minor simplification
[mesa.git] / src / mesa / swrast / s_aatritemp.h
index 41ef99cbfbd63fc3147433254b2c930c6d650e81..23c262f83693b0263dd8884abc067363978a93cb 100644 (file)
@@ -1,10 +1,8 @@
-/* $Id: s_aatritemp.h,v 1.9 2001/03/28 21:36:31 brianp Exp $ */
-
 /*
  * Mesa 3-D graphics library
- * Version:  3.5
+ * Version:  6.5
  *
- * Copyright (C) 1999-2001  Brian Paul   All Rights Reserved.
+ * Copyright (C) 1999-2005  Brian Paul   All Rights Reserved.
  *
  * Permission is hereby granted, free of charge, to any person obtaining a
  * copy of this software and associated documentation files (the "Software"),
    GLint iyMin, iyMax;
    GLfloat yMin, yMax;
    GLboolean ltor;
-   GLfloat majDx, majDy;
+   GLfloat majDx, majDy;  /* major (i.e. long) edge dx and dy */
+   
+   struct sw_span span;
+   
 #ifdef DO_Z
-   GLfloat zPlane[4];                                       /* Z (depth) */
-   GLdepth z[MAX_WIDTH];
+   GLfloat zPlane[4];
+#endif
+#ifdef DO_FOG
    GLfloat fogPlane[4];
-   GLfixed fog[MAX_WIDTH];
+#else
+   GLfloat *fog = NULL;
 #endif
 #ifdef DO_RGBA
-   GLfloat rPlane[4], gPlane[4], bPlane[4], aPlane[4];      /* color */
-   GLchan rgba[MAX_WIDTH][4];
+   GLfloat rPlane[4], gPlane[4], bPlane[4], aPlane[4];
 #endif
 #ifdef DO_INDEX
-   GLfloat iPlane[4];                                       /* color index */
-   GLuint index[MAX_WIDTH];
+   GLfloat iPlane[4];
 #endif
 #ifdef DO_SPEC
-   GLfloat srPlane[4], sgPlane[4], sbPlane[4];              /* spec color */
-   GLchan spec[MAX_WIDTH][4];
+   GLfloat srPlane[4], sgPlane[4], sbPlane[4];
 #endif
 #ifdef DO_TEX
    GLfloat sPlane[4], tPlane[4], uPlane[4], vPlane[4];
    GLfloat texWidth, texHeight;
-   GLfloat s[MAX_WIDTH], t[MAX_WIDTH], u[MAX_WIDTH];
-   GLfloat lambda[MAX_WIDTH];
 #elif defined(DO_MULTITEX)
-   GLfloat sPlane[MAX_TEXTURE_UNITS][4];
-   GLfloat tPlane[MAX_TEXTURE_UNITS][4];
-   GLfloat uPlane[MAX_TEXTURE_UNITS][4];
-   GLfloat vPlane[MAX_TEXTURE_UNITS][4];
-   GLfloat texWidth[MAX_TEXTURE_UNITS], texHeight[MAX_TEXTURE_UNITS];
-   GLfloat s[MAX_TEXTURE_UNITS][MAX_WIDTH];
-   GLfloat t[MAX_TEXTURE_UNITS][MAX_WIDTH];
-   GLfloat u[MAX_TEXTURE_UNITS][MAX_WIDTH];
-   GLfloat lambda[MAX_TEXTURE_UNITS][MAX_WIDTH];
-#endif
-   GLfloat bf = SWRAST_CONTEXT(ctx)->_backface_sign;
+   GLfloat sPlane[MAX_TEXTURE_COORD_UNITS][4];  /* texture S */
+   GLfloat tPlane[MAX_TEXTURE_COORD_UNITS][4];  /* texture T */
+   GLfloat uPlane[MAX_TEXTURE_COORD_UNITS][4];  /* texture R */
+   GLfloat vPlane[MAX_TEXTURE_COORD_UNITS][4];  /* texture Q */
+   GLfloat texWidth[MAX_TEXTURE_COORD_UNITS];
+   GLfloat texHeight[MAX_TEXTURE_COORD_UNITS];
+#endif
+   GLfloat bf = SWRAST_CONTEXT(ctx)->_BackfaceSign;
+   
+   
+   INIT_SPAN(span, GL_POLYGON, 0, 0, SPAN_COVERAGE);
 
    /* determine bottom to top order of vertices */
    {
       const GLfloat botDx = vMid->win[0] - vMin->win[0];
       const GLfloat botDy = vMid->win[1] - vMin->win[1];
       const GLfloat area = majDx * botDy - botDx * majDy;
-      ltor = (GLboolean) (area < 0.0F);
       /* Do backface culling */
-      if (area * bf < 0 || area * area < .0025)
+      if (area * bf < 0 || area == 0 || IS_INF_OR_NAN(area))
         return;
+      ltor = (GLboolean) (area < 0.0F);
    }
 
-#ifndef DO_OCCLUSION_TEST
-   ctx->OcclusionResult = GL_TRUE;
-#endif
-
-   /* plane setup */
+   /* Plane equation setup:
+    * We evaluate plane equations at window (x,y) coordinates in order
+    * to compute color, Z, fog, texcoords, etc.  This isn't terribly
+    * efficient but it's easy and reliable.
+    */
 #ifdef DO_Z
    compute_plane(p0, p1, p2, p0[2], p1[2], p2[2], zPlane);
-   compute_plane(p0, p1, p2,
-                v0->fog,
-                v1->fog,
-                v2->fog,
-                fogPlane);
+   span.arrayMask |= SPAN_Z;
+#endif
+#ifdef DO_FOG
+   compute_plane(p0, p1, p2, v0->fog, v1->fog, v2->fog, fogPlane);
+   span.arrayMask |= SPAN_FOG;
 #endif
 #ifdef DO_RGBA
    if (ctx->Light.ShadeModel == GL_SMOOTH) {
-      compute_plane(p0, p1, p2, v0->color[0], v1->color[0], v2->color[0], rPlane);
-      compute_plane(p0, p1, p2, v0->color[1], v1->color[1], v2->color[1], gPlane);
-      compute_plane(p0, p1, p2, v0->color[2], v1->color[2], v2->color[2], bPlane);
-      compute_plane(p0, p1, p2, v0->color[3], v1->color[3], v2->color[3], aPlane);
+      compute_plane(p0, p1, p2, v0->color[RCOMP], v1->color[RCOMP], v2->color[RCOMP], rPlane);
+      compute_plane(p0, p1, p2, v0->color[GCOMP], v1->color[GCOMP], v2->color[GCOMP], gPlane);
+      compute_plane(p0, p1, p2, v0->color[BCOMP], v1->color[BCOMP], v2->color[BCOMP], bPlane);
+      compute_plane(p0, p1, p2, v0->color[ACOMP], v1->color[ACOMP], v2->color[ACOMP], aPlane);
    }
    else {
       constant_plane(v2->color[RCOMP], rPlane);
       constant_plane(v2->color[BCOMP], bPlane);
       constant_plane(v2->color[ACOMP], aPlane);
    }
+   span.arrayMask |= SPAN_RGBA;
 #endif
 #ifdef DO_INDEX
    if (ctx->Light.ShadeModel == GL_SMOOTH) {
-      compute_plane(p0, p1, p2, v0->index,
+      compute_plane(p0, p1, p2, (GLfloat) v0->index,
                     v1->index, v2->index, iPlane);
    }
    else {
       constant_plane(v2->index, iPlane);
    }
+   span.arrayMask |= SPAN_INDEX;
 #endif
 #ifdef DO_SPEC
    if (ctx->Light.ShadeModel == GL_SMOOTH) {
-      compute_plane(p0, p1, p2, v0->specular[0], v1->specular[0], v2->specular[0],srPlane);
-      compute_plane(p0, p1, p2, v0->specular[1], v1->specular[1], v2->specular[1],sgPlane);
-      compute_plane(p0, p1, p2, v0->specular[2], v1->specular[2], v2->specular[2],sbPlane);
+      compute_plane(p0, p1, p2, v0->specular[RCOMP], v1->specular[RCOMP], v2->specular[RCOMP], srPlane);
+      compute_plane(p0, p1, p2, v0->specular[GCOMP], v1->specular[GCOMP], v2->specular[GCOMP], sgPlane);
+      compute_plane(p0, p1, p2, v0->specular[BCOMP], v1->specular[BCOMP], v2->specular[BCOMP], sbPlane);
    }
    else {
-      /* KW: added this */
       constant_plane(v2->specular[RCOMP], srPlane);
       constant_plane(v2->specular[GCOMP], sgPlane);
       constant_plane(v2->specular[BCOMP], sbPlane);
    }
+   span.arrayMask |= SPAN_SPEC;
 #endif
 #ifdef DO_TEX
    {
       const struct gl_texture_object *obj = ctx->Texture.Unit[0]._Current;
-      const struct gl_texture_image *texImage = obj->Image[obj->BaseLevel];
+      const struct gl_texture_image *texImage = obj->Image[0][obj->BaseLevel];
       const GLfloat invW0 = v0->win[3];
       const GLfloat invW1 = v1->win[3];
       const GLfloat invW2 = v2->win[3];
       texWidth = (GLfloat) texImage->Width;
       texHeight = (GLfloat) texImage->Height;
    }
+   span.arrayMask |= (SPAN_TEXTURE | SPAN_LAMBDA);
 #elif defined(DO_MULTITEX)
    {
       GLuint u;
       for (u = 0; u < ctx->Const.MaxTextureUnits; u++) {
          if (ctx->Texture.Unit[u]._ReallyEnabled) {
             const struct gl_texture_object *obj = ctx->Texture.Unit[u]._Current;
-            const struct gl_texture_image *texImage = obj->Image[obj->BaseLevel];
+            const struct gl_texture_image *texImage = obj->Image[0][obj->BaseLevel];
             const GLfloat invW0 = v0->win[3];
             const GLfloat invW1 = v1->win[3];
             const GLfloat invW2 = v2->win[3];
          }
       }
    }
+   span.arrayMask |= (SPAN_TEXTURE | SPAN_LAMBDA);
 #endif
 
+   /* Begin bottom-to-top scan over the triangle.
+    * The long edge will either be on the left or right side of the
+    * triangle.  We always scan from the long edge toward the shorter
+    * edges, stopping when we find that coverage = 0.  If the long edge
+    * is on the left we scan left-to-right.  Else, we scan right-to-left.
+    */
    yMin = vMin->win[1];
    yMax = vMax->win[1];
-   iyMin = (int) yMin;
-   iyMax = (int) yMax + 1;
+   iyMin = (GLint) yMin;
+   iyMax = (GLint) yMax + 1;
 
    if (ltor) {
       /* scan left to right */
-      const float *pMin = vMin->win;
-      const float *pMid = vMid->win;
-      const float *pMax = vMax->win;
-      const float dxdy = majDx / majDy;
-      const float xAdj = dxdy < 0.0F ? -dxdy : 0.0F;
-      float x = vMin->win[0] - (yMin - iyMin) * dxdy;
-      int iy;
+      const GLfloat *pMin = vMin->win;
+      const GLfloat *pMid = vMid->win;
+      const GLfloat *pMax = vMax->win;
+      const GLfloat dxdy = majDx / majDy;
+      const GLfloat xAdj = dxdy < 0.0F ? -dxdy : 0.0F;
+      GLfloat x = pMin[0] - (yMin - iyMin) * dxdy;
+      GLint iy;
       for (iy = iyMin; iy < iyMax; iy++, x += dxdy) {
          GLint ix, startX = (GLint) (x - xAdj);
-         GLuint count, n;
+         GLuint count;
          GLfloat coverage = 0.0F;
+
          /* skip over fragments with zero coverage */
          while (startX < MAX_WIDTH) {
             coverage = compute_coveragef(pMin, pMid, pMax, startX, iy);
          ix = startX;
          count = 0;
          while (coverage > 0.0F) {
+            /* (cx,cy) = center of fragment */
+            const GLfloat cx = ix + 0.5F, cy = iy + 0.5F;
+            struct span_arrays *array = span.array;
+#ifdef DO_INDEX
+            array->coverage[count] = (GLfloat) compute_coveragei(pMin, pMid, pMax, ix, iy);
+#else
+            array->coverage[count] = coverage;
+#endif
 #ifdef DO_Z
-            z[count] = (GLdepth) solve_plane(ix, iy, zPlane);
-           fog[count] = FloatToFixed(solve_plane(ix, iy, fogPlane));
+            array->z[count] = (GLuint) solve_plane(cx, cy, zPlane);
+#endif
+#ifdef DO_FOG
+           array->fog[count] = solve_plane(cx, cy, fogPlane);
 #endif
 #ifdef DO_RGBA
-            rgba[count][RCOMP] = solve_plane_chan(ix, iy, rPlane);
-            rgba[count][GCOMP] = solve_plane_chan(ix, iy, gPlane);
-            rgba[count][BCOMP] = solve_plane_chan(ix, iy, bPlane);
-            rgba[count][ACOMP] = (GLchan) (solve_plane_chan(ix, iy, aPlane) * coverage);
+            array->rgba[count][RCOMP] = solve_plane_chan(cx, cy, rPlane);
+            array->rgba[count][GCOMP] = solve_plane_chan(cx, cy, gPlane);
+            array->rgba[count][BCOMP] = solve_plane_chan(cx, cy, bPlane);
+            array->rgba[count][ACOMP] = solve_plane_chan(cx, cy, aPlane);
 #endif
 #ifdef DO_INDEX
-            {
-               GLint frac = compute_coveragei(pMin, pMid, pMax, ix, iy);
-               GLint indx = (GLint) solve_plane(ix, iy, iPlane);
-               index[count] = (indx & ~0xf) | frac;
-            }
+            array->index[count] = (GLint) solve_plane(cx, cy, iPlane);
 #endif
 #ifdef DO_SPEC
-            spec[count][RCOMP] = solve_plane_chan(ix, iy, srPlane);
-            spec[count][GCOMP] = solve_plane_chan(ix, iy, sgPlane);
-            spec[count][BCOMP] = solve_plane_chan(ix, iy, sbPlane);
+            array->spec[count][RCOMP] = solve_plane_chan(cx, cy, srPlane);
+            array->spec[count][GCOMP] = solve_plane_chan(cx, cy, sgPlane);
+            array->spec[count][BCOMP] = solve_plane_chan(cx, cy, sbPlane);
 #endif
 #ifdef DO_TEX
             {
-               GLfloat invQ = solve_plane_recip(ix, iy, vPlane);
-               s[count] = solve_plane(ix, iy, sPlane) * invQ;
-               t[count] = solve_plane(ix, iy, tPlane) * invQ;
-               u[count] = solve_plane(ix, iy, uPlane) * invQ;
-               lambda[count] = compute_lambda(sPlane, tPlane, invQ,
-                                                 texWidth, texHeight);
+               const GLfloat invQ = solve_plane_recip(cx, cy, vPlane);
+               array->texcoords[0][count][0] = solve_plane(cx, cy, sPlane) * invQ;
+               array->texcoords[0][count][1] = solve_plane(cx, cy, tPlane) * invQ;
+               array->texcoords[0][count][2] = solve_plane(cx, cy, uPlane) * invQ;
+               array->lambda[0][count] = compute_lambda(sPlane, tPlane, vPlane,
+                                                      cx, cy, invQ,
+                                                      texWidth, texHeight);
             }
 #elif defined(DO_MULTITEX)
             {
                GLuint unit;
                for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
                   if (ctx->Texture.Unit[unit]._ReallyEnabled) {
-                     GLfloat invQ = solve_plane_recip(ix, iy, vPlane[unit]);
-                     s[unit][count] = solve_plane(ix, iy, sPlane[unit]) * invQ;
-                     t[unit][count] = solve_plane(ix, iy, tPlane[unit]) * invQ;
-                     u[unit][count] = solve_plane(ix, iy, uPlane[unit]) * invQ;
-                     lambda[unit][count] = compute_lambda(sPlane[unit],
-                          tPlane[unit], invQ, texWidth[unit], texHeight[unit]);
+                     GLfloat invQ = solve_plane_recip(cx, cy, vPlane[unit]);
+                     array->texcoords[unit][count][0] = solve_plane(cx, cy, sPlane[unit]) * invQ;
+                     array->texcoords[unit][count][1] = solve_plane(cx, cy, tPlane[unit]) * invQ;
+                     array->texcoords[unit][count][2] = solve_plane(cx, cy, uPlane[unit]) * invQ;
+                     array->lambda[unit][count] = compute_lambda(sPlane[unit],
+                                      tPlane[unit], vPlane[unit], cx, cy, invQ,
+                                      texWidth[unit], texHeight[unit]);
                   }
                }
             }
             count++;
             coverage = compute_coveragef(pMin, pMid, pMax, ix, iy);
          }
-
-         n = (GLuint) ix - (GLuint) startX;
-#ifdef DO_MULTITEX
-#  ifdef DO_SPEC
-         _mesa_write_multitexture_span(ctx, n, startX, iy, z, fog,
-                                    (const GLfloat (*)[MAX_WIDTH]) s,
-                                    (const GLfloat (*)[MAX_WIDTH]) t,
-                                    (const GLfloat (*)[MAX_WIDTH]) u,
-                                    (GLfloat (*)[MAX_WIDTH]) lambda,
-                                    rgba, (const GLchan (*)[4]) spec,
-                                    GL_POLYGON);
-#  else
-         _mesa_write_multitexture_span(ctx, n, startX, iy, z, fog,
-                                    (const GLfloat (*)[MAX_WIDTH]) s,
-                                    (const GLfloat (*)[MAX_WIDTH]) t,
-                                    (const GLfloat (*)[MAX_WIDTH]) u,
-                                    lambda, rgba, NULL, GL_POLYGON);
-#  endif
-#elif defined(DO_TEX)
-#  ifdef DO_SPEC
-         _mesa_write_texture_span(ctx, n, startX, iy, z, fog,
-                               s, t, u, lambda, rgba,
-                               (const GLchan (*)[4]) spec, GL_POLYGON);
-#  else
-         _mesa_write_texture_span(ctx, n, startX, iy, z, fog,
-                               s, t, u, lambda,
-                               rgba, NULL, GL_POLYGON);
-#  endif
-#elif defined(DO_RGBA)
-         _mesa_write_rgba_span(ctx, n, startX, iy, z, fog, rgba, GL_POLYGON);
-#elif defined(DO_INDEX)
-         _mesa_write_index_span(ctx, n, startX, iy, z, fog, index, GL_POLYGON);
+         
+         if (ix <= startX)
+            continue;
+         
+         span.x = startX;
+         span.y = iy;
+         span.end = (GLuint) ix - (GLuint) startX;
+         ASSERT(span.interpMask == 0);
+#if defined(DO_RGBA)
+         _swrast_write_rgba_span(ctx, &span);
+#else
+         _swrast_write_index_span(ctx, &span);
 #endif
       }
    }
       const GLfloat *pMax = vMax->win;
       const GLfloat dxdy = majDx / majDy;
       const GLfloat xAdj = dxdy > 0 ? dxdy : 0.0F;
-      GLfloat x = vMin->win[0] - (yMin - iyMin) * dxdy;
+      GLfloat x = pMin[0] - (yMin - iyMin) * dxdy;
       GLint iy;
       for (iy = iyMin; iy < iyMax; iy++, x += dxdy) {
          GLint ix, left, startX = (GLint) (x + xAdj);
          GLuint count, n;
          GLfloat coverage = 0.0F;
-
+         
          /* make sure we're not past the window edge */
          if (startX >= ctx->DrawBuffer->_Xmax) {
             startX = ctx->DrawBuffer->_Xmax - 1;
                break;
             startX--;
          }
-
+         
          /* enter interior of triangle */
          ix = startX;
          count = 0;
          while (coverage > 0.0F) {
+            /* (cx,cy) = center of fragment */
+            const GLfloat cx = ix + 0.5F, cy = iy + 0.5F;
+            struct span_arrays *array = span.array;
+#ifdef DO_INDEX
+            array->coverage[ix] = (GLfloat) compute_coveragei(pMin, pMax, pMid, ix, iy);
+#else
+            array->coverage[ix] = coverage;
+#endif
 #ifdef DO_Z
-            z[ix] = (GLdepth) solve_plane(ix, iy, zPlane);
-            fog[ix] = FloatToFixed(solve_plane(ix, iy, fogPlane));
+            array->z[ix] = (GLuint) solve_plane(cx, cy, zPlane);
+#endif
+#ifdef DO_FOG
+            array->fog[ix] = solve_plane(cx, cy, fogPlane);
 #endif
 #ifdef DO_RGBA
-            rgba[ix][RCOMP] = solve_plane_chan(ix, iy, rPlane);
-            rgba[ix][GCOMP] = solve_plane_chan(ix, iy, gPlane);
-            rgba[ix][BCOMP] = solve_plane_chan(ix, iy, bPlane);
-            rgba[ix][ACOMP] = (GLchan) (solve_plane_chan(ix, iy, aPlane) * coverage);
+            array->rgba[ix][RCOMP] = solve_plane_chan(cx, cy, rPlane);
+            array->rgba[ix][GCOMP] = solve_plane_chan(cx, cy, gPlane);
+            array->rgba[ix][BCOMP] = solve_plane_chan(cx, cy, bPlane);
+            array->rgba[ix][ACOMP] = solve_plane_chan(cx, cy, aPlane);
 #endif
 #ifdef DO_INDEX
-            {
-               GLint frac = compute_coveragei(pMin, pMax, pMid, ix, iy);
-               GLint indx = (GLint) solve_plane(ix, iy, iPlane);
-               index[ix] = (indx & ~0xf) | frac;
-            }
+            array->index[ix] = (GLint) solve_plane(cx, cy, iPlane);
 #endif
 #ifdef DO_SPEC
-            spec[ix][RCOMP] = solve_plane_chan(ix, iy, srPlane);
-            spec[ix][GCOMP] = solve_plane_chan(ix, iy, sgPlane);
-            spec[ix][BCOMP] = solve_plane_chan(ix, iy, sbPlane);
+            array->spec[ix][RCOMP] = solve_plane_chan(cx, cy, srPlane);
+            array->spec[ix][GCOMP] = solve_plane_chan(cx, cy, sgPlane);
+            array->spec[ix][BCOMP] = solve_plane_chan(cx, cy, sbPlane);
 #endif
 #ifdef DO_TEX
             {
-               GLfloat invQ = solve_plane_recip(ix, iy, vPlane);
-               s[ix] = solve_plane(ix, iy, sPlane) * invQ;
-               t[ix] = solve_plane(ix, iy, tPlane) * invQ;
-               u[ix] = solve_plane(ix, iy, uPlane) * invQ;
-               lambda[ix] = compute_lambda(sPlane, tPlane, invQ,
-                                              texWidth, texHeight);
+               const GLfloat invQ = solve_plane_recip(cx, cy, vPlane);
+               array->texcoords[0][ix][0] = solve_plane(cx, cy, sPlane) * invQ;
+               array->texcoords[0][ix][1] = solve_plane(cx, cy, tPlane) * invQ;
+               array->texcoords[0][ix][2] = solve_plane(cx, cy, uPlane) * invQ;
+               array->lambda[0][ix] = compute_lambda(sPlane, tPlane, vPlane,
+                                          cx, cy, invQ, texWidth, texHeight);
             }
 #elif defined(DO_MULTITEX)
             {
                GLuint unit;
                for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
                   if (ctx->Texture.Unit[unit]._ReallyEnabled) {
-                     GLfloat invQ = solve_plane_recip(ix, iy, vPlane[unit]);
-                     s[unit][ix] = solve_plane(ix, iy, sPlane[unit]) * invQ;
-                     t[unit][ix] = solve_plane(ix, iy, tPlane[unit]) * invQ;
-                     u[unit][ix] = solve_plane(ix, iy, uPlane[unit]) * invQ;
-                     lambda[unit][ix] = compute_lambda(sPlane[unit],
-                         tPlane[unit], invQ, texWidth[unit], texHeight[unit]);
+                     GLfloat invQ = solve_plane_recip(cx, cy, vPlane[unit]);
+                     array->texcoords[unit][ix][0] = solve_plane(cx, cy, sPlane[unit]) * invQ;
+                     array->texcoords[unit][ix][1] = solve_plane(cx, cy, tPlane[unit]) * invQ;
+                     array->texcoords[unit][ix][2] = solve_plane(cx, cy, uPlane[unit]) * invQ;
+                     array->lambda[unit][ix] = compute_lambda(sPlane[unit],
+                                                            tPlane[unit],
+                                                            vPlane[unit],
+                                                            cx, cy, invQ,
+                                                            texWidth[unit],
+                                                            texHeight[unit]);
                   }
                }
             }
             count++;
             coverage = compute_coveragef(pMin, pMax, pMid, ix, iy);
          }
+         
+         if (startX <= ix)
+            continue;
 
          n = (GLuint) startX - (GLuint) ix;
+
          left = ix + 1;
+
+         /* shift all values to the left */
+         /* XXX this is temporary */
+         {
+            struct span_arrays *array = span.array;
+            GLint j;
+            for (j = 0; j < (GLint) n; j++) {
+#ifdef DO_RGBA
+               COPY_CHAN4(array->rgba[j], array->rgba[j + left]);
+#endif
+#ifdef DO_SPEC
+               COPY_CHAN4(array->spec[j], array->spec[j + left]);
+#endif
+#ifdef DO_INDEX
+               array->index[j] = array->index[j + left];
+#endif
+#ifdef DO_Z
+               array->z[j] = array->z[j + left];
+#endif
+#ifdef DO_FOG
+               array->fog[j] = array->fog[j + left];
+#endif
+#ifdef DO_TEX
+               COPY_4V(array->texcoords[0][j], array->texcoords[0][j + left]);
+#endif
+#if defined(DO_MULTITEX) || defined(DO_TEX)
+               array->lambda[0][j] = array->lambda[0][j + left];
+#endif
+               array->coverage[j] = array->coverage[j + left];
+            }
+         }
 #ifdef DO_MULTITEX
+         /* shift texcoords */
          {
+            struct span_arrays *array = span.array;
             GLuint unit;
             for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
                if (ctx->Texture.Unit[unit]._ReallyEnabled) {
                   GLint j;
                   for (j = 0; j < (GLint) n; j++) {
-                     s[unit][j] = s[unit][j + left];
-                     t[unit][j] = t[unit][j + left];
-                     u[unit][j] = u[unit][j + left];
-                     lambda[unit][j] = lambda[unit][j + left];
+                    array->texcoords[unit][j][0] = array->texcoords[unit][j + left][0];
+                     array->texcoords[unit][j][1] = array->texcoords[unit][j + left][1];
+                     array->texcoords[unit][j][2] = array->texcoords[unit][j + left][2];
+                     array->lambda[unit][j] = array->lambda[unit][j + left];
                   }
                }
             }
          }
-#  ifdef DO_SPEC
-         _mesa_write_multitexture_span(ctx, n, left, iy, z + left, fog + left,
-                                    (const GLfloat (*)[MAX_WIDTH]) s,
-                                    (const GLfloat (*)[MAX_WIDTH]) t,
-                                    (const GLfloat (*)[MAX_WIDTH]) u,
-                                    lambda, rgba + left,
-                                    (const GLchan (*)[4]) (spec + left),
-                                    GL_POLYGON);
-#  else
-         _mesa_write_multitexture_span(ctx, n, left, iy, z + left, fog + left,
-                                    (const GLfloat (*)[MAX_WIDTH]) s,
-                                    (const GLfloat (*)[MAX_WIDTH]) t,
-                                    (const GLfloat (*)[MAX_WIDTH]) u,
-                                    lambda,
-                                    rgba + left, NULL, GL_POLYGON);
-#  endif
-#elif defined(DO_TEX)
-#  ifdef DO_SPEC
-         _mesa_write_texture_span(ctx, n, left, iy, z + left, fog + left,
-                               s + left, t + left, u + left,
-                               lambda + left, rgba + left,
-                               (const GLchan (*)[4]) (spec + left),
-                               GL_POLYGON);
-#  else
-         _mesa_write_texture_span(ctx, n, left, iy, z + left, fog + left,
-                               s + left, t + left,
-                               u + left, lambda + left,
-                               rgba + left, NULL, GL_POLYGON);
-#  endif
-#elif defined(DO_RGBA)
-         _mesa_write_rgba_span(ctx, n, left, iy, z + left, fog + left,
-                            rgba + left, GL_POLYGON);
-#elif defined(DO_INDEX)
-         _mesa_write_index_span(ctx, n, left, iy, z + left, fog + left,
-                             index + left, GL_POLYGON);
+#endif
+
+         span.x = left;
+         span.y = iy;
+         span.end = n;
+         ASSERT(span.interpMask == 0);
+#if defined(DO_RGBA)
+         _swrast_write_rgba_span(ctx, &span);
+#else
+         _swrast_write_index_span(ctx, &span);
 #endif
       }
    }
 #undef DO_Z
 #endif
 
+#ifdef DO_FOG
+#undef DO_FOG
+#endif
+
 #ifdef DO_RGBA
 #undef DO_RGBA
 #endif