mesa: rework texture completeness testing
[mesa.git] / src / mesa / swrast / s_aatritemp.h
index 0827b3db9eb90e54491b56461a9aa0fb3a89a1c4..9cdb35fd29d4d389d4a7456aff3e2609595124d3 100644 (file)
  * The following macros may be defined to indicate what auxillary information
  * must be copmuted across the triangle:
  *    DO_Z         - if defined, compute Z values
- *    DO_RGBA      - if defined, compute RGBA values
- *    DO_INDEX     - if defined, compute color index values
  *    DO_ATTRIBS   - if defined, compute texcoords, varying, etc.
  */
 
-/*void triangle( GLcontext *ctx, GLuint v0, GLuint v1, GLuint v2, GLuint pv )*/
+/*void triangle( struct gl_context *ctx, GLuint v0, GLuint v1, GLuint v2, GLuint pv )*/
 {
    const SWcontext *swrast = SWRAST_CONTEXT(ctx);
    const GLfloat *p0 = v0->attrib[FRAG_ATTRIB_WPOS];
 #ifdef DO_Z
    GLfloat zPlane[4];
 #endif
-#ifdef DO_RGBA
    GLfloat rPlane[4], gPlane[4], bPlane[4], aPlane[4];
-#endif
-#ifdef DO_INDEX
-   GLfloat iPlane[4];
-#endif
 #if defined(DO_ATTRIBS)
    GLfloat attrPlane[FRAG_ATTRIB_MAX][4][4];
    GLfloat wPlane[4];  /* win[3] */
    compute_plane(p0, p1, p2, p0[2], p1[2], p2[2], zPlane);
    span.arrayMask |= SPAN_Z;
 #endif
-#ifdef DO_RGBA
    if (ctx->Light.ShadeModel == GL_SMOOTH) {
       compute_plane(p0, p1, p2, v0->color[RCOMP], v1->color[RCOMP], v2->color[RCOMP], rPlane);
       compute_plane(p0, p1, p2, v0->color[GCOMP], v1->color[GCOMP], v2->color[GCOMP], gPlane);
       constant_plane(v2->color[ACOMP], aPlane);
    }
    span.arrayMask |= SPAN_RGBA;
-#endif
-#ifdef DO_INDEX
-   if (ctx->Light.ShadeModel == GL_SMOOTH) {
-      compute_plane(p0, p1, p2, (GLfloat) v0->attrib[FRAG_ATTRIB_CI][0],
-                    v1->attrib[FRAG_ATTRIB_CI][0], v2->attrib[FRAG_ATTRIB_CI][0], iPlane);
-   }
-   else {
-      constant_plane(v2->attrib[FRAG_ATTRIB_CI][0], iPlane);
-   }
-   span.arrayMask |= SPAN_INDEX;
-#endif
 #if defined(DO_ATTRIBS)
    {
       const GLfloat invW0 = v0->attrib[FRAG_ATTRIB_WPOS][3];
       const GLfloat *pMax = vMax->attrib[FRAG_ATTRIB_WPOS];
       const GLfloat dxdy = majDx / majDy;
       const GLfloat xAdj = dxdy < 0.0F ? -dxdy : 0.0F;
-      GLfloat x = pMin[0] - (yMin - iyMin) * dxdy;
       GLint iy;
-      for (iy = iyMin; iy < iyMax; iy++, x += dxdy) {
+#ifdef _OPENMP
+#pragma omp parallel for schedule(dynamic) private(iy) firstprivate(span)
+#endif
+      for (iy = iyMin; iy < iyMax; iy++) {
+         GLfloat x = pMin[0] - (yMin - iy) * dxdy;
          GLint ix, startX = (GLint) (x - xAdj);
          GLuint count;
          GLfloat coverage = 0.0F;
 
+#ifdef _OPENMP
+         /* each thread needs to use a different (global) SpanArrays variable */
+         span.array = SWRAST_CONTEXT(ctx)->SpanArrays + omp_get_thread_num();
+#endif
          /* skip over fragments with zero coverage */
-         while (startX < MAX_WIDTH) {
+         while (startX < SWRAST_MAX_WIDTH) {
             coverage = compute_coveragef(pMin, pMid, pMax, startX, iy);
             if (coverage > 0.0F)
                break;
 
 #if defined(DO_ATTRIBS)
          /* compute attributes at left-most fragment */
-         span.attrStart[FRAG_ATTRIB_WPOS][3] = solve_plane(ix + 0.5, iy + 0.5, wPlane);
+         span.attrStart[FRAG_ATTRIB_WPOS][3] = solve_plane(ix + 0.5F, iy + 0.5F, wPlane);
          ATTRIB_LOOP_BEGIN
             GLuint c;
             for (c = 0; c < 4; c++) {
-               span.attrStart[attr][c] = solve_plane(ix + 0.5, iy + 0.5, attrPlane[attr][c]);
+               span.attrStart[attr][c] = solve_plane(ix + 0.5F, iy + 0.5F, attrPlane[attr][c]);
             }
          ATTRIB_LOOP_END
 #endif
             /* (cx,cy) = center of fragment */
             const GLfloat cx = ix + 0.5F, cy = iy + 0.5F;
             SWspanarrays *array = span.array;
-#ifdef DO_INDEX
-            array->coverage[count] = (GLfloat) compute_coveragei(pMin, pMid, pMax, ix, iy);
-#else
             array->coverage[count] = coverage;
-#endif
 #ifdef DO_Z
             array->z[count] = (GLuint) solve_plane(cx, cy, zPlane);
 #endif
-#ifdef DO_RGBA
             array->rgba[count][RCOMP] = solve_plane_chan(cx, cy, rPlane);
             array->rgba[count][GCOMP] = solve_plane_chan(cx, cy, gPlane);
             array->rgba[count][BCOMP] = solve_plane_chan(cx, cy, bPlane);
             array->rgba[count][ACOMP] = solve_plane_chan(cx, cy, aPlane);
-#endif
-#ifdef DO_INDEX
-            array->index[count] = (GLint) solve_plane(cx, cy, iPlane);
-#endif
             ix++;
             count++;
             coverage = compute_coveragef(pMin, pMid, pMax, ix, iy);
          }
          
-         if (ix <= startX)
-            continue;
-         
-         span.x = startX;
-         span.y = iy;
-         span.end = (GLuint) ix - (GLuint) startX;
-#if defined(DO_RGBA)
-         _swrast_write_rgba_span(ctx, &span);
-#else
-         _swrast_write_index_span(ctx, &span);
-#endif
+         if (ix > startX) {
+            span.x = startX;
+            span.y = iy;
+            span.end = (GLuint) ix - (GLuint) startX;
+            _swrast_write_rgba_span(ctx, &span);
+         }
       }
    }
    else {
       const GLfloat *pMax = vMax->attrib[FRAG_ATTRIB_WPOS];
       const GLfloat dxdy = majDx / majDy;
       const GLfloat xAdj = dxdy > 0 ? dxdy : 0.0F;
-      GLfloat x = pMin[0] - (yMin - iyMin) * dxdy;
       GLint iy;
-      for (iy = iyMin; iy < iyMax; iy++, x += dxdy) {
+#ifdef _OPENMP
+#pragma omp parallel for schedule(dynamic) private(iy) firstprivate(span)
+#endif
+      for (iy = iyMin; iy < iyMax; iy++) {
+         GLfloat x = pMin[0] - (yMin - iy) * dxdy;
          GLint ix, left, startX = (GLint) (x + xAdj);
          GLuint count, n;
          GLfloat coverage = 0.0F;
          
+#ifdef _OPENMP
+         /* each thread needs to use a different (global) SpanArrays variable */
+         span.array = SWRAST_CONTEXT(ctx)->SpanArrays + omp_get_thread_num();
+#endif
          /* make sure we're not past the window edge */
          if (startX >= ctx->DrawBuffer->_Xmax) {
             startX = ctx->DrawBuffer->_Xmax - 1;
             const GLfloat cx = ix + 0.5F, cy = iy + 0.5F;
             SWspanarrays *array = span.array;
             ASSERT(ix >= 0);
-#ifdef DO_INDEX
-            array->coverage[ix] = (GLfloat) compute_coveragei(pMin, pMax, pMid, ix, iy);
-#else
             array->coverage[ix] = coverage;
-#endif
 #ifdef DO_Z
             array->z[ix] = (GLuint) solve_plane(cx, cy, zPlane);
 #endif
-#ifdef DO_RGBA
             array->rgba[ix][RCOMP] = solve_plane_chan(cx, cy, rPlane);
             array->rgba[ix][GCOMP] = solve_plane_chan(cx, cy, gPlane);
             array->rgba[ix][BCOMP] = solve_plane_chan(cx, cy, bPlane);
             array->rgba[ix][ACOMP] = solve_plane_chan(cx, cy, aPlane);
-#endif
-#ifdef DO_INDEX
-            array->index[ix] = (GLint) solve_plane(cx, cy, iPlane);
-#endif
             ix--;
             count++;
             coverage = compute_coveragef(pMin, pMax, pMid, ix, iy);
          
 #if defined(DO_ATTRIBS)
          /* compute attributes at left-most fragment */
-         span.attrStart[FRAG_ATTRIB_WPOS][3] = solve_plane(ix + 1.5, iy + 0.5, wPlane);
+         span.attrStart[FRAG_ATTRIB_WPOS][3] = solve_plane(ix + 1.5F, iy + 0.5F, wPlane);
          ATTRIB_LOOP_BEGIN
             GLuint c;
             for (c = 0; c < 4; c++) {
-               span.attrStart[attr][c] = solve_plane(ix + 1.5, iy + 0.5, attrPlane[attr][c]);
+               span.attrStart[attr][c] = solve_plane(ix + 1.5F, iy + 0.5F, attrPlane[attr][c]);
             }
          ATTRIB_LOOP_END
 #endif
 
-         if (startX <= ix)
-            continue;
+         if (startX > ix) {
+            n = (GLuint) startX - (GLuint) ix;
 
-         n = (GLuint) startX - (GLuint) ix;
+            left = ix + 1;
 
-         left = ix + 1;
-
-         /* shift all values to the left */
-         /* XXX this is temporary */
-         {
-            SWspanarrays *array = span.array;
-            GLint j;
-            for (j = 0; j < (GLint) n; j++) {
-               array->coverage[j] = array->coverage[j + left];
-#ifdef DO_RGBA
-               COPY_CHAN4(array->rgba[j], array->rgba[j + left]);
-#endif
-#ifdef DO_INDEX
-               array->index[j] = array->index[j + left];
-#endif
+            /* shift all values to the left */
+            /* XXX this is temporary */
+            {
+               SWspanarrays *array = span.array;
+               GLint j;
+               for (j = 0; j < (GLint) n; j++) {
+                  array->coverage[j] = array->coverage[j + left];
+                  COPY_CHAN4(array->rgba[j], array->rgba[j + left]);
 #ifdef DO_Z
-               array->z[j] = array->z[j + left];
+                  array->z[j] = array->z[j + left];
 #endif
+               }
             }
-         }
 
-         span.x = left;
-         span.y = iy;
-         span.end = n;
-#if defined(DO_RGBA)
-         _swrast_write_rgba_span(ctx, &span);
-#else
-         _swrast_write_index_span(ctx, &span);
-#endif
+            span.x = left;
+            span.y = iy;
+            span.end = n;
+            _swrast_write_rgba_span(ctx, &span);
+         }
       }
    }
 }
 
 
 #undef DO_Z
-#undef DO_RGBA
-#undef DO_INDEX
 #undef DO_ATTRIBS
 #undef DO_OCCLUSION_TEST