PWR_SREF) {
+        cmdList.push_back(Command(MemCommand::SREX, 0, wake_up_tick));
+        DPRINTF(DRAMPower, "%llu,SREX,0,%d\n", divCeil(wake_up_tick,
+                memory.tCK) - memory.timeStampOffset, rank);
+    }
+}
+
+void
+DRAMCtrl::Rank::processWakeUpEvent()
+{
+    // Should be in a power-down or self-refresh state
+    assert((pwrState == PWR_ACT_PDN) || (pwrState == PWR_PRE_PDN) ||
+           (pwrState == PWR_SREF));
+
+    // Check current state to determine transition state
+    if (pwrState == PWR_ACT_PDN) {
+        // banks still open, transition to PWR_ACT
+        schedulePowerEvent(PWR_ACT, curTick());
+    } else {
+        // transitioning from a precharge power-down or self-refresh state
+        // banks are closed - transition to PWR_IDLE
+        schedulePowerEvent(PWR_IDLE, curTick());
+    }
+}
+
+void
+DRAMCtrl::Rank::processPowerEvent()
 {
+    assert(curTick() >= pwrStateTick);
     // remember where we were, and for how long
     Tick duration = curTick() - pwrStateTick;
     PowerState prev_state = pwrState;
 
     // update the accounting
-    pwrStateTime[prev_state] += duration;
+    stats.memoryStateTime[prev_state] += duration;
+
+    // track to total idle time
+    if ((prev_state == PWR_PRE_PDN) || (prev_state == PWR_ACT_PDN) ||
+        (prev_state == PWR_SREF)) {
+        stats.totalIdleTime += duration;
+    }
 
     pwrState = pwrStateTrans;
     pwrStateTick = curTick();
 
-    if (pwrState == PWR_IDLE) {
-        DPRINTF(DRAMState, "All banks precharged\n");
+    // if rank was refreshing, make sure to start scheduling requests again
+    if (prev_state == PWR_REF) {
+        // bus IDLED prior to REF
+        // counter should be one for refresh command only
+        assert(outstandingEvents == 1);
+        // REF complete, decrement count and go back to IDLE
+        --outstandingEvents;
+        refreshState = REF_IDLE;
+
+        DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
+        // if moving back to power-down after refresh
+        if (pwrState != PWR_IDLE) {
+            assert(pwrState == PWR_PRE_PDN);
+            DPRINTF(DRAMState, "Switching to power down state after refreshing"
+                    " rank %d at %llu tick\n", rank, curTick());
+        }
 
-        // if we were refreshing, make sure we start scheduling requests again
-        if (prev_state == PWR_REF) {
-            DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
-            assert(pwrState == PWR_IDLE);
+        // completed refresh event, ensure next request is scheduled
+        if (!memory.nextReqEvent.scheduled()) {
+            DPRINTF(DRAM, "Scheduling next request after refreshing"
+                           " rank %d\n", rank);
+            schedule(memory.nextReqEvent, curTick());
+        }
+    }
 
-            // kick things into action again
-            refreshState = REF_IDLE;
-            assert(!nextReqEvent.scheduled());
-            schedule(nextReqEvent, curTick());
-        } else {
-            assert(prev_state == PWR_ACT);
+    if ((pwrState == PWR_ACT) && (refreshState == REF_PD_EXIT)) {
+        // have exited ACT PD
+        assert(prev_state == PWR_ACT_PDN);
 
+        // go back to REF event and close banks
+        refreshState = REF_PRE;
+        schedule(refreshEvent, curTick());
+    } else if (pwrState == PWR_IDLE) {
+        DPRINTF(DRAMState, "All banks precharged\n");
+        if (prev_state == PWR_SREF) {
+            // set refresh state to REF_SREF_EXIT, ensuring inRefIdleState
+            // continues to return false during tXS after SREF exit
+            // Schedule a refresh which kicks things back into action
+            // when it finishes
+            refreshState = REF_SREF_EXIT;
+            schedule(refreshEvent, curTick() + memory.tXS);
+        } else {
             // if we have a pending refresh, and are now moving to
-            // the idle state, direclty transition to a refresh
-            if (refreshState == REF_RUN) {
-                // there should be nothing waiting at this point
-                assert(!powerEvent.scheduled());
-
-                // update the state in zero time and proceed below
-                pwrState = PWR_REF;
+            // the idle state, directly transition to, or schedule refresh
+            if ((refreshState == REF_PRE) || (refreshState == REF_PD_EXIT)) {
+                // ensure refresh is restarted only after final PRE command.
+                // do not restart refresh if controller is in an intermediate
+                // state, after PRE_PDN exit, when banks are IDLE but an
+                // ACT is scheduled.
+                if (!activateEvent.scheduled()) {
+                    // there should be nothing waiting at this point
+                    assert(!powerEvent.scheduled());
+                    if (refreshState == REF_PD_EXIT) {
+                        // exiting PRE PD, will be in IDLE until tXP expires
+                        // and then should transition to PWR_REF state
+                        assert(prev_state == PWR_PRE_PDN);
+                        schedulePowerEvent(PWR_REF, curTick() + memory.tXP);
+                    } else if (refreshState == REF_PRE) {
+                        // can directly move to PWR_REF state and proceed below
+                        pwrState = PWR_REF;
+                    }
+                } else {
+                    // must have PRE scheduled to transition back to IDLE
+                    // and re-kick off refresh
+                    assert(prechargeEvent.scheduled());
+                }
             }
         }
     }
 
-    // we transition to the refresh state, let the refresh state
-    // machine know of this state update and let it deal with the
-    // scheduling of the next power state transition as well as the
-    // following refresh
+    // transition to the refresh state and re-start refresh process
+    // refresh state machine will schedule the next power state transition
     if (pwrState == PWR_REF) {
-        DPRINTF(DRAMState, "Refreshing\n");
-        // kick the refresh event loop into action again, and that
-        // in turn will schedule a transition to the idle power
-        // state once the refresh is done
-        assert(refreshState == REF_RUN);
-        processRefreshEvent();
+        // completed final PRE for refresh or exiting power-down
+        assert(refreshState == REF_PRE || refreshState == REF_PD_EXIT);
+
+        // exited PRE PD for refresh, with no pending commands
+        // bypass auto-refresh and go straight to SREF, where memory
+        // will issue refresh immediately upon entry
+        if (pwrStatePostRefresh == PWR_PRE_PDN && isQueueEmpty() &&
+           (memory.drainState() != DrainState::Draining) &&
+           (memory.drainState() != DrainState::Drained) &&
+           memory.enableDRAMPowerdown) {
+            DPRINTF(DRAMState, "Rank %d bypassing refresh and transitioning "
+                    "to self refresh at %11u tick\n", rank, curTick());
+            powerDownSleep(PWR_SREF, curTick());
+
+            // Since refresh was bypassed, remove event by decrementing count
+            assert(outstandingEvents == 1);
+            --outstandingEvents;
+
+            // reset state back to IDLE temporarily until SREF is entered
+            pwrState = PWR_IDLE;
+
+        // Not bypassing refresh for SREF entry
+        } else {
+            DPRINTF(DRAMState, "Refreshing\n");
+
+            // there should be nothing waiting at this point
+            assert(!powerEvent.scheduled());
+
+            // kick the refresh event loop into action again, and that
+            // in turn will schedule a transition to the idle power
+            // state once the refresh is done
+            schedule(refreshEvent, curTick());
+
+            // Banks transitioned to IDLE, start REF
+            refreshState = REF_START;
+        }
     }
+
 }
 
 void
-DRAMCtrl::updatePowerStats(uint8_t rank)
+DRAMCtrl::Rank::updatePowerStats()
 {
-    // Get the energy and power from DRAMPower
-    Data::MemoryPowerModel::Energy energy =
-        rankPower[rank].powerlib.getEnergy();
-    Data::MemoryPowerModel::Power power =
-        rankPower[rank].powerlib.getPower();
-
-    actEnergy[rank] = energy.act_energy * devicesPerRank;
-    preEnergy[rank] = energy.pre_energy * devicesPerRank;
-    readEnergy[rank] = energy.read_energy * devicesPerRank;
-    writeEnergy[rank] = energy.write_energy * devicesPerRank;
-    refreshEnergy[rank] = energy.ref_energy * devicesPerRank;
-    actBackEnergy[rank] = energy.act_stdby_energy * devicesPerRank;
-    preBackEnergy[rank] = energy.pre_stdby_energy * devicesPerRank;
-    totalEnergy[rank] = energy.total_energy * devicesPerRank;
-    averagePower[rank] = power.average_power * devicesPerRank;
+    // All commands up to refresh have completed
+    // flush cmdList to DRAMPower
+    flushCmdList();
+
+    // Call the function that calculates window energy at intermediate update
+    // events like at refresh, stats dump as well as at simulation exit.
+    // Window starts at the last time the calcWindowEnergy function was called
+    // and is upto current time.
+    power.powerlib.calcWindowEnergy(divCeil(curTick(), memory.tCK) -
+                                    memory.timeStampOffset);
+
+    // Get the energy from DRAMPower
+    Data::MemoryPowerModel::Energy energy = power.powerlib.getEnergy();
+
+    // The energy components inside the power lib are calculated over
+    // the window so accumulate into the corresponding gem5 stat
+    stats.actEnergy += energy.act_energy * memory.devicesPerRank;
+    stats.preEnergy += energy.pre_energy * memory.devicesPerRank;
+    stats.readEnergy += energy.read_energy * memory.devicesPerRank;
+    stats.writeEnergy += energy.write_energy * memory.devicesPerRank;
+    stats.refreshEnergy += energy.ref_energy * memory.devicesPerRank;
+    stats.actBackEnergy += energy.act_stdby_energy * memory.devicesPerRank;
+    stats.preBackEnergy += energy.pre_stdby_energy * memory.devicesPerRank;
+    stats.actPowerDownEnergy += energy.f_act_pd_energy * memory.devicesPerRank;
+    stats.prePowerDownEnergy += energy.f_pre_pd_energy * memory.devicesPerRank;
+    stats.selfRefreshEnergy += energy.sref_energy * memory.devicesPerRank;
+
+    // Accumulate window energy into the total energy.
+    stats.totalEnergy += energy.window_energy * memory.devicesPerRank;
+    // Average power must not be accumulated but calculated over the time
+    // since last stats reset. SimClock::Frequency is tick period not tick
+    // frequency.
+    //              energy (pJ)     1e-9
+    // power (mW) = ----------- * ----------
+    //              time (tick)   tick_frequency
+    stats.averagePower = (stats.totalEnergy.value() /
+                          (curTick() - memory.lastStatsResetTick)) *
+                         (SimClock::Frequency / 1000000000.0);
 }
 
 void
-DRAMCtrl::regStats()
+DRAMCtrl::Rank::computeStats()
 {
-    using namespace Stats;
-
-    AbstractMemory::regStats();
-
-    readReqs
-        .name(name() + ".readReqs")
-        .desc("Number of read requests accepted");
-
-    writeReqs
-        .name(name() + ".writeReqs")
-        .desc("Number of write requests accepted");
-
-    readBursts
-        .name(name() + ".readBursts")
-        .desc("Number of DRAM read bursts, "
-              "including those serviced by the write queue");
+    DPRINTF(DRAM,"Computing stats due to a dump callback\n");
 
-    writeBursts
-        .name(name() + ".writeBursts")
-        .desc("Number of DRAM write bursts, "
-              "including those merged in the write queue");
+    // Update the stats
+    updatePowerStats();
 
-    servicedByWrQ
-        .name(name() + ".servicedByWrQ")
-        .desc("Number of DRAM read bursts serviced by the write queue");
+    // final update of power state times
+    stats.memoryStateTime[pwrState] += (curTick() - pwrStateTick);
+    pwrStateTick = curTick();
+}
 
-    mergedWrBursts
-        .name(name() + ".mergedWrBursts")
-        .desc("Number of DRAM write bursts merged with an existing one");
+void
+DRAMCtrl::Rank::resetStats() {
+    // The only way to clear the counters in DRAMPower is to call
+    // calcWindowEnergy function as that then calls clearCounters. The
+    // clearCounters method itself is private.
+    power.powerlib.calcWindowEnergy(divCeil(curTick(), memory.tCK) -
+                                    memory.timeStampOffset);
 
-    neitherReadNorWrite
-        .name(name() + ".neitherReadNorWriteReqs")
-        .desc("Number of requests that are neither read nor write");
+}
 
-    perBankRdBursts
-        .init(banksPerRank * ranksPerChannel)
-        .name(name() + ".perBankRdBursts")
-        .desc("Per bank write bursts");
+DRAMCtrl::DRAMStats::DRAMStats(DRAMCtrl &_dram)
+    : Stats::Group(&_dram),
+    dram(_dram),
+
+    ADD_STAT(readReqs, "Number of read requests accepted"),
+    ADD_STAT(writeReqs, "Number of write requests accepted"),
+
+    ADD_STAT(readBursts,
+             "Number of DRAM read bursts, "
+             "including those serviced by the write queue"),
+    ADD_STAT(writeBursts,
+             "Number of DRAM write bursts, "
+             "including those merged in the write queue"),
+    ADD_STAT(servicedByWrQ,
+             "Number of DRAM read bursts serviced by the write queue"),
+    ADD_STAT(mergedWrBursts,
+             "Number of DRAM write bursts merged with an existing one"),
+
+    ADD_STAT(neitherReadNorWriteReqs,
+             "Number of requests that are neither read nor write"),
+
+    ADD_STAT(perBankRdBursts, "Per bank write bursts"),
+    ADD_STAT(perBankWrBursts, "Per bank write bursts"),
+
+    ADD_STAT(avgRdQLen, "Average read queue length when enqueuing"),
+    ADD_STAT(avgWrQLen, "Average write queue length when enqueuing"),
+
+    ADD_STAT(totQLat, "Total ticks spent queuing"),
+    ADD_STAT(totBusLat, "Total ticks spent in databus transfers"),
+    ADD_STAT(totMemAccLat,
+             "Total ticks spent from burst creation until serviced "
+             "by the DRAM"),
+    ADD_STAT(avgQLat, "Average queueing delay per DRAM burst"),
+    ADD_STAT(avgBusLat, "Average bus latency per DRAM burst"),
+    ADD_STAT(avgMemAccLat, "Average memory access latency per DRAM burst"),
+
+    ADD_STAT(numRdRetry, "Number of times read queue was full causing retry"),
+    ADD_STAT(numWrRetry, "Number of times write queue was full causing retry"),
+
+    ADD_STAT(readRowHits, "Number of row buffer hits during reads"),
+    ADD_STAT(writeRowHits, "Number of row buffer hits during writes"),
+    ADD_STAT(readRowHitRate, "Row buffer hit rate for reads"),
+    ADD_STAT(writeRowHitRate, "Row buffer hit rate for writes"),
+
+    ADD_STAT(readPktSize, "Read request sizes (log2)"),
+    ADD_STAT(writePktSize, "Write request sizes (log2)"),
+
+    ADD_STAT(rdQLenPdf, "What read queue length does an incoming req see"),
+    ADD_STAT(wrQLenPdf, "What write queue length does an incoming req see"),
+
+    ADD_STAT(bytesPerActivate, "Bytes accessed per row activation"),
+
+    ADD_STAT(rdPerTurnAround,
+             "Reads before turning the bus around for writes"),
+    ADD_STAT(wrPerTurnAround,
+             "Writes before turning the bus around for reads"),
+
+    ADD_STAT(bytesReadDRAM, "Total number of bytes read from DRAM"),
+    ADD_STAT(bytesReadWrQ, "Total number of bytes read from write queue"),
+    ADD_STAT(bytesWritten, "Total number of bytes written to DRAM"),
+    ADD_STAT(bytesReadSys, "Total read bytes from the system interface side"),
+    ADD_STAT(bytesWrittenSys,
+             "Total written bytes from the system interface side"),
+
+    ADD_STAT(avgRdBW, "Average DRAM read bandwidth in MiByte/s"),
+    ADD_STAT(avgWrBW, "Average achieved write bandwidth in MiByte/s"),
+    ADD_STAT(avgRdBWSys, "Average system read bandwidth in MiByte/s"),
+    ADD_STAT(avgWrBWSys, "Average system write bandwidth in MiByte/s"),
+    ADD_STAT(peakBW, "Theoretical peak bandwidth in MiByte/s"),
+
+    ADD_STAT(busUtil, "Data bus utilization in percentage"),
+    ADD_STAT(busUtilRead, "Data bus utilization in percentage for reads"),
+    ADD_STAT(busUtilWrite, "Data bus utilization in percentage for writes"),
+
+    ADD_STAT(totGap, "Total gap between requests"),
+    ADD_STAT(avgGap, "Average gap between requests"),
+
+    ADD_STAT(masterReadBytes, "Per-master bytes read from memory"),
+    ADD_STAT(masterWriteBytes, "Per-master bytes write to memory"),
+    ADD_STAT(masterReadRate,
+             "Per-master bytes read from memory rate (Bytes/sec)"),
+    ADD_STAT(masterWriteRate,
+             "Per-master bytes write to memory rate (Bytes/sec)"),
+    ADD_STAT(masterReadAccesses,
+             "Per-master read serviced memory accesses"),
+    ADD_STAT(masterWriteAccesses,
+             "Per-master write serviced memory accesses"),
+    ADD_STAT(masterReadTotalLat,
+             "Per-master read total memory access latency"),
+    ADD_STAT(masterWriteTotalLat,
+             "Per-master write total memory access latency"),
+    ADD_STAT(masterReadAvgLat,
+             "Per-master read average memory access latency"),
+    ADD_STAT(masterWriteAvgLat,
+             "Per-master write average memory access latency"),
+
+    ADD_STAT(pageHitRate, "Row buffer hit rate, read and write combined")
+{
+}
 
-    perBankWrBursts
-        .init(banksPerRank * ranksPerChannel)
-        .name(name() + ".perBankWrBursts")
-        .desc("Per bank write bursts");
+void
+DRAMCtrl::DRAMStats::regStats()
+{
+    using namespace Stats;
 
-    avgRdQLen
-        .name(name() + ".avgRdQLen")
-        .desc("Average read queue length when enqueuing")
+    assert(dram._system);
+    const auto max_masters = dram._system->maxMasters();
+
+    perBankRdBursts.init(dram.banksPerRank * dram.ranksPerChannel);
+    perBankWrBursts.init(dram.banksPerRank * dram.ranksPerChannel);
+
+    avgRdQLen.precision(2);
+    avgWrQLen.precision(2);
+    avgQLat.precision(2);
+    avgBusLat.precision(2);
+    avgMemAccLat.precision(2);
+
+    readRowHitRate.precision(2);
+    writeRowHitRate.precision(2);
+
+    readPktSize.init(ceilLog2(dram.burstSize) + 1);
+    writePktSize.init(ceilLog2(dram.burstSize) + 1);
+
+    rdQLenPdf.init(dram.readBufferSize);
+    wrQLenPdf.init(dram.writeBufferSize);
+
+    bytesPerActivate
+        .init(dram.maxAccessesPerRow ?
+              dram.maxAccessesPerRow : dram.rowBufferSize)
+        .flags(nozero);
+
+    rdPerTurnAround
+        .init(dram.readBufferSize)
+        .flags(nozero);
+    wrPerTurnAround
+        .init(dram.writeBufferSize)
+        .flags(nozero);
+
+    avgRdBW.precision(2);
+    avgWrBW.precision(2);
+    avgRdBWSys.precision(2);
+    avgWrBWSys.precision(2);
+    peakBW.precision(2);
+    busUtil.precision(2);
+    avgGap.precision(2);
+    busUtilWrite.precision(2);
+    pageHitRate.precision(2);
+
+
+    // per-master bytes read and written to memory
+    masterReadBytes
+        .init(max_masters)
+        .flags(nozero | nonan);
+
+    masterWriteBytes
+        .init(max_masters)
+        .flags(nozero | nonan);
+
+    // per-master bytes read and written to memory rate
+    masterReadRate
+        .flags(nozero | nonan)
+        .precision(12);
+
+    masterReadAccesses
+        .init(max_masters)
+        .flags(nozero);
+
+    masterWriteAccesses
+        .init(max_masters)
+        .flags(nozero);
+
+    masterReadTotalLat
+        .init(max_masters)
+        .flags(nozero | nonan);
+
+    masterReadAvgLat
+        .flags(nonan)
         .precision(2);
 
-    avgWrQLen
-        .name(name() + ".avgWrQLen")
-        .desc("Average write queue length when enqueuing")
-        .precision(2);
 
-    totQLat
-        .name(name() + ".totQLat")
-        .desc("Total ticks spent queuing");
+    busUtilRead
+        .precision(2);
 
-    totBusLat
-        .name(name() + ".totBusLat")
-        .desc("Total ticks spent in databus transfers");
+    masterWriteRate
+        .flags(nozero | nonan)
+        .precision(12);
 
-    totMemAccLat
-        .name(name() + ".totMemAccLat")
-        .desc("Total ticks spent from burst creation until serviced "
-              "by the DRAM");
+    masterWriteTotalLat
+        .init(max_masters)
+        .flags(nozero | nonan);
 
-    avgQLat
-        .name(name() + ".avgQLat")
-        .desc("Average queueing delay per DRAM burst")
+    masterWriteAvgLat
+        .flags(nonan)
         .precision(2);
 
-    avgQLat = totQLat / (readBursts - servicedByWrQ);
-
-    avgBusLat
-        .name(name() + ".avgBusLat")
-        .desc("Average bus latency per DRAM burst")
-        .precision(2);
+    for (int i = 0; i < max_masters; i++) {
+        const std::string master = dram._system->getMasterName(i);
+        masterReadBytes.subname(i, master);
+        masterReadRate.subname(i, master);
+        masterWriteBytes.subname(i, master);
+        masterWriteRate.subname(i, master);
+        masterReadAccesses.subname(i, master);
+        masterWriteAccesses.subname(i, master);
+        masterReadTotalLat.subname(i, master);
+        masterReadAvgLat.subname(i, master);
+        masterWriteTotalLat.subname(i, master);
+        masterWriteAvgLat.subname(i, master);
+    }
 
+    // Formula stats
+    avgQLat = totQLat / (readBursts - servicedByWrQ);
     avgBusLat = totBusLat / (readBursts - servicedByWrQ);
-
-    avgMemAccLat
-        .name(name() + ".avgMemAccLat")
-        .desc("Average memory access latency per DRAM burst")
-        .precision(2);
-
     avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
 
-    numRdRetry
-        .name(name() + ".numRdRetry")
-        .desc("Number of times read queue was full causing retry");
-
-    numWrRetry
-        .name(name() + ".numWrRetry")
-        .desc("Number of times write queue was full causing retry");
-
-    readRowHits
-        .name(name() + ".readRowHits")
-        .desc("Number of row buffer hits during reads");
-
-    writeRowHits
-        .name(name() + ".writeRowHits")
-        .desc("Number of row buffer hits during writes");
-
-    readRowHitRate
-        .name(name() + ".readRowHitRate")
-        .desc("Row buffer hit rate for reads")
-        .precision(2);
-
     readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
-
-    writeRowHitRate
-        .name(name() + ".writeRowHitRate")
-        .desc("Row buffer hit rate for writes")
-        .precision(2);
-
     writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
 
-    readPktSize
-        .init(ceilLog2(burstSize) + 1)
-        .name(name() + ".readPktSize")
-        .desc("Read request sizes (log2)");
-
-     writePktSize
-        .init(ceilLog2(burstSize) + 1)
-        .name(name() + ".writePktSize")
-        .desc("Write request sizes (log2)");
-
-     rdQLenPdf
-        .init(readBufferSize)
-        .name(name() + ".rdQLenPdf")
-        .desc("What read queue length does an incoming req see");
-
-     wrQLenPdf
-        .init(writeBufferSize)
-        .name(name() + ".wrQLenPdf")
-        .desc("What write queue length does an incoming req see");
-
-     bytesPerActivate
-         .init(maxAccessesPerRow)
-         .name(name() + ".bytesPerActivate")
-         .desc("Bytes accessed per row activation")
-         .flags(nozero);
-
-     rdPerTurnAround
-         .init(readBufferSize)
-         .name(name() + ".rdPerTurnAround")
-         .desc("Reads before turning the bus around for writes")
-         .flags(nozero);
-
-     wrPerTurnAround
-         .init(writeBufferSize)
-         .name(name() + ".wrPerTurnAround")
-         .desc("Writes before turning the bus around for reads")
-         .flags(nozero);
-
-    bytesReadDRAM
-        .name(name() + ".bytesReadDRAM")
-        .desc("Total number of bytes read from DRAM");
-
-    bytesReadWrQ
-        .name(name() + ".bytesReadWrQ")
-        .desc("Total number of bytes read from write queue");
-
-    bytesWritten
-        .name(name() + ".bytesWritten")
-        .desc("Total number of bytes written to DRAM");
-
-    bytesReadSys
-        .name(name() + ".bytesReadSys")
-        .desc("Total read bytes from the system interface side");
-
-    bytesWrittenSys
-        .name(name() + ".bytesWrittenSys")
-        .desc("Total written bytes from the system interface side");
-
-    avgRdBW
-        .name(name() + ".avgRdBW")
-        .desc("Average DRAM read bandwidth in MiByte/s")
-        .precision(2);
-
     avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
-
-    avgWrBW
-        .name(name() + ".avgWrBW")
-        .desc("Average achieved write bandwidth in MiByte/s")
-        .precision(2);
-
     avgWrBW = (bytesWritten / 1000000) / simSeconds;
-
-    avgRdBWSys
-        .name(name() + ".avgRdBWSys")
-        .desc("Average system read bandwidth in MiByte/s")
-        .precision(2);
-
     avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
-
-    avgWrBWSys
-        .name(name() + ".avgWrBWSys")
-        .desc("Average system write bandwidth in MiByte/s")
-        .precision(2);
-
     avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
-
-    peakBW
-        .name(name() + ".peakBW")
-        .desc("Theoretical peak bandwidth in MiByte/s")
-        .precision(2);
-
-    peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
-
-    busUtil
-        .name(name() + ".busUtil")
-        .desc("Data bus utilization in percentage")
-        .precision(2);
+    peakBW = (SimClock::Frequency / dram.tBURST) * dram.burstSize / 1000000;
 
     busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
 
-    totGap
-        .name(name() + ".totGap")
-        .desc("Total gap between requests");
+    avgGap = totGap / (readReqs + writeReqs);
 
-    avgGap
-        .name(name() + ".avgGap")
-        .desc("Average gap between requests")
-        .precision(2);
+    busUtilRead = avgRdBW / peakBW * 100;
+    busUtilWrite = avgWrBW / peakBW * 100;
 
-    avgGap = totGap / (readReqs + writeReqs);
+    pageHitRate = (writeRowHits + readRowHits) /
+        (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
 
-    // Stats for DRAM Power calculation based on Micron datasheet
-    busUtilRead
-        .name(name() + ".busUtilRead")
-        .desc("Data bus utilization in percentage for reads")
-        .precision(2);
+    masterReadRate = masterReadBytes / simSeconds;
+    masterWriteRate = masterWriteBytes / simSeconds;
+    masterReadAvgLat = masterReadTotalLat / masterReadAccesses;
+    masterWriteAvgLat = masterWriteTotalLat / masterWriteAccesses;
+}
 
-    busUtilRead = avgRdBW / peakBW * 100;
+void
+DRAMCtrl::DRAMStats::resetStats()
+{
+    dram.lastStatsResetTick = curTick();
+}
 
-    busUtilWrite
-        .name(name() + ".busUtilWrite")
-        .desc("Data bus utilization in percentage for writes")
-        .precision(2);
+DRAMCtrl::RankStats::RankStats(DRAMCtrl &_memory, Rank &_rank)
+    : Stats::Group(&_memory, csprintf("rank%d", _rank.rank).c_str()),
+    rank(_rank),
+
+    ADD_STAT(actEnergy, "Energy for activate commands per rank (pJ)"),
+    ADD_STAT(preEnergy, "Energy for precharge commands per rank (pJ)"),
+    ADD_STAT(readEnergy, "Energy for read commands per rank (pJ)"),
+    ADD_STAT(writeEnergy, "Energy for write commands per rank (pJ)"),
+    ADD_STAT(refreshEnergy, "Energy for refresh commands per rank (pJ)"),
+    ADD_STAT(actBackEnergy, "Energy for active background per rank (pJ)"),
+    ADD_STAT(preBackEnergy, "Energy for precharge background per rank (pJ)"),
+    ADD_STAT(actPowerDownEnergy,
+             "Energy for active power-down per rank (pJ)"),
+    ADD_STAT(prePowerDownEnergy,
+             "Energy for precharge power-down per rank (pJ)"),
+    ADD_STAT(selfRefreshEnergy, "Energy for self refresh per rank (pJ)"),
+
+    ADD_STAT(totalEnergy, "Total energy per rank (pJ)"),
+    ADD_STAT(averagePower, "Core power per rank (mW)"),
+
+    ADD_STAT(totalIdleTime, "Total Idle time Per DRAM Rank"),
+    ADD_STAT(memoryStateTime, "Time in different power states")
+{
+}
 
-    busUtilWrite = avgWrBW / peakBW * 100;
+void
+DRAMCtrl::RankStats::regStats()
+{
+    Stats::Group::regStats();
+
+    memoryStateTime.init(6);
+    memoryStateTime.subname(0, "IDLE");
+    memoryStateTime.subname(1, "REF");
+    memoryStateTime.subname(2, "SREF");
+    memoryStateTime.subname(3, "PRE_PDN");
+    memoryStateTime.subname(4, "ACT");
+    memoryStateTime.subname(5, "ACT_PDN");
+}
 
-    pageHitRate
-        .name(name() + ".pageHitRate")
-        .desc("Row buffer hit rate, read and write combined")
-        .precision(2);
+void
+DRAMCtrl::RankStats::resetStats()
+{
+    Stats::Group::resetStats();
 
-    pageHitRate = (writeRowHits + readRowHits) /
-        (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
+    rank.resetStats();
+}
 
-    pwrStateTime
-        .init(5)
-        .name(name() + ".memoryStateTime")
-        .desc("Time in different power states");
-    pwrStateTime.subname(0, "IDLE");
-    pwrStateTime.subname(1, "REF");
-    pwrStateTime.subname(2, "PRE_PDN");
-    pwrStateTime.subname(3, "ACT");
-    pwrStateTime.subname(4, "ACT_PDN");
-
-    actEnergy
-        .init(ranksPerChannel)
-        .name(name() + ".actEnergy")
-        .desc("Energy for activate commands per rank (pJ)");
-
-    preEnergy
-        .init(ranksPerChannel)
-        .name(name() + ".preEnergy")
-        .desc("Energy for precharge commands per rank (pJ)");
-
-    readEnergy
-        .init(ranksPerChannel)
-        .name(name() + ".readEnergy")
-        .desc("Energy for read commands per rank (pJ)");
-
-    writeEnergy
-        .init(ranksPerChannel)
-        .name(name() + ".writeEnergy")
-        .desc("Energy for write commands per rank (pJ)");
-
-    refreshEnergy
-        .init(ranksPerChannel)
-        .name(name() + ".refreshEnergy")
-        .desc("Energy for refresh commands per rank (pJ)");
-
-    actBackEnergy
-        .init(ranksPerChannel)
-        .name(name() + ".actBackEnergy")
-        .desc("Energy for active background per rank (pJ)");
-
-    preBackEnergy
-        .init(ranksPerChannel)
-        .name(name() + ".preBackEnergy")
-        .desc("Energy for precharge background per rank (pJ)");
-
-    totalEnergy
-        .init(ranksPerChannel)
-        .name(name() + ".totalEnergy")
-        .desc("Total energy per rank (pJ)");
-
-    averagePower
-        .init(ranksPerChannel)
-        .name(name() + ".averagePower")
-        .desc("Core power per rank (mW)");
+void
+DRAMCtrl::RankStats::preDumpStats()
+{
+    Stats::Group::preDumpStats();
+
+    rank.computeStats();
 }
 
 void
@@ -2061,47 +2737,86 @@ DRAMCtrl::recvFunctional(PacketPtr pkt)
     functionalAccess(pkt);
 }
 
-BaseSlavePort&
-DRAMCtrl::getSlavePort(const string &if_name, PortID idx)
+Port &
+DRAMCtrl::getPort(const string &if_name, PortID idx)
 {
     if (if_name != "port") {
-        return MemObject::getSlavePort(if_name, idx);
+        return QoS::MemCtrl::getPort(if_name, idx);
     } else {
         return port;
     }
 }
 
-unsigned int
-DRAMCtrl::drain(DrainManager *dm)
+DrainState
+DRAMCtrl::drain()
 {
-    unsigned int count = port.drain(dm);
-
     // if there is anything in any of our internal queues, keep track
     // of that as well
-    if (!(writeQueue.empty() && readQueue.empty() &&
-          respQueue.empty())) {
+    if (!(!totalWriteQueueSize && !totalReadQueueSize && respQueue.empty() &&
+          allRanksDrained())) {
+
         DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
-                " resp: %d\n", writeQueue.size(), readQueue.size(),
+                " resp: %d\n", totalWriteQueueSize, totalReadQueueSize,
                 respQueue.size());
-        ++count;
-        drainManager = dm;
 
-        // the only part that is not drained automatically over time
+        // the only queue that is not drained automatically over time
         // is the write queue, thus kick things into action if needed
-        if (!writeQueue.empty() && !nextReqEvent.scheduled()) {
+        if (!totalWriteQueueSize && !nextReqEvent.scheduled()) {
             schedule(nextReqEvent, curTick());
         }
+
+        // also need to kick off events to exit self-refresh
+        for (auto r : ranks) {
+            // force self-refresh exit, which in turn will issue auto-refresh
+            if (r->pwrState == PWR_SREF) {
+                DPRINTF(DRAM,"Rank%d: Forcing self-refresh wakeup in drain\n",
+                        r->rank);
+                r->scheduleWakeUpEvent(tXS);
+            }
+        }
+
+        return DrainState::Draining;
+    } else {
+        return DrainState::Drained;
+    }
+}
+
+bool
+DRAMCtrl::allRanksDrained() const
+{
+    // true until proven false
+    bool all_ranks_drained = true;
+    for (auto r : ranks) {
+        // then verify that the power state is IDLE ensuring all banks are
+        // closed and rank is not in a low power state. Also verify that rank
+        // is idle from a refresh point of view.
+        all_ranks_drained = r->inPwrIdleState() && r->inRefIdleState() &&
+            all_ranks_drained;
+    }
+    return all_ranks_drained;
+}
+
+void
+DRAMCtrl::drainResume()
+{
+    if (!isTimingMode && system()->isTimingMode()) {
+        // if we switched to timing mode, kick things into action,
+        // and behave as if we restored from a checkpoint
+        startup();
+    } else if (isTimingMode && !system()->isTimingMode()) {
+        // if we switch from timing mode, stop the refresh events to
+        // not cause issues with KVM
+        for (auto r : ranks) {
+            r->suspend();
+        }
     }
 
-    if (count)
-        setDrainState(Drainable::Draining);
-    else
-        setDrainState(Drainable::Drained);
-    return count;
+    // update the mode
+    isTimingMode = system()->isTimingMode();
 }
 
 DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
-    : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
+    : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this, true),
       memory(_memory)
 { }
 
@@ -2118,7 +2833,7 @@ DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
 {
     pkt->pushLabel(memory.name());
 
-    if (!queue.checkFunctional(pkt)) {
+    if (!queue.trySatisfyFunctional(pkt)) {
         // Default implementation of SimpleTimingPort::recvFunctional()
         // calls recvAtomic() and throws away the latency; we can save a
         // little here by just not calculating the latency.