i965/vec4: support basic spilling of 64-bit registers
[mesa.git] / src / mesa / drivers / dri / i965 / brw_vec4_reg_allocate.cpp
index 1bfd84d76e8690c7dd14893f651955d23969aa90..242e6664623b15a148151e2ee2247d3f3fc8de2f 100644 (file)
  * IN THE SOFTWARE.
  */
 
+#include "util/register_allocate.h"
 #include "brw_vec4.h"
-#include "../glsl/ir_print_visitor.h"
+#include "brw_cfg.h"
 
 using namespace brw;
 
 namespace brw {
 
 static void
-assign(int *reg_hw_locations, reg *reg)
+assign(unsigned int *reg_hw_locations, backend_reg *reg)
 {
-   if (reg->file == GRF) {
-      reg->reg = reg_hw_locations[reg->reg];
+   if (reg->file == VGRF) {
+      reg->nr = reg_hw_locations[reg->nr] + reg->offset / REG_SIZE;
+      reg->offset %= REG_SIZE;
    }
 }
 
-void
+bool
 vec4_visitor::reg_allocate_trivial()
 {
-   int last_grf = 0;
-   int hw_reg_mapping[this->virtual_grf_count];
-   bool virtual_grf_used[this->virtual_grf_count];
-   int i;
+   unsigned int hw_reg_mapping[this->alloc.count];
+   bool virtual_grf_used[this->alloc.count];
    int next;
 
    /* Calculate which virtual GRFs are actually in use after whatever
     * optimization passes have occurred.
     */
-   for (int i = 0; i < this->virtual_grf_count; i++) {
+   for (unsigned i = 0; i < this->alloc.count; i++) {
       virtual_grf_used[i] = false;
    }
 
-   foreach_iter(exec_list_iterator, iter, this->instructions) {
-      vec4_instruction *inst = (vec4_instruction *)iter.get();
-
-      if (inst->dst.file == GRF)
-        virtual_grf_used[inst->dst.reg] = true;
+   foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
+      if (inst->dst.file == VGRF)
+         virtual_grf_used[inst->dst.nr] = true;
 
-      for (int i = 0; i < 3; i++) {
-        if (inst->src[i].file == GRF)
-           virtual_grf_used[inst->src[i].reg] = true;
+      for (unsigned i = 0; i < 3; i++) {
+        if (inst->src[i].file == VGRF)
+            virtual_grf_used[inst->src[i].nr] = true;
       }
    }
 
-   /* Note that compressed instructions require alignment to 2 registers. */
    hw_reg_mapping[0] = this->first_non_payload_grf;
-   next = hw_reg_mapping[0] + this->virtual_grf_sizes[0];
-   for (i = 1; i < this->virtual_grf_count; i++) {
+   next = hw_reg_mapping[0] + this->alloc.sizes[0];
+   for (unsigned i = 1; i < this->alloc.count; i++) {
       if (virtual_grf_used[i]) {
         hw_reg_mapping[i] = next;
-        next += this->virtual_grf_sizes[i];
+        next += this->alloc.sizes[i];
       }
    }
    prog_data->total_grf = next;
 
-   foreach_iter(exec_list_iterator, iter, this->instructions) {
-      vec4_instruction *inst = (vec4_instruction *)iter.get();
-
+   foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
       assign(hw_reg_mapping, &inst->dst);
       assign(hw_reg_mapping, &inst->src[0]);
       assign(hw_reg_mapping, &inst->src[1]);
       assign(hw_reg_mapping, &inst->src[2]);
    }
 
-   if (last_grf >= BRW_MAX_GRF) {
+   if (prog_data->total_grf > max_grf) {
       fail("Ran out of regs on trivial allocator (%d/%d)\n",
-          last_grf, BRW_MAX_GRF);
+          prog_data->total_grf, max_grf);
+      return false;
+   }
+
+   return true;
+}
+
+extern "C" void
+brw_vec4_alloc_reg_set(struct brw_compiler *compiler)
+{
+   int base_reg_count =
+      compiler->devinfo->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
+
+   /* After running split_virtual_grfs(), almost all VGRFs will be of size 1.
+    * SEND-from-GRF sources cannot be split, so we also need classes for each
+    * potential message length.
+    */
+   const int class_count = MAX_VGRF_SIZE;
+   int class_sizes[MAX_VGRF_SIZE];
+
+   for (int i = 0; i < class_count; i++)
+      class_sizes[i] = i + 1;
+
+   /* Compute the total number of registers across all classes. */
+   int ra_reg_count = 0;
+   for (int i = 0; i < class_count; i++) {
+      ra_reg_count += base_reg_count - (class_sizes[i] - 1);
+   }
+
+   ralloc_free(compiler->vec4_reg_set.ra_reg_to_grf);
+   compiler->vec4_reg_set.ra_reg_to_grf = ralloc_array(compiler, uint8_t, ra_reg_count);
+   ralloc_free(compiler->vec4_reg_set.regs);
+   compiler->vec4_reg_set.regs = ra_alloc_reg_set(compiler, ra_reg_count, false);
+   if (compiler->devinfo->gen >= 6)
+      ra_set_allocate_round_robin(compiler->vec4_reg_set.regs);
+   ralloc_free(compiler->vec4_reg_set.classes);
+   compiler->vec4_reg_set.classes = ralloc_array(compiler, int, class_count);
+
+   /* Now, add the registers to their classes, and add the conflicts
+    * between them and the base GRF registers (and also each other).
+    */
+   int reg = 0;
+   unsigned *q_values[MAX_VGRF_SIZE];
+   for (int i = 0; i < class_count; i++) {
+      int class_reg_count = base_reg_count - (class_sizes[i] - 1);
+      compiler->vec4_reg_set.classes[i] = ra_alloc_reg_class(compiler->vec4_reg_set.regs);
+
+      q_values[i] = new unsigned[MAX_VGRF_SIZE];
+
+      for (int j = 0; j < class_reg_count; j++) {
+        ra_class_add_reg(compiler->vec4_reg_set.regs, compiler->vec4_reg_set.classes[i], reg);
+
+        compiler->vec4_reg_set.ra_reg_to_grf[reg] = j;
+
+        for (int base_reg = j;
+             base_reg < j + class_sizes[i];
+             base_reg++) {
+           ra_add_reg_conflict(compiler->vec4_reg_set.regs, base_reg, reg);
+        }
+
+        reg++;
+      }
+
+      for (int j = 0; j < class_count; j++) {
+         /* Calculate the q values manually because the algorithm used by
+          * ra_set_finalize() to do it has higher complexity affecting the
+          * start-up time of some applications.  q(i, j) is just the maximum
+          * number of registers from class i a register from class j can
+          * conflict with.
+          */
+         q_values[i][j] = class_sizes[i] + class_sizes[j] - 1;
+      }
    }
+   assert(reg == ra_reg_count);
+
+   for (int reg = 0; reg < base_reg_count; reg++)
+      ra_make_reg_conflicts_transitive(compiler->vec4_reg_set.regs, reg);
+
+   ra_set_finalize(compiler->vec4_reg_set.regs, q_values);
+
+   for (int i = 0; i < MAX_VGRF_SIZE; i++)
+      delete[] q_values[i];
 }
 
 void
+vec4_visitor::setup_payload_interference(struct ra_graph *g,
+                                         int first_payload_node,
+                                         int reg_node_count)
+{
+   int payload_node_count = this->first_non_payload_grf;
+
+   for (int i = 0; i < payload_node_count; i++) {
+      /* Mark each payload reg node as being allocated to its physical register.
+       *
+       * The alternative would be to have per-physical register classes, which
+       * would just be silly.
+       */
+      ra_set_node_reg(g, first_payload_node + i, i);
+
+      /* For now, just mark each payload node as interfering with every other
+       * node to be allocated.
+       */
+      for (int j = 0; j < reg_node_count; j++) {
+         ra_add_node_interference(g, first_payload_node + i, j);
+      }
+   }
+}
+
+bool
 vec4_visitor::reg_allocate()
 {
-   reg_allocate_trivial();
+   unsigned int hw_reg_mapping[alloc.count];
+   int payload_reg_count = this->first_non_payload_grf;
+
+   /* Using the trivial allocator can be useful in debugging undefined
+    * register access as a result of broken optimization passes.
+    */
+   if (0)
+      return reg_allocate_trivial();
+
+   calculate_live_intervals();
+
+   int node_count = alloc.count;
+   int first_payload_node = node_count;
+   node_count += payload_reg_count;
+   struct ra_graph *g =
+      ra_alloc_interference_graph(compiler->vec4_reg_set.regs, node_count);
+
+   for (unsigned i = 0; i < alloc.count; i++) {
+      int size = this->alloc.sizes[i];
+      assert(size >= 1 && size <= MAX_VGRF_SIZE);
+      ra_set_node_class(g, i, compiler->vec4_reg_set.classes[size - 1]);
+
+      for (unsigned j = 0; j < i; j++) {
+        if (virtual_grf_interferes(i, j)) {
+           ra_add_node_interference(g, i, j);
+        }
+      }
+   }
+
+   /* Certain instructions can't safely use the same register for their
+    * sources and destination.  Add interference.
+    */
+   foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
+      if (inst->dst.file == VGRF && inst->has_source_and_destination_hazard()) {
+         for (unsigned i = 0; i < 3; i++) {
+            if (inst->src[i].file == VGRF) {
+               ra_add_node_interference(g, inst->dst.nr, inst->src[i].nr);
+            }
+         }
+      }
+   }
+
+   setup_payload_interference(g, first_payload_node, node_count);
+
+   if (!ra_allocate(g)) {
+      /* Failed to allocate registers.  Spill a reg, and the caller will
+       * loop back into here to try again.
+       */
+      int reg = choose_spill_reg(g);
+      if (this->no_spills) {
+         fail("Failure to register allocate.  Reduce number of live "
+              "values to avoid this.");
+      } else if (reg == -1) {
+         fail("no register to spill\n");
+      } else {
+         spill_reg(reg);
+      }
+      ralloc_free(g);
+      return false;
+   }
+
+   /* Get the chosen virtual registers for each node, and map virtual
+    * regs in the register classes back down to real hardware reg
+    * numbers.
+    */
+   prog_data->total_grf = payload_reg_count;
+   for (unsigned i = 0; i < alloc.count; i++) {
+      int reg = ra_get_node_reg(g, i);
+
+      hw_reg_mapping[i] = compiler->vec4_reg_set.ra_reg_to_grf[reg];
+      prog_data->total_grf = MAX2(prog_data->total_grf,
+                                 hw_reg_mapping[i] + alloc.sizes[i]);
+   }
+
+   foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
+      assign(hw_reg_mapping, &inst->dst);
+      assign(hw_reg_mapping, &inst->src[0]);
+      assign(hw_reg_mapping, &inst->src[1]);
+      assign(hw_reg_mapping, &inst->src[2]);
+   }
+
+   ralloc_free(g);
+
+   return true;
+}
+
+/**
+ * When we decide to spill a register, instead of blindly spilling every use,
+ * save unspills when the spill register is used (read) in consecutive
+ * instructions. This can potentially save a bunch of unspills that would
+ * have very little impact in register allocation anyway.
+ *
+ * Notice that we need to account for this behavior when spilling a register
+ * and when evaluating spilling costs. This function is designed so it can
+ * be called from both places and avoid repeating the logic.
+ *
+ *  - When we call this function from spill_reg(), we pass in scratch_reg the
+ *    actual unspill/spill register that we want to reuse in the current
+ *    instruction.
+ *
+ *  - When we call this from evaluate_spill_costs(), we pass the register for
+ *    which we are evaluating spilling costs.
+ *
+ * In either case, we check if the previous instructions read scratch_reg until
+ * we find one that writes to it with a compatible mask or does not read/write
+ * scratch_reg at all.
+ */
+static bool
+can_use_scratch_for_source(const vec4_instruction *inst, unsigned i,
+                           unsigned scratch_reg)
+{
+   assert(inst->src[i].file == VGRF);
+   bool prev_inst_read_scratch_reg = false;
+
+   /* See if any previous source in the same instructions reads scratch_reg */
+   for (unsigned n = 0; n < i; n++) {
+      if (inst->src[n].file == VGRF && inst->src[n].nr == scratch_reg)
+         prev_inst_read_scratch_reg = true;
+   }
+
+   /* Now check if previous instructions read/write scratch_reg */
+   for (vec4_instruction *prev_inst = (vec4_instruction *) inst->prev;
+        !prev_inst->is_head_sentinel();
+        prev_inst = (vec4_instruction *) prev_inst->prev) {
+
+      /* If the previous instruction writes to scratch_reg then we can reuse
+       * it if the write is not conditional and the channels we write are
+       * compatible with our read mask
+       */
+      if (prev_inst->dst.file == VGRF && prev_inst->dst.nr == scratch_reg) {
+         return (!prev_inst->predicate || prev_inst->opcode == BRW_OPCODE_SEL) &&
+                (brw_mask_for_swizzle(inst->src[i].swizzle) &
+                 ~prev_inst->dst.writemask) == 0;
+      }
+
+      /* Skip scratch read/writes so that instructions generated by spilling
+       * other registers (that won't read/write scratch_reg) do not stop us from
+       * reusing scratch_reg for this instruction.
+       */
+      if (prev_inst->opcode == SHADER_OPCODE_GEN4_SCRATCH_WRITE ||
+          prev_inst->opcode == SHADER_OPCODE_GEN4_SCRATCH_READ)
+         continue;
+
+      /* If the previous instruction does not write to scratch_reg, then check
+       * if it reads it
+       */
+      int n;
+      for (n = 0; n < 3; n++) {
+         if (prev_inst->src[n].file == VGRF &&
+             prev_inst->src[n].nr == scratch_reg) {
+            prev_inst_read_scratch_reg = true;
+            break;
+         }
+      }
+      if (n == 3) {
+         /* The previous instruction does not read scratch_reg. At this point,
+          * if no previous instruction has read scratch_reg it means that we
+          * will need to unspill it here and we can't reuse it (so we return
+          * false). Otherwise, if we found at least one consecutive instruction
+          * that read scratch_reg, then we know that we got here from
+          * evaluate_spill_costs (since for the spill_reg path any block of
+          * consecutive instructions using scratch_reg must start with a write
+          * to that register, so we would've exited the loop in the check for
+          * the write that we have at the start of this loop), and in that case
+          * it means that we found the point at which the scratch_reg would be
+          * unspilled. Since we always unspill a full vec4, it means that we
+          * have all the channels available and we can just return true to
+          * signal that we can reuse the register in the current instruction
+          * too.
+          */
+         return prev_inst_read_scratch_reg;
+      }
+   }
+
+   return prev_inst_read_scratch_reg;
+}
+
+void
+vec4_visitor::evaluate_spill_costs(float *spill_costs, bool *no_spill)
+{
+   float loop_scale = 1.0;
+
+   for (unsigned i = 0; i < this->alloc.count; i++) {
+      spill_costs[i] = 0.0;
+      no_spill[i] = alloc.sizes[i] != 1 && alloc.sizes[i] != 2;
+   }
+
+   /* Calculate costs for spilling nodes.  Call it a cost of 1 per
+    * spill/unspill we'll have to do, and guess that the insides of
+    * loops run 10 times.
+    */
+   foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
+      for (unsigned int i = 0; i < 3; i++) {
+         if (inst->src[i].file == VGRF && !no_spill[inst->src[i].nr]) {
+            /* We will only unspill src[i] it it wasn't unspilled for the
+             * previous instruction, in which case we'll just reuse the scratch
+             * reg for this instruction.
+             */
+            if (!can_use_scratch_for_source(inst, i, inst->src[i].nr)) {
+               spill_costs[inst->src[i].nr] += loop_scale;
+               if (inst->src[i].reladdr ||
+                   inst->src[i].offset >= REG_SIZE)
+                  no_spill[inst->src[i].nr] = true;
+
+               /* We don't support unspills of partial DF reads.
+                *
+                * Our 64-bit unspills are implemented with two 32-bit scratch
+                * messages, each one reading that for both SIMD4x2 threads that
+                * we need to shuffle into correct 64-bit data. Ensure that we
+                * are reading data for both threads.
+                */
+               if (type_sz(inst->src[i].type) == 8 && inst->exec_size != 8)
+                  no_spill[inst->src[i].nr] = true;
+            }
+         }
+      }
+
+      if (inst->dst.file == VGRF && !no_spill[inst->dst.nr]) {
+         spill_costs[inst->dst.nr] += loop_scale;
+         if (inst->dst.reladdr || inst->dst.offset >= REG_SIZE)
+            no_spill[inst->dst.nr] = true;
+
+         /* We don't support spills of partial DF writes.
+          *
+          * Our 64-bit spills are implemented with two 32-bit scratch messages,
+          * each one writing that for both SIMD4x2 threads. Ensure that we
+          * are writing data for both threads.
+          */
+         if (type_sz(inst->dst.type) == 8 && inst->exec_size != 8)
+            no_spill[inst->dst.nr] = true;
+      }
+
+      switch (inst->opcode) {
+
+      case BRW_OPCODE_DO:
+         loop_scale *= 10;
+         break;
+
+      case BRW_OPCODE_WHILE:
+         loop_scale /= 10;
+         break;
+
+      case SHADER_OPCODE_GEN4_SCRATCH_READ:
+      case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
+         for (int i = 0; i < 3; i++) {
+            if (inst->src[i].file == VGRF)
+               no_spill[inst->src[i].nr] = true;
+         }
+         if (inst->dst.file == VGRF)
+            no_spill[inst->dst.nr] = true;
+         break;
+
+      default:
+         break;
+      }
+   }
+}
+
+int
+vec4_visitor::choose_spill_reg(struct ra_graph *g)
+{
+   float spill_costs[this->alloc.count];
+   bool no_spill[this->alloc.count];
+
+   evaluate_spill_costs(spill_costs, no_spill);
+
+   for (unsigned i = 0; i < this->alloc.count; i++) {
+      if (!no_spill[i])
+         ra_set_node_spill_cost(g, i, spill_costs[i]);
+   }
+
+   return ra_get_best_spill_node(g);
+}
+
+void
+vec4_visitor::spill_reg(int spill_reg_nr)
+{
+   assert(alloc.sizes[spill_reg_nr] == 1 || alloc.sizes[spill_reg_nr] == 2);
+   unsigned int spill_offset = last_scratch;
+   last_scratch += alloc.sizes[spill_reg_nr];
+
+   /* Generate spill/unspill instructions for the objects being spilled. */
+   int scratch_reg = -1;
+   foreach_block_and_inst(block, vec4_instruction, inst, cfg) {
+      for (unsigned int i = 0; i < 3; i++) {
+         if (inst->src[i].file == VGRF && inst->src[i].nr == spill_reg_nr) {
+            if (scratch_reg == -1 ||
+                !can_use_scratch_for_source(inst, i, scratch_reg)) {
+               /* We need to unspill anyway so make sure we read the full vec4
+                * in any case. This way, the cached register can be reused
+                * for consecutive instructions that read different channels of
+                * the same vec4.
+                */
+               scratch_reg = alloc.allocate(alloc.sizes[spill_reg_nr]);
+               src_reg temp = inst->src[i];
+               temp.nr = scratch_reg;
+               temp.offset = 0;
+               temp.swizzle = BRW_SWIZZLE_XYZW;
+               emit_scratch_read(block, inst,
+                                 dst_reg(temp), inst->src[i], spill_offset);
+               temp.offset = inst->src[i].offset;
+            }
+            assert(scratch_reg != -1);
+            inst->src[i].nr = scratch_reg;
+         }
+      }
+
+      if (inst->dst.file == VGRF && inst->dst.nr == spill_reg_nr) {
+         emit_scratch_write(block, inst, spill_offset);
+         scratch_reg = inst->dst.nr;
+      }
+   }
+
+   invalidate_live_intervals();
 }
 
 } /* namespace brw */