swrast: Rename blend_func->swrast_blend_func
[mesa.git] / src / mesa / swrast / s_aatritemp.h
index 4162ed685324fc290bcda070d0e2ae09b8da446b..230dab81633da908709247f077b89b663a3a2b2e 100644 (file)
@@ -1,6 +1,5 @@
 /*
  * Mesa 3-D graphics library
- * Version:  6.5.3
  *
  * Copyright (C) 1999-2007  Brian Paul   All Rights Reserved.
  *
  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
- * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
- * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
- * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
+ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
+ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+ * OTHER DEALINGS IN THE SOFTWARE.
  */
 
 
  * The following macros may be defined to indicate what auxillary information
  * must be copmuted across the triangle:
  *    DO_Z         - if defined, compute Z values
- *    DO_RGBA      - if defined, compute RGBA values
- *    DO_INDEX     - if defined, compute color index values
- *    DO_SPEC      - if defined, compute specular RGB values
  *    DO_ATTRIBS   - if defined, compute texcoords, varying, etc.
  */
 
-/*void triangle( GLcontext *ctx, GLuint v0, GLuint v1, GLuint v2, GLuint pv )*/
+/*void triangle( struct gl_context *ctx, GLuint v0, GLuint v1, GLuint v2, GLuint pv )*/
 {
    const SWcontext *swrast = SWRAST_CONTEXT(ctx);
-   const GLfloat *p0 = v0->win;
-   const GLfloat *p1 = v1->win;
-   const GLfloat *p2 = v2->win;
+   const GLfloat *p0 = v0->attrib[VARYING_SLOT_POS];
+   const GLfloat *p1 = v1->attrib[VARYING_SLOT_POS];
+   const GLfloat *p2 = v2->attrib[VARYING_SLOT_POS];
    const SWvertex *vMin, *vMid, *vMax;
    GLint iyMin, iyMax;
    GLfloat yMin, yMax;
 #ifdef DO_Z
    GLfloat zPlane[4];
 #endif
-#ifdef DO_FOG
-   GLfloat fogPlane[4];
-#else
-   GLfloat *fog = NULL;
-#endif
-#ifdef DO_RGBA
    GLfloat rPlane[4], gPlane[4], bPlane[4], aPlane[4];
-#endif
-#ifdef DO_INDEX
-   GLfloat iPlane[4];
-#endif
-#ifdef DO_SPEC
-   GLfloat srPlane[4], sgPlane[4], sbPlane[4];
-#endif
 #if defined(DO_ATTRIBS)
-   GLfloat sPlane[FRAG_ATTRIB_MAX][4];  /* texture S */
-   GLfloat tPlane[FRAG_ATTRIB_MAX][4];  /* texture T */
-   GLfloat uPlane[FRAG_ATTRIB_MAX][4];  /* texture R */
-   GLfloat vPlane[FRAG_ATTRIB_MAX][4];  /* texture Q */
-   GLfloat texWidth[FRAG_ATTRIB_MAX];
-   GLfloat texHeight[FRAG_ATTRIB_MAX];
+   GLfloat attrPlane[VARYING_SLOT_MAX][4][4];
+   GLfloat wPlane[4];  /* win[3] */
 #endif
-   GLfloat bf = SWRAST_CONTEXT(ctx)->_BackfaceSign;
+   GLfloat bf = SWRAST_CONTEXT(ctx)->_BackfaceCullSign;
    
    (void) swrast;
 
-   INIT_SPAN(span, GL_POLYGON, 0, 0, SPAN_COVERAGE);
+   INIT_SPAN(span, GL_POLYGON);
+   span.arrayMask = SPAN_COVERAGE;
 
    /* determine bottom to top order of vertices */
    {
-      GLfloat y0 = v0->win[1];
-      GLfloat y1 = v1->win[1];
-      GLfloat y2 = v2->win[1];
+      GLfloat y0 = v0->attrib[VARYING_SLOT_POS][1];
+      GLfloat y1 = v1->attrib[VARYING_SLOT_POS][1];
+      GLfloat y2 = v2->attrib[VARYING_SLOT_POS][1];
       if (y0 <= y1) {
         if (y1 <= y2) {
            vMin = v0;   vMid = v1;   vMax = v2;   /* y0<=y1<=y2 */
       }
    }
 
-   majDx = vMax->win[0] - vMin->win[0];
-   majDy = vMax->win[1] - vMin->win[1];
+   majDx = vMax->attrib[VARYING_SLOT_POS][0] - vMin->attrib[VARYING_SLOT_POS][0];
+   majDy = vMax->attrib[VARYING_SLOT_POS][1] - vMin->attrib[VARYING_SLOT_POS][1];
 
+   /* front/back-face determination and cullling */
    {
-      const GLfloat botDx = vMid->win[0] - vMin->win[0];
-      const GLfloat botDy = vMid->win[1] - vMin->win[1];
+      const GLfloat botDx = vMid->attrib[VARYING_SLOT_POS][0] - vMin->attrib[VARYING_SLOT_POS][0];
+      const GLfloat botDy = vMid->attrib[VARYING_SLOT_POS][1] - vMin->attrib[VARYING_SLOT_POS][1];
       const GLfloat area = majDx * botDy - botDx * majDy;
       /* Do backface culling */
       if (area * bf < 0 || area == 0 || IS_INF_OR_NAN(area))
         return;
       ltor = (GLboolean) (area < 0.0F);
+
+      span.facing = area * swrast->_BackfaceSign > 0.0F;
    }
 
    /* Plane equation setup:
    compute_plane(p0, p1, p2, p0[2], p1[2], p2[2], zPlane);
    span.arrayMask |= SPAN_Z;
 #endif
-#ifdef DO_FOG
-   compute_plane(p0, p1, p2,
-                 v0->attrib[FRAG_ATTRIB_FOGC][0],
-                 v1->attrib[FRAG_ATTRIB_FOGC][0],
-                 v2->attrib[FRAG_ATTRIB_FOGC][0],
-                 fogPlane);
-   span.arrayMask |= SPAN_FOG;
-#endif
-#ifdef DO_RGBA
    if (ctx->Light.ShadeModel == GL_SMOOTH) {
       compute_plane(p0, p1, p2, v0->color[RCOMP], v1->color[RCOMP], v2->color[RCOMP], rPlane);
       compute_plane(p0, p1, p2, v0->color[GCOMP], v1->color[GCOMP], v2->color[GCOMP], gPlane);
       constant_plane(v2->color[ACOMP], aPlane);
    }
    span.arrayMask |= SPAN_RGBA;
-#endif
-#ifdef DO_INDEX
-   if (ctx->Light.ShadeModel == GL_SMOOTH) {
-      compute_plane(p0, p1, p2, (GLfloat) v0->index,
-                    v1->index, v2->index, iPlane);
-   }
-   else {
-      constant_plane(v2->index, iPlane);
-   }
-   span.arrayMask |= SPAN_INDEX;
-#endif
-#ifdef DO_SPEC
-   if (ctx->Light.ShadeModel == GL_SMOOTH) {
-      compute_plane(p0, p1, p2, v0->specular[RCOMP], v1->specular[RCOMP], v2->specular[RCOMP], srPlane);
-      compute_plane(p0, p1, p2, v0->specular[GCOMP], v1->specular[GCOMP], v2->specular[GCOMP], sgPlane);
-      compute_plane(p0, p1, p2, v0->specular[BCOMP], v1->specular[BCOMP], v2->specular[BCOMP], sbPlane);
-   }
-   else {
-      constant_plane(v2->specular[RCOMP], srPlane);
-      constant_plane(v2->specular[GCOMP], sgPlane);
-      constant_plane(v2->specular[BCOMP], sbPlane);
-   }
-   span.arrayMask |= SPAN_SPEC;
-#endif
 #if defined(DO_ATTRIBS)
    {
-      const GLfloat invW0 = v0->win[3];
-      const GLfloat invW1 = v1->win[3];
-      const GLfloat invW2 = v2->win[3];
+      const GLfloat invW0 = v0->attrib[VARYING_SLOT_POS][3];
+      const GLfloat invW1 = v1->attrib[VARYING_SLOT_POS][3];
+      const GLfloat invW2 = v2->attrib[VARYING_SLOT_POS][3];
+      compute_plane(p0, p1, p2, invW0, invW1, invW2, wPlane);
+      span.attrStepX[VARYING_SLOT_POS][3] = plane_dx(wPlane);
+      span.attrStepY[VARYING_SLOT_POS][3] = plane_dy(wPlane);
       ATTRIB_LOOP_BEGIN
-         const GLfloat s0 = v0->attrib[attr][0] * invW0;
-         const GLfloat s1 = v1->attrib[attr][0] * invW1;
-         const GLfloat s2 = v2->attrib[attr][0] * invW2;
-         const GLfloat t0 = v0->attrib[attr][1] * invW0;
-         const GLfloat t1 = v1->attrib[attr][1] * invW1;
-         const GLfloat t2 = v2->attrib[attr][1] * invW2;
-         const GLfloat r0 = v0->attrib[attr][2] * invW0;
-         const GLfloat r1 = v1->attrib[attr][2] * invW1;
-         const GLfloat r2 = v2->attrib[attr][2] * invW2;
-         const GLfloat q0 = v0->attrib[attr][3] * invW0;
-         const GLfloat q1 = v1->attrib[attr][3] * invW1;
-         const GLfloat q2 = v2->attrib[attr][3] * invW2;
-         compute_plane(p0, p1, p2, s0, s1, s2, sPlane[attr]);
-         compute_plane(p0, p1, p2, t0, t1, t2, tPlane[attr]);
-         compute_plane(p0, p1, p2, r0, r1, r2, uPlane[attr]);
-         compute_plane(p0, p1, p2, q0, q1, q2, vPlane[attr]);
-         if (attr < FRAG_ATTRIB_VAR0 && attr >= FRAG_ATTRIB_TEX0) {
-            const GLuint u = attr - FRAG_ATTRIB_TEX0;
-            const struct gl_texture_object *obj = ctx->Texture.Unit[u]._Current;
-            const struct gl_texture_image *texImage = obj->Image[0][obj->BaseLevel];
-            texWidth[attr]  = (GLfloat) texImage->Width;
-            texHeight[attr] = (GLfloat) texImage->Height;
+         GLuint c;
+         if (swrast->_InterpMode[attr] == GL_FLAT) {
+            for (c = 0; c < 4; c++) {
+               constant_plane(v2->attrib[attr][c] * invW2, attrPlane[attr][c]);
+            }
          }
          else {
-            texWidth[attr] = texHeight[attr] = 1.0;
+            for (c = 0; c < 4; c++) {
+               const GLfloat a0 = v0->attrib[attr][c] * invW0;
+               const GLfloat a1 = v1->attrib[attr][c] * invW1;
+               const GLfloat a2 = v2->attrib[attr][c] * invW2;
+               compute_plane(p0, p1, p2, a0, a1, a2, attrPlane[attr][c]);
+            }
+         }
+         for (c = 0; c < 4; c++) {
+            span.attrStepX[attr][c] = plane_dx(attrPlane[attr][c]);
+            span.attrStepY[attr][c] = plane_dy(attrPlane[attr][c]);
          }
       ATTRIB_LOOP_END
    }
-   span.arrayMask |= (SPAN_TEXTURE | SPAN_LAMBDA | SPAN_VARYING);
 #endif
 
    /* Begin bottom-to-top scan over the triangle.
     * edges, stopping when we find that coverage = 0.  If the long edge
     * is on the left we scan left-to-right.  Else, we scan right-to-left.
     */
-   yMin = vMin->win[1];
-   yMax = vMax->win[1];
+   yMin = vMin->attrib[VARYING_SLOT_POS][1];
+   yMax = vMax->attrib[VARYING_SLOT_POS][1];
    iyMin = (GLint) yMin;
    iyMax = (GLint) yMax + 1;
 
    if (ltor) {
       /* scan left to right */
-      const GLfloat *pMin = vMin->win;
-      const GLfloat *pMid = vMid->win;
-      const GLfloat *pMax = vMax->win;
+      const GLfloat *pMin = vMin->attrib[VARYING_SLOT_POS];
+      const GLfloat *pMid = vMid->attrib[VARYING_SLOT_POS];
+      const GLfloat *pMax = vMax->attrib[VARYING_SLOT_POS];
       const GLfloat dxdy = majDx / majDy;
       const GLfloat xAdj = dxdy < 0.0F ? -dxdy : 0.0F;
-      GLfloat x = pMin[0] - (yMin - iyMin) * dxdy;
       GLint iy;
-      for (iy = iyMin; iy < iyMax; iy++, x += dxdy) {
+#ifdef _OPENMP
+#pragma omp parallel for schedule(dynamic) private(iy) firstprivate(span)
+#endif
+      for (iy = iyMin; iy < iyMax; iy++) {
+         GLfloat x = pMin[0] - (yMin - iy) * dxdy;
          GLint ix, startX = (GLint) (x - xAdj);
          GLuint count;
          GLfloat coverage = 0.0F;
 
+#ifdef _OPENMP
+         /* each thread needs to use a different (global) SpanArrays variable */
+         span.array = SWRAST_CONTEXT(ctx)->SpanArrays + omp_get_thread_num();
+#endif
          /* skip over fragments with zero coverage */
-         while (startX < MAX_WIDTH) {
+         while (startX < SWRAST_MAX_WIDTH) {
             coverage = compute_coveragef(pMin, pMid, pMax, startX, iy);
             if (coverage > 0.0F)
                break;
 
          /* enter interior of triangle */
          ix = startX;
+
+#if defined(DO_ATTRIBS)
+         /* compute attributes at left-most fragment */
+         span.attrStart[VARYING_SLOT_POS][3] = solve_plane(ix + 0.5F, iy + 0.5F, wPlane);
+         ATTRIB_LOOP_BEGIN
+            GLuint c;
+            for (c = 0; c < 4; c++) {
+               span.attrStart[attr][c] = solve_plane(ix + 0.5F, iy + 0.5F, attrPlane[attr][c]);
+            }
+         ATTRIB_LOOP_END
+#endif
+
          count = 0;
          while (coverage > 0.0F) {
             /* (cx,cy) = center of fragment */
             const GLfloat cx = ix + 0.5F, cy = iy + 0.5F;
             SWspanarrays *array = span.array;
-#ifdef DO_INDEX
-            array->coverage[count] = (GLfloat) compute_coveragei(pMin, pMid, pMax, ix, iy);
-#else
             array->coverage[count] = coverage;
-#endif
 #ifdef DO_Z
             array->z[count] = (GLuint) solve_plane(cx, cy, zPlane);
 #endif
-#ifdef DO_FOG
-           array->attribs[FRAG_ATTRIB_FOGC][count][0] = solve_plane(cx, cy, fogPlane);
-#endif
-#ifdef DO_RGBA
             array->rgba[count][RCOMP] = solve_plane_chan(cx, cy, rPlane);
             array->rgba[count][GCOMP] = solve_plane_chan(cx, cy, gPlane);
             array->rgba[count][BCOMP] = solve_plane_chan(cx, cy, bPlane);
             array->rgba[count][ACOMP] = solve_plane_chan(cx, cy, aPlane);
-#endif
-#ifdef DO_INDEX
-            array->index[count] = (GLint) solve_plane(cx, cy, iPlane);
-#endif
-#ifdef DO_SPEC
-            array->spec[count][RCOMP] = solve_plane_chan(cx, cy, srPlane);
-            array->spec[count][GCOMP] = solve_plane_chan(cx, cy, sgPlane);
-            array->spec[count][BCOMP] = solve_plane_chan(cx, cy, sbPlane);
-#endif
-#if defined(DO_ATTRIBS)
-            ATTRIB_LOOP_BEGIN
-               GLfloat invQ = solve_plane_recip(cx, cy, vPlane[attr]);
-               array->attribs[attr][count][0] = solve_plane(cx, cy, sPlane[attr]) * invQ;
-               array->attribs[attr][count][1] = solve_plane(cx, cy, tPlane[attr]) * invQ;
-               array->attribs[attr][count][2] = solve_plane(cx, cy, uPlane[attr]) * invQ;
-               if (attr < FRAG_ATTRIB_VAR0 && attr >= FRAG_ATTRIB_TEX0) {
-                  const GLuint unit = attr - FRAG_ATTRIB_TEX0;
-                  array->lambda[unit][count] = compute_lambda(sPlane[attr], tPlane[attr],
-                                                              vPlane[attr], cx, cy, invQ,
-                                                              texWidth[attr], texHeight[attr]);
-               }
-            ATTRIB_LOOP_END
-#endif
             ix++;
             count++;
             coverage = compute_coveragef(pMin, pMid, pMax, ix, iy);
          }
          
-         if (ix <= startX)
-            continue;
-         
-         span.x = startX;
-         span.y = iy;
-         span.end = (GLuint) ix - (GLuint) startX;
-         ASSERT(span.interpMask == 0);
-#if defined(DO_RGBA)
-         _swrast_write_rgba_span(ctx, &span);
-#else
-         _swrast_write_index_span(ctx, &span);
-#endif
+         if (ix > startX) {
+            span.x = startX;
+            span.y = iy;
+            span.end = (GLuint) ix - (GLuint) startX;
+            _swrast_write_rgba_span(ctx, &span);
+         }
       }
    }
    else {
       /* scan right to left */
-      const GLfloat *pMin = vMin->win;
-      const GLfloat *pMid = vMid->win;
-      const GLfloat *pMax = vMax->win;
+      const GLfloat *pMin = vMin->attrib[VARYING_SLOT_POS];
+      const GLfloat *pMid = vMid->attrib[VARYING_SLOT_POS];
+      const GLfloat *pMax = vMax->attrib[VARYING_SLOT_POS];
       const GLfloat dxdy = majDx / majDy;
       const GLfloat xAdj = dxdy > 0 ? dxdy : 0.0F;
-      GLfloat x = pMin[0] - (yMin - iyMin) * dxdy;
       GLint iy;
-      for (iy = iyMin; iy < iyMax; iy++, x += dxdy) {
+#ifdef _OPENMP
+#pragma omp parallel for schedule(dynamic) private(iy) firstprivate(span)
+#endif
+      for (iy = iyMin; iy < iyMax; iy++) {
+         GLfloat x = pMin[0] - (yMin - iy) * dxdy;
          GLint ix, left, startX = (GLint) (x + xAdj);
          GLuint count, n;
          GLfloat coverage = 0.0F;
          
+#ifdef _OPENMP
+         /* each thread needs to use a different (global) SpanArrays variable */
+         span.array = SWRAST_CONTEXT(ctx)->SpanArrays + omp_get_thread_num();
+#endif
          /* make sure we're not past the window edge */
          if (startX >= ctx->DrawBuffer->_Xmax) {
             startX = ctx->DrawBuffer->_Xmax - 1;
          }
 
          /* skip fragments with zero coverage */
-         while (startX >= 0) {
+         while (startX > 0) {
             coverage = compute_coveragef(pMin, pMax, pMid, startX, iy);
             if (coverage > 0.0F)
                break;
             /* (cx,cy) = center of fragment */
             const GLfloat cx = ix + 0.5F, cy = iy + 0.5F;
             SWspanarrays *array = span.array;
-#ifdef DO_INDEX
-            array->coverage[ix] = (GLfloat) compute_coveragei(pMin, pMax, pMid, ix, iy);
-#else
+            assert(ix >= 0);
             array->coverage[ix] = coverage;
-#endif
 #ifdef DO_Z
             array->z[ix] = (GLuint) solve_plane(cx, cy, zPlane);
 #endif
-#ifdef DO_FOG
-            array->attribs[FRAG_ATTRIB_FOGC][ix][0] = solve_plane(cx, cy, fogPlane);
-#endif
-#ifdef DO_RGBA
             array->rgba[ix][RCOMP] = solve_plane_chan(cx, cy, rPlane);
             array->rgba[ix][GCOMP] = solve_plane_chan(cx, cy, gPlane);
             array->rgba[ix][BCOMP] = solve_plane_chan(cx, cy, bPlane);
             array->rgba[ix][ACOMP] = solve_plane_chan(cx, cy, aPlane);
-#endif
-#ifdef DO_INDEX
-            array->index[ix] = (GLint) solve_plane(cx, cy, iPlane);
-#endif
-#ifdef DO_SPEC
-            array->spec[ix][RCOMP] = solve_plane_chan(cx, cy, srPlane);
-            array->spec[ix][GCOMP] = solve_plane_chan(cx, cy, sgPlane);
-            array->spec[ix][BCOMP] = solve_plane_chan(cx, cy, sbPlane);
-#endif
-#if defined(DO_ATTRIBS)
-            ATTRIB_LOOP_BEGIN
-               GLfloat invQ = solve_plane_recip(cx, cy, vPlane[attr]);
-               array->attribs[attr][ix][0] = solve_plane(cx, cy, sPlane[attr]) * invQ;
-               array->attribs[attr][ix][1] = solve_plane(cx, cy, tPlane[attr]) * invQ;
-               array->attribs[attr][ix][2] = solve_plane(cx, cy, uPlane[attr]) * invQ;
-               if (attr < FRAG_ATTRIB_VAR0 && attr >= FRAG_ATTRIB_TEX0) {
-                  const GLuint unit = attr - FRAG_ATTRIB_TEX0;
-                  array->lambda[unit][ix] = compute_lambda(sPlane[attr],
-                                                           tPlane[attr],
-                                                           vPlane[attr],
-                                                           cx, cy, invQ,
-                                                           texWidth[attr],
-                                                           texHeight[attr]);
-               }
-            ATTRIB_LOOP_END
-#endif
             ix--;
             count++;
             coverage = compute_coveragef(pMin, pMax, pMid, ix, iy);
          }
          
-         if (startX <= ix)
-            continue;
+#if defined(DO_ATTRIBS)
+         /* compute attributes at left-most fragment */
+         span.attrStart[VARYING_SLOT_POS][3] = solve_plane(ix + 1.5F, iy + 0.5F, wPlane);
+         ATTRIB_LOOP_BEGIN
+            GLuint c;
+            for (c = 0; c < 4; c++) {
+               span.attrStart[attr][c] = solve_plane(ix + 1.5F, iy + 0.5F, attrPlane[attr][c]);
+            }
+         ATTRIB_LOOP_END
+#endif
 
-         n = (GLuint) startX - (GLuint) ix;
+         if (startX > ix) {
+            n = (GLuint) startX - (GLuint) ix;
 
-         left = ix + 1;
+            left = ix + 1;
 
-         /* shift all values to the left */
-         /* XXX this is temporary */
-         {
-            SWspanarrays *array = span.array;
-            GLint j;
-            for (j = 0; j < (GLint) n; j++) {
-#ifdef DO_RGBA
-               COPY_CHAN4(array->rgba[j], array->rgba[j + left]);
-#endif
-#ifdef DO_SPEC
-               COPY_CHAN4(array->spec[j], array->spec[j + left]);
-#endif
-#ifdef DO_INDEX
-               array->index[j] = array->index[j + left];
-#endif
-#ifdef DO_Z
-               array->z[j] = array->z[j + left];
-#endif
-#ifdef DO_FOG
-               array->attribs[FRAG_ATTRIB_FOGC][j][0]
-                  = array->attribs[FRAG_ATTRIB_FOGC][j + left][0];
-#endif
-#if defined(DO_ATTRIBS)
-               array->lambda[0][j] = array->lambda[0][j + left];
-#endif
-               array->coverage[j] = array->coverage[j + left];
-            }
-         }
-#ifdef DO_ATTRIBS
-         /* shift texcoords, varying */
-         {
-            SWspanarrays *array = span.array;
-            ATTRIB_LOOP_BEGIN
+            /* shift all values to the left */
+            /* XXX this is temporary */
+            {
+               SWspanarrays *array = span.array;
                GLint j;
                for (j = 0; j < (GLint) n; j++) {
-                  array->attribs[attr][j][0] = array->attribs[attr][j + left][0];
-                  array->attribs[attr][j][1] = array->attribs[attr][j + left][1];
-                  array->attribs[attr][j][2] = array->attribs[attr][j + left][2];
-                  /*array->lambda[unit][j] = array->lambda[unit][j + left];*/
-               }
-            ATTRIB_LOOP_END
-         }
+                  array->coverage[j] = array->coverage[j + left];
+                  COPY_CHAN4(array->rgba[j], array->rgba[j + left]);
+#ifdef DO_Z
+                  array->z[j] = array->z[j + left];
 #endif
+               }
+            }
 
-         span.x = left;
-         span.y = iy;
-         span.end = n;
-         ASSERT(span.interpMask == 0);
-#if defined(DO_RGBA)
-         _swrast_write_rgba_span(ctx, &span);
-#else
-         _swrast_write_index_span(ctx, &span);
-#endif
+            span.x = left;
+            span.y = iy;
+            span.end = n;
+            _swrast_write_rgba_span(ctx, &span);
+         }
       }
    }
 }
 
 
-#ifdef DO_Z
 #undef DO_Z
-#endif
-
-#ifdef DO_FOG
-#undef DO_FOG
-#endif
-
-#ifdef DO_RGBA
-#undef DO_RGBA
-#endif
-
-#ifdef DO_INDEX
-#undef DO_INDEX
-#endif
-
-#ifdef DO_SPEC
-#undef DO_SPEC
-#endif
-
-#ifdef DO_ATTRIBS
 #undef DO_ATTRIBS
-#endif
-
-#ifdef DO_OCCLUSION_TEST
 #undef DO_OCCLUSION_TEST
-#endif