i965: Push down inclusion of brw_program.h.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_nir.cpp
index 9d691f7eb9fb6f06b61e5757cc18ebc8e366d132..993367ec7e0ed1647121086af4f392c1cf50b7f6 100644 (file)
 #include "program/prog_to_nir.h"
 #include "brw_fs.h"
 #include "brw_fs_surface_builder.h"
+#include "brw_vec4_gs_visitor.h"
 #include "brw_nir.h"
+#include "brw_program.h"
 
 using namespace brw;
+using namespace brw::surface_access;
 
 void
 fs_visitor::emit_nir_code()
 {
-   nir_shader *nir = prog->nir;
-
    /* emit the arrays used for inputs and outputs - load/store intrinsics will
     * be converted to reads/writes of these arrays
     */
-   nir_setup_inputs(nir);
-   nir_setup_outputs(nir);
-   nir_setup_uniforms(nir);
-   nir_emit_system_values(nir);
+   nir_setup_inputs();
+   nir_setup_outputs();
+   nir_setup_uniforms();
+   nir_emit_system_values();
 
    /* get the main function and emit it */
    nir_foreach_overload(nir, overload) {
@@ -54,84 +55,55 @@ fs_visitor::emit_nir_code()
 }
 
 void
-fs_visitor::nir_setup_inputs(nir_shader *shader)
+fs_visitor::nir_setup_inputs()
 {
-   nir_inputs = bld.vgrf(BRW_REGISTER_TYPE_F, shader->num_inputs);
+   if (stage != MESA_SHADER_FRAGMENT)
+      return;
 
-   foreach_list_typed(nir_variable, var, node, &shader->inputs) {
-      enum brw_reg_type type = brw_type_for_base_type(var->type);
+   nir_inputs = bld.vgrf(BRW_REGISTER_TYPE_F, nir->num_inputs);
+
+   nir_foreach_variable(var, &nir->inputs) {
       fs_reg input = offset(nir_inputs, bld, var->data.driver_location);
 
       fs_reg reg;
-      switch (stage) {
-      case MESA_SHADER_VERTEX: {
-         /* Our ATTR file is indexed by VERT_ATTRIB_*, which is the value
-          * stored in nir_variable::location.
-          *
-          * However, NIR's load_input intrinsics use a different index - an
-          * offset into a single contiguous array containing all inputs.
-          * This index corresponds to the nir_variable::driver_location field.
-          *
-          * So, we need to copy from fs_reg(ATTR, var->location) to
-          * offset(nir_inputs, var->data.driver_location).
-          */
-         const glsl_type *const t = var->type->without_array();
-         const unsigned components = t->components();
-         const unsigned cols = t->matrix_columns;
-         const unsigned elts = t->vector_elements;
-         unsigned array_length = var->type->is_array() ? var->type->length : 1;
-         for (unsigned i = 0; i < array_length; i++) {
-            for (unsigned j = 0; j < cols; j++) {
-               for (unsigned k = 0; k < elts; k++) {
-                  bld.MOV(offset(retype(input, type), bld,
-                                 components * i + elts * j + k),
-                          offset(fs_reg(ATTR, var->data.location + i, type),
-                                 bld, 4 * j + k));
-               }
-            }
-         }
-         break;
-      }
-      case MESA_SHADER_GEOMETRY:
-      case MESA_SHADER_COMPUTE:
-      case MESA_SHADER_TESS_CTRL:
-      case MESA_SHADER_TESS_EVAL:
-         unreachable("fs_visitor not used for these stages yet.");
-         break;
-      case MESA_SHADER_FRAGMENT:
-         if (var->data.location == VARYING_SLOT_POS) {
-            reg = *emit_fragcoord_interpolation(var->data.pixel_center_integer,
-                                                var->data.origin_upper_left);
-            emit_percomp(bld, fs_inst(BRW_OPCODE_MOV, bld.dispatch_width(),
-                                      input, reg), 0xF);
-         } else {
-            emit_general_interpolation(input, var->name, var->type,
-                                       (glsl_interp_qualifier) var->data.interpolation,
-                                       var->data.location, var->data.centroid,
-                                       var->data.sample);
-         }
-         break;
+      if (var->data.location == VARYING_SLOT_POS) {
+         reg = *emit_fragcoord_interpolation(var->data.pixel_center_integer,
+                                             var->data.origin_upper_left);
+         emit_percomp(bld, fs_inst(BRW_OPCODE_MOV, bld.dispatch_width(),
+                                   input, reg), 0xF);
+      } else if (var->data.location == VARYING_SLOT_LAYER) {
+         struct brw_reg reg = suboffset(interp_reg(VARYING_SLOT_LAYER, 1), 3);
+         reg.type = BRW_REGISTER_TYPE_D;
+         bld.emit(FS_OPCODE_CINTERP, retype(input, BRW_REGISTER_TYPE_D), reg);
+      } else if (var->data.location == VARYING_SLOT_VIEWPORT) {
+         struct brw_reg reg = suboffset(interp_reg(VARYING_SLOT_VIEWPORT, 2), 3);
+         reg.type = BRW_REGISTER_TYPE_D;
+         bld.emit(FS_OPCODE_CINTERP, retype(input, BRW_REGISTER_TYPE_D), reg);
+      } else {
+         emit_general_interpolation(input, var->name, var->type,
+                                    (glsl_interp_qualifier) var->data.interpolation,
+                                    var->data.location, var->data.centroid,
+                                    var->data.sample);
       }
    }
 }
 
 void
-fs_visitor::nir_setup_outputs(nir_shader *shader)
+fs_visitor::nir_setup_outputs()
 {
    brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
 
-   nir_outputs = bld.vgrf(BRW_REGISTER_TYPE_F, shader->num_outputs);
+   nir_outputs = bld.vgrf(BRW_REGISTER_TYPE_F, nir->num_outputs);
 
-   foreach_list_typed(nir_variable, var, node, &shader->outputs) {
+   nir_foreach_variable(var, &nir->outputs) {
       fs_reg reg = offset(nir_outputs, bld, var->data.driver_location);
 
-      int vector_elements =
-         var->type->is_array() ? var->type->fields.array->vector_elements
-                               : var->type->vector_elements;
+      int vector_elements = var->type->without_array()->vector_elements;
 
       switch (stage) {
       case MESA_SHADER_VERTEX:
-         for (int i = 0; i < ALIGN(type_size(var->type), 4) / 4; i++) {
+      case MESA_SHADER_GEOMETRY:
+         for (int i = 0; i < type_size_vec4(var->type); i++) {
             int output = var->data.location + i;
             this->outputs[output] = offset(reg, bld, 4 * i);
             this->output_components[output] = vector_elements;
@@ -151,6 +123,8 @@ fs_visitor::nir_setup_outputs(nir_shader *shader)
             }
          } else if (var->data.location == FRAG_RESULT_DEPTH) {
             this->frag_depth = reg;
+         } else if (var->data.location == FRAG_RESULT_STENCIL) {
+            this->frag_stencil = reg;
          } else if (var->data.location == FRAG_RESULT_SAMPLE_MASK) {
             this->sample_mask = reg;
          } else {
@@ -173,121 +147,20 @@ fs_visitor::nir_setup_outputs(nir_shader *shader)
 }
 
 void
-fs_visitor::nir_setup_uniforms(nir_shader *shader)
+fs_visitor::nir_setup_uniforms()
 {
-   num_direct_uniforms = shader->num_direct_uniforms;
-
    if (dispatch_width != 8)
       return;
 
-   /* We split the uniform register file in half.  The first half is
-    * entirely direct uniforms.  The second half is indirect.
-    */
-   if (num_direct_uniforms > 0)
-      param_size[0] = num_direct_uniforms;
-   if (shader->num_uniforms > num_direct_uniforms)
-      param_size[num_direct_uniforms] = shader->num_uniforms - num_direct_uniforms;
-
-   uniforms = shader->num_uniforms;
-
-   if (shader_prog) {
-      foreach_list_typed(nir_variable, var, node, &shader->uniforms) {
-         /* UBO's and atomics don't take up space in the uniform file */
-         if (var->interface_type != NULL || var->type->contains_atomic())
-            continue;
-
-         if (strncmp(var->name, "gl_", 3) == 0)
-            nir_setup_builtin_uniform(var);
-         else
-            nir_setup_uniform(var);
-      }
-   } else {
-      /* prog_to_nir doesn't create uniform variables; set param up directly. */
-      for (unsigned p = 0; p < prog->Parameters->NumParameters; p++) {
-         for (unsigned int i = 0; i < 4; i++) {
-            stage_prog_data->param[4 * p + i] =
-               &prog->Parameters->ParameterValues[p][i];
-         }
-      }
-   }
-}
+   uniforms = nir->num_uniforms;
 
-void
-fs_visitor::nir_setup_uniform(nir_variable *var)
-{
-   int namelen = strlen(var->name);
-
-   /* The data for our (non-builtin) uniforms is stored in a series of
-      * gl_uniform_driver_storage structs for each subcomponent that
-      * glGetUniformLocation() could name.  We know it's been set up in the
-      * same order we'd walk the type, so walk the list of storage and find
-      * anything with our name, or the prefix of a component that starts with
-      * our name.
-      */
-   unsigned index = var->data.driver_location;
-   for (unsigned u = 0; u < shader_prog->NumUniformStorage; u++) {
-      struct gl_uniform_storage *storage = &shader_prog->UniformStorage[u];
-
-      if (storage->builtin)
-              continue;
-
-      if (strncmp(var->name, storage->name, namelen) != 0 ||
-         (storage->name[namelen] != 0 &&
-         storage->name[namelen] != '.' &&
-         storage->name[namelen] != '[')) {
+   nir_foreach_variable(var, &nir->uniforms) {
+      /* UBO's and atomics don't take up space in the uniform file */
+      if (var->interface_type != NULL || var->type->contains_atomic())
          continue;
-      }
-
-      if (storage->type->is_image()) {
-         /* Images don't get a valid location assigned by nir_lower_io()
-          * because their size is driver-specific, so we need to allocate
-          * space for them here at the end of the parameter array.
-          */
-         var->data.driver_location = uniforms;
-         param_size[uniforms] =
-            BRW_IMAGE_PARAM_SIZE * MAX2(storage->array_elements, 1);
-
-         setup_image_uniform_values(storage);
-      } else {
-         unsigned slots = storage->type->component_slots();
-         if (storage->array_elements)
-            slots *= storage->array_elements;
-
-         for (unsigned i = 0; i < slots; i++) {
-            stage_prog_data->param[index++] = &storage->storage[i];
-         }
-      }
-   }
-}
-
-void
-fs_visitor::nir_setup_builtin_uniform(nir_variable *var)
-{
-   const nir_state_slot *const slots = var->state_slots;
-   assert(var->state_slots != NULL);
 
-   unsigned uniform_index = var->data.driver_location;
-   for (unsigned int i = 0; i < var->num_state_slots; i++) {
-      /* This state reference has already been setup by ir_to_mesa, but we'll
-       * get the same index back here.
-       */
-      int index = _mesa_add_state_reference(this->prog->Parameters,
-                                            (gl_state_index *)slots[i].tokens);
-
-      /* Add each of the unique swizzles of the element as a parameter.
-       * This'll end up matching the expected layout of the
-       * array/matrix/structure we're trying to fill in.
-       */
-      int last_swiz = -1;
-      for (unsigned int j = 0; j < 4; j++) {
-         int swiz = GET_SWZ(slots[i].swizzle, j);
-         if (swiz == last_swiz)
-            break;
-         last_swiz = swiz;
-
-         stage_prog_data->param[uniform_index++] =
-            &prog->Parameters->ParameterValues[index][swiz];
-      }
+      if (type_size_scalar(var->type) > 0)
+         param_size[var->data.driver_location] = type_size_scalar(var->type);
    }
 }
 
@@ -327,6 +200,18 @@ emit_system_values_block(nir_block *block, void *void_visitor)
             *reg = *v->emit_vs_system_value(SYSTEM_VALUE_INSTANCE_ID);
          break;
 
+      case nir_intrinsic_load_invocation_id:
+         assert(v->stage == MESA_SHADER_GEOMETRY);
+         reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
+         if (reg->file == BAD_FILE) {
+            const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
+            fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
+            fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
+            abld.SHR(iid, g1, brw_imm_ud(27u));
+            *reg = iid;
+         }
+         break;
+
       case nir_intrinsic_load_sample_pos:
          assert(v->stage == MESA_SHADER_FRAGMENT);
          reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
@@ -350,6 +235,71 @@ emit_system_values_block(nir_block *block, void *void_visitor)
                                  BRW_REGISTER_TYPE_D));
          break;
 
+      case nir_intrinsic_load_local_invocation_id:
+         assert(v->stage == MESA_SHADER_COMPUTE);
+         reg = &v->nir_system_values[SYSTEM_VALUE_LOCAL_INVOCATION_ID];
+         if (reg->file == BAD_FILE)
+            *reg = *v->emit_cs_local_invocation_id_setup();
+         break;
+
+      case nir_intrinsic_load_work_group_id:
+         assert(v->stage == MESA_SHADER_COMPUTE);
+         reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
+         if (reg->file == BAD_FILE)
+            *reg = *v->emit_cs_work_group_id_setup();
+         break;
+
+      case nir_intrinsic_load_helper_invocation:
+         assert(v->stage == MESA_SHADER_FRAGMENT);
+         reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
+         if (reg->file == BAD_FILE) {
+            const fs_builder abld =
+               v->bld.annotate("gl_HelperInvocation", NULL);
+
+            /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
+             * pixel mask is in g1.7 of the thread payload.
+             *
+             * We move the per-channel pixel enable bit to the low bit of each
+             * channel by shifting the byte containing the pixel mask by the
+             * vector immediate 0x76543210UV.
+             *
+             * The region of <1,8,0> reads only 1 byte (the pixel masks for
+             * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
+             * masks for 2 and 3) in SIMD16.
+             */
+            fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
+            abld.SHR(shifted,
+                     stride(byte_offset(retype(brw_vec1_grf(1, 0),
+                                               BRW_REGISTER_TYPE_UB), 28),
+                            1, 8, 0),
+                     brw_imm_uv(0x76543210));
+
+            /* A set bit in the pixel mask means the channel is enabled, but
+             * that is the opposite of gl_HelperInvocation so we need to invert
+             * the mask.
+             *
+             * The negate source-modifier bit of logical instructions on Gen8+
+             * performs 1's complement negation, so we can use that instead of
+             * a NOT instruction.
+             */
+            fs_reg inverted = negate(shifted);
+            if (v->devinfo->gen < 8) {
+               inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
+               abld.NOT(inverted, shifted);
+            }
+
+            /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
+             * with 1 and negating.
+             */
+            fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
+            abld.AND(anded, inverted, brw_imm_uw(1));
+
+            fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
+            abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
+            *reg = dst;
+         }
+         break;
+
       default:
          break;
       }
@@ -359,10 +309,14 @@ emit_system_values_block(nir_block *block, void *void_visitor)
 }
 
 void
-fs_visitor::nir_emit_system_values(nir_shader *shader)
+fs_visitor::nir_emit_system_values()
 {
    nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
-   nir_foreach_overload(shader, overload) {
+   for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
+      nir_system_values[i] = fs_reg();
+   }
+
+   nir_foreach_overload(nir, overload) {
       assert(strcmp(overload->function->name, "main") == 0);
       assert(overload->impl);
       nir_foreach_block(overload->impl, emit_system_values_block, this);
@@ -372,7 +326,11 @@ fs_visitor::nir_emit_system_values(nir_shader *shader)
 void
 fs_visitor::nir_emit_impl(nir_function_impl *impl)
 {
-   nir_locals = reralloc(mem_ctx, nir_locals, fs_reg, impl->reg_alloc);
+   nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
+   for (unsigned i = 0; i < impl->reg_alloc; i++) {
+      nir_locals[i] = fs_reg();
+   }
+
    foreach_list_typed(nir_register, reg, node, &impl->registers) {
       unsigned array_elems =
          reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
@@ -429,8 +387,6 @@ fs_visitor::nir_emit_if(nir_if *if_stmt)
    nir_emit_cf_list(&if_stmt->else_list);
 
    bld.emit(BRW_OPCODE_ENDIF);
-
-   try_replace_with_sel();
 }
 
 void
@@ -462,7 +418,22 @@ fs_visitor::nir_emit_instr(nir_instr *instr)
       break;
 
    case nir_instr_type_intrinsic:
-      nir_emit_intrinsic(abld, nir_instr_as_intrinsic(instr));
+      switch (stage) {
+      case MESA_SHADER_VERTEX:
+         nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
+         break;
+      case MESA_SHADER_GEOMETRY:
+         nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
+         break;
+      case MESA_SHADER_FRAGMENT:
+         nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
+         break;
+      case MESA_SHADER_COMPUTE:
+         nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
+         break;
+      default:
+         unreachable("unsupported shader stage");
+      }
       break;
 
    case nir_instr_type_tex:
@@ -533,8 +504,7 @@ fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
       tmp.subreg_offset = 2;
       tmp.stride = 2;
 
-      fs_inst *or_inst = bld.OR(tmp, g0, fs_reg(0x3f80));
-      or_inst->src[1].type = BRW_REGISTER_TYPE_UW;
+      bld.OR(tmp, g0, brw_imm_uw(0x3f80));
 
       tmp.type = BRW_REGISTER_TYPE_D;
       tmp.subreg_offset = 0;
@@ -558,9 +528,9 @@ fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
          g1_6.negate = true;
       }
 
-      bld.OR(tmp, g1_6, fs_reg(0x3f800000));
+      bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
    }
-   bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, fs_reg(0xbf800000));
+   bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
 
    return true;
 }
@@ -673,14 +643,14 @@ fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
          * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
          * zero.
          */
-      bld.CMP(bld.null_reg_f(), op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ);
+      bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
 
       fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
       op[0].type = BRW_REGISTER_TYPE_UD;
       result.type = BRW_REGISTER_TYPE_UD;
-      bld.AND(result_int, op[0], fs_reg(0x80000000u));
+      bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
 
-      inst = bld.OR(result_int, result_int, fs_reg(0x3f800000u));
+      inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
       inst->predicate = BRW_PREDICATE_NORMAL;
       if (instr->dest.saturate) {
          inst = bld.MOV(result, result);
@@ -694,9 +664,9 @@ fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
        *               -> non-negative val generates 0x00000000.
        *  Predicated OR sets 1 if val is positive.
        */
-      bld.CMP(bld.null_reg_d(), op[0], fs_reg(0), BRW_CONDITIONAL_G);
-      bld.ASR(result, op[0], fs_reg(31));
-      inst = bld.OR(result, result, fs_reg(1));
+      bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_G);
+      bld.ASR(result, op[0], brw_imm_d(31));
+      inst = bld.OR(result, result, brw_imm_d(1));
       inst->predicate = BRW_PREDICATE_NORMAL;
       break;
 
@@ -744,21 +714,21 @@ fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
    case nir_op_fddy:
       if (fs_key->high_quality_derivatives) {
          inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0],
-                         fs_reg(fs_key->render_to_fbo));
+                         brw_imm_d(fs_key->render_to_fbo));
       } else {
          inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0],
-                         fs_reg(fs_key->render_to_fbo));
+                         brw_imm_d(fs_key->render_to_fbo));
       }
       inst->saturate = instr->dest.saturate;
       break;
    case nir_op_fddy_fine:
       inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0],
-                      fs_reg(fs_key->render_to_fbo));
+                      brw_imm_d(fs_key->render_to_fbo));
       inst->saturate = instr->dest.saturate;
       break;
    case nir_op_fddy_coarse:
       inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0],
-                      fs_reg(fs_key->render_to_fbo));
+                      brw_imm_d(fs_key->render_to_fbo));
       inst->saturate = instr->dest.saturate;
       break;
 
@@ -907,10 +877,10 @@ fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
       break;
 
    case nir_op_f2b:
-      bld.CMP(result, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ);
+      bld.CMP(result, op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
       break;
    case nir_op_i2b:
-      bld.CMP(result, op[0], fs_reg(0), BRW_CONDITIONAL_NZ);
+      bld.CMP(result, op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
       break;
 
    case nir_op_ftrunc:
@@ -1010,12 +980,11 @@ fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
        * from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then
        * subtract the result from 31 to convert the MSB count into an LSB count.
        */
+      bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
 
-      bld.CMP(bld.null_reg_d(), result, fs_reg(-1), BRW_CONDITIONAL_NZ);
-      fs_reg neg_result(result);
-      neg_result.negate = true;
-      inst = bld.ADD(result, neg_result, fs_reg(31));
+      inst = bld.ADD(result, result, brw_imm_d(31));
       inst->predicate = BRW_PREDICATE_NORMAL;
+      inst->src[0].negate = true;
       break;
    }
 
@@ -1066,7 +1035,7 @@ fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
       if (optimize_frontfacing_ternary(instr, result))
          return;
 
-      bld.CMP(bld.null_reg_d(), op[0], fs_reg(0), BRW_CONDITIONAL_NZ);
+      bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
       inst = bld.SEL(result, op[1], op[2]);
       inst->predicate = BRW_PREDICATE_NORMAL;
       break;
@@ -1081,7 +1050,7 @@ fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
    if (devinfo->gen <= 5 &&
        (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
       fs_reg masked = vgrf(glsl_type::int_type);
-      bld.AND(masked, result, fs_reg(1));
+      bld.AND(masked, result, brw_imm_d(1));
       masked.negate = true;
       bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
    }
@@ -1094,7 +1063,7 @@ fs_visitor::nir_emit_load_const(const fs_builder &bld,
    fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_D, instr->def.num_components);
 
    for (unsigned i = 0; i < instr->def.num_components; i++)
-      bld.MOV(offset(reg, bld, i), fs_reg(instr->value.i[i]));
+      bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i[i]));
 
    nir_ssa_values[instr->def.index] = reg;
 }
@@ -1122,7 +1091,7 @@ fs_reg_for_nir_reg(fs_visitor *v, nir_register *nir_reg,
 
       reg.reladdr = new(v->mem_ctx) fs_reg(v->vgrf(glsl_type::int_type));
       v->bld.MUL(*reg.reladdr, v->get_nir_src(*indirect),
-                 fs_reg(multiplier));
+                 brw_imm_d(multiplier));
    }
 
    return reg;
@@ -1165,20 +1134,39 @@ fs_visitor::get_nir_image_deref(const nir_deref_var *deref)
    fs_reg image(UNIFORM, deref->var->data.driver_location,
                 BRW_REGISTER_TYPE_UD);
 
-   if (deref->deref.child) {
-      const nir_deref_array *deref_array =
-         nir_deref_as_array(deref->deref.child);
-      assert(deref->deref.child->deref_type == nir_deref_type_array &&
-             deref_array->deref.child == NULL);
-
-      image = offset(image, bld,
-                     deref_array->base_offset * BRW_IMAGE_PARAM_SIZE);
+   for (const nir_deref *tail = &deref->deref; tail->child;
+        tail = tail->child) {
+      const nir_deref_array *deref_array = nir_deref_as_array(tail->child);
+      assert(tail->child->deref_type == nir_deref_type_array);
+      const unsigned size = glsl_get_length(tail->type);
+      const unsigned element_size = type_size_scalar(deref_array->deref.type);
+      const unsigned base = MIN2(deref_array->base_offset, size - 1);
+      image = offset(image, bld, base * element_size);
 
       if (deref_array->deref_array_type == nir_deref_array_type_indirect) {
-         fs_reg *tmp = new(mem_ctx) fs_reg(vgrf(glsl_type::int_type));
-         bld.MUL(*tmp, get_nir_src(deref_array->indirect),
-                 fs_reg(BRW_IMAGE_PARAM_SIZE));
-         image.reladdr = tmp;
+         fs_reg tmp = vgrf(glsl_type::int_type);
+
+         if (devinfo->gen == 7 && !devinfo->is_haswell) {
+            /* IVB hangs when trying to access an invalid surface index with
+             * the dataport.  According to the spec "if the index used to
+             * select an individual element is negative or greater than or
+             * equal to the size of the array, the results of the operation
+             * are undefined but may not lead to termination" -- which is one
+             * of the possible outcomes of the hang.  Clamp the index to
+             * prevent access outside of the array bounds.
+             */
+            bld.emit_minmax(tmp, retype(get_nir_src(deref_array->indirect),
+                                        BRW_REGISTER_TYPE_UD),
+                            brw_imm_ud(size - base - 1), BRW_CONDITIONAL_L);
+         } else {
+            bld.MOV(tmp, get_nir_src(deref_array->indirect));
+         }
+
+         bld.MUL(tmp, tmp, brw_imm_ud(element_size));
+         if (image.reladdr)
+            bld.ADD(*image.reladdr, *image.reladdr, tmp);
+         else
+            image.reladdr = new(mem_ctx) fs_reg(tmp);
       }
    }
 
@@ -1196,7 +1184,7 @@ fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
       fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
       new_inst->dst = offset(new_inst->dst, bld, i);
       for (unsigned j = 0; j < new_inst->sources; j++)
-         if (new_inst->src[j].file == GRF)
+         if (new_inst->src[j].file == VGRF)
             new_inst->src[j] = offset(new_inst->src[j], bld, i);
 
       bld.emit(new_inst);
@@ -1252,185 +1240,585 @@ get_image_atomic_op(nir_intrinsic_op op, const glsl_type *type)
    }
 }
 
-void
-fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
+static fs_inst *
+emit_pixel_interpolater_send(const fs_builder &bld,
+                             enum opcode opcode,
+                             const fs_reg &dst,
+                             const fs_reg &src,
+                             const fs_reg &desc,
+                             glsl_interp_qualifier interpolation)
 {
-   fs_reg dest;
-   if (nir_intrinsic_infos[instr->intrinsic].has_dest)
-      dest = get_nir_dest(instr->dest);
-
-   bool has_indirect = false;
-
-   switch (instr->intrinsic) {
-   case nir_intrinsic_discard:
-   case nir_intrinsic_discard_if: {
-      /* We track our discarded pixels in f0.1.  By predicating on it, we can
-       * update just the flag bits that aren't yet discarded.  If there's no
-       * condition, we emit a CMP of g0 != g0, so all currently executing
-       * channels will get turned off.
-       */
-      fs_inst *cmp;
-      if (instr->intrinsic == nir_intrinsic_discard_if) {
-         cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
-                       fs_reg(0), BRW_CONDITIONAL_Z);
-      } else {
-         fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
-                                       BRW_REGISTER_TYPE_UW));
-         cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
-      }
-      cmp->predicate = BRW_PREDICATE_NORMAL;
-      cmp->flag_subreg = 1;
+   fs_inst *inst;
+   fs_reg payload;
+   int mlen;
 
-      if (devinfo->gen >= 6) {
-         emit_discard_jump();
-      }
-      break;
+   if (src.file == BAD_FILE) {
+      /* Dummy payload */
+      payload = bld.vgrf(BRW_REGISTER_TYPE_F, 1);
+      mlen = 1;
+   } else {
+      payload = src;
+      mlen = 2 * bld.dispatch_width() / 8;
    }
 
-   case nir_intrinsic_atomic_counter_inc:
-   case nir_intrinsic_atomic_counter_dec:
-   case nir_intrinsic_atomic_counter_read: {
-      using namespace surface_access;
+   inst = bld.emit(opcode, dst, payload, desc);
+   inst->mlen = mlen;
+   /* 2 floats per slot returned */
+   inst->regs_written = 2 * bld.dispatch_width() / 8;
+   inst->pi_noperspective = interpolation == INTERP_QUALIFIER_NOPERSPECTIVE;
 
-      /* Get the arguments of the atomic intrinsic. */
-      const fs_reg offset = get_nir_src(instr->src[0]);
-      const unsigned surface = (stage_prog_data->binding_table.abo_start +
-                                instr->const_index[0]);
-      fs_reg tmp;
+   return inst;
+}
 
-      /* Emit a surface read or atomic op. */
-      switch (instr->intrinsic) {
-      case nir_intrinsic_atomic_counter_read:
-         tmp = emit_untyped_read(bld, fs_reg(surface), offset, 1, 1);
-         break;
+/**
+ * Computes 1 << x, given a D/UD register containing some value x.
+ */
+static fs_reg
+intexp2(const fs_builder &bld, const fs_reg &x)
+{
+   assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
 
-      case nir_intrinsic_atomic_counter_inc:
-         tmp = emit_untyped_atomic(bld, fs_reg(surface), offset, fs_reg(),
-                                   fs_reg(), 1, 1, BRW_AOP_INC);
-         break;
+   fs_reg result = bld.vgrf(x.type, 1);
+   fs_reg one = bld.vgrf(x.type, 1);
 
-      case nir_intrinsic_atomic_counter_dec:
-         tmp = emit_untyped_atomic(bld, fs_reg(surface), offset, fs_reg(),
-                                   fs_reg(), 1, 1, BRW_AOP_PREDEC);
-         break;
+   bld.MOV(one, retype(brw_imm_d(1), one.type));
+   bld.SHL(result, one, x);
+   return result;
+}
 
-      default:
-         unreachable("Unreachable");
-      }
+void
+fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
+{
+   assert(stage == MESA_SHADER_GEOMETRY);
 
-      /* Assign the result. */
-      bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), tmp);
+   struct brw_gs_prog_data *gs_prog_data =
+      (struct brw_gs_prog_data *) prog_data;
 
-      /* Mark the surface as used. */
-      brw_mark_surface_used(stage_prog_data, surface);
-      break;
+   /* We can only do EndPrimitive() functionality when the control data
+    * consists of cut bits.  Fortunately, the only time it isn't is when the
+    * output type is points, in which case EndPrimitive() is a no-op.
+    */
+   if (gs_prog_data->control_data_format !=
+       GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
+      return;
    }
 
-   case nir_intrinsic_image_load:
-   case nir_intrinsic_image_store:
-   case nir_intrinsic_image_atomic_add:
-   case nir_intrinsic_image_atomic_min:
-   case nir_intrinsic_image_atomic_max:
-   case nir_intrinsic_image_atomic_and:
-   case nir_intrinsic_image_atomic_or:
-   case nir_intrinsic_image_atomic_xor:
-   case nir_intrinsic_image_atomic_exchange:
-   case nir_intrinsic_image_atomic_comp_swap: {
-      using namespace image_access;
-
-      /* Get the referenced image variable and type. */
-      const nir_variable *var = instr->variables[0]->var;
-      const glsl_type *type = var->type->without_array();
-      const brw_reg_type base_type = get_image_base_type(type);
+   /* Cut bits use one bit per vertex. */
+   assert(gs_compile->control_data_bits_per_vertex == 1);
 
-      /* Get some metadata from the image intrinsic. */
-      const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
-      const unsigned arr_dims = type->sampler_array ? 1 : 0;
-      const unsigned surf_dims = type->coordinate_components() - arr_dims;
-      const mesa_format format =
-         (var->data.image.write_only ? MESA_FORMAT_NONE :
-          _mesa_get_shader_image_format(var->data.image.format));
+   fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
+   vertex_count.type = BRW_REGISTER_TYPE_UD;
 
-      /* Get the arguments of the image intrinsic. */
-      const fs_reg image = get_nir_image_deref(instr->variables[0]);
-      const fs_reg addr = retype(get_nir_src(instr->src[0]),
-                                 BRW_REGISTER_TYPE_UD);
-      const fs_reg src0 = (info->num_srcs >= 3 ?
-                           retype(get_nir_src(instr->src[2]), base_type) :
-                           fs_reg());
-      const fs_reg src1 = (info->num_srcs >= 4 ?
-                           retype(get_nir_src(instr->src[3]), base_type) :
-                           fs_reg());
-      fs_reg tmp;
+   /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
+    * vertex n, 0 otherwise.  So all we need to do here is mark bit
+    * (vertex_count - 1) % 32 in the cut_bits register to indicate that
+    * EndPrimitive() was called after emitting vertex (vertex_count - 1);
+    * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
+    *
+    * Note that if EndPrimitive() is called before emitting any vertices, this
+    * will cause us to set bit 31 of the control_data_bits register to 1.
+    * That's fine because:
+    *
+    * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
+    *   output, so the hardware will ignore cut bit 31.
+    *
+    * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
+    *   last vertex, so setting cut bit 31 has no effect (since the primitive
+    *   is automatically ended when the GS terminates).
+    *
+    * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
+    *   control_data_bits register to 0 when the first vertex is emitted.
+    */
 
-      /* Emit an image load, store or atomic op. */
-      if (instr->intrinsic == nir_intrinsic_image_load)
-         tmp = emit_image_load(bld, image, addr, surf_dims, arr_dims, format);
+   const fs_builder abld = bld.annotate("end primitive");
 
-      else if (instr->intrinsic == nir_intrinsic_image_store)
-         emit_image_store(bld, image, addr, src0, surf_dims, arr_dims, format);
+   /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
+   fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
+   abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
+   fs_reg mask = intexp2(abld, prev_count);
+   /* Note: we're relying on the fact that the GEN SHL instruction only pays
+    * attention to the lower 5 bits of its second source argument, so on this
+    * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
+    * ((vertex_count - 1) % 32).
+    */
+   abld.OR(this->control_data_bits, this->control_data_bits, mask);
+}
 
-      else
-         tmp = emit_image_atomic(bld, image, addr, src0, src1,
-                                 surf_dims, arr_dims, info->dest_components,
-                                 get_image_atomic_op(instr->intrinsic, type));
+void
+fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
+{
+   assert(stage == MESA_SHADER_GEOMETRY);
+   assert(gs_compile->control_data_bits_per_vertex != 0);
 
-      /* Assign the result. */
-      for (unsigned c = 0; c < info->dest_components; ++c)
-         bld.MOV(offset(retype(dest, base_type), bld, c),
-                 offset(tmp, bld, c));
-      break;
-   }
+   struct brw_gs_prog_data *gs_prog_data =
+      (struct brw_gs_prog_data *) prog_data;
 
-   case nir_intrinsic_memory_barrier: {
-      const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 16 / dispatch_width);
-      bld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
-         ->regs_written = 2;
-      break;
-   }
+   const fs_builder abld = bld.annotate("emit control data bits");
+   const fs_builder fwa_bld = bld.exec_all();
 
-   case nir_intrinsic_load_front_face:
-      bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
-              *emit_frontfacing_interpolation());
-      break;
+   /* We use a single UD register to accumulate control data bits (32 bits
+    * for each of the SIMD8 channels).  So we need to write a DWord (32 bits)
+    * at a time.
+    *
+    * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
+    * We have select a 128-bit group via the Global and Per-Slot Offsets, then
+    * use the Channel Mask phase to enable/disable which DWord within that
+    * group to write.  (Remember, different SIMD8 channels may have emitted
+    * different numbers of vertices, so we may need per-slot offsets.)
+    *
+    * Channel masking presents an annoying problem: we may have to replicate
+    * the data up to 4 times:
+    *
+    * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
+    *
+    * To avoid penalizing shaders that emit a small number of vertices, we
+    * can avoid these sometimes: if the size of the control data header is
+    * <= 128 bits, then there is only 1 OWord.  All SIMD8 channels will land
+    * land in the same 128-bit group, so we can skip per-slot offsets.
+    *
+    * Similarly, if the control data header is <= 32 bits, there is only one
+    * DWord, so we can skip channel masks.
+    */
+   enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
 
-   case nir_intrinsic_load_vertex_id:
-      unreachable("should be lowered by lower_vertex_id()");
+   fs_reg channel_mask, per_slot_offset;
 
-   case nir_intrinsic_load_vertex_id_zero_base: {
-      fs_reg vertex_id = nir_system_values[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE];
-      assert(vertex_id.file != BAD_FILE);
-      dest.type = vertex_id.type;
-      bld.MOV(dest, vertex_id);
-      break;
+   if (gs_compile->control_data_header_size_bits > 32) {
+      opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
+      channel_mask = vgrf(glsl_type::uint_type);
    }
 
-   case nir_intrinsic_load_base_vertex: {
-      fs_reg base_vertex = nir_system_values[SYSTEM_VALUE_BASE_VERTEX];
-      assert(base_vertex.file != BAD_FILE);
-      dest.type = base_vertex.type;
-      bld.MOV(dest, base_vertex);
-      break;
+   if (gs_compile->control_data_header_size_bits > 128) {
+      opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
+      per_slot_offset = vgrf(glsl_type::uint_type);
    }
 
-   case nir_intrinsic_load_instance_id: {
-      fs_reg instance_id = nir_system_values[SYSTEM_VALUE_INSTANCE_ID];
-      assert(instance_id.file != BAD_FILE);
-      dest.type = instance_id.type;
-      bld.MOV(dest, instance_id);
-      break;
+   /* Figure out which DWord we're trying to write to using the formula:
+    *
+    *    dword_index = (vertex_count - 1) * bits_per_vertex / 32
+    *
+    * Since bits_per_vertex is a power of two, and is known at compile
+    * time, this can be optimized to:
+    *
+    *    dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
+    */
+   if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
+      fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
+      fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
+      abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
+      unsigned log2_bits_per_vertex =
+         _mesa_fls(gs_compile->control_data_bits_per_vertex);
+      abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
+
+      if (per_slot_offset.file != BAD_FILE) {
+         /* Set the per-slot offset to dword_index / 4, so that we'll write to
+          * the appropriate OWord within the control data header.
+          */
+         abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
+      }
+
+      /* Set the channel masks to 1 << (dword_index % 4), so that we'll
+       * write to the appropriate DWORD within the OWORD.
+       */
+      fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
+      fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
+      channel_mask = intexp2(fwa_bld, channel);
+      /* Then the channel masks need to be in bits 23:16. */
+      fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
    }
 
-   case nir_intrinsic_load_sample_mask_in: {
-      fs_reg sample_mask_in = nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
-      assert(sample_mask_in.file != BAD_FILE);
-      dest.type = sample_mask_in.type;
-      bld.MOV(dest, sample_mask_in);
-      break;
+   /* Store the control data bits in the message payload and send it. */
+   int mlen = 2;
+   if (channel_mask.file != BAD_FILE)
+      mlen += 4; /* channel masks, plus 3 extra copies of the data */
+   if (per_slot_offset.file != BAD_FILE)
+      mlen++;
+
+   fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
+   fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
+   int i = 0;
+   sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
+   if (per_slot_offset.file != BAD_FILE)
+      sources[i++] = per_slot_offset;
+   if (channel_mask.file != BAD_FILE)
+      sources[i++] = channel_mask;
+   while (i < mlen) {
+      sources[i++] = this->control_data_bits;
    }
 
-   case nir_intrinsic_load_sample_pos: {
-      fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
+   abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
+   fs_inst *inst = abld.emit(opcode, reg_undef, payload);
+   inst->mlen = mlen;
+   /* We need to increment Global Offset by 256-bits to make room for
+    * Broadwell's extra "Vertex Count" payload at the beginning of the
+    * URB entry.  Since this is an OWord message, Global Offset is counted
+    * in 128-bit units, so we must set it to 2.
+    */
+   if (gs_prog_data->static_vertex_count == -1)
+      inst->offset = 2;
+}
+
+void
+fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
+                                            unsigned stream_id)
+{
+   /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
+
+   /* Note: we are calling this *before* increasing vertex_count, so
+    * this->vertex_count == vertex_count - 1 in the formula above.
+    */
+
+   /* Stream mode uses 2 bits per vertex */
+   assert(gs_compile->control_data_bits_per_vertex == 2);
+
+   /* Must be a valid stream */
+   assert(stream_id >= 0 && stream_id < MAX_VERTEX_STREAMS);
+
+   /* Control data bits are initialized to 0 so we don't have to set any
+    * bits when sending vertices to stream 0.
+    */
+   if (stream_id == 0)
+      return;
+
+   const fs_builder abld = bld.annotate("set stream control data bits", NULL);
+
+   /* reg::sid = stream_id */
+   fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
+   abld.MOV(sid, brw_imm_ud(stream_id));
+
+   /* reg:shift_count = 2 * (vertex_count - 1) */
+   fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
+   abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
+
+   /* Note: we're relying on the fact that the GEN SHL instruction only pays
+    * attention to the lower 5 bits of its second source argument, so on this
+    * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
+    * stream_id << ((2 * (vertex_count - 1)) % 32).
+    */
+   fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
+   abld.SHL(mask, sid, shift_count);
+   abld.OR(this->control_data_bits, this->control_data_bits, mask);
+}
+
+void
+fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
+                           unsigned stream_id)
+{
+   assert(stage == MESA_SHADER_GEOMETRY);
+
+   struct brw_gs_prog_data *gs_prog_data =
+      (struct brw_gs_prog_data *) prog_data;
+
+   fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
+   vertex_count.type = BRW_REGISTER_TYPE_UD;
+
+   /* Haswell and later hardware ignores the "Render Stream Select" bits
+    * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
+    * and instead sends all primitives down the pipeline for rasterization.
+    * If the SOL stage is enabled, "Render Stream Select" is honored and
+    * primitives bound to non-zero streams are discarded after stream output.
+    *
+    * Since the only purpose of primives sent to non-zero streams is to
+    * be recorded by transform feedback, we can simply discard all geometry
+    * bound to these streams when transform feedback is disabled.
+    */
+   if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
+      return;
+
+   /* If we're outputting 32 control data bits or less, then we can wait
+    * until the shader is over to output them all.  Otherwise we need to
+    * output them as we go.  Now is the time to do it, since we're about to
+    * output the vertex_count'th vertex, so it's guaranteed that the
+    * control data bits associated with the (vertex_count - 1)th vertex are
+    * correct.
+    */
+   if (gs_compile->control_data_header_size_bits > 32) {
+      const fs_builder abld =
+         bld.annotate("emit vertex: emit control data bits");
+
+      /* Only emit control data bits if we've finished accumulating a batch
+       * of 32 bits.  This is the case when:
+       *
+       *     (vertex_count * bits_per_vertex) % 32 == 0
+       *
+       * (in other words, when the last 5 bits of vertex_count *
+       * bits_per_vertex are 0).  Assuming bits_per_vertex == 2^n for some
+       * integer n (which is always the case, since bits_per_vertex is
+       * always 1 or 2), this is equivalent to requiring that the last 5-n
+       * bits of vertex_count are 0:
+       *
+       *     vertex_count & (2^(5-n) - 1) == 0
+       *
+       * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
+       * equivalent to:
+       *
+       *     vertex_count & (32 / bits_per_vertex - 1) == 0
+       *
+       * TODO: If vertex_count is an immediate, we could do some of this math
+       *       at compile time...
+       */
+      fs_inst *inst =
+         abld.AND(bld.null_reg_d(), vertex_count,
+                  brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
+      inst->conditional_mod = BRW_CONDITIONAL_Z;
+
+      abld.IF(BRW_PREDICATE_NORMAL);
+      /* If vertex_count is 0, then no control data bits have been
+       * accumulated yet, so we can skip emitting them.
+       */
+      abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
+               BRW_CONDITIONAL_NEQ);
+      abld.IF(BRW_PREDICATE_NORMAL);
+      emit_gs_control_data_bits(vertex_count);
+      abld.emit(BRW_OPCODE_ENDIF);
+
+      /* Reset control_data_bits to 0 so we can start accumulating a new
+       * batch.
+       *
+       * Note: in the case where vertex_count == 0, this neutralizes the
+       * effect of any call to EndPrimitive() that the shader may have
+       * made before outputting its first vertex.
+       */
+      inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
+      inst->force_writemask_all = true;
+      abld.emit(BRW_OPCODE_ENDIF);
+   }
+
+   emit_urb_writes(vertex_count);
+
+   /* In stream mode we have to set control data bits for all vertices
+    * unless we have disabled control data bits completely (which we do
+    * do for GL_POINTS outputs that don't use streams).
+    */
+   if (gs_compile->control_data_header_size_bits > 0 &&
+       gs_prog_data->control_data_format ==
+          GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
+      set_gs_stream_control_data_bits(vertex_count, stream_id);
+   }
+}
+
+void
+fs_visitor::emit_gs_input_load(const fs_reg &dst,
+                               const nir_src &vertex_src,
+                               const fs_reg &indirect_offset,
+                               unsigned imm_offset,
+                               unsigned num_components)
+{
+   struct brw_gs_prog_data *gs_prog_data = (struct brw_gs_prog_data *) prog_data;
+
+   /* Offset 0 is the VUE header, which contains VARYING_SLOT_LAYER [.y],
+    * VARYING_SLOT_VIEWPORT [.z], and VARYING_SLOT_PSIZ [.w].  Only
+    * gl_PointSize is available as a GS input, however, so it must be that.
+    */
+   const bool is_point_size =
+      indirect_offset.file == BAD_FILE && imm_offset == 0;
+
+   nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
+   const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
+
+   if (indirect_offset.file == BAD_FILE && vertex_const != NULL &&
+       4 * imm_offset < push_reg_count) {
+      imm_offset = 4 * imm_offset + vertex_const->u[0] * push_reg_count;
+      /* This input was pushed into registers. */
+      if (is_point_size) {
+         /* gl_PointSize comes in .w */
+         bld.MOV(dst, fs_reg(ATTR, imm_offset + 3, dst.type));
+      } else {
+         for (unsigned i = 0; i < num_components; i++) {
+            bld.MOV(offset(dst, bld, i),
+                    fs_reg(ATTR, imm_offset + i, dst.type));
+         }
+      }
+   } else {
+      /* Resort to the pull model.  Ensure the VUE handles are provided. */
+      gs_prog_data->base.include_vue_handles = true;
+
+      unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
+      fs_reg icp_handle;
+
+      if (vertex_const) {
+         /* The vertex index is constant; just select the proper URB handle. */
+         icp_handle =
+            retype(brw_vec8_grf(first_icp_handle + vertex_const->i[0], 0),
+                   BRW_REGISTER_TYPE_UD);
+      } else {
+         /* The vertex index is non-constant.  We need to use indirect
+          * addressing to fetch the proper URB handle.
+          *
+          * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
+          * indicating that channel <n> should read the handle from
+          * DWord <n>.  We convert that to bytes by multiplying by 4.
+          *
+          * Next, we convert the vertex index to bytes by multiplying
+          * by 32 (shifting by 5), and add the two together.  This is
+          * the final indirect byte offset.
+          */
+         fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_W, 1);
+         fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
+         fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
+         fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
+         icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
+
+         /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
+         bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
+         /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
+         bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
+         /* Convert vertex_index to bytes (multiply by 32) */
+         bld.SHL(vertex_offset_bytes,
+                 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
+                 brw_imm_ud(5u));
+         bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
+
+         /* Use first_icp_handle as the base offset.  There is one register
+          * of URB handles per vertex, so inform the register allocator that
+          * we might read up to nir->info.gs.vertices_in registers.
+          */
+         bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
+                  fs_reg(brw_vec8_grf(first_icp_handle, 0)),
+                  fs_reg(icp_offset_bytes),
+                  brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
+      }
+
+      fs_inst *inst;
+      if (indirect_offset.file == BAD_FILE) {
+         /* Constant indexing - use global offset. */
+         inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
+         inst->offset = imm_offset;
+         inst->base_mrf = -1;
+         inst->mlen = 1;
+         inst->regs_written = num_components;
+      } else {
+         /* Indirect indexing - use per-slot offsets as well. */
+         const fs_reg srcs[] = { icp_handle, indirect_offset };
+         fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
+         bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
+
+         inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst, payload);
+         inst->offset = imm_offset;
+         inst->base_mrf = -1;
+         inst->mlen = 2;
+         inst->regs_written = num_components;
+      }
+
+      if (is_point_size) {
+         /* Read the whole VUE header (because of alignment) and read .w. */
+         fs_reg tmp = bld.vgrf(dst.type, 4);
+         inst->dst = tmp;
+         inst->regs_written = 4;
+         bld.MOV(dst, offset(tmp, bld, 3));
+      }
+   }
+}
+
+void
+fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
+                                  nir_intrinsic_instr *instr)
+{
+   assert(stage == MESA_SHADER_VERTEX);
+
+   fs_reg dest;
+   if (nir_intrinsic_infos[instr->intrinsic].has_dest)
+      dest = get_nir_dest(instr->dest);
+
+   switch (instr->intrinsic) {
+   case nir_intrinsic_load_vertex_id:
+      unreachable("should be lowered by lower_vertex_id()");
+
+   case nir_intrinsic_load_vertex_id_zero_base:
+   case nir_intrinsic_load_base_vertex:
+   case nir_intrinsic_load_instance_id: {
+      gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
+      fs_reg val = nir_system_values[sv];
+      assert(val.file != BAD_FILE);
+      dest.type = val.type;
+      bld.MOV(dest, val);
+      break;
+   }
+
+   default:
+      nir_emit_intrinsic(bld, instr);
+      break;
+   }
+}
+
+void
+fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
+                                  nir_intrinsic_instr *instr)
+{
+   assert(stage == MESA_SHADER_GEOMETRY);
+   fs_reg indirect_offset;
+
+   fs_reg dest;
+   if (nir_intrinsic_infos[instr->intrinsic].has_dest)
+      dest = get_nir_dest(instr->dest);
+
+   switch (instr->intrinsic) {
+   case nir_intrinsic_load_primitive_id:
+      assert(stage == MESA_SHADER_GEOMETRY);
+      assert(((struct brw_gs_prog_data *)prog_data)->include_primitive_id);
+      bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
+              retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
+      break;
+
+   case nir_intrinsic_load_input_indirect:
+   case nir_intrinsic_load_input:
+      unreachable("load_input intrinsics are invalid for the GS stage");
+
+   case nir_intrinsic_load_per_vertex_input_indirect:
+      indirect_offset = retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_D);
+      /* fallthrough */
+   case nir_intrinsic_load_per_vertex_input:
+      emit_gs_input_load(dest, instr->src[0],
+                         indirect_offset, instr->const_index[0],
+                         instr->num_components);
+      break;
+
+   case nir_intrinsic_emit_vertex_with_counter:
+      emit_gs_vertex(instr->src[0], instr->const_index[0]);
+      break;
+
+   case nir_intrinsic_end_primitive_with_counter:
+      emit_gs_end_primitive(instr->src[0]);
+      break;
+
+   case nir_intrinsic_set_vertex_count:
+      bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
+      break;
+
+   case nir_intrinsic_load_invocation_id: {
+      fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
+      assert(val.file != BAD_FILE);
+      dest.type = val.type;
+      bld.MOV(dest, val);
+      break;
+   }
+
+   default:
+      nir_emit_intrinsic(bld, instr);
+      break;
+   }
+}
+
+void
+fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
+                                  nir_intrinsic_instr *instr)
+{
+   assert(stage == MESA_SHADER_FRAGMENT);
+   struct brw_wm_prog_data *wm_prog_data =
+      (struct brw_wm_prog_data *) prog_data;
+
+   fs_reg dest;
+   if (nir_intrinsic_infos[instr->intrinsic].has_dest)
+      dest = get_nir_dest(instr->dest);
+
+   switch (instr->intrinsic) {
+   case nir_intrinsic_load_front_face:
+      bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
+              *emit_frontfacing_interpolation());
+      break;
+
+   case nir_intrinsic_load_sample_pos: {
+      fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
       assert(sample_pos.file != BAD_FILE);
       dest.type = sample_pos.type;
       bld.MOV(dest, sample_pos);
@@ -1438,33 +1826,484 @@ fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr
       break;
    }
 
-   case nir_intrinsic_load_sample_id: {
-      fs_reg sample_id = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
-      assert(sample_id.file != BAD_FILE);
-      dest.type = sample_id.type;
-      bld.MOV(dest, sample_id);
+   case nir_intrinsic_load_helper_invocation:
+   case nir_intrinsic_load_sample_mask_in:
+   case nir_intrinsic_load_sample_id: {
+      gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
+      fs_reg val = nir_system_values[sv];
+      assert(val.file != BAD_FILE);
+      dest.type = val.type;
+      bld.MOV(dest, val);
+      break;
+   }
+
+   case nir_intrinsic_discard:
+   case nir_intrinsic_discard_if: {
+      /* We track our discarded pixels in f0.1.  By predicating on it, we can
+       * update just the flag bits that aren't yet discarded.  If there's no
+       * condition, we emit a CMP of g0 != g0, so all currently executing
+       * channels will get turned off.
+       */
+      fs_inst *cmp;
+      if (instr->intrinsic == nir_intrinsic_discard_if) {
+         cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
+                       brw_imm_d(0), BRW_CONDITIONAL_Z);
+      } else {
+         fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
+                                       BRW_REGISTER_TYPE_UW));
+         cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
+      }
+      cmp->predicate = BRW_PREDICATE_NORMAL;
+      cmp->flag_subreg = 1;
+
+      if (devinfo->gen >= 6) {
+         emit_discard_jump();
+      }
+      break;
+   }
+
+   case nir_intrinsic_interp_var_at_centroid:
+   case nir_intrinsic_interp_var_at_sample:
+   case nir_intrinsic_interp_var_at_offset: {
+      /* Handle ARB_gpu_shader5 interpolation intrinsics
+       *
+       * It's worth a quick word of explanation as to why we handle the full
+       * variable-based interpolation intrinsic rather than a lowered version
+       * with like we do for other inputs.  We have to do that because the way
+       * we set up inputs doesn't allow us to use the already setup inputs for
+       * interpolation.  At the beginning of the shader, we go through all of
+       * the input variables and do the initial interpolation and put it in
+       * the nir_inputs array based on its location as determined in
+       * nir_lower_io.  If the input isn't used, dead code cleans up and
+       * everything works fine.  However, when we get to the ARB_gpu_shader5
+       * interpolation intrinsics, we need to reinterpolate the input
+       * differently.  If we used an intrinsic that just had an index it would
+       * only give us the offset into the nir_inputs array.  However, this is
+       * useless because that value is post-interpolation and we need
+       * pre-interpolation.  In order to get the actual location of the bits
+       * we get from the vertex fetching hardware, we need the variable.
+       */
+      wm_prog_data->pulls_bary = true;
+
+      fs_reg dst_xy = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
+      const glsl_interp_qualifier interpolation =
+         (glsl_interp_qualifier) instr->variables[0]->var->data.interpolation;
+
+      switch (instr->intrinsic) {
+      case nir_intrinsic_interp_var_at_centroid:
+         emit_pixel_interpolater_send(bld,
+                                      FS_OPCODE_INTERPOLATE_AT_CENTROID,
+                                      dst_xy,
+                                      fs_reg(), /* src */
+                                      brw_imm_ud(0u),
+                                      interpolation);
+         break;
+
+      case nir_intrinsic_interp_var_at_sample: {
+         nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
+
+         if (const_sample) {
+            unsigned msg_data = const_sample->i[0] << 4;
+
+            emit_pixel_interpolater_send(bld,
+                                         FS_OPCODE_INTERPOLATE_AT_SAMPLE,
+                                         dst_xy,
+                                         fs_reg(), /* src */
+                                         brw_imm_ud(msg_data),
+                                         interpolation);
+         } else {
+            const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
+                                             BRW_REGISTER_TYPE_UD);
+
+            if (nir_src_is_dynamically_uniform(instr->src[0])) {
+               const fs_reg sample_id = bld.emit_uniformize(sample_src);
+               const fs_reg msg_data = vgrf(glsl_type::uint_type);
+               bld.exec_all().group(1, 0)
+                  .SHL(msg_data, sample_id, brw_imm_ud(4u));
+               emit_pixel_interpolater_send(bld,
+                                            FS_OPCODE_INTERPOLATE_AT_SAMPLE,
+                                            dst_xy,
+                                            fs_reg(), /* src */
+                                            msg_data,
+                                            interpolation);
+            } else {
+               /* Make a loop that sends a message to the pixel interpolater
+                * for the sample number in each live channel. If there are
+                * multiple channels with the same sample number then these
+                * will be handled simultaneously with a single interation of
+                * the loop.
+                */
+               bld.emit(BRW_OPCODE_DO);
+
+               /* Get the next live sample number into sample_id_reg */
+               const fs_reg sample_id = bld.emit_uniformize(sample_src);
+
+               /* Set the flag register so that we can perform the send
+                * message on all channels that have the same sample number
+                */
+               bld.CMP(bld.null_reg_ud(),
+                       sample_src, sample_id,
+                       BRW_CONDITIONAL_EQ);
+               const fs_reg msg_data = vgrf(glsl_type::uint_type);
+               bld.exec_all().group(1, 0)
+                  .SHL(msg_data, sample_id, brw_imm_ud(4u));
+               fs_inst *inst =
+                  emit_pixel_interpolater_send(bld,
+                                               FS_OPCODE_INTERPOLATE_AT_SAMPLE,
+                                               dst_xy,
+                                               fs_reg(), /* src */
+                                               msg_data,
+                                               interpolation);
+               set_predicate(BRW_PREDICATE_NORMAL, inst);
+
+               /* Continue the loop if there are any live channels left */
+               set_predicate_inv(BRW_PREDICATE_NORMAL,
+                                 true, /* inverse */
+                                 bld.emit(BRW_OPCODE_WHILE));
+            }
+         }
+
+         break;
+      }
+
+      case nir_intrinsic_interp_var_at_offset: {
+         nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
+
+         if (const_offset) {
+            unsigned off_x = MIN2((int)(const_offset->f[0] * 16), 7) & 0xf;
+            unsigned off_y = MIN2((int)(const_offset->f[1] * 16), 7) & 0xf;
+
+            emit_pixel_interpolater_send(bld,
+                                         FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
+                                         dst_xy,
+                                         fs_reg(), /* src */
+                                         brw_imm_ud(off_x | (off_y << 4)),
+                                         interpolation);
+         } else {
+            fs_reg src = vgrf(glsl_type::ivec2_type);
+            fs_reg offset_src = retype(get_nir_src(instr->src[0]),
+                                       BRW_REGISTER_TYPE_F);
+            for (int i = 0; i < 2; i++) {
+               fs_reg temp = vgrf(glsl_type::float_type);
+               bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
+               fs_reg itemp = vgrf(glsl_type::int_type);
+               bld.MOV(itemp, temp);  /* float to int */
+
+               /* Clamp the upper end of the range to +7/16.
+                * ARB_gpu_shader5 requires that we support a maximum offset
+                * of +0.5, which isn't representable in a S0.4 value -- if
+                * we didn't clamp it, we'd end up with -8/16, which is the
+                * opposite of what the shader author wanted.
+                *
+                * This is legal due to ARB_gpu_shader5's quantization
+                * rules:
+                *
+                * "Not all values of <offset> may be supported; x and y
+                * offsets may be rounded to fixed-point values with the
+                * number of fraction bits given by the
+                * implementation-dependent constant
+                * FRAGMENT_INTERPOLATION_OFFSET_BITS"
+                */
+               set_condmod(BRW_CONDITIONAL_L,
+                           bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
+            }
+
+            const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
+            emit_pixel_interpolater_send(bld,
+                                         opcode,
+                                         dst_xy,
+                                         src,
+                                         brw_imm_ud(0u),
+                                         interpolation);
+         }
+         break;
+      }
+
+      default:
+         unreachable("Invalid intrinsic");
+      }
+
+      for (unsigned j = 0; j < instr->num_components; j++) {
+         fs_reg src = interp_reg(instr->variables[0]->var->data.location, j);
+         src.type = dest.type;
+
+         bld.emit(FS_OPCODE_LINTERP, dest, dst_xy, src);
+         dest = offset(dest, bld, 1);
+      }
+      break;
+   }
+   default:
+      nir_emit_intrinsic(bld, instr);
+      break;
+   }
+}
+
+void
+fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
+                                  nir_intrinsic_instr *instr)
+{
+   assert(stage == MESA_SHADER_COMPUTE);
+   struct brw_cs_prog_data *cs_prog_data =
+      (struct brw_cs_prog_data *) prog_data;
+
+   fs_reg dest;
+   if (nir_intrinsic_infos[instr->intrinsic].has_dest)
+      dest = get_nir_dest(instr->dest);
+
+   switch (instr->intrinsic) {
+   case nir_intrinsic_barrier:
+      emit_barrier();
+      cs_prog_data->uses_barrier = true;
+      break;
+
+   case nir_intrinsic_load_local_invocation_id:
+   case nir_intrinsic_load_work_group_id: {
+      gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
+      fs_reg val = nir_system_values[sv];
+      assert(val.file != BAD_FILE);
+      dest.type = val.type;
+      for (unsigned i = 0; i < 3; i++)
+         bld.MOV(offset(dest, bld, i), offset(val, bld, i));
+      break;
+   }
+
+   case nir_intrinsic_load_num_work_groups: {
+      const unsigned surface =
+         cs_prog_data->binding_table.work_groups_start;
+
+      cs_prog_data->uses_num_work_groups = true;
+
+      fs_reg surf_index = brw_imm_ud(surface);
+      brw_mark_surface_used(prog_data, surface);
+
+      /* Read the 3 GLuint components of gl_NumWorkGroups */
+      for (unsigned i = 0; i < 3; i++) {
+         fs_reg read_result =
+            emit_untyped_read(bld, surf_index,
+                              brw_imm_ud(i << 2),
+                              1 /* dims */, 1 /* size */,
+                              BRW_PREDICATE_NONE);
+         read_result.type = dest.type;
+         bld.MOV(dest, read_result);
+         dest = offset(dest, bld, 1);
+      }
+      break;
+   }
+
+   default:
+      nir_emit_intrinsic(bld, instr);
+      break;
+   }
+}
+
+void
+fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
+{
+   fs_reg dest;
+   if (nir_intrinsic_infos[instr->intrinsic].has_dest)
+      dest = get_nir_dest(instr->dest);
+
+   bool has_indirect = false;
+
+   switch (instr->intrinsic) {
+   case nir_intrinsic_atomic_counter_inc:
+   case nir_intrinsic_atomic_counter_dec:
+   case nir_intrinsic_atomic_counter_read: {
+      using namespace surface_access;
+
+      /* Get the arguments of the atomic intrinsic. */
+      const fs_reg offset = get_nir_src(instr->src[0]);
+      const unsigned surface = (stage_prog_data->binding_table.abo_start +
+                                instr->const_index[0]);
+      fs_reg tmp;
+
+      /* Emit a surface read or atomic op. */
+      switch (instr->intrinsic) {
+      case nir_intrinsic_atomic_counter_read:
+         tmp = emit_untyped_read(bld, brw_imm_ud(surface), offset, 1, 1);
+         break;
+
+      case nir_intrinsic_atomic_counter_inc:
+         tmp = emit_untyped_atomic(bld, brw_imm_ud(surface), offset, fs_reg(),
+                                   fs_reg(), 1, 1, BRW_AOP_INC);
+         break;
+
+      case nir_intrinsic_atomic_counter_dec:
+         tmp = emit_untyped_atomic(bld, brw_imm_ud(surface), offset, fs_reg(),
+                                   fs_reg(), 1, 1, BRW_AOP_PREDEC);
+         break;
+
+      default:
+         unreachable("Unreachable");
+      }
+
+      /* Assign the result. */
+      bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), tmp);
+
+      /* Mark the surface as used. */
+      brw_mark_surface_used(stage_prog_data, surface);
+      break;
+   }
+
+   case nir_intrinsic_image_load:
+   case nir_intrinsic_image_store:
+   case nir_intrinsic_image_atomic_add:
+   case nir_intrinsic_image_atomic_min:
+   case nir_intrinsic_image_atomic_max:
+   case nir_intrinsic_image_atomic_and:
+   case nir_intrinsic_image_atomic_or:
+   case nir_intrinsic_image_atomic_xor:
+   case nir_intrinsic_image_atomic_exchange:
+   case nir_intrinsic_image_atomic_comp_swap: {
+      using namespace image_access;
+
+      /* Get the referenced image variable and type. */
+      const nir_variable *var = instr->variables[0]->var;
+      const glsl_type *type = var->type->without_array();
+      const brw_reg_type base_type = get_image_base_type(type);
+
+      /* Get some metadata from the image intrinsic. */
+      const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
+      const unsigned arr_dims = type->sampler_array ? 1 : 0;
+      const unsigned surf_dims = type->coordinate_components() - arr_dims;
+      const mesa_format format =
+         (var->data.image.write_only ? MESA_FORMAT_NONE :
+          _mesa_get_shader_image_format(var->data.image.format));
+
+      /* Get the arguments of the image intrinsic. */
+      const fs_reg image = get_nir_image_deref(instr->variables[0]);
+      const fs_reg addr = retype(get_nir_src(instr->src[0]),
+                                 BRW_REGISTER_TYPE_UD);
+      const fs_reg src0 = (info->num_srcs >= 3 ?
+                           retype(get_nir_src(instr->src[2]), base_type) :
+                           fs_reg());
+      const fs_reg src1 = (info->num_srcs >= 4 ?
+                           retype(get_nir_src(instr->src[3]), base_type) :
+                           fs_reg());
+      fs_reg tmp;
+
+      /* Emit an image load, store or atomic op. */
+      if (instr->intrinsic == nir_intrinsic_image_load)
+         tmp = emit_image_load(bld, image, addr, surf_dims, arr_dims, format);
+
+      else if (instr->intrinsic == nir_intrinsic_image_store)
+         emit_image_store(bld, image, addr, src0, surf_dims, arr_dims, format);
+
+      else
+         tmp = emit_image_atomic(bld, image, addr, src0, src1,
+                                 surf_dims, arr_dims, info->dest_components,
+                                 get_image_atomic_op(instr->intrinsic, type));
+
+      /* Assign the result. */
+      for (unsigned c = 0; c < info->dest_components; ++c)
+         bld.MOV(offset(retype(dest, base_type), bld, c),
+                 offset(tmp, bld, c));
+      break;
+   }
+
+   case nir_intrinsic_memory_barrier_atomic_counter:
+   case nir_intrinsic_memory_barrier_buffer:
+   case nir_intrinsic_memory_barrier_image:
+   case nir_intrinsic_memory_barrier: {
+      const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 16 / dispatch_width);
+      bld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
+         ->regs_written = 2;
+      break;
+   }
+
+   case nir_intrinsic_group_memory_barrier:
+   case nir_intrinsic_memory_barrier_shared:
+      /* We treat these workgroup-level barriers as no-ops.  This should be
+       * safe at present and as long as:
+       *
+       *  - Memory access instructions are not subsequently reordered by the
+       *    compiler back-end.
+       *
+       *  - All threads from a given compute shader workgroup fit within a
+       *    single subslice and therefore talk to the same HDC shared unit
+       *    what supposedly guarantees ordering and coherency between threads
+       *    from the same workgroup.  This may change in the future when we
+       *    start splitting workgroups across multiple subslices.
+       *
+       *  - The context is not in fault-and-stream mode, which could cause
+       *    memory transactions (including to SLM) prior to the barrier to be
+       *    replayed after the barrier if a pagefault occurs.  This shouldn't
+       *    be a problem up to and including SKL because fault-and-stream is
+       *    not usable due to hardware issues, but that's likely to change in
+       *    the future.
+       */
+      break;
+
+   case nir_intrinsic_shader_clock: {
+      /* We cannot do anything if there is an event, so ignore it for now */
+      fs_reg shader_clock = get_timestamp(bld);
+      const fs_reg srcs[] = { shader_clock.set_smear(0), shader_clock.set_smear(1) };
+
+      bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
+      break;
+   }
+
+   case nir_intrinsic_image_size: {
+      /* Get the referenced image variable and type. */
+      const nir_variable *var = instr->variables[0]->var;
+      const glsl_type *type = var->type->without_array();
+
+      /* Get the size of the image. */
+      const fs_reg image = get_nir_image_deref(instr->variables[0]);
+      const fs_reg size = offset(image, bld, BRW_IMAGE_PARAM_SIZE_OFFSET);
+
+      /* For 1DArray image types, the array index is stored in the Z component.
+       * Fix this by swizzling the Z component to the Y component.
+       */
+      const bool is_1d_array_image =
+                  type->sampler_dimensionality == GLSL_SAMPLER_DIM_1D &&
+                  type->sampler_array;
+
+      /* For CubeArray images, we should count the number of cubes instead
+       * of the number of faces. Fix it by dividing the (Z component) by 6.
+       */
+      const bool is_cube_array_image =
+                  type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
+                  type->sampler_array;
+
+      /* Copy all the components. */
+      const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
+      for (unsigned c = 0; c < info->dest_components; ++c) {
+         if ((int)c >= type->coordinate_components()) {
+             bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
+                     brw_imm_d(1));
+         } else if (c == 1 && is_1d_array_image) {
+            bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
+                    offset(size, bld, 2));
+         } else if (c == 2 && is_cube_array_image) {
+            bld.emit(SHADER_OPCODE_INT_QUOTIENT,
+                     offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
+                     offset(size, bld, c), brw_imm_d(6));
+         } else {
+            bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
+                    offset(size, bld, c));
+         }
+       }
+
       break;
    }
 
+   case nir_intrinsic_image_samples:
+      /* The driver does not support multi-sampled images. */
+      bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
+      break;
+
    case nir_intrinsic_load_uniform_indirect:
       has_indirect = true;
       /* fallthrough */
    case nir_intrinsic_load_uniform: {
-      unsigned index = instr->const_index[0];
-
-      fs_reg uniform_reg;
-      if (index < num_direct_uniforms) {
-         uniform_reg = fs_reg(UNIFORM, 0);
-      } else {
-         uniform_reg = fs_reg(UNIFORM, num_direct_uniforms);
-         index -= num_direct_uniforms;
-      }
+      fs_reg uniform_reg(UNIFORM, instr->const_index[0]);
+      uniform_reg.reg_offset = instr->const_index[1];
 
       for (unsigned j = 0; j < instr->num_components; j++) {
-         fs_reg src = offset(retype(uniform_reg, dest.type), bld, index);
+         fs_reg src = offset(retype(uniform_reg, dest.type), bld, j);
          if (has_indirect)
             src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[0]));
-         index++;
 
          bld.MOV(dest, src);
          dest = offset(dest, bld, 1);
@@ -1480,8 +2319,10 @@ fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr
       fs_reg surf_index;
 
       if (const_index) {
-         surf_index = fs_reg(stage_prog_data->binding_table.ubo_start +
-                             const_index->u[0]);
+         const unsigned index = stage_prog_data->binding_table.ubo_start +
+                                const_index->u[0];
+         surf_index = brw_imm_ud(index);
+         brw_mark_surface_used(prog_data, index);
       } else {
          /* The block index is not a constant. Evaluate the index expression
           * per-channel and add the base UBO index; we have to select a value
@@ -1489,7 +2330,7 @@ fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr
           */
          surf_index = vgrf(glsl_type::uint_type);
          bld.ADD(surf_index, get_nir_src(instr->src[0]),
-                 fs_reg(stage_prog_data->binding_table.ubo_start));
+                 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
          surf_index = bld.emit_uniformize(surf_index);
 
          /* Assume this may touch any UBO. It would be nice to provide
@@ -1497,7 +2338,7 @@ fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr
           */
          brw_mark_surface_used(prog_data,
                                stage_prog_data->binding_table.ubo_start +
-                               shader_prog->NumUniformBlocks - 1);
+                               nir->info.num_ubos - 1);
       }
 
       if (has_indirect) {
@@ -1505,7 +2346,7 @@ fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr
          fs_reg base_offset = vgrf(glsl_type::int_type);
          bld.SHR(base_offset, retype(get_nir_src(instr->src[1]),
                                      BRW_REGISTER_TYPE_D),
-                 fs_reg(2));
+                 brw_imm_d(2));
 
          unsigned vec4_offset = instr->const_index[0] / 4;
          for (int i = 0; i < instr->num_components; i++)
@@ -1515,7 +2356,7 @@ fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr
          fs_reg packed_consts = vgrf(glsl_type::float_type);
          packed_consts.type = dest.type;
 
-         fs_reg const_offset_reg((unsigned) instr->const_index[0] & ~15);
+         struct brw_reg const_offset_reg = brw_imm_ud(instr->const_index[0] & ~15);
          bld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD, packed_consts,
                   surf_index, const_offset_reg);
 
@@ -1534,14 +2375,67 @@ fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr
       break;
    }
 
+   case nir_intrinsic_load_ssbo_indirect:
+      has_indirect = true;
+      /* fallthrough */
+   case nir_intrinsic_load_ssbo: {
+      assert(devinfo->gen >= 7);
+
+      nir_const_value *const_uniform_block =
+         nir_src_as_const_value(instr->src[0]);
+
+      fs_reg surf_index;
+      if (const_uniform_block) {
+         unsigned index = stage_prog_data->binding_table.ssbo_start +
+                          const_uniform_block->u[0];
+         surf_index = brw_imm_ud(index);
+         brw_mark_surface_used(prog_data, index);
+      } else {
+         surf_index = vgrf(glsl_type::uint_type);
+         bld.ADD(surf_index, get_nir_src(instr->src[0]),
+                 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
+
+         /* Assume this may touch any UBO. It would be nice to provide
+          * a tighter bound, but the array information is already lowered away.
+          */
+         brw_mark_surface_used(prog_data,
+                               stage_prog_data->binding_table.ssbo_start +
+                               nir->info.num_ssbos - 1);
+      }
+
+      /* Get the offset to read from */
+      fs_reg offset_reg;
+      if (has_indirect) {
+         offset_reg = get_nir_src(instr->src[1]);
+      } else {
+         offset_reg = brw_imm_ud(instr->const_index[0]);
+      }
+
+      /* Read the vector */
+      fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
+                                             1 /* dims */,
+                                             instr->num_components,
+                                             BRW_PREDICATE_NONE);
+      read_result.type = dest.type;
+      for (int i = 0; i < instr->num_components; i++)
+         bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
+
+      break;
+   }
+
    case nir_intrinsic_load_input_indirect:
       has_indirect = true;
       /* fallthrough */
    case nir_intrinsic_load_input: {
       unsigned index = 0;
       for (unsigned j = 0; j < instr->num_components; j++) {
-         fs_reg src = offset(retype(nir_inputs, dest.type), bld,
-                             instr->const_index[0] + index);
+         fs_reg src;
+         if (stage == MESA_SHADER_VERTEX) {
+            src = offset(fs_reg(ATTR, instr->const_index[0], dest.type), bld, index);
+         } else {
+            src = offset(retype(nir_inputs, dest.type), bld,
+                         instr->const_index[0] + index);
+         }
          if (has_indirect)
             src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[0]));
          index++;
@@ -1552,118 +2446,65 @@ fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr
       break;
    }
 
-   /* Handle ARB_gpu_shader5 interpolation intrinsics
-    *
-    * It's worth a quick word of explanation as to why we handle the full
-    * variable-based interpolation intrinsic rather than a lowered version
-    * with like we do for other inputs.  We have to do that because the way
-    * we set up inputs doesn't allow us to use the already setup inputs for
-    * interpolation.  At the beginning of the shader, we go through all of
-    * the input variables and do the initial interpolation and put it in
-    * the nir_inputs array based on its location as determined in
-    * nir_lower_io.  If the input isn't used, dead code cleans up and
-    * everything works fine.  However, when we get to the ARB_gpu_shader5
-    * interpolation intrinsics, we need to reinterpolate the input
-    * differently.  If we used an intrinsic that just had an index it would
-    * only give us the offset into the nir_inputs array.  However, this is
-    * useless because that value is post-interpolation and we need
-    * pre-interpolation.  In order to get the actual location of the bits
-    * we get from the vertex fetching hardware, we need the variable.
-    */
-   case nir_intrinsic_interp_var_at_centroid:
-   case nir_intrinsic_interp_var_at_sample:
-   case nir_intrinsic_interp_var_at_offset: {
-      assert(stage == MESA_SHADER_FRAGMENT);
-
-      ((struct brw_wm_prog_data *) prog_data)->pulls_bary = true;
-
-      fs_reg dst_xy = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
-
-      /* For most messages, we need one reg of ignored data; the hardware
-       * requires mlen==1 even when there is no payload. in the per-slot
-       * offset case, we'll replace this with the proper source data.
-       */
-      fs_reg src = vgrf(glsl_type::float_type);
-      int mlen = 1;     /* one reg unless overriden */
-      fs_inst *inst;
+   case nir_intrinsic_store_ssbo_indirect:
+      has_indirect = true;
+      /* fallthrough */
+   case nir_intrinsic_store_ssbo: {
+      assert(devinfo->gen >= 7);
 
-      switch (instr->intrinsic) {
-      case nir_intrinsic_interp_var_at_centroid:
-         inst = bld.emit(FS_OPCODE_INTERPOLATE_AT_CENTROID,
-                         dst_xy, src, fs_reg(0u));
-         break;
+      /* Block index */
+      fs_reg surf_index;
+      nir_const_value *const_uniform_block =
+         nir_src_as_const_value(instr->src[1]);
+      if (const_uniform_block) {
+         unsigned index = stage_prog_data->binding_table.ssbo_start +
+                          const_uniform_block->u[0];
+         surf_index = brw_imm_ud(index);
+         brw_mark_surface_used(prog_data, index);
+      } else {
+         surf_index = vgrf(glsl_type::uint_type);
+         bld.ADD(surf_index, get_nir_src(instr->src[1]),
+                  brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
 
-      case nir_intrinsic_interp_var_at_sample: {
-         /* XXX: We should probably handle non-constant sample id's */
-         nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
-         assert(const_sample);
-         unsigned msg_data = const_sample ? const_sample->i[0] << 4 : 0;
-         inst = bld.emit(FS_OPCODE_INTERPOLATE_AT_SAMPLE, dst_xy, src,
-                         fs_reg(msg_data));
-         break;
+         brw_mark_surface_used(prog_data,
+                               stage_prog_data->binding_table.ssbo_start +
+                               nir->info.num_ssbos - 1);
       }
 
-      case nir_intrinsic_interp_var_at_offset: {
-         nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
-
-         if (const_offset) {
-            unsigned off_x = MIN2((int)(const_offset->f[0] * 16), 7) & 0xf;
-            unsigned off_y = MIN2((int)(const_offset->f[1] * 16), 7) & 0xf;
+      /* Value */
+      fs_reg val_reg = get_nir_src(instr->src[0]);
 
-            inst = bld.emit(FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET, dst_xy, src,
-                            fs_reg(off_x | (off_y << 4)));
-         } else {
-            src = vgrf(glsl_type::ivec2_type);
-            fs_reg offset_src = retype(get_nir_src(instr->src[0]),
-                                       BRW_REGISTER_TYPE_F);
-            for (int i = 0; i < 2; i++) {
-               fs_reg temp = vgrf(glsl_type::float_type);
-               bld.MUL(temp, offset(offset_src, bld, i), fs_reg(16.0f));
-               fs_reg itemp = vgrf(glsl_type::int_type);
-               bld.MOV(itemp, temp);  /* float to int */
+      /* Writemask */
+      unsigned writemask = instr->const_index[1];
 
-               /* Clamp the upper end of the range to +7/16.
-                * ARB_gpu_shader5 requires that we support a maximum offset
-                * of +0.5, which isn't representable in a S0.4 value -- if
-                * we didn't clamp it, we'd end up with -8/16, which is the
-                * opposite of what the shader author wanted.
-                *
-                * This is legal due to ARB_gpu_shader5's quantization
-                * rules:
-                *
-                * "Not all values of <offset> may be supported; x and y
-                * offsets may be rounded to fixed-point values with the
-                * number of fraction bits given by the
-                * implementation-dependent constant
-                * FRAGMENT_INTERPOLATION_OFFSET_BITS"
-                */
-               set_condmod(BRW_CONDITIONAL_L,
-                           bld.SEL(offset(src, bld, i), itemp, fs_reg(7)));
-            }
+      /* Combine groups of consecutive enabled channels in one write
+       * message. We use ffs to find the first enabled channel and then ffs on
+       * the bit-inverse, down-shifted writemask to determine the length of
+       * the block of enabled bits.
+       */
+      while (writemask) {
+         unsigned first_component = ffs(writemask) - 1;
+         unsigned length = ffs(~(writemask >> first_component)) - 1;
+         fs_reg offset_reg;
 
-            mlen = 2 * dispatch_width / 8;
-            inst = bld.emit(FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET, dst_xy, src,
-                            fs_reg(0u));
+         if (!has_indirect) {
+            offset_reg = brw_imm_ud(instr->const_index[0] + 4 * first_component);
+         } else {
+            offset_reg = vgrf(glsl_type::uint_type);
+            bld.ADD(offset_reg,
+                    retype(get_nir_src(instr->src[2]), BRW_REGISTER_TYPE_UD),
+                    brw_imm_ud(4 * first_component));
          }
-         break;
-      }
-
-      default:
-         unreachable("Invalid intrinsic");
-      }
-
-      inst->mlen = mlen;
-      /* 2 floats per slot returned */
-      inst->regs_written = 2 * dispatch_width / 8;
-      inst->pi_noperspective = instr->variables[0]->var->data.interpolation ==
-                               INTERP_QUALIFIER_NOPERSPECTIVE;
 
-      for (unsigned j = 0; j < instr->num_components; j++) {
-         fs_reg src = interp_reg(instr->variables[0]->var->data.location, j);
-         src.type = dest.type;
+         emit_untyped_write(bld, surf_index, offset_reg,
+                            offset(val_reg, bld, first_component),
+                            1 /* dims */, length,
+                            BRW_PREDICATE_NONE);
 
-         bld.emit(FS_OPCODE_LINTERP, dest, dst_xy, src);
-         dest = offset(dest, bld, 1);
+         /* Clear the bits in the writemask that we just wrote, then try
+          * again to see if more channels are left.
+          */
+         writemask &= (15 << (first_component + length));
       }
       break;
    }
@@ -1686,31 +2527,132 @@ fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr
       break;
    }
 
-   case nir_intrinsic_barrier:
-      emit_barrier();
+   case nir_intrinsic_ssbo_atomic_add:
+      nir_emit_ssbo_atomic(bld, BRW_AOP_ADD, instr);
+      break;
+   case nir_intrinsic_ssbo_atomic_imin:
+      nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
+      break;
+   case nir_intrinsic_ssbo_atomic_umin:
+      nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
+      break;
+   case nir_intrinsic_ssbo_atomic_imax:
+      nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
+      break;
+   case nir_intrinsic_ssbo_atomic_umax:
+      nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
       break;
+   case nir_intrinsic_ssbo_atomic_and:
+      nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
+      break;
+   case nir_intrinsic_ssbo_atomic_or:
+      nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
+      break;
+   case nir_intrinsic_ssbo_atomic_xor:
+      nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
+      break;
+   case nir_intrinsic_ssbo_atomic_exchange:
+      nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
+      break;
+   case nir_intrinsic_ssbo_atomic_comp_swap:
+      nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
+      break;
+
+   case nir_intrinsic_get_buffer_size: {
+      nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
+      unsigned ssbo_index = const_uniform_block ? const_uniform_block->u[0] : 0;
+      int reg_width = dispatch_width / 8;
+
+      /* Set LOD = 0 */
+      fs_reg source = brw_imm_d(0);
+
+      int mlen = 1 * reg_width;
+
+      /* A resinfo's sampler message is used to get the buffer size.
+       * The SIMD8's writeback message consists of four registers and
+       * SIMD16's writeback message consists of 8 destination registers
+       * (two per each component), although we are only interested on the
+       * first component, where resinfo returns the buffer size for
+       * SURFTYPE_BUFFER.
+       */
+      int regs_written = 4 * mlen;
+      fs_reg src_payload = fs_reg(VGRF, alloc.allocate(mlen),
+                                  BRW_REGISTER_TYPE_UD);
+      bld.LOAD_PAYLOAD(src_payload, &source, 1, 0);
+      fs_reg buffer_size = fs_reg(VGRF, alloc.allocate(regs_written),
+                                  BRW_REGISTER_TYPE_UD);
+      const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
+      fs_inst *inst = bld.emit(FS_OPCODE_GET_BUFFER_SIZE, buffer_size,
+                               src_payload, brw_imm_ud(index));
+      inst->header_size = 0;
+      inst->mlen = mlen;
+      inst->regs_written = regs_written;
+      bld.emit(inst);
+      bld.MOV(retype(dest, buffer_size.type), buffer_size);
+
+      brw_mark_surface_used(prog_data, index);
+      break;
+   }
 
    default:
       unreachable("unknown intrinsic");
    }
 }
 
+void
+fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
+                                 int op, nir_intrinsic_instr *instr)
+{
+   fs_reg dest;
+   if (nir_intrinsic_infos[instr->intrinsic].has_dest)
+      dest = get_nir_dest(instr->dest);
+
+   fs_reg surface;
+   nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
+   if (const_surface) {
+      unsigned surf_index = stage_prog_data->binding_table.ssbo_start +
+                            const_surface->u[0];
+      surface = brw_imm_ud(surf_index);
+      brw_mark_surface_used(prog_data, surf_index);
+   } else {
+      surface = vgrf(glsl_type::uint_type);
+      bld.ADD(surface, get_nir_src(instr->src[0]),
+              brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
+
+      /* Assume this may touch any SSBO. This is the same we do for other
+       * UBO/SSBO accesses with non-constant surface.
+       */
+      brw_mark_surface_used(prog_data,
+                            stage_prog_data->binding_table.ssbo_start +
+                            nir->info.num_ssbos - 1);
+   }
+
+   fs_reg offset = get_nir_src(instr->src[1]);
+   fs_reg data1 = get_nir_src(instr->src[2]);
+   fs_reg data2;
+   if (op == BRW_AOP_CMPWR)
+      data2 = get_nir_src(instr->src[3]);
+
+   /* Emit the actual atomic operation operation */
+
+   fs_reg atomic_result =
+      surface_access::emit_untyped_atomic(bld, surface, offset,
+                                          data1, data2,
+                                          1 /* dims */, 1 /* rsize */,
+                                          op,
+                                          BRW_PREDICATE_NONE);
+   dest.type = atomic_result.type;
+   bld.MOV(dest, atomic_result);
+}
+
 void
 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
 {
    unsigned sampler = instr->sampler_index;
-   fs_reg sampler_reg(sampler);
-
-   /* FINISHME: We're failing to recompile our programs when the sampler is
-    * updated.  This only matters for the texture rectangle scale parameters
-    * (pre-gen6, or gen6+ with GL_CLAMP).
-    */
-   int texunit = prog->SamplerUnits[sampler];
+   fs_reg sampler_reg(brw_imm_ud(sampler));
 
    int gather_component = instr->component;
 
-   bool is_rect = instr->sampler_dim == GLSL_SAMPLER_DIM_RECT;
-
    bool is_cube_array = instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
                         instr->is_array;
 
@@ -1732,6 +2674,7 @@ fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
          switch (instr->op) {
          case nir_texop_txf:
          case nir_texop_txf_ms:
+         case nir_texop_samples_identical:
             coordinate = retype(src, BRW_REGISTER_TYPE_D);
             break;
          default:
@@ -1784,7 +2727,7 @@ fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
 
          /* Emit code to evaluate the actual indexing expression */
          sampler_reg = vgrf(glsl_type::uint_type);
-         bld.ADD(sampler_reg, src, fs_reg(sampler));
+         bld.ADD(sampler_reg, src, brw_imm_ud(sampler));
          sampler_reg = bld.emit_uniformize(sampler_reg);
          break;
       }
@@ -1794,19 +2737,20 @@ fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
       }
    }
 
-   if (instr->op == nir_texop_txf_ms) {
+   if (instr->op == nir_texop_txf_ms ||
+       instr->op == nir_texop_samples_identical) {
       if (devinfo->gen >= 7 &&
           key_tex->compressed_multisample_layout_mask & (1 << sampler)) {
          mcs = emit_mcs_fetch(coordinate, instr->coord_components, sampler_reg);
       } else {
-         mcs = fs_reg(0u);
+         mcs = brw_imm_ud(0u);
       }
    }
 
    for (unsigned i = 0; i < 3; i++) {
       if (instr->const_offset[i] != 0) {
          assert(offset_components == 0);
-         tex_offset = fs_reg(brw_texture_offset(instr->const_offset, 3));
+         tex_offset = brw_imm_ud(brw_texture_offset(instr->const_offset, 3));
          break;
       }
    }
@@ -1830,6 +2774,17 @@ fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
    case nir_texop_txf_ms: op = ir_txf_ms; break;
    case nir_texop_txl: op = ir_txl; break;
    case nir_texop_txs: op = ir_txs; break;
+   case nir_texop_texture_samples: {
+      fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
+      fs_inst *inst = bld.emit(SHADER_OPCODE_SAMPLEINFO, dst,
+                               bld.vgrf(BRW_REGISTER_TYPE_D, 1),
+                               sampler_reg);
+      inst->mlen = 1;
+      inst->header_size = 1;
+      inst->base_mrf = -1;
+      return;
+   }
+   case nir_texop_samples_identical: op = ir_samples_identical; break;
    default:
       unreachable("unknown texture opcode");
    }
@@ -1837,7 +2792,7 @@ fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
    emit_texture(op, dest_type, coordinate, instr->coord_components,
                 shadow_comparitor, lod, lod2, lod_components, sample_index,
                 tex_offset, mcs, gather_component,
-                is_cube_array, is_rect, sampler, sampler_reg, texunit);
+                is_cube_array, sampler, sampler_reg);
 
    fs_reg dest = get_nir_dest(instr->dest);
    dest.type = this->result.type;