i965/fs: Do not mark used surfaces in FS_OPCODE_GET_BUFFER_SIZE
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_nir.cpp
index 523e56db627f1f888daeac857b0fc4b3385dbfc8..b6f4c52c50f8bc88cbfcf5ab4973771893c6281c 100644 (file)
 #include "glsl/ir.h"
 #include "glsl/ir_optimization.h"
 #include "glsl/nir/glsl_to_nir.h"
+#include "main/shaderimage.h"
 #include "program/prog_to_nir.h"
 #include "brw_fs.h"
+#include "brw_fs_surface_builder.h"
+#include "brw_vec4_gs_visitor.h"
 #include "brw_nir.h"
+#include "brw_fs_surface_builder.h"
+#include "brw_vec4_gs_visitor.h"
+
+using namespace brw;
+using namespace brw::surface_access;
 
 void
 fs_visitor::emit_nir_code()
 {
-   nir_shader *nir = prog->nir;
-
    /* emit the arrays used for inputs and outputs - load/store intrinsics will
     * be converted to reads/writes of these arrays
     */
-
-   if (nir->num_inputs > 0) {
-      nir_inputs = vgrf(nir->num_inputs);
-      nir_setup_inputs(nir);
-   }
-
-   if (nir->num_outputs > 0) {
-      nir_outputs = vgrf(nir->num_outputs);
-      nir_setup_outputs(nir);
-   }
-
-   if (nir->num_uniforms > 0) {
-      nir_setup_uniforms(nir);
-   }
-
-   nir_emit_system_values(nir);
-
-   nir_globals = ralloc_array(mem_ctx, fs_reg, nir->reg_alloc);
-   foreach_list_typed(nir_register, reg, node, &nir->registers) {
-      unsigned array_elems =
-         reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
-      unsigned size = array_elems * reg->num_components;
-      nir_globals[reg->index] = vgrf(size);
-   }
+   nir_setup_inputs();
+   nir_setup_outputs();
+   nir_setup_uniforms();
+   nir_emit_system_values();
 
    /* get the main function and emit it */
    nir_foreach_overload(nir, overload) {
@@ -70,205 +56,112 @@ fs_visitor::emit_nir_code()
 }
 
 void
-fs_visitor::nir_setup_inputs(nir_shader *shader)
+fs_visitor::nir_setup_inputs()
 {
-   foreach_list_typed(nir_variable, var, node, &shader->inputs) {
-      enum brw_reg_type type = brw_type_for_base_type(var->type);
-      fs_reg input = offset(nir_inputs, var->data.driver_location);
+   if (stage != MESA_SHADER_FRAGMENT)
+      return;
+
+   nir_inputs = bld.vgrf(BRW_REGISTER_TYPE_F, nir->num_inputs);
+
+   nir_foreach_variable(var, &nir->inputs) {
+      fs_reg input = offset(nir_inputs, bld, var->data.driver_location);
 
       fs_reg reg;
-      switch (stage) {
-      case MESA_SHADER_VERTEX: {
-         /* Our ATTR file is indexed by VERT_ATTRIB_*, which is the value
-          * stored in nir_variable::location.
-          *
-          * However, NIR's load_input intrinsics use a different index - an
-          * offset into a single contiguous array containing all inputs.
-          * This index corresponds to the nir_variable::driver_location field.
-          *
-          * So, we need to copy from fs_reg(ATTR, var->location) to
-          * offset(nir_inputs, var->data.driver_location).
-          */
-         unsigned components = var->type->without_array()->components();
-         unsigned array_length = var->type->is_array() ? var->type->length : 1;
-         for (unsigned i = 0; i < array_length; i++) {
-            for (unsigned j = 0; j < components; j++) {
-               emit(MOV(retype(offset(input, components * i + j), type),
-                        offset(fs_reg(ATTR, var->data.location + i, type), j)));
-            }
-         }
-         break;
-      }
-      case MESA_SHADER_GEOMETRY:
-      case MESA_SHADER_COMPUTE:
-         unreachable("fs_visitor not used for these stages yet.");
-         break;
-      case MESA_SHADER_FRAGMENT:
-         if (var->data.location == VARYING_SLOT_POS) {
-            reg = *emit_fragcoord_interpolation(var->data.pixel_center_integer,
-                                                var->data.origin_upper_left);
-            emit_percomp(MOV(input, reg), 0xF);
-         } else {
-            emit_general_interpolation(input, var->name, var->type,
-                                       (glsl_interp_qualifier) var->data.interpolation,
-                                       var->data.location, var->data.centroid,
-                                       var->data.sample);
-         }
-         break;
+      if (var->data.location == VARYING_SLOT_POS) {
+         reg = *emit_fragcoord_interpolation(var->data.pixel_center_integer,
+                                             var->data.origin_upper_left);
+         emit_percomp(bld, fs_inst(BRW_OPCODE_MOV, bld.dispatch_width(),
+                                   input, reg), 0xF);
+      } else if (var->data.location == VARYING_SLOT_LAYER) {
+         struct brw_reg reg = suboffset(interp_reg(VARYING_SLOT_LAYER, 1), 3);
+         reg.type = BRW_REGISTER_TYPE_D;
+         bld.emit(FS_OPCODE_CINTERP, retype(input, BRW_REGISTER_TYPE_D), reg);
+      } else if (var->data.location == VARYING_SLOT_VIEWPORT) {
+         struct brw_reg reg = suboffset(interp_reg(VARYING_SLOT_VIEWPORT, 2), 3);
+         reg.type = BRW_REGISTER_TYPE_D;
+         bld.emit(FS_OPCODE_CINTERP, retype(input, BRW_REGISTER_TYPE_D), reg);
+      } else {
+         emit_general_interpolation(input, var->name, var->type,
+                                    (glsl_interp_qualifier) var->data.interpolation,
+                                    var->data.location, var->data.centroid,
+                                    var->data.sample);
       }
    }
 }
 
 void
-fs_visitor::nir_setup_outputs(nir_shader *shader)
+fs_visitor::nir_setup_outputs()
 {
    brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
 
-   foreach_list_typed(nir_variable, var, node, &shader->outputs) {
-      fs_reg reg = offset(nir_outputs, var->data.driver_location);
+   nir_outputs = bld.vgrf(BRW_REGISTER_TYPE_F, nir->num_outputs);
+
+   nir_foreach_variable(var, &nir->outputs) {
+      fs_reg reg = offset(nir_outputs, bld, var->data.driver_location);
 
-      int vector_elements =
-         var->type->is_array() ? var->type->fields.array->vector_elements
-                               : var->type->vector_elements;
+      int vector_elements = var->type->without_array()->vector_elements;
 
-      if (stage == MESA_SHADER_VERTEX) {
-         for (int i = 0; i < ALIGN(type_size(var->type), 4) / 4; i++) {
+      switch (stage) {
+      case MESA_SHADER_VERTEX:
+      case MESA_SHADER_GEOMETRY:
+         for (unsigned int i = 0; i < ALIGN(type_size_scalar(var->type), 4) / 4; i++) {
             int output = var->data.location + i;
-            this->outputs[output] = offset(reg, 4 * i);
+            this->outputs[output] = offset(reg, bld, 4 * i);
             this->output_components[output] = vector_elements;
          }
-      } else if (var->data.index > 0) {
-         assert(var->data.location == FRAG_RESULT_DATA0);
-         assert(var->data.index == 1);
-         this->dual_src_output = reg;
-         this->do_dual_src = true;
-      } else if (var->data.location == FRAG_RESULT_COLOR) {
-         /* Writing gl_FragColor outputs to all color regions. */
-         for (unsigned int i = 0; i < MAX2(key->nr_color_regions, 1); i++) {
-            this->outputs[i] = reg;
-            this->output_components[i] = 4;
-         }
-      } else if (var->data.location == FRAG_RESULT_DEPTH) {
-         this->frag_depth = reg;
-      } else if (var->data.location == FRAG_RESULT_SAMPLE_MASK) {
-         this->sample_mask = reg;
-      } else {
-         /* gl_FragData or a user-defined FS output */
-         assert(var->data.location >= FRAG_RESULT_DATA0 &&
-                var->data.location < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS);
-
-         /* General color output. */
-         for (unsigned int i = 0; i < MAX2(1, var->type->length); i++) {
-            int output = var->data.location - FRAG_RESULT_DATA0 + i;
-            this->outputs[output] = offset(reg, vector_elements * i);
-            this->output_components[output] = vector_elements;
+         break;
+      case MESA_SHADER_FRAGMENT:
+         if (var->data.index > 0) {
+            assert(var->data.location == FRAG_RESULT_DATA0);
+            assert(var->data.index == 1);
+            this->dual_src_output = reg;
+            this->do_dual_src = true;
+         } else if (var->data.location == FRAG_RESULT_COLOR) {
+            /* Writing gl_FragColor outputs to all color regions. */
+            for (unsigned int i = 0; i < MAX2(key->nr_color_regions, 1); i++) {
+               this->outputs[i] = reg;
+               this->output_components[i] = 4;
+            }
+         } else if (var->data.location == FRAG_RESULT_DEPTH) {
+            this->frag_depth = reg;
+         } else if (var->data.location == FRAG_RESULT_STENCIL) {
+            this->frag_stencil = reg;
+         } else if (var->data.location == FRAG_RESULT_SAMPLE_MASK) {
+            this->sample_mask = reg;
+         } else {
+            /* gl_FragData or a user-defined FS output */
+            assert(var->data.location >= FRAG_RESULT_DATA0 &&
+                   var->data.location < FRAG_RESULT_DATA0+BRW_MAX_DRAW_BUFFERS);
+
+            /* General color output. */
+            for (unsigned int i = 0; i < MAX2(1, var->type->length); i++) {
+               int output = var->data.location - FRAG_RESULT_DATA0 + i;
+               this->outputs[output] = offset(reg, bld, vector_elements * i);
+               this->output_components[output] = vector_elements;
+            }
          }
+         break;
+      default:
+         unreachable("unhandled shader stage");
       }
    }
 }
 
 void
-fs_visitor::nir_setup_uniforms(nir_shader *shader)
+fs_visitor::nir_setup_uniforms()
 {
-   uniforms = shader->num_uniforms;
-   num_direct_uniforms = shader->num_direct_uniforms;
-
-   /* We split the uniform register file in half.  The first half is
-    * entirely direct uniforms.  The second half is indirect.
-    */
-   param_size[0] = num_direct_uniforms;
-   if (shader->num_uniforms > num_direct_uniforms)
-      param_size[num_direct_uniforms] = shader->num_uniforms - num_direct_uniforms;
-
    if (dispatch_width != 8)
       return;
 
-   if (shader_prog) {
-      foreach_list_typed(nir_variable, var, node, &shader->uniforms) {
-         /* UBO's and atomics don't take up space in the uniform file */
-         if (var->interface_type != NULL || var->type->contains_atomic())
-            continue;
+   uniforms = nir->num_uniforms;
 
-         if (strncmp(var->name, "gl_", 3) == 0)
-            nir_setup_builtin_uniform(var);
-         else
-            nir_setup_uniform(var);
-      }
-   } else {
-      /* prog_to_nir doesn't create uniform variables; set param up directly. */
-      for (unsigned p = 0; p < prog->Parameters->NumParameters; p++) {
-         for (unsigned int i = 0; i < 4; i++) {
-            stage_prog_data->param[4 * p + i] =
-               &prog->Parameters->ParameterValues[p][i];
-         }
-      }
-   }
-}
-
-void
-fs_visitor::nir_setup_uniform(nir_variable *var)
-{
-   int namelen = strlen(var->name);
-
-   /* The data for our (non-builtin) uniforms is stored in a series of
-      * gl_uniform_driver_storage structs for each subcomponent that
-      * glGetUniformLocation() could name.  We know it's been set up in the
-      * same order we'd walk the type, so walk the list of storage and find
-      * anything with our name, or the prefix of a component that starts with
-      * our name.
-      */
-   unsigned index = var->data.driver_location;
-   for (unsigned u = 0; u < shader_prog->NumUserUniformStorage; u++) {
-      struct gl_uniform_storage *storage = &shader_prog->UniformStorage[u];
-
-      if (strncmp(var->name, storage->name, namelen) != 0 ||
-         (storage->name[namelen] != 0 &&
-         storage->name[namelen] != '.' &&
-         storage->name[namelen] != '[')) {
+   nir_foreach_variable(var, &nir->uniforms) {
+      /* UBO's and atomics don't take up space in the uniform file */
+      if (var->interface_type != NULL || var->type->contains_atomic())
          continue;
-      }
-
-      unsigned slots = storage->type->component_slots();
-      if (storage->array_elements)
-         slots *= storage->array_elements;
-
-      for (unsigned i = 0; i < slots; i++) {
-         stage_prog_data->param[index++] = &storage->storage[i];
-      }
-   }
 
-   /* Make sure we actually initialized the right amount of stuff here. */
-   assert(var->data.driver_location + var->type->component_slots() == index);
-}
-
-void
-fs_visitor::nir_setup_builtin_uniform(nir_variable *var)
-{
-   const nir_state_slot *const slots = var->state_slots;
-   assert(var->state_slots != NULL);
-
-   unsigned uniform_index = var->data.driver_location;
-   for (unsigned int i = 0; i < var->num_state_slots; i++) {
-      /* This state reference has already been setup by ir_to_mesa, but we'll
-       * get the same index back here.
-       */
-      int index = _mesa_add_state_reference(this->prog->Parameters,
-                                            (gl_state_index *)slots[i].tokens);
-
-      /* Add each of the unique swizzles of the element as a parameter.
-       * This'll end up matching the expected layout of the
-       * array/matrix/structure we're trying to fill in.
-       */
-      int last_swiz = -1;
-      for (unsigned int j = 0; j < 4; j++) {
-         int swiz = GET_SWZ(slots[i].swizzle, j);
-         if (swiz == last_swiz)
-            break;
-         last_swiz = swiz;
-
-         stage_prog_data->param[uniform_index++] =
-            &prog->Parameters->ParameterValues[index][swiz];
-      }
+      if (type_size_scalar(var->type) > 0)
+         param_size[var->data.driver_location] = type_size_scalar(var->type);
    }
 }
 
@@ -308,6 +201,18 @@ emit_system_values_block(nir_block *block, void *void_visitor)
             *reg = *v->emit_vs_system_value(SYSTEM_VALUE_INSTANCE_ID);
          break;
 
+      case nir_intrinsic_load_invocation_id:
+         assert(v->stage == MESA_SHADER_GEOMETRY);
+         reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
+         if (reg->file == BAD_FILE) {
+            const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
+            fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
+            fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
+            abld.SHR(iid, g1, fs_reg(27u));
+            *reg = iid;
+         }
+         break;
+
       case nir_intrinsic_load_sample_pos:
          assert(v->stage == MESA_SHADER_FRAGMENT);
          reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
@@ -331,6 +236,20 @@ emit_system_values_block(nir_block *block, void *void_visitor)
                                  BRW_REGISTER_TYPE_D));
          break;
 
+      case nir_intrinsic_load_local_invocation_id:
+         assert(v->stage == MESA_SHADER_COMPUTE);
+         reg = &v->nir_system_values[SYSTEM_VALUE_LOCAL_INVOCATION_ID];
+         if (reg->file == BAD_FILE)
+            *reg = *v->emit_cs_local_invocation_id_setup();
+         break;
+
+      case nir_intrinsic_load_work_group_id:
+         assert(v->stage == MESA_SHADER_COMPUTE);
+         reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
+         if (reg->file == BAD_FILE)
+            *reg = *v->emit_cs_work_group_id_setup();
+         break;
+
       default:
          break;
       }
@@ -340,10 +259,10 @@ emit_system_values_block(nir_block *block, void *void_visitor)
 }
 
 void
-fs_visitor::nir_emit_system_values(nir_shader *shader)
+fs_visitor::nir_emit_system_values()
 {
    nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
-   nir_foreach_overload(shader, overload) {
+   nir_foreach_overload(nir, overload) {
       assert(strcmp(overload->function->name, "main") == 0);
       assert(overload->impl);
       nir_foreach_block(overload->impl, emit_system_values_block, this);
@@ -358,9 +277,12 @@ fs_visitor::nir_emit_impl(nir_function_impl *impl)
       unsigned array_elems =
          reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
       unsigned size = array_elems * reg->num_components;
-      nir_locals[reg->index] = vgrf(size);
+      nir_locals[reg->index] = bld.vgrf(BRW_REGISTER_TYPE_F, size);
    }
 
+   nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
+                             impl->ssa_alloc);
+
    nir_emit_cf_list(&impl->body);
 }
 
@@ -392,39 +314,31 @@ void
 fs_visitor::nir_emit_if(nir_if *if_stmt)
 {
    /* first, put the condition into f0 */
-   fs_inst *inst = emit(MOV(reg_null_d,
+   fs_inst *inst = bld.MOV(bld.null_reg_d(),
                             retype(get_nir_src(if_stmt->condition),
-                                   BRW_REGISTER_TYPE_D)));
+                                   BRW_REGISTER_TYPE_D));
    inst->conditional_mod = BRW_CONDITIONAL_NZ;
 
-   emit(IF(BRW_PREDICATE_NORMAL));
+   bld.IF(BRW_PREDICATE_NORMAL);
 
    nir_emit_cf_list(&if_stmt->then_list);
 
    /* note: if the else is empty, dead CF elimination will remove it */
-   emit(BRW_OPCODE_ELSE);
+   bld.emit(BRW_OPCODE_ELSE);
 
    nir_emit_cf_list(&if_stmt->else_list);
 
-   emit(BRW_OPCODE_ENDIF);
-
-   if (!try_replace_with_sel() && devinfo->gen < 6) {
-      no16("Can't support (non-uniform) control flow on SIMD16\n");
-   }
+   bld.emit(BRW_OPCODE_ENDIF);
 }
 
 void
 fs_visitor::nir_emit_loop(nir_loop *loop)
 {
-   if (devinfo->gen < 6) {
-      no16("Can't support (non-uniform) control flow on SIMD16\n");
-   }
-
-   emit(BRW_OPCODE_DO);
+   bld.emit(BRW_OPCODE_DO);
 
    nir_emit_cf_list(&loop->body);
 
-   emit(BRW_OPCODE_WHILE);
+   bld.emit(BRW_OPCODE_WHILE);
 }
 
 void
@@ -438,71 +352,48 @@ fs_visitor::nir_emit_block(nir_block *block)
 void
 fs_visitor::nir_emit_instr(nir_instr *instr)
 {
-   this->base_ir = instr;
+   const fs_builder abld = bld.annotate(NULL, instr);
 
    switch (instr->type) {
    case nir_instr_type_alu:
-      nir_emit_alu(nir_instr_as_alu(instr));
+      nir_emit_alu(abld, nir_instr_as_alu(instr));
       break;
 
    case nir_instr_type_intrinsic:
-      nir_emit_intrinsic(nir_instr_as_intrinsic(instr));
+      nir_emit_intrinsic(abld, nir_instr_as_intrinsic(instr));
       break;
 
    case nir_instr_type_tex:
-      nir_emit_texture(nir_instr_as_tex(instr));
+      nir_emit_texture(abld, nir_instr_as_tex(instr));
       break;
 
    case nir_instr_type_load_const:
-      /* We can hit these, but we do nothing now and use them as
-       * immediates later.
-       */
+      nir_emit_load_const(abld, nir_instr_as_load_const(instr));
+      break;
+
+   case nir_instr_type_ssa_undef:
+      nir_emit_undef(abld, nir_instr_as_ssa_undef(instr));
       break;
 
    case nir_instr_type_jump:
-      nir_emit_jump(nir_instr_as_jump(instr));
+      nir_emit_jump(abld, nir_instr_as_jump(instr));
       break;
 
    default:
       unreachable("unknown instruction type");
    }
-
-   this->base_ir = NULL;
-}
-
-static brw_reg_type
-brw_type_for_nir_type(nir_alu_type type)
-{
-   switch (type) {
-   case nir_type_unsigned:
-      return BRW_REGISTER_TYPE_UD;
-   case nir_type_bool:
-   case nir_type_int:
-      return BRW_REGISTER_TYPE_D;
-   case nir_type_float:
-      return BRW_REGISTER_TYPE_F;
-   default:
-      unreachable("unknown type");
-   }
-
-   return BRW_REGISTER_TYPE_F;
 }
 
 bool
 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
                                          const fs_reg &result)
 {
-   if (instr->src[0].src.is_ssa ||
-       !instr->src[0].src.reg.reg ||
-       !instr->src[0].src.reg.reg->parent_instr)
-      return false;
-
-   if (instr->src[0].src.reg.reg->parent_instr->type !=
-       nir_instr_type_intrinsic)
+   if (!instr->src[0].src.is_ssa ||
+       instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
       return false;
 
    nir_intrinsic_instr *src0 =
-      nir_instr_as_intrinsic(instr->src[0].src.reg.reg->parent_instr);
+      nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
 
    if (src0->intrinsic != nir_intrinsic_load_front_face)
       return false;
@@ -540,7 +431,7 @@ fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
       tmp.subreg_offset = 2;
       tmp.stride = 2;
 
-      fs_inst *or_inst = emit(OR(tmp, g0, fs_reg(0x3f80)));
+      fs_inst *or_inst = bld.OR(tmp, g0, fs_reg(0x3f80));
       or_inst->src[1].type = BRW_REGISTER_TYPE_UW;
 
       tmp.type = BRW_REGISTER_TYPE_D;
@@ -565,15 +456,15 @@ fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
          g1_6.negate = true;
       }
 
-      emit(OR(tmp, g1_6, fs_reg(0x3f800000)));
+      bld.OR(tmp, g1_6, fs_reg(0x3f800000));
    }
-   emit(AND(retype(result, BRW_REGISTER_TYPE_D), tmp, fs_reg(0xbf800000)));
+   bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, fs_reg(0xbf800000));
 
    return true;
 }
 
 void
-fs_visitor::nir_emit_alu(nir_alu_instr *instr)
+fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
 {
    struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
    fs_inst *inst;
@@ -605,7 +496,7 @@ fs_visitor::nir_emit_alu(nir_alu_instr *instr)
          if (!instr->src[i].src.is_ssa &&
              instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
             need_extra_copy = true;
-            temp = retype(vgrf(4), result.type);
+            temp = bld.vgrf(result.type, 4);
             break;
          }
       }
@@ -615,11 +506,11 @@ fs_visitor::nir_emit_alu(nir_alu_instr *instr)
             continue;
 
          if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
-            inst = emit(MOV(offset(temp, i),
-                        offset(op[0], instr->src[0].swizzle[i])));
+            inst = bld.MOV(offset(temp, bld, i),
+                           offset(op[0], bld, instr->src[0].swizzle[i]));
          } else {
-            inst = emit(MOV(offset(temp, i),
-                        offset(op[i], instr->src[i].swizzle[0])));
+            inst = bld.MOV(offset(temp, bld, i),
+                           offset(op[i], bld, instr->src[i].swizzle[0]));
          }
          inst->saturate = instr->dest.saturate;
       }
@@ -633,7 +524,7 @@ fs_visitor::nir_emit_alu(nir_alu_instr *instr)
             if (!(instr->dest.write_mask & (1 << i)))
                continue;
 
-            emit(MOV(offset(result, i), offset(temp, i)));
+            bld.MOV(offset(result, bld, i), offset(temp, bld, i));
          }
       }
       return;
@@ -654,24 +545,24 @@ fs_visitor::nir_emit_alu(nir_alu_instr *instr)
       assert(_mesa_bitcount(instr->dest.write_mask) == 1);
       channel = ffs(instr->dest.write_mask) - 1;
 
-      result = offset(result, channel);
+      result = offset(result, bld, channel);
    }
 
    for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
       assert(nir_op_infos[instr->op].input_sizes[i] < 2);
-      op[i] = offset(op[i], instr->src[i].swizzle[channel]);
+      op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
    }
 
    switch (instr->op) {
    case nir_op_i2f:
    case nir_op_u2f:
-      inst = emit(MOV(result, op[0]));
+      inst = bld.MOV(result, op[0]);
       inst->saturate = instr->dest.saturate;
       break;
 
    case nir_op_f2i:
    case nir_op_f2u:
-      emit(MOV(result, op[0]));
+      bld.MOV(result, op[0]);
       break;
 
    case nir_op_fsign: {
@@ -680,17 +571,17 @@ fs_visitor::nir_emit_alu(nir_alu_instr *instr)
          * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
          * zero.
          */
-      emit(CMP(reg_null_f, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ));
+      bld.CMP(bld.null_reg_f(), op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ);
 
       fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
       op[0].type = BRW_REGISTER_TYPE_UD;
       result.type = BRW_REGISTER_TYPE_UD;
-      emit(AND(result_int, op[0], fs_reg(0x80000000u)));
+      bld.AND(result_int, op[0], fs_reg(0x80000000u));
 
-      inst = emit(OR(result_int, result_int, fs_reg(0x3f800000u)));
+      inst = bld.OR(result_int, result_int, fs_reg(0x3f800000u));
       inst->predicate = BRW_PREDICATE_NORMAL;
       if (instr->dest.saturate) {
-         inst = emit(MOV(result, result));
+         inst = bld.MOV(result, result);
          inst->saturate = true;
       }
       break;
@@ -701,240 +592,157 @@ fs_visitor::nir_emit_alu(nir_alu_instr *instr)
        *               -> non-negative val generates 0x00000000.
        *  Predicated OR sets 1 if val is positive.
        */
-      emit(CMP(reg_null_d, op[0], fs_reg(0), BRW_CONDITIONAL_G));
-      emit(ASR(result, op[0], fs_reg(31)));
-      inst = emit(OR(result, result, fs_reg(1)));
+      bld.CMP(bld.null_reg_d(), op[0], fs_reg(0), BRW_CONDITIONAL_G);
+      bld.ASR(result, op[0], fs_reg(31));
+      inst = bld.OR(result, result, fs_reg(1));
       inst->predicate = BRW_PREDICATE_NORMAL;
       break;
 
    case nir_op_frcp:
-      inst = emit_math(SHADER_OPCODE_RCP, result, op[0]);
+      inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
       inst->saturate = instr->dest.saturate;
       break;
 
    case nir_op_fexp2:
-      inst = emit_math(SHADER_OPCODE_EXP2, result, op[0]);
+      inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
       inst->saturate = instr->dest.saturate;
       break;
 
    case nir_op_flog2:
-      inst = emit_math(SHADER_OPCODE_LOG2, result, op[0]);
+      inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
       inst->saturate = instr->dest.saturate;
       break;
 
-   case nir_op_fexp:
-   case nir_op_flog:
-      unreachable("not reached: should be handled by ir_explog_to_explog2");
-
    case nir_op_fsin:
-      inst = emit_math(SHADER_OPCODE_SIN, result, op[0]);
+      inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
       inst->saturate = instr->dest.saturate;
       break;
 
    case nir_op_fcos:
-      inst = emit_math(SHADER_OPCODE_COS, result, op[0]);
+      inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
       inst->saturate = instr->dest.saturate;
       break;
 
    case nir_op_fddx:
       if (fs_key->high_quality_derivatives) {
-         inst = emit(FS_OPCODE_DDX_FINE, result, op[0]);
+         inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
       } else {
-         inst = emit(FS_OPCODE_DDX_COARSE, result, op[0]);
+         inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
       }
       inst->saturate = instr->dest.saturate;
       break;
    case nir_op_fddx_fine:
-      inst = emit(FS_OPCODE_DDX_FINE, result, op[0]);
+      inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
       inst->saturate = instr->dest.saturate;
       break;
    case nir_op_fddx_coarse:
-      inst = emit(FS_OPCODE_DDX_COARSE, result, op[0]);
+      inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
       inst->saturate = instr->dest.saturate;
       break;
    case nir_op_fddy:
       if (fs_key->high_quality_derivatives) {
-         inst = emit(FS_OPCODE_DDY_FINE, result, op[0],
-                     fs_reg(fs_key->render_to_fbo));
+         inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0],
+                         fs_reg(fs_key->render_to_fbo));
       } else {
-         inst = emit(FS_OPCODE_DDY_COARSE, result, op[0],
-                     fs_reg(fs_key->render_to_fbo));
+         inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0],
+                         fs_reg(fs_key->render_to_fbo));
       }
       inst->saturate = instr->dest.saturate;
       break;
    case nir_op_fddy_fine:
-      inst = emit(FS_OPCODE_DDY_FINE, result, op[0],
-                  fs_reg(fs_key->render_to_fbo));
+      inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0],
+                      fs_reg(fs_key->render_to_fbo));
       inst->saturate = instr->dest.saturate;
       break;
    case nir_op_fddy_coarse:
-      inst = emit(FS_OPCODE_DDY_COARSE, result, op[0],
-                  fs_reg(fs_key->render_to_fbo));
+      inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0],
+                      fs_reg(fs_key->render_to_fbo));
       inst->saturate = instr->dest.saturate;
       break;
 
    case nir_op_fadd:
    case nir_op_iadd:
-      inst = emit(ADD(result, op[0], op[1]));
+      inst = bld.ADD(result, op[0], op[1]);
       inst->saturate = instr->dest.saturate;
       break;
 
    case nir_op_fmul:
-      inst = emit(MUL(result, op[0], op[1]));
+      inst = bld.MUL(result, op[0], op[1]);
       inst->saturate = instr->dest.saturate;
       break;
 
-   case nir_op_imul: {
-      if (devinfo->gen >= 8) {
-         emit(MUL(result, op[0], op[1]));
-         break;
-      } else {
-         nir_const_value *value0 = nir_src_as_const_value(instr->src[0].src);
-         nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
-
-         if (value0 && value0->u[0] < (1 << 16)) {
-            if (devinfo->gen < 7) {
-               emit(MUL(result, op[0], op[1]));
-            } else {
-               emit(MUL(result, op[1], op[0]));
-            }
-            break;
-         } else if (value1 && value1->u[0] < (1 << 16)) {
-            if (devinfo->gen < 7) {
-               emit(MUL(result, op[1], op[0]));
-            } else {
-               emit(MUL(result, op[0], op[1]));
-            }
-            break;
-         }
-      }
-
-      if (devinfo->gen >= 7)
-         no16("SIMD16 explicit accumulator operands unsupported\n");
-
-      struct brw_reg acc = retype(brw_acc_reg(dispatch_width), result.type);
-
-      emit(MUL(acc, op[0], op[1]));
-      emit(MACH(reg_null_d, op[0], op[1]));
-      emit(MOV(result, fs_reg(acc)));
+   case nir_op_imul:
+      bld.MUL(result, op[0], op[1]);
       break;
-   }
 
    case nir_op_imul_high:
-   case nir_op_umul_high: {
-      if (devinfo->gen >= 7)
-         no16("SIMD16 explicit accumulator operands unsupported\n");
-
-      struct brw_reg acc = retype(brw_acc_reg(dispatch_width), result.type);
-
-      fs_inst *mul = emit(MUL(acc, op[0], op[1]));
-      emit(MACH(result, op[0], op[1]));
-
-      /* Until Gen8, integer multiplies read 32-bits from one source, and
-       * 16-bits from the other, and relying on the MACH instruction to
-       * generate the high bits of the result.
-       *
-       * On Gen8, the multiply instruction does a full 32x32-bit multiply,
-       * but in order to do a 64x64-bit multiply we have to simulate the
-       * previous behavior and then use a MACH instruction.
-       *
-       * FINISHME: Don't use source modifiers on src1.
-       */
-      if (devinfo->gen >= 8) {
-         assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
-                mul->src[1].type == BRW_REGISTER_TYPE_UD);
-         if (mul->src[1].type == BRW_REGISTER_TYPE_D) {
-            mul->src[1].type = BRW_REGISTER_TYPE_W;
-            mul->src[1].stride = 2;
-         } else {
-            mul->src[1].type = BRW_REGISTER_TYPE_UW;
-            mul->src[1].stride = 2;
-         }
-      }
+   case nir_op_umul_high:
+      bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
       break;
-   }
 
    case nir_op_idiv:
    case nir_op_udiv:
-      emit_math(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
+      bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
       break;
 
-   case nir_op_uadd_carry: {
-      if (devinfo->gen >= 7)
-         no16("SIMD16 explicit accumulator operands unsupported\n");
+   case nir_op_uadd_carry:
+      unreachable("Should have been lowered by carry_to_arith().");
 
-      struct brw_reg acc = retype(brw_acc_reg(dispatch_width),
-                                  BRW_REGISTER_TYPE_UD);
-
-      emit(ADDC(reg_null_ud, op[0], op[1]));
-      emit(MOV(result, fs_reg(acc)));
-      break;
-   }
-
-   case nir_op_usub_borrow: {
-      if (devinfo->gen >= 7)
-         no16("SIMD16 explicit accumulator operands unsupported\n");
-
-      struct brw_reg acc = retype(brw_acc_reg(dispatch_width),
-                                  BRW_REGISTER_TYPE_UD);
-
-      emit(SUBB(reg_null_ud, op[0], op[1]));
-      emit(MOV(result, fs_reg(acc)));
-      break;
-   }
+   case nir_op_usub_borrow:
+      unreachable("Should have been lowered by borrow_to_arith().");
 
    case nir_op_umod:
-      emit_math(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
+      bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
       break;
 
    case nir_op_flt:
    case nir_op_ilt:
    case nir_op_ult:
-      emit(CMP(result, op[0], op[1], BRW_CONDITIONAL_L));
+      bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_L);
       break;
 
    case nir_op_fge:
    case nir_op_ige:
    case nir_op_uge:
-      emit(CMP(result, op[0], op[1], BRW_CONDITIONAL_GE));
+      bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_GE);
       break;
 
    case nir_op_feq:
    case nir_op_ieq:
-      emit(CMP(result, op[0], op[1], BRW_CONDITIONAL_Z));
+      bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_Z);
       break;
 
    case nir_op_fne:
    case nir_op_ine:
-      emit(CMP(result, op[0], op[1], BRW_CONDITIONAL_NZ));
+      bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_NZ);
       break;
 
    case nir_op_inot:
       if (devinfo->gen >= 8) {
-         resolve_source_modifiers(&op[0]);
+         op[0] = resolve_source_modifiers(op[0]);
       }
-      emit(NOT(result, op[0]));
+      bld.NOT(result, op[0]);
       break;
    case nir_op_ixor:
       if (devinfo->gen >= 8) {
-         resolve_source_modifiers(&op[0]);
-         resolve_source_modifiers(&op[1]);
+         op[0] = resolve_source_modifiers(op[0]);
+         op[1] = resolve_source_modifiers(op[1]);
       }
-      emit(XOR(result, op[0], op[1]));
+      bld.XOR(result, op[0], op[1]);
       break;
    case nir_op_ior:
       if (devinfo->gen >= 8) {
-         resolve_source_modifiers(&op[0]);
-         resolve_source_modifiers(&op[1]);
+         op[0] = resolve_source_modifiers(op[0]);
+         op[1] = resolve_source_modifiers(op[1]);
       }
-      emit(OR(result, op[0], op[1]));
+      bld.OR(result, op[0], op[1]);
       break;
    case nir_op_iand:
       if (devinfo->gen >= 8) {
-         resolve_source_modifiers(&op[0]);
-         resolve_source_modifiers(&op[1]);
+         op[0] = resolve_source_modifiers(op[0]);
+         op[1] = resolve_source_modifiers(op[1]);
       }
-      emit(AND(result, op[0], op[1]));
+      bld.AND(result, op[0], op[1]);
       break;
 
    case nir_op_fdot2:
@@ -982,53 +790,51 @@ fs_visitor::nir_emit_alu(nir_alu_instr *instr)
       unreachable("not reached: should be handled by ldexp_to_arith()");
 
    case nir_op_fsqrt:
-      inst = emit_math(SHADER_OPCODE_SQRT, result, op[0]);
+      inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
       inst->saturate = instr->dest.saturate;
       break;
 
    case nir_op_frsq:
-      inst = emit_math(SHADER_OPCODE_RSQ, result, op[0]);
+      inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
       inst->saturate = instr->dest.saturate;
       break;
 
    case nir_op_b2i:
-      emit(AND(result, op[0], fs_reg(1)));
-      break;
    case nir_op_b2f:
-      emit(AND(retype(result, BRW_REGISTER_TYPE_UD), op[0], fs_reg(0x3f800000u)));
+      bld.MOV(result, negate(op[0]));
       break;
 
    case nir_op_f2b:
-      emit(CMP(result, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ));
+      bld.CMP(result, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ);
       break;
    case nir_op_i2b:
-      emit(CMP(result, op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
+      bld.CMP(result, op[0], fs_reg(0), BRW_CONDITIONAL_NZ);
       break;
 
    case nir_op_ftrunc:
-      inst = emit(RNDZ(result, op[0]));
+      inst = bld.RNDZ(result, op[0]);
       inst->saturate = instr->dest.saturate;
       break;
 
    case nir_op_fceil: {
       op[0].negate = !op[0].negate;
       fs_reg temp = vgrf(glsl_type::float_type);
-      emit(RNDD(temp, op[0]));
+      bld.RNDD(temp, op[0]);
       temp.negate = true;
-      inst = emit(MOV(result, temp));
+      inst = bld.MOV(result, temp);
       inst->saturate = instr->dest.saturate;
       break;
    }
    case nir_op_ffloor:
-      inst = emit(RNDD(result, op[0]));
+      inst = bld.RNDD(result, op[0]);
       inst->saturate = instr->dest.saturate;
       break;
    case nir_op_ffract:
-      inst = emit(FRC(result, op[0]));
+      inst = bld.FRC(result, op[0]);
       inst->saturate = instr->dest.saturate;
       break;
    case nir_op_fround_even:
-      inst = emit(RNDE(result, op[0]));
+      inst = bld.RNDE(result, op[0]);
       inst->saturate = instr->dest.saturate;
       break;
 
@@ -1036,11 +842,11 @@ fs_visitor::nir_emit_alu(nir_alu_instr *instr)
    case nir_op_imin:
    case nir_op_umin:
       if (devinfo->gen >= 6) {
-         inst = emit(BRW_OPCODE_SEL, result, op[0], op[1]);
+         inst = bld.emit(BRW_OPCODE_SEL, result, op[0], op[1]);
          inst->conditional_mod = BRW_CONDITIONAL_L;
       } else {
-         emit(CMP(reg_null_d, op[0], op[1], BRW_CONDITIONAL_L));
-         inst = emit(SEL(result, op[0], op[1]));
+         bld.CMP(bld.null_reg_d(), op[0], op[1], BRW_CONDITIONAL_L);
+         inst = bld.SEL(result, op[0], op[1]);
          inst->predicate = BRW_PREDICATE_NORMAL;
       }
       inst->saturate = instr->dest.saturate;
@@ -1050,11 +856,11 @@ fs_visitor::nir_emit_alu(nir_alu_instr *instr)
    case nir_op_imax:
    case nir_op_umax:
       if (devinfo->gen >= 6) {
-         inst = emit(BRW_OPCODE_SEL, result, op[0], op[1]);
+         inst = bld.emit(BRW_OPCODE_SEL, result, op[0], op[1]);
          inst->conditional_mod = BRW_CONDITIONAL_GE;
       } else {
-         emit(CMP(reg_null_d, op[0], op[1], BRW_CONDITIONAL_GE));
-         inst = emit(SEL(result, op[0], op[1]));
+         bld.CMP(bld.null_reg_d(), op[0], op[1], BRW_CONDITIONAL_GE);
+         inst = bld.SEL(result, op[0], op[1]);
          inst->predicate = BRW_PREDICATE_NORMAL;
       }
       inst->saturate = instr->dest.saturate;
@@ -1073,57 +879,56 @@ fs_visitor::nir_emit_alu(nir_alu_instr *instr)
       unreachable("not reached: should be handled by lower_packing_builtins");
 
    case nir_op_unpack_half_2x16_split_x:
-      inst = emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
+      inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
       inst->saturate = instr->dest.saturate;
       break;
    case nir_op_unpack_half_2x16_split_y:
-      inst = emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
+      inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
       inst->saturate = instr->dest.saturate;
       break;
 
    case nir_op_fpow:
-      inst = emit_math(SHADER_OPCODE_POW, result, op[0], op[1]);
+      inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
       inst->saturate = instr->dest.saturate;
       break;
 
    case nir_op_bitfield_reverse:
-      emit(BFREV(result, op[0]));
+      bld.BFREV(result, op[0]);
       break;
 
    case nir_op_bit_count:
-      emit(CBIT(result, op[0]));
+      bld.CBIT(result, op[0]);
       break;
 
    case nir_op_ufind_msb:
    case nir_op_ifind_msb: {
-      emit(FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]));
+      bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
 
       /* FBH counts from the MSB side, while GLSL's findMSB() wants the count
        * from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then
        * subtract the result from 31 to convert the MSB count into an LSB count.
        */
+      bld.CMP(bld.null_reg_d(), result, fs_reg(-1), BRW_CONDITIONAL_NZ);
 
-      emit(CMP(reg_null_d, result, fs_reg(-1), BRW_CONDITIONAL_NZ));
-      fs_reg neg_result(result);
-      neg_result.negate = true;
-      inst = emit(ADD(result, neg_result, fs_reg(31)));
+      inst = bld.ADD(result, result, fs_reg(31));
       inst->predicate = BRW_PREDICATE_NORMAL;
+      inst->src[0].negate = true;
       break;
    }
 
    case nir_op_find_lsb:
-      emit(FBL(result, op[0]));
+      bld.FBL(result, op[0]);
       break;
 
    case nir_op_ubitfield_extract:
    case nir_op_ibitfield_extract:
-      emit(BFE(result, op[2], op[1], op[0]));
+      bld.BFE(result, op[2], op[1], op[0]);
       break;
    case nir_op_bfm:
-      emit(BFI1(result, op[0], op[1]));
+      bld.BFI1(result, op[0], op[1]);
       break;
    case nir_op_bfi:
-      emit(BFI2(result, op[0], op[1], op[2]));
+      bld.BFI2(result, op[0], op[1], op[2]);
       break;
 
    case nir_op_bitfield_insert:
@@ -1131,26 +936,26 @@ fs_visitor::nir_emit_alu(nir_alu_instr *instr)
                   "lower_instructions::bitfield_insert_to_bfm_bfi");
 
    case nir_op_ishl:
-      emit(SHL(result, op[0], op[1]));
+      bld.SHL(result, op[0], op[1]);
       break;
    case nir_op_ishr:
-      emit(ASR(result, op[0], op[1]));
+      bld.ASR(result, op[0], op[1]);
       break;
    case nir_op_ushr:
-      emit(SHR(result, op[0], op[1]));
+      bld.SHR(result, op[0], op[1]);
       break;
 
    case nir_op_pack_half_2x16_split:
-      emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
+      bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
       break;
 
    case nir_op_ffma:
-      inst = emit(MAD(result, op[2], op[1], op[0]));
+      inst = bld.MAD(result, op[2], op[1], op[0]);
       inst->saturate = instr->dest.saturate;
       break;
 
    case nir_op_flrp:
-      inst = emit_lrp(result, op[0], op[1], op[2]);
+      inst = bld.LRP(result, op[0], op[1], op[2]);
       inst->saturate = instr->dest.saturate;
       break;
 
@@ -1158,8 +963,8 @@ fs_visitor::nir_emit_alu(nir_alu_instr *instr)
       if (optimize_frontfacing_ternary(instr, result))
          return;
 
-      emit(CMP(reg_null_d, op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
-      inst = emit(SEL(result, op[1], op[2]));
+      bld.CMP(bld.null_reg_d(), op[0], fs_reg(0), BRW_CONDITIONAL_NZ);
+      inst = bld.SEL(result, op[1], op[2]);
       inst->predicate = BRW_PREDICATE_NORMAL;
       break;
 
@@ -1173,29 +978,48 @@ fs_visitor::nir_emit_alu(nir_alu_instr *instr)
    if (devinfo->gen <= 5 &&
        (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
       fs_reg masked = vgrf(glsl_type::int_type);
-      emit(AND(masked, result, fs_reg(1)));
+      bld.AND(masked, result, fs_reg(1));
       masked.negate = true;
-      emit(MOV(retype(result, BRW_REGISTER_TYPE_D), masked));
+      bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
    }
 }
 
+void
+fs_visitor::nir_emit_load_const(const fs_builder &bld,
+                                nir_load_const_instr *instr)
+{
+   fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_D, instr->def.num_components);
+
+   for (unsigned i = 0; i < instr->def.num_components; i++)
+      bld.MOV(offset(reg, bld, i), fs_reg(instr->value.i[i]));
+
+   nir_ssa_values[instr->def.index] = reg;
+}
+
+void
+fs_visitor::nir_emit_undef(const fs_builder &bld, nir_ssa_undef_instr *instr)
+{
+   nir_ssa_values[instr->def.index] = bld.vgrf(BRW_REGISTER_TYPE_D,
+                                               instr->def.num_components);
+}
+
 static fs_reg
 fs_reg_for_nir_reg(fs_visitor *v, nir_register *nir_reg,
                    unsigned base_offset, nir_src *indirect)
 {
    fs_reg reg;
-   if (nir_reg->is_global)
-      reg = v->nir_globals[nir_reg->index];
-   else
-      reg = v->nir_locals[nir_reg->index];
 
-   reg = offset(reg, base_offset * nir_reg->num_components);
+   assert(!nir_reg->is_global);
+
+   reg = v->nir_locals[nir_reg->index];
+
+   reg = offset(reg, v->bld, base_offset * nir_reg->num_components);
    if (indirect) {
       int multiplier = nir_reg->num_components * (v->dispatch_width / 8);
 
       reg.reladdr = new(v->mem_ctx) fs_reg(v->vgrf(glsl_type::int_type));
-      v->emit(v->MUL(*reg.reladdr, v->get_nir_src(*indirect),
-                     fs_reg(multiplier)));
+      v->bld.MUL(*reg.reladdr, v->get_nir_src(*indirect),
+                 fs_reg(multiplier));
    }
 
    return reg;
@@ -1204,54 +1028,547 @@ fs_reg_for_nir_reg(fs_visitor *v, nir_register *nir_reg,
 fs_reg
 fs_visitor::get_nir_src(nir_src src)
 {
+   fs_reg reg;
    if (src.is_ssa) {
-      assert(src.ssa->parent_instr->type == nir_instr_type_load_const);
-      nir_load_const_instr *load = nir_instr_as_load_const(src.ssa->parent_instr);
-      fs_reg reg = vgrf(src.ssa->num_components);
-      reg.type = BRW_REGISTER_TYPE_D;
-
-      for (unsigned i = 0; i < src.ssa->num_components; ++i)
-         emit(MOV(offset(reg, i), fs_reg(load->value.i[i])));
-
-      return reg;
+      reg = nir_ssa_values[src.ssa->index];
    } else {
-      fs_reg reg = fs_reg_for_nir_reg(this, src.reg.reg, src.reg.base_offset,
-                                      src.reg.indirect);
-
-      /* to avoid floating-point denorm flushing problems, set the type by
-       * default to D - instructions that need floating point semantics will set
-       * this to F if they need to
-       */
-      return retype(reg, BRW_REGISTER_TYPE_D);
+      reg = fs_reg_for_nir_reg(this, src.reg.reg, src.reg.base_offset,
+                               src.reg.indirect);
    }
+
+   /* to avoid floating-point denorm flushing problems, set the type by
+    * default to D - instructions that need floating point semantics will set
+    * this to F if they need to
+    */
+   return retype(reg, BRW_REGISTER_TYPE_D);
 }
 
 fs_reg
 fs_visitor::get_nir_dest(nir_dest dest)
 {
+   if (dest.is_ssa) {
+      nir_ssa_values[dest.ssa.index] = bld.vgrf(BRW_REGISTER_TYPE_F,
+                                                dest.ssa.num_components);
+      return nir_ssa_values[dest.ssa.index];
+   }
+
    return fs_reg_for_nir_reg(this, dest.reg.reg, dest.reg.base_offset,
                              dest.reg.indirect);
 }
 
+fs_reg
+fs_visitor::get_nir_image_deref(const nir_deref_var *deref)
+{
+   fs_reg image(UNIFORM, deref->var->data.driver_location,
+                BRW_REGISTER_TYPE_UD);
+
+   for (const nir_deref *tail = &deref->deref; tail->child;
+        tail = tail->child) {
+      const nir_deref_array *deref_array = nir_deref_as_array(tail->child);
+      assert(tail->child->deref_type == nir_deref_type_array);
+      const unsigned size = glsl_get_length(tail->type);
+      const unsigned element_size = type_size_scalar(deref_array->deref.type);
+      const unsigned base = MIN2(deref_array->base_offset, size - 1);
+      image = offset(image, bld, base * element_size);
+
+      if (deref_array->deref_array_type == nir_deref_array_type_indirect) {
+         fs_reg tmp = vgrf(glsl_type::int_type);
+
+         if (devinfo->gen == 7 && !devinfo->is_haswell) {
+            /* IVB hangs when trying to access an invalid surface index with
+             * the dataport.  According to the spec "if the index used to
+             * select an individual element is negative or greater than or
+             * equal to the size of the array, the results of the operation
+             * are undefined but may not lead to termination" -- which is one
+             * of the possible outcomes of the hang.  Clamp the index to
+             * prevent access outside of the array bounds.
+             */
+            bld.emit_minmax(tmp, retype(get_nir_src(deref_array->indirect),
+                                        BRW_REGISTER_TYPE_UD),
+                            fs_reg(size - base - 1), BRW_CONDITIONAL_L);
+         } else {
+            bld.MOV(tmp, get_nir_src(deref_array->indirect));
+         }
+
+         bld.MUL(tmp, tmp, fs_reg(element_size));
+         if (image.reladdr)
+            bld.ADD(*image.reladdr, *image.reladdr, tmp);
+         else
+            image.reladdr = new(mem_ctx) fs_reg(tmp);
+      }
+   }
+
+   return image;
+}
+
 void
-fs_visitor::emit_percomp(fs_inst *inst, unsigned wr_mask)
+fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
+                         unsigned wr_mask)
 {
    for (unsigned i = 0; i < 4; i++) {
       if (!((wr_mask >> i) & 1))
          continue;
 
-      fs_inst *new_inst = new(mem_ctx) fs_inst(*inst);
-      new_inst->dst = offset(new_inst->dst, i);
+      fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
+      new_inst->dst = offset(new_inst->dst, bld, i);
       for (unsigned j = 0; j < new_inst->sources; j++)
-         if (inst->src[j].file == GRF)
-            new_inst->src[j] = offset(new_inst->src[j], i);
+         if (new_inst->src[j].file == GRF)
+            new_inst->src[j] = offset(new_inst->src[j], bld, i);
+
+      bld.emit(new_inst);
+   }
+}
 
-      emit(new_inst);
+/**
+ * Get the matching channel register datatype for an image intrinsic of the
+ * specified GLSL image type.
+ */
+static brw_reg_type
+get_image_base_type(const glsl_type *type)
+{
+   switch ((glsl_base_type)type->sampler_type) {
+   case GLSL_TYPE_UINT:
+      return BRW_REGISTER_TYPE_UD;
+   case GLSL_TYPE_INT:
+      return BRW_REGISTER_TYPE_D;
+   case GLSL_TYPE_FLOAT:
+      return BRW_REGISTER_TYPE_F;
+   default:
+      unreachable("Not reached.");
    }
 }
 
+/**
+ * Get the appropriate atomic op for an image atomic intrinsic.
+ */
+static unsigned
+get_image_atomic_op(nir_intrinsic_op op, const glsl_type *type)
+{
+   switch (op) {
+   case nir_intrinsic_image_atomic_add:
+      return BRW_AOP_ADD;
+   case nir_intrinsic_image_atomic_min:
+      return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
+              BRW_AOP_IMIN : BRW_AOP_UMIN);
+   case nir_intrinsic_image_atomic_max:
+      return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
+              BRW_AOP_IMAX : BRW_AOP_UMAX);
+   case nir_intrinsic_image_atomic_and:
+      return BRW_AOP_AND;
+   case nir_intrinsic_image_atomic_or:
+      return BRW_AOP_OR;
+   case nir_intrinsic_image_atomic_xor:
+      return BRW_AOP_XOR;
+   case nir_intrinsic_image_atomic_exchange:
+      return BRW_AOP_MOV;
+   case nir_intrinsic_image_atomic_comp_swap:
+      return BRW_AOP_CMPWR;
+   default:
+      unreachable("Not reachable.");
+   }
+}
+
+static fs_inst *
+emit_pixel_interpolater_send(const fs_builder &bld,
+                             enum opcode opcode,
+                             const fs_reg &dst,
+                             const fs_reg &src,
+                             const fs_reg &desc,
+                             glsl_interp_qualifier interpolation)
+{
+   fs_inst *inst;
+   fs_reg payload;
+   int mlen;
+
+   if (src.file == BAD_FILE) {
+      /* Dummy payload */
+      payload = bld.vgrf(BRW_REGISTER_TYPE_F, 1);
+      mlen = 1;
+   } else {
+      payload = src;
+      mlen = 2 * bld.dispatch_width() / 8;
+   }
+
+   inst = bld.emit(opcode, dst, payload, desc);
+   inst->mlen = mlen;
+   /* 2 floats per slot returned */
+   inst->regs_written = 2 * bld.dispatch_width() / 8;
+   inst->pi_noperspective = interpolation == INTERP_QUALIFIER_NOPERSPECTIVE;
+
+   return inst;
+}
+
+/**
+ * Computes 1 << x, given a D/UD register containing some value x.
+ */
+static fs_reg
+intexp2(const fs_builder &bld, const fs_reg &x)
+{
+   assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
+
+   fs_reg result = bld.vgrf(x.type, 1);
+   fs_reg one = bld.vgrf(x.type, 1);
+
+   bld.MOV(one, retype(fs_reg(1), one.type));
+   bld.SHL(result, one, x);
+   return result;
+}
+
 void
-fs_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr)
+fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
+{
+   assert(stage == MESA_SHADER_GEOMETRY);
+
+   struct brw_gs_prog_data *gs_prog_data =
+      (struct brw_gs_prog_data *) prog_data;
+
+   /* We can only do EndPrimitive() functionality when the control data
+    * consists of cut bits.  Fortunately, the only time it isn't is when the
+    * output type is points, in which case EndPrimitive() is a no-op.
+    */
+   if (gs_prog_data->control_data_format !=
+       GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
+      return;
+   }
+
+   /* Cut bits use one bit per vertex. */
+   assert(gs_compile->control_data_bits_per_vertex == 1);
+
+   fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
+   vertex_count.type = BRW_REGISTER_TYPE_UD;
+
+   /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
+    * vertex n, 0 otherwise.  So all we need to do here is mark bit
+    * (vertex_count - 1) % 32 in the cut_bits register to indicate that
+    * EndPrimitive() was called after emitting vertex (vertex_count - 1);
+    * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
+    *
+    * Note that if EndPrimitive() is called before emitting any vertices, this
+    * will cause us to set bit 31 of the control_data_bits register to 1.
+    * That's fine because:
+    *
+    * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
+    *   output, so the hardware will ignore cut bit 31.
+    *
+    * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
+    *   last vertex, so setting cut bit 31 has no effect (since the primitive
+    *   is automatically ended when the GS terminates).
+    *
+    * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
+    *   control_data_bits register to 0 when the first vertex is emitted.
+    */
+
+   const fs_builder abld = bld.annotate("end primitive");
+
+   /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
+   fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
+   abld.ADD(prev_count, vertex_count, fs_reg(0xffffffffu));
+   fs_reg mask = intexp2(abld, prev_count);
+   /* Note: we're relying on the fact that the GEN SHL instruction only pays
+    * attention to the lower 5 bits of its second source argument, so on this
+    * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
+    * ((vertex_count - 1) % 32).
+    */
+   abld.OR(this->control_data_bits, this->control_data_bits, mask);
+}
+
+void
+fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
+{
+   assert(stage == MESA_SHADER_GEOMETRY);
+   assert(gs_compile->control_data_bits_per_vertex != 0);
+
+   struct brw_gs_prog_data *gs_prog_data =
+      (struct brw_gs_prog_data *) prog_data;
+
+   const fs_builder abld = bld.annotate("emit control data bits");
+   const fs_builder fwa_bld = bld.exec_all();
+
+   /* We use a single UD register to accumulate control data bits (32 bits
+    * for each of the SIMD8 channels).  So we need to write a DWord (32 bits)
+    * at a time.
+    *
+    * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
+    * We have select a 128-bit group via the Global and Per-Slot Offsets, then
+    * use the Channel Mask phase to enable/disable which DWord within that
+    * group to write.  (Remember, different SIMD8 channels may have emitted
+    * different numbers of vertices, so we may need per-slot offsets.)
+    *
+    * Channel masking presents an annoying problem: we may have to replicate
+    * the data up to 4 times:
+    *
+    * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
+    *
+    * To avoid penalizing shaders that emit a small number of vertices, we
+    * can avoid these sometimes: if the size of the control data header is
+    * <= 128 bits, then there is only 1 OWord.  All SIMD8 channels will land
+    * land in the same 128-bit group, so we can skip per-slot offsets.
+    *
+    * Similarly, if the control data header is <= 32 bits, there is only one
+    * DWord, so we can skip channel masks.
+    */
+   enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
+
+   fs_reg channel_mask, per_slot_offset;
+
+   if (gs_compile->control_data_header_size_bits > 32) {
+      opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
+      channel_mask = vgrf(glsl_type::uint_type);
+   }
+
+   if (gs_compile->control_data_header_size_bits > 128) {
+      opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
+      per_slot_offset = vgrf(glsl_type::uint_type);
+   }
+
+   /* Figure out which DWord we're trying to write to using the formula:
+    *
+    *    dword_index = (vertex_count - 1) * bits_per_vertex / 32
+    *
+    * Since bits_per_vertex is a power of two, and is known at compile
+    * time, this can be optimized to:
+    *
+    *    dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
+    */
+   if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
+      fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
+      fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
+      abld.ADD(prev_count, vertex_count, fs_reg(0xffffffffu));
+      unsigned log2_bits_per_vertex =
+         _mesa_fls(gs_compile->control_data_bits_per_vertex);
+      abld.SHR(dword_index, prev_count, fs_reg(6u - log2_bits_per_vertex));
+
+      if (per_slot_offset.file != BAD_FILE) {
+         /* Set the per-slot offset to dword_index / 4, so that we'll write to
+          * the appropriate OWord within the control data header.
+          */
+         abld.SHR(per_slot_offset, dword_index, fs_reg(2u));
+      }
+
+      /* Set the channel masks to 1 << (dword_index % 4), so that we'll
+       * write to the appropriate DWORD within the OWORD.
+       */
+      fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
+      fwa_bld.AND(channel, dword_index, fs_reg(3u));
+      channel_mask = intexp2(fwa_bld, channel);
+      /* Then the channel masks need to be in bits 23:16. */
+      fwa_bld.SHL(channel_mask, channel_mask, fs_reg(16u));
+   }
+
+   /* Store the control data bits in the message payload and send it. */
+   int mlen = 2;
+   if (channel_mask.file != BAD_FILE)
+      mlen += 4; /* channel masks, plus 3 extra copies of the data */
+   if (per_slot_offset.file != BAD_FILE)
+      mlen++;
+
+   fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
+   fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
+   int i = 0;
+   sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
+   if (per_slot_offset.file != BAD_FILE)
+      sources[i++] = per_slot_offset;
+   if (channel_mask.file != BAD_FILE)
+      sources[i++] = channel_mask;
+   while (i < mlen) {
+      sources[i++] = this->control_data_bits;
+   }
+
+   abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
+   fs_inst *inst = abld.emit(opcode, reg_undef, payload);
+   inst->mlen = mlen;
+   /* We need to increment Global Offset by 256-bits to make room for
+    * Broadwell's extra "Vertex Count" payload at the beginning of the
+    * URB entry.  Since this is an OWord message, Global Offset is counted
+    * in 128-bit units, so we must set it to 2.
+    */
+   if (gs_prog_data->static_vertex_count == -1)
+      inst->offset = 2;
+}
+
+void
+fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
+                                            unsigned stream_id)
+{
+   /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
+
+   /* Note: we are calling this *before* increasing vertex_count, so
+    * this->vertex_count == vertex_count - 1 in the formula above.
+    */
+
+   /* Stream mode uses 2 bits per vertex */
+   assert(gs_compile->control_data_bits_per_vertex == 2);
+
+   /* Must be a valid stream */
+   assert(stream_id >= 0 && stream_id < MAX_VERTEX_STREAMS);
+
+   /* Control data bits are initialized to 0 so we don't have to set any
+    * bits when sending vertices to stream 0.
+    */
+   if (stream_id == 0)
+      return;
+
+   const fs_builder abld = bld.annotate("set stream control data bits", NULL);
+
+   /* reg::sid = stream_id */
+   fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
+   abld.MOV(sid, fs_reg(stream_id));
+
+   /* reg:shift_count = 2 * (vertex_count - 1) */
+   fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
+   abld.SHL(shift_count, vertex_count, fs_reg(1u));
+
+   /* Note: we're relying on the fact that the GEN SHL instruction only pays
+    * attention to the lower 5 bits of its second source argument, so on this
+    * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
+    * stream_id << ((2 * (vertex_count - 1)) % 32).
+    */
+   fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
+   abld.SHL(mask, sid, shift_count);
+   abld.OR(this->control_data_bits, this->control_data_bits, mask);
+}
+
+void
+fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
+                           unsigned stream_id)
+{
+   assert(stage == MESA_SHADER_GEOMETRY);
+
+   struct brw_gs_prog_data *gs_prog_data =
+      (struct brw_gs_prog_data *) prog_data;
+
+   fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
+   vertex_count.type = BRW_REGISTER_TYPE_UD;
+
+   /* Haswell and later hardware ignores the "Render Stream Select" bits
+    * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
+    * and instead sends all primitives down the pipeline for rasterization.
+    * If the SOL stage is enabled, "Render Stream Select" is honored and
+    * primitives bound to non-zero streams are discarded after stream output.
+    *
+    * Since the only purpose of primives sent to non-zero streams is to
+    * be recorded by transform feedback, we can simply discard all geometry
+    * bound to these streams when transform feedback is disabled.
+    */
+   if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
+      return;
+
+   /* If we're outputting 32 control data bits or less, then we can wait
+    * until the shader is over to output them all.  Otherwise we need to
+    * output them as we go.  Now is the time to do it, since we're about to
+    * output the vertex_count'th vertex, so it's guaranteed that the
+    * control data bits associated with the (vertex_count - 1)th vertex are
+    * correct.
+    */
+   if (gs_compile->control_data_header_size_bits > 32) {
+      const fs_builder abld =
+         bld.annotate("emit vertex: emit control data bits");
+
+      /* Only emit control data bits if we've finished accumulating a batch
+       * of 32 bits.  This is the case when:
+       *
+       *     (vertex_count * bits_per_vertex) % 32 == 0
+       *
+       * (in other words, when the last 5 bits of vertex_count *
+       * bits_per_vertex are 0).  Assuming bits_per_vertex == 2^n for some
+       * integer n (which is always the case, since bits_per_vertex is
+       * always 1 or 2), this is equivalent to requiring that the last 5-n
+       * bits of vertex_count are 0:
+       *
+       *     vertex_count & (2^(5-n) - 1) == 0
+       *
+       * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
+       * equivalent to:
+       *
+       *     vertex_count & (32 / bits_per_vertex - 1) == 0
+       *
+       * TODO: If vertex_count is an immediate, we could do some of this math
+       *       at compile time...
+       */
+      fs_inst *inst =
+         abld.AND(bld.null_reg_d(), vertex_count,
+                  fs_reg(32u / gs_compile->control_data_bits_per_vertex - 1u));
+      inst->conditional_mod = BRW_CONDITIONAL_Z;
+
+      abld.IF(BRW_PREDICATE_NORMAL);
+      /* If vertex_count is 0, then no control data bits have been
+       * accumulated yet, so we can skip emitting them.
+       */
+      abld.CMP(bld.null_reg_d(), vertex_count, fs_reg(0u),
+               BRW_CONDITIONAL_NEQ);
+      abld.IF(BRW_PREDICATE_NORMAL);
+      emit_gs_control_data_bits(vertex_count);
+      abld.emit(BRW_OPCODE_ENDIF);
+
+      /* Reset control_data_bits to 0 so we can start accumulating a new
+       * batch.
+       *
+       * Note: in the case where vertex_count == 0, this neutralizes the
+       * effect of any call to EndPrimitive() that the shader may have
+       * made before outputting its first vertex.
+       */
+      inst = abld.MOV(this->control_data_bits, fs_reg(0u));
+      inst->force_writemask_all = true;
+      abld.emit(BRW_OPCODE_ENDIF);
+   }
+
+   emit_urb_writes(vertex_count);
+
+   /* In stream mode we have to set control data bits for all vertices
+    * unless we have disabled control data bits completely (which we do
+    * do for GL_POINTS outputs that don't use streams).
+    */
+   if (gs_compile->control_data_header_size_bits > 0 &&
+       gs_prog_data->control_data_format ==
+          GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
+      set_gs_stream_control_data_bits(vertex_count, stream_id);
+   }
+}
+
+void
+fs_visitor::emit_gs_input_load(const fs_reg &dst,
+                               const nir_src &vertex_src,
+                               unsigned input_offset,
+                               unsigned num_components)
+{
+   const brw_vue_prog_data *vue_prog_data = (const brw_vue_prog_data *) prog_data;
+   const unsigned vertex = nir_src_as_const_value(vertex_src)->u[0];
+
+   const unsigned array_stride = vue_prog_data->urb_read_length * 8;
+
+   const bool pushed = 4 * input_offset < array_stride;
+
+   if (input_offset == 0) {
+      /* This is the VUE header, containing VARYING_SLOT_LAYER [.y],
+       * VARYING_SLOT_VIEWPORT [.z], and VARYING_SLOT_PSIZ [.w].
+       * Only gl_PointSize is available as a GS input, so they must
+       * be asking for that input.
+       */
+      if (pushed) {
+         bld.MOV(dst, fs_reg(ATTR, array_stride * vertex + 3, dst.type));
+      } else {
+         fs_reg tmp = bld.vgrf(dst.type, 4);
+         fs_inst *inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp,
+                                  fs_reg(vertex), fs_reg(0));
+         inst->regs_written = 4;
+         bld.MOV(dst, offset(tmp, bld, 3));
+      }
+   } else {
+      if (pushed) {
+         int index = vertex * array_stride + 4 * input_offset;
+         for (unsigned i = 0; i < num_components; i++) {
+            bld.MOV(offset(dst, bld, i), fs_reg(ATTR, index + i, dst.type));
+         }
+      } else {
+         fs_inst *inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst,
+                                  fs_reg(vertex), fs_reg(input_offset));
+         inst->regs_written = num_components;
+      }
+   }
+}
+
+void
+fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
 {
    fs_reg dest;
    if (nir_intrinsic_infos[instr->intrinsic].has_dest)
@@ -1269,12 +1586,12 @@ fs_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr)
        */
       fs_inst *cmp;
       if (instr->intrinsic == nir_intrinsic_discard_if) {
-         cmp = emit(CMP(reg_null_f, get_nir_src(instr->src[0]),
-                        fs_reg(0), BRW_CONDITIONAL_Z));
+         cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
+                       fs_reg(0), BRW_CONDITIONAL_Z);
       } else {
          fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
                                        BRW_REGISTER_TYPE_UW));
-         cmp = emit(CMP(reg_null_f, some_reg, some_reg, BRW_CONDITIONAL_NZ));
+         cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
       }
       cmp->predicate = BRW_PREDICATE_NORMAL;
       cmp->flag_subreg = 1;
@@ -1288,65 +1605,190 @@ fs_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr)
    case nir_intrinsic_atomic_counter_inc:
    case nir_intrinsic_atomic_counter_dec:
    case nir_intrinsic_atomic_counter_read: {
-      unsigned surf_index = prog_data->binding_table.abo_start +
-                            (unsigned) instr->const_index[0];
-      fs_reg offset = fs_reg(get_nir_src(instr->src[0]));
+      using namespace surface_access;
 
+      /* Get the arguments of the atomic intrinsic. */
+      const fs_reg offset = get_nir_src(instr->src[0]);
+      const unsigned surface = (stage_prog_data->binding_table.abo_start +
+                                instr->const_index[0]);
+      fs_reg tmp;
+
+      /* Emit a surface read or atomic op. */
       switch (instr->intrinsic) {
-         case nir_intrinsic_atomic_counter_inc:
-            emit_untyped_atomic(BRW_AOP_INC, surf_index, dest, offset,
-                                fs_reg(), fs_reg());
-            break;
-         case nir_intrinsic_atomic_counter_dec:
-            emit_untyped_atomic(BRW_AOP_PREDEC, surf_index, dest, offset,
-                                fs_reg(), fs_reg());
-            break;
-         case nir_intrinsic_atomic_counter_read:
-            emit_untyped_surface_read(surf_index, dest, offset);
-            break;
-         default:
-            unreachable("Unreachable");
+      case nir_intrinsic_atomic_counter_read:
+         tmp = emit_untyped_read(bld, fs_reg(surface), offset, 1, 1);
+         break;
+
+      case nir_intrinsic_atomic_counter_inc:
+         tmp = emit_untyped_atomic(bld, fs_reg(surface), offset, fs_reg(),
+                                   fs_reg(), 1, 1, BRW_AOP_INC);
+         break;
+
+      case nir_intrinsic_atomic_counter_dec:
+         tmp = emit_untyped_atomic(bld, fs_reg(surface), offset, fs_reg(),
+                                   fs_reg(), 1, 1, BRW_AOP_PREDEC);
+         break;
+
+      default:
+         unreachable("Unreachable");
       }
+
+      /* Assign the result. */
+      bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), tmp);
+
+      /* Mark the surface as used. */
+      brw_mark_surface_used(stage_prog_data, surface);
       break;
    }
 
-   case nir_intrinsic_load_front_face:
-      emit(MOV(retype(dest, BRW_REGISTER_TYPE_D),
-               *emit_frontfacing_interpolation()));
+   case nir_intrinsic_image_load:
+   case nir_intrinsic_image_store:
+   case nir_intrinsic_image_atomic_add:
+   case nir_intrinsic_image_atomic_min:
+   case nir_intrinsic_image_atomic_max:
+   case nir_intrinsic_image_atomic_and:
+   case nir_intrinsic_image_atomic_or:
+   case nir_intrinsic_image_atomic_xor:
+   case nir_intrinsic_image_atomic_exchange:
+   case nir_intrinsic_image_atomic_comp_swap: {
+      using namespace image_access;
+
+      /* Get the referenced image variable and type. */
+      const nir_variable *var = instr->variables[0]->var;
+      const glsl_type *type = var->type->without_array();
+      const brw_reg_type base_type = get_image_base_type(type);
+
+      /* Get some metadata from the image intrinsic. */
+      const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
+      const unsigned arr_dims = type->sampler_array ? 1 : 0;
+      const unsigned surf_dims = type->coordinate_components() - arr_dims;
+      const mesa_format format =
+         (var->data.image.write_only ? MESA_FORMAT_NONE :
+          _mesa_get_shader_image_format(var->data.image.format));
+
+      /* Get the arguments of the image intrinsic. */
+      const fs_reg image = get_nir_image_deref(instr->variables[0]);
+      const fs_reg addr = retype(get_nir_src(instr->src[0]),
+                                 BRW_REGISTER_TYPE_UD);
+      const fs_reg src0 = (info->num_srcs >= 3 ?
+                           retype(get_nir_src(instr->src[2]), base_type) :
+                           fs_reg());
+      const fs_reg src1 = (info->num_srcs >= 4 ?
+                           retype(get_nir_src(instr->src[3]), base_type) :
+                           fs_reg());
+      fs_reg tmp;
+
+      /* Emit an image load, store or atomic op. */
+      if (instr->intrinsic == nir_intrinsic_image_load)
+         tmp = emit_image_load(bld, image, addr, surf_dims, arr_dims, format);
+
+      else if (instr->intrinsic == nir_intrinsic_image_store)
+         emit_image_store(bld, image, addr, src0, surf_dims, arr_dims, format);
+
+      else
+         tmp = emit_image_atomic(bld, image, addr, src0, src1,
+                                 surf_dims, arr_dims, info->dest_components,
+                                 get_image_atomic_op(instr->intrinsic, type));
+
+      /* Assign the result. */
+      for (unsigned c = 0; c < info->dest_components; ++c)
+         bld.MOV(offset(retype(dest, base_type), bld, c),
+                 offset(tmp, bld, c));
       break;
+   }
 
-   case nir_intrinsic_load_vertex_id:
-      unreachable("should be lowered by lower_vertex_id()");
-
-   case nir_intrinsic_load_vertex_id_zero_base: {
-      fs_reg vertex_id = nir_system_values[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE];
-      assert(vertex_id.file != BAD_FILE);
-      dest.type = vertex_id.type;
-      emit(MOV(dest, vertex_id));
+   case nir_intrinsic_memory_barrier: {
+      const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 16 / dispatch_width);
+      bld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
+         ->regs_written = 2;
       break;
    }
 
-   case nir_intrinsic_load_base_vertex: {
-      fs_reg base_vertex = nir_system_values[SYSTEM_VALUE_BASE_VERTEX];
-      assert(base_vertex.file != BAD_FILE);
-      dest.type = base_vertex.type;
-      emit(MOV(dest, base_vertex));
+   case nir_intrinsic_shader_clock: {
+      /* We cannot do anything if there is an event, so ignore it for now */
+      fs_reg shader_clock = get_timestamp(bld);
+      const fs_reg srcs[] = { shader_clock.set_smear(0), shader_clock.set_smear(1) };
+
+      bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
       break;
    }
 
-   case nir_intrinsic_load_instance_id: {
-      fs_reg instance_id = nir_system_values[SYSTEM_VALUE_INSTANCE_ID];
-      assert(instance_id.file != BAD_FILE);
-      dest.type = instance_id.type;
-      emit(MOV(dest, instance_id));
+   case nir_intrinsic_image_size: {
+      /* Get the referenced image variable and type. */
+      const nir_variable *var = instr->variables[0]->var;
+      const glsl_type *type = var->type->without_array();
+
+      /* Get the size of the image. */
+      const fs_reg image = get_nir_image_deref(instr->variables[0]);
+      const fs_reg size = offset(image, bld, BRW_IMAGE_PARAM_SIZE_OFFSET);
+
+      /* For 1DArray image types, the array index is stored in the Z component.
+       * Fix this by swizzling the Z component to the Y component.
+       */
+      const bool is_1d_array_image =
+                  type->sampler_dimensionality == GLSL_SAMPLER_DIM_1D &&
+                  type->sampler_array;
+
+      /* For CubeArray images, we should count the number of cubes instead
+       * of the number of faces. Fix it by dividing the (Z component) by 6.
+       */
+      const bool is_cube_array_image =
+                  type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
+                  type->sampler_array;
+
+      /* Copy all the components. */
+      const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
+      for (unsigned c = 0; c < info->dest_components; ++c) {
+         if ((int)c >= type->coordinate_components()) {
+             bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
+                     fs_reg(1));
+         } else if (c == 1 && is_1d_array_image) {
+            bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
+                    offset(size, bld, 2));
+         } else if (c == 2 && is_cube_array_image) {
+            bld.emit(SHADER_OPCODE_INT_QUOTIENT,
+                     offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
+                     offset(size, bld, c), fs_reg(6));
+         } else {
+            bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
+                    offset(size, bld, c));
+         }
+       }
+
       break;
    }
 
-   case nir_intrinsic_load_sample_mask_in: {
-      fs_reg sample_mask_in = nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
-      assert(sample_mask_in.file != BAD_FILE);
-      dest.type = sample_mask_in.type;
-      emit(MOV(dest, sample_mask_in));
+   case nir_intrinsic_image_samples:
+      /* The driver does not support multi-sampled images. */
+      bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), fs_reg(1));
+      break;
+
+   case nir_intrinsic_load_front_face:
+      bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
+              *emit_frontfacing_interpolation());
+      break;
+
+   case nir_intrinsic_load_vertex_id:
+      unreachable("should be lowered by lower_vertex_id()");
+
+   case nir_intrinsic_load_primitive_id:
+      assert(stage == MESA_SHADER_GEOMETRY);
+      assert(((struct brw_gs_prog_data *)prog_data)->include_primitive_id);
+      bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
+              retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
+      break;
+
+   case nir_intrinsic_load_vertex_id_zero_base:
+   case nir_intrinsic_load_base_vertex:
+   case nir_intrinsic_load_instance_id:
+   case nir_intrinsic_load_invocation_id:
+   case nir_intrinsic_load_sample_mask_in:
+   case nir_intrinsic_load_sample_id: {
+      gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
+      fs_reg val = nir_system_values[sv];
+      assert(val.file != BAD_FILE);
+      dest.type = val.type;
+      bld.MOV(dest, val);
       break;
    }
 
@@ -1354,16 +1796,8 @@ fs_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr)
       fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
       assert(sample_pos.file != BAD_FILE);
       dest.type = sample_pos.type;
-      emit(MOV(dest, sample_pos));
-      emit(MOV(offset(dest, 1), offset(sample_pos, 1)));
-      break;
-   }
-
-   case nir_intrinsic_load_sample_id: {
-      fs_reg sample_id = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
-      assert(sample_id.file != BAD_FILE);
-      dest.type = sample_id.type;
-      emit(MOV(dest, sample_id));
+      bld.MOV(dest, sample_pos);
+      bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
       break;
    }
 
@@ -1371,26 +1805,16 @@ fs_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr)
       has_indirect = true;
       /* fallthrough */
    case nir_intrinsic_load_uniform: {
-      unsigned index = instr->const_index[0];
+      fs_reg uniform_reg(UNIFORM, instr->const_index[0]);
+      uniform_reg.reg_offset = instr->const_index[1];
 
-      fs_reg uniform_reg;
-      if (index < num_direct_uniforms) {
-         uniform_reg = fs_reg(UNIFORM, 0);
-      } else {
-         uniform_reg = fs_reg(UNIFORM, num_direct_uniforms);
-         index -= num_direct_uniforms;
-      }
-
-      for (int i = 0; i < instr->const_index[1]; i++) {
-         for (unsigned j = 0; j < instr->num_components; j++) {
-            fs_reg src = offset(retype(uniform_reg, dest.type), index);
-            if (has_indirect)
-               src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[0]));
-            index++;
+      for (unsigned j = 0; j < instr->num_components; j++) {
+         fs_reg src = offset(retype(uniform_reg, dest.type), bld, j);
+         if (has_indirect)
+            src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[0]));
 
-            emit(MOV(dest, src));
-            dest = offset(dest, 1);
-         }
+         bld.MOV(dest, src);
+         dest = offset(dest, bld, 1);
       }
       break;
    }
@@ -1403,44 +1827,46 @@ fs_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr)
       fs_reg surf_index;
 
       if (const_index) {
-         surf_index = fs_reg(stage_prog_data->binding_table.ubo_start +
-                             const_index->u[0]);
+         const unsigned index = stage_prog_data->binding_table.ubo_start +
+                                const_index->u[0];
+         surf_index = fs_reg(index);
+         brw_mark_surface_used(prog_data, index);
       } else {
          /* The block index is not a constant. Evaluate the index expression
-          * per-channel and add the base UBO index; the generator will select
-          * a value from any live channel.
+          * per-channel and add the base UBO index; we have to select a value
+          * from any live channel.
           */
          surf_index = vgrf(glsl_type::uint_type);
-         emit(ADD(surf_index, get_nir_src(instr->src[0]),
-                  fs_reg(stage_prog_data->binding_table.ubo_start)))
-            ->force_writemask_all = true;
+         bld.ADD(surf_index, get_nir_src(instr->src[0]),
+                 fs_reg(stage_prog_data->binding_table.ubo_start));
+         surf_index = bld.emit_uniformize(surf_index);
 
          /* Assume this may touch any UBO. It would be nice to provide
           * a tighter bound, but the array information is already lowered away.
           */
          brw_mark_surface_used(prog_data,
                                stage_prog_data->binding_table.ubo_start +
-                               shader_prog->NumUniformBlocks - 1);
+                               nir->info.num_ubos - 1);
       }
 
       if (has_indirect) {
          /* Turn the byte offset into a dword offset. */
          fs_reg base_offset = vgrf(glsl_type::int_type);
-         emit(SHR(base_offset, retype(get_nir_src(instr->src[1]),
-                                 BRW_REGISTER_TYPE_D),
-                  fs_reg(2)));
+         bld.SHR(base_offset, retype(get_nir_src(instr->src[1]),
+                                     BRW_REGISTER_TYPE_D),
+                 fs_reg(2));
 
          unsigned vec4_offset = instr->const_index[0] / 4;
          for (int i = 0; i < instr->num_components; i++)
-            emit(VARYING_PULL_CONSTANT_LOAD(offset(dest, i), surf_index,
-                                            base_offset, vec4_offset + i));
+            VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
+                                       base_offset, vec4_offset + i);
       } else {
          fs_reg packed_consts = vgrf(glsl_type::float_type);
          packed_consts.type = dest.type;
 
          fs_reg const_offset_reg((unsigned) instr->const_index[0] & ~15);
-         emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD, packed_consts,
-              surf_index, const_offset_reg);
+         bld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD, packed_consts,
+                  surf_index, const_offset_reg);
 
          for (unsigned i = 0; i < instr->num_components; i++) {
             packed_consts.set_smear(instr->const_index[0] % 16 / 4 + i);
@@ -1450,33 +1876,92 @@ fs_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr)
              */
             assert(packed_consts.subreg_offset < 32);
 
-            emit(MOV(dest, packed_consts));
-            dest = offset(dest, 1);
+            bld.MOV(dest, packed_consts);
+            dest = offset(dest, bld, 1);
          }
       }
       break;
    }
 
+   case nir_intrinsic_load_ssbo_indirect:
+      has_indirect = true;
+      /* fallthrough */
+   case nir_intrinsic_load_ssbo: {
+      assert(devinfo->gen >= 7);
+
+      nir_const_value *const_uniform_block =
+         nir_src_as_const_value(instr->src[0]);
+
+      fs_reg surf_index;
+      if (const_uniform_block) {
+         unsigned index = stage_prog_data->binding_table.ssbo_start +
+                          const_uniform_block->u[0];
+         surf_index = fs_reg(index);
+         brw_mark_surface_used(prog_data, index);
+      } else {
+         surf_index = vgrf(glsl_type::uint_type);
+         bld.ADD(surf_index, get_nir_src(instr->src[0]),
+                 fs_reg(stage_prog_data->binding_table.ssbo_start));
+
+         /* Assume this may touch any UBO. It would be nice to provide
+          * a tighter bound, but the array information is already lowered away.
+          */
+         brw_mark_surface_used(prog_data,
+                               stage_prog_data->binding_table.ssbo_start +
+                               nir->info.num_ssbos - 1);
+      }
+
+      /* Get the offset to read from */
+      fs_reg offset_reg;
+      if (has_indirect) {
+         offset_reg = get_nir_src(instr->src[1]);
+      } else {
+         offset_reg = fs_reg(instr->const_index[0]);
+      }
+
+      /* Read the vector */
+      fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
+                                             1 /* dims */,
+                                             instr->num_components,
+                                             BRW_PREDICATE_NONE);
+      read_result.type = dest.type;
+      for (int i = 0; i < instr->num_components; i++)
+         bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
+
+      break;
+   }
+
    case nir_intrinsic_load_input_indirect:
       has_indirect = true;
       /* fallthrough */
    case nir_intrinsic_load_input: {
       unsigned index = 0;
-      for (int i = 0; i < instr->const_index[1]; i++) {
-         for (unsigned j = 0; j < instr->num_components; j++) {
-            fs_reg src = offset(retype(nir_inputs, dest.type),
-                                instr->const_index[0] + index);
-            if (has_indirect)
-               src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[0]));
-            index++;
-
-            emit(MOV(dest, src));
-            dest = offset(dest, 1);
+      for (unsigned j = 0; j < instr->num_components; j++) {
+         fs_reg src;
+         if (stage == MESA_SHADER_VERTEX) {
+            src = offset(fs_reg(ATTR, instr->const_index[0], dest.type), bld, index);
+         } else {
+            src = offset(retype(nir_inputs, dest.type), bld,
+                         instr->const_index[0] + index);
          }
+         if (has_indirect)
+            src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[0]));
+         index++;
+
+         bld.MOV(dest, src);
+         dest = offset(dest, bld, 1);
       }
       break;
    }
 
+   case nir_intrinsic_load_per_vertex_input_indirect:
+      assert(!"Not allowed");
+      /* fallthrough */
+   case nir_intrinsic_load_per_vertex_input:
+      emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
+                         instr->num_components);
+      break;
+
    /* Handle ARB_gpu_shader5 interpolation intrinsics
     *
     * It's worth a quick word of explanation as to why we handle the full
@@ -1498,34 +1983,86 @@ fs_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr)
    case nir_intrinsic_interp_var_at_centroid:
    case nir_intrinsic_interp_var_at_sample:
    case nir_intrinsic_interp_var_at_offset: {
-      /* in SIMD16 mode, the pixel interpolator returns coords interleaved
-       * 8 channels at a time, same as the barycentric coords presented in
-       * the FS payload. this requires a bit of extra work to support.
-       */
-      no16("interpolate_at_* not yet supported in SIMD16 mode.");
+      assert(stage == MESA_SHADER_FRAGMENT);
 
-      fs_reg dst_xy = vgrf(2);
+      ((struct brw_wm_prog_data *) prog_data)->pulls_bary = true;
 
-      /* For most messages, we need one reg of ignored data; the hardware
-       * requires mlen==1 even when there is no payload. in the per-slot
-       * offset case, we'll replace this with the proper source data.
-       */
-      fs_reg src = vgrf(glsl_type::float_type);
-      int mlen = 1;     /* one reg unless overriden */
-      fs_inst *inst;
+      fs_reg dst_xy = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
+      const glsl_interp_qualifier interpolation =
+         (glsl_interp_qualifier) instr->variables[0]->var->data.interpolation;
 
       switch (instr->intrinsic) {
       case nir_intrinsic_interp_var_at_centroid:
-         inst = emit(FS_OPCODE_INTERPOLATE_AT_CENTROID, dst_xy, src, fs_reg(0u));
+         emit_pixel_interpolater_send(bld,
+                                      FS_OPCODE_INTERPOLATE_AT_CENTROID,
+                                      dst_xy,
+                                      fs_reg(), /* src */
+                                      fs_reg(0u),
+                                      interpolation);
          break;
 
       case nir_intrinsic_interp_var_at_sample: {
-         /* XXX: We should probably handle non-constant sample id's */
          nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
-         assert(const_sample);
-         unsigned msg_data = const_sample ? const_sample->i[0] << 4 : 0;
-         inst = emit(FS_OPCODE_INTERPOLATE_AT_SAMPLE, dst_xy, src,
-                     fs_reg(msg_data));
+
+         if (const_sample) {
+            unsigned msg_data = const_sample->i[0] << 4;
+
+            emit_pixel_interpolater_send(bld,
+                                         FS_OPCODE_INTERPOLATE_AT_SAMPLE,
+                                         dst_xy,
+                                         fs_reg(), /* src */
+                                         fs_reg(msg_data),
+                                         interpolation);
+         } else {
+            const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
+                                             BRW_REGISTER_TYPE_UD);
+
+            if (nir_src_is_dynamically_uniform(instr->src[0])) {
+               const fs_reg sample_id = bld.emit_uniformize(sample_src);
+               const fs_reg msg_data = vgrf(glsl_type::uint_type);
+               bld.exec_all().group(1, 0).SHL(msg_data, sample_id, fs_reg(4u));
+               emit_pixel_interpolater_send(bld,
+                                            FS_OPCODE_INTERPOLATE_AT_SAMPLE,
+                                            dst_xy,
+                                            fs_reg(), /* src */
+                                            msg_data,
+                                            interpolation);
+            } else {
+               /* Make a loop that sends a message to the pixel interpolater
+                * for the sample number in each live channel. If there are
+                * multiple channels with the same sample number then these
+                * will be handled simultaneously with a single interation of
+                * the loop.
+                */
+               bld.emit(BRW_OPCODE_DO);
+
+               /* Get the next live sample number into sample_id_reg */
+               const fs_reg sample_id = bld.emit_uniformize(sample_src);
+
+               /* Set the flag register so that we can perform the send
+                * message on all channels that have the same sample number
+                */
+               bld.CMP(bld.null_reg_ud(),
+                       sample_src, sample_id,
+                       BRW_CONDITIONAL_EQ);
+               const fs_reg msg_data = vgrf(glsl_type::uint_type);
+               bld.exec_all().group(1, 0).SHL(msg_data, sample_id, fs_reg(4u));
+               fs_inst *inst =
+                  emit_pixel_interpolater_send(bld,
+                                               FS_OPCODE_INTERPOLATE_AT_SAMPLE,
+                                               dst_xy,
+                                               fs_reg(), /* src */
+                                               msg_data,
+                                               interpolation);
+               set_predicate(BRW_PREDICATE_NORMAL, inst);
+
+               /* Continue the loop if there are any live channels left */
+               set_predicate_inv(BRW_PREDICATE_NORMAL,
+                                 true, /* inverse */
+                                 bld.emit(BRW_OPCODE_WHILE));
+            }
+         }
+
          break;
       }
 
@@ -1536,17 +2073,21 @@ fs_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr)
             unsigned off_x = MIN2((int)(const_offset->f[0] * 16), 7) & 0xf;
             unsigned off_y = MIN2((int)(const_offset->f[1] * 16), 7) & 0xf;
 
-            inst = emit(FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET, dst_xy, src,
-                        fs_reg(off_x | (off_y << 4)));
+            emit_pixel_interpolater_send(bld,
+                                         FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
+                                         dst_xy,
+                                         fs_reg(), /* src */
+                                         fs_reg(off_x | (off_y << 4)),
+                                         interpolation);
          } else {
-            src = vgrf(glsl_type::ivec2_type);
+            fs_reg src = vgrf(glsl_type::ivec2_type);
             fs_reg offset_src = retype(get_nir_src(instr->src[0]),
                                        BRW_REGISTER_TYPE_F);
             for (int i = 0; i < 2; i++) {
                fs_reg temp = vgrf(glsl_type::float_type);
-               emit(MUL(temp, offset(offset_src, i), fs_reg(16.0f)));
+               bld.MUL(temp, offset(offset_src, bld, i), fs_reg(16.0f));
                fs_reg itemp = vgrf(glsl_type::int_type);
-               emit(MOV(itemp, temp));  /* float to int */
+               bld.MOV(itemp, temp);  /* float to int */
 
                /* Clamp the upper end of the range to +7/16.
                 * ARB_gpu_shader5 requires that we support a maximum offset
@@ -1563,14 +2104,17 @@ fs_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr)
                 * implementation-dependent constant
                 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
                 */
-
-               emit(BRW_OPCODE_SEL, offset(src, i), itemp, fs_reg(7))
-                   ->conditional_mod = BRW_CONDITIONAL_L; /* min(src2, 7) */
+               set_condmod(BRW_CONDITIONAL_L,
+                           bld.SEL(offset(src, bld, i), itemp, fs_reg(7)));
             }
 
-            mlen = 2;
-            inst = emit(FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET, dst_xy, src,
-                        fs_reg(0u));
+            const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
+            emit_pixel_interpolater_send(bld,
+                                         opcode,
+                                         dst_xy,
+                                         src,
+                                         fs_reg(0u),
+                                         interpolation);
          }
          break;
       }
@@ -1579,17 +2123,75 @@ fs_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr)
          unreachable("Invalid intrinsic");
       }
 
-      inst->mlen = mlen;
-      inst->regs_written = 2; /* 2 floats per slot returned */
-      inst->pi_noperspective = instr->variables[0]->var->data.interpolation ==
-                               INTERP_QUALIFIER_NOPERSPECTIVE;
-
       for (unsigned j = 0; j < instr->num_components; j++) {
          fs_reg src = interp_reg(instr->variables[0]->var->data.location, j);
          src.type = dest.type;
 
-         emit(FS_OPCODE_LINTERP, dest, dst_xy, src);
-         dest = offset(dest, 1);
+         bld.emit(FS_OPCODE_LINTERP, dest, dst_xy, src);
+         dest = offset(dest, bld, 1);
+      }
+      break;
+   }
+
+   case nir_intrinsic_store_ssbo_indirect:
+      has_indirect = true;
+      /* fallthrough */
+   case nir_intrinsic_store_ssbo: {
+      assert(devinfo->gen >= 7);
+
+      /* Block index */
+      fs_reg surf_index;
+      nir_const_value *const_uniform_block =
+         nir_src_as_const_value(instr->src[1]);
+      if (const_uniform_block) {
+         unsigned index = stage_prog_data->binding_table.ssbo_start +
+                          const_uniform_block->u[0];
+         surf_index = fs_reg(index);
+         brw_mark_surface_used(prog_data, index);
+      } else {
+         surf_index = vgrf(glsl_type::uint_type);
+         bld.ADD(surf_index, get_nir_src(instr->src[1]),
+                  fs_reg(stage_prog_data->binding_table.ssbo_start));
+
+         brw_mark_surface_used(prog_data,
+                               stage_prog_data->binding_table.ssbo_start +
+                               nir->info.num_ssbos - 1);
+      }
+
+      /* Value */
+      fs_reg val_reg = get_nir_src(instr->src[0]);
+
+      /* Writemask */
+      unsigned writemask = instr->const_index[1];
+
+      /* Combine groups of consecutive enabled channels in one write
+       * message. We use ffs to find the first enabled channel and then ffs on
+       * the bit-inverse, down-shifted writemask to determine the length of
+       * the block of enabled bits.
+       */
+      while (writemask) {
+         unsigned first_component = ffs(writemask) - 1;
+         unsigned length = ffs(~(writemask >> first_component)) - 1;
+         fs_reg offset_reg;
+
+         if (!has_indirect) {
+            offset_reg = fs_reg(instr->const_index[0] + 4 * first_component);
+         } else {
+            offset_reg = vgrf(glsl_type::uint_type);
+            bld.ADD(offset_reg,
+                    retype(get_nir_src(instr->src[2]), BRW_REGISTER_TYPE_UD),
+                    fs_reg(4 * first_component));
+         }
+
+         emit_untyped_write(bld, surf_index, offset_reg,
+                            offset(val_reg, bld, first_component),
+                            1 /* dims */, length,
+                            BRW_PREDICATE_NONE);
+
+         /* Clear the bits in the writemask that we just wrote, then try
+          * again to see if more channels are left.
+          */
+         writemask &= (15 << (first_component + length));
       }
       break;
    }
@@ -1600,37 +2202,187 @@ fs_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr)
    case nir_intrinsic_store_output: {
       fs_reg src = get_nir_src(instr->src[0]);
       unsigned index = 0;
-      for (int i = 0; i < instr->const_index[1]; i++) {
-         for (unsigned j = 0; j < instr->num_components; j++) {
-            fs_reg new_dest = offset(retype(nir_outputs, src.type),
-                                     instr->const_index[0] + index);
-            if (has_indirect)
-               src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[1]));
-            index++;
-            emit(MOV(new_dest, src));
-            src = offset(src, 1);
-         }
+      for (unsigned j = 0; j < instr->num_components; j++) {
+         fs_reg new_dest = offset(retype(nir_outputs, src.type), bld,
+                                  instr->const_index[0] + index);
+         if (has_indirect)
+            src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[1]));
+         index++;
+         bld.MOV(new_dest, src);
+         src = offset(src, bld, 1);
       }
       break;
    }
 
+   case nir_intrinsic_barrier:
+      emit_barrier();
+      if (stage == MESA_SHADER_COMPUTE)
+         ((struct brw_cs_prog_data *) prog_data)->uses_barrier = true;
+      break;
+
+   case nir_intrinsic_load_local_invocation_id:
+   case nir_intrinsic_load_work_group_id: {
+      gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
+      fs_reg val = nir_system_values[sv];
+      assert(val.file != BAD_FILE);
+      dest.type = val.type;
+      for (unsigned i = 0; i < 3; i++)
+         bld.MOV(offset(dest, bld, i), offset(val, bld, i));
+      break;
+   }
+
+   case nir_intrinsic_ssbo_atomic_add:
+      nir_emit_ssbo_atomic(bld, BRW_AOP_ADD, instr);
+      break;
+   case nir_intrinsic_ssbo_atomic_imin:
+      nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
+      break;
+   case nir_intrinsic_ssbo_atomic_umin:
+      nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
+      break;
+   case nir_intrinsic_ssbo_atomic_imax:
+      nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
+      break;
+   case nir_intrinsic_ssbo_atomic_umax:
+      nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
+      break;
+   case nir_intrinsic_ssbo_atomic_and:
+      nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
+      break;
+   case nir_intrinsic_ssbo_atomic_or:
+      nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
+      break;
+   case nir_intrinsic_ssbo_atomic_xor:
+      nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
+      break;
+   case nir_intrinsic_ssbo_atomic_exchange:
+      nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
+      break;
+   case nir_intrinsic_ssbo_atomic_comp_swap:
+      nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
+      break;
+
+   case nir_intrinsic_get_buffer_size: {
+      nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
+      unsigned ssbo_index = const_uniform_block ? const_uniform_block->u[0] : 0;
+      int reg_width = dispatch_width / 8;
+
+      /* Set LOD = 0 */
+      fs_reg source = fs_reg(0);
+
+      int mlen = 1 * reg_width;
+      fs_reg src_payload = fs_reg(GRF, alloc.allocate(mlen),
+                                  BRW_REGISTER_TYPE_UD);
+      bld.LOAD_PAYLOAD(src_payload, &source, 1, 0);
+
+      const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
+      fs_inst *inst = bld.emit(FS_OPCODE_GET_BUFFER_SIZE, dest,
+                               src_payload, fs_reg(index));
+      inst->header_size = 0;
+      inst->mlen = mlen;
+      bld.emit(inst);
+
+      brw_mark_surface_used(prog_data, index);
+      break;
+   }
+
+   case nir_intrinsic_load_num_work_groups: {
+      assert(devinfo->gen >= 7);
+      assert(stage == MESA_SHADER_COMPUTE);
+
+      struct brw_cs_prog_data *cs_prog_data =
+         (struct brw_cs_prog_data *) prog_data;
+      const unsigned surface =
+         cs_prog_data->binding_table.work_groups_start;
+
+      cs_prog_data->uses_num_work_groups = true;
+
+      fs_reg surf_index = fs_reg(surface);
+      brw_mark_surface_used(prog_data, surface);
+
+      /* Read the 3 GLuint components of gl_NumWorkGroups */
+      for (unsigned i = 0; i < 3; i++) {
+         fs_reg read_result =
+            emit_untyped_read(bld, surf_index,
+                              fs_reg(i << 2),
+                              1 /* dims */, 1 /* size */,
+                              BRW_PREDICATE_NONE);
+         read_result.type = dest.type;
+         bld.MOV(dest, read_result);
+         dest = offset(dest, bld, 1);
+      }
+      break;
+   }
+
+   case nir_intrinsic_emit_vertex_with_counter:
+      emit_gs_vertex(instr->src[0], instr->const_index[0]);
+      break;
+
+   case nir_intrinsic_end_primitive_with_counter:
+      emit_gs_end_primitive(instr->src[0]);
+      break;
+
+   case nir_intrinsic_set_vertex_count:
+      bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
+      break;
+
    default:
       unreachable("unknown intrinsic");
    }
 }
 
 void
-fs_visitor::nir_emit_texture(nir_tex_instr *instr)
+fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
+                                 int op, nir_intrinsic_instr *instr)
+{
+   fs_reg dest;
+   if (nir_intrinsic_infos[instr->intrinsic].has_dest)
+      dest = get_nir_dest(instr->dest);
+
+   fs_reg surface;
+   nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
+   if (const_surface) {
+      unsigned surf_index = stage_prog_data->binding_table.ssbo_start +
+                            const_surface->u[0];
+      surface = fs_reg(surf_index);
+      brw_mark_surface_used(prog_data, surf_index);
+   } else {
+      surface = vgrf(glsl_type::uint_type);
+      bld.ADD(surface, get_nir_src(instr->src[0]),
+              fs_reg(stage_prog_data->binding_table.ssbo_start));
+
+      /* Assume this may touch any SSBO. This is the same we do for other
+       * UBO/SSBO accesses with non-constant surface.
+       */
+      brw_mark_surface_used(prog_data,
+                            stage_prog_data->binding_table.ssbo_start +
+                            nir->info.num_ssbos - 1);
+   }
+
+   fs_reg offset = get_nir_src(instr->src[1]);
+   fs_reg data1 = get_nir_src(instr->src[2]);
+   fs_reg data2;
+   if (op == BRW_AOP_CMPWR)
+      data2 = get_nir_src(instr->src[3]);
+
+   /* Emit the actual atomic operation operation */
+
+   fs_reg atomic_result =
+      surface_access::emit_untyped_atomic(bld, surface, offset,
+                                          data1, data2,
+                                          1 /* dims */, 1 /* rsize */,
+                                          op,
+                                          BRW_PREDICATE_NONE);
+   dest.type = atomic_result.type;
+   bld.MOV(dest, atomic_result);
+}
+
+void
+fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
 {
    unsigned sampler = instr->sampler_index;
    fs_reg sampler_reg(sampler);
 
-   /* FINISHME: We're failing to recompile our programs when the sampler is
-    * updated.  This only matters for the texture rectangle scale parameters
-    * (pre-gen6, or gen6+ with GL_CLAMP).
-    */
-   int texunit = prog->SamplerUnits[sampler];
-
    int gather_component = instr->component;
 
    bool is_rect = instr->sampler_dim == GLSL_SAMPLER_DIM_RECT;
@@ -1638,7 +2390,8 @@ fs_visitor::nir_emit_texture(nir_tex_instr *instr)
    bool is_cube_array = instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
                         instr->is_array;
 
-   int lod_components = 0, offset_components = 0;
+   int lod_components = 0;
+   int UNUSED offset_components = 0;
 
    fs_reg coordinate, shadow_comparitor, lod, lod2, sample_index, mcs, tex_offset;
 
@@ -1707,8 +2460,8 @@ fs_visitor::nir_emit_texture(nir_tex_instr *instr)
 
          /* Emit code to evaluate the actual indexing expression */
          sampler_reg = vgrf(glsl_type::uint_type);
-         emit(ADD(sampler_reg, src, fs_reg(sampler)))
-             ->force_writemask_all = true;
+         bld.ADD(sampler_reg, src, fs_reg(sampler));
+         sampler_reg = bld.emit_uniformize(sampler_reg);
          break;
       }
 
@@ -1734,20 +2487,8 @@ fs_visitor::nir_emit_texture(nir_tex_instr *instr)
       }
    }
 
-   enum glsl_base_type dest_base_type;
-   switch (instr->dest_type) {
-   case nir_type_float:
-      dest_base_type = GLSL_TYPE_FLOAT;
-      break;
-   case nir_type_int:
-      dest_base_type = GLSL_TYPE_INT;
-      break;
-   case nir_type_unsigned:
-      dest_base_type = GLSL_TYPE_UINT;
-      break;
-   default:
-      unreachable("bad type");
-   }
+   enum glsl_base_type dest_base_type =
+     brw_glsl_base_type_for_nir_type (instr->dest_type);
 
    const glsl_type *dest_type =
       glsl_type::get_instance(dest_base_type, nir_tex_instr_dest_size(instr),
@@ -1765,6 +2506,16 @@ fs_visitor::nir_emit_texture(nir_tex_instr *instr)
    case nir_texop_txf_ms: op = ir_txf_ms; break;
    case nir_texop_txl: op = ir_txl; break;
    case nir_texop_txs: op = ir_txs; break;
+   case nir_texop_texture_samples: {
+      fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
+      fs_inst *inst = bld.emit(SHADER_OPCODE_SAMPLEINFO, dst,
+                               bld.vgrf(BRW_REGISTER_TYPE_D, 1),
+                               sampler_reg);
+      inst->mlen = 1;
+      inst->header_size = 1;
+      inst->base_mrf = -1;
+      return;
+   }
    default:
       unreachable("unknown texture opcode");
    }
@@ -1772,23 +2523,25 @@ fs_visitor::nir_emit_texture(nir_tex_instr *instr)
    emit_texture(op, dest_type, coordinate, instr->coord_components,
                 shadow_comparitor, lod, lod2, lod_components, sample_index,
                 tex_offset, mcs, gather_component,
-                is_cube_array, is_rect, sampler, sampler_reg, texunit);
+                is_cube_array, is_rect, sampler, sampler_reg);
 
    fs_reg dest = get_nir_dest(instr->dest);
    dest.type = this->result.type;
    unsigned num_components = nir_tex_instr_dest_size(instr);
-   emit_percomp(MOV(dest, this->result), (1 << num_components) - 1);
+   emit_percomp(bld, fs_inst(BRW_OPCODE_MOV, bld.dispatch_width(),
+                             dest, this->result),
+                (1 << num_components) - 1);
 }
 
 void
-fs_visitor::nir_emit_jump(nir_jump_instr *instr)
+fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
 {
    switch (instr->type) {
    case nir_jump_break:
-      emit(BRW_OPCODE_BREAK);
+      bld.emit(BRW_OPCODE_BREAK);
       break;
    case nir_jump_continue:
-      emit(BRW_OPCODE_CONTINUE);
+      bld.emit(BRW_OPCODE_CONTINUE);
       break;
    case nir_jump_return:
    default: