replace malloc macros in imports.h with u_memory.h versions
[mesa.git] / src / mesa / swrast / s_texture.c
index 06ca19d0a23aa919cfb858106f0a04e435fc1869..88b4e87c62af3b2f88f524d00700cb897612cba9 100644 (file)
@@ -1,10 +1,7 @@
-/* $Id: s_texture.c,v 1.73 2002/10/24 23:57:24 brianp Exp $ */
-
 /*
  * Mesa 3-D graphics library
- * Version:  4.1
  *
- * Copyright (C) 1999-2002  Brian Paul   All Rights Reserved.
+ * Copyright (C) 2011 VMware, Inc.
  *
  * Permission is hereby granted, free of charge, to any person obtaining a
  * copy of this software and associated documentation files (the "Software"),
  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
- * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
- * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
- * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
- */
-
-
-#include "glheader.h"
-#include "context.h"
-#include "colormac.h"
-#include "macros.h"
-#include "mmath.h"
-#include "imports.h"
-#include "texformat.h"
-#include "teximage.h"
-
-#include "s_context.h"
-#include "s_texture.h"
-
-
-/*
- * These values are used in the fixed-point arithmetic used
- * for linear filtering.
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
+ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
+ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+ * OTHER DEALINGS IN THE SOFTWARE.
  */
-#define WEIGHT_SCALE 65536.0F
-#define WEIGHT_SHIFT 16
 
-
-/*
- * Used to compute texel locations for linear sampling.
- * Input:
- *    wrapMode = GL_REPEAT, GL_CLAMP, GL_CLAMP_TO_EDGE, GL_CLAMP_TO_BORDER_ARB
- *    S = texcoord in [0,1]
- *    SIZE = width (or height or depth) of texture
- * Output:
- *    U = texcoord in [0, width]
- *    I0, I1 = two nearest texel indexes
- */
-#define COMPUTE_LINEAR_TEXEL_LOCATIONS(wrapMode, S, U, SIZE, I0, I1)   \
-{                                                                      \
-   if (wrapMode == GL_REPEAT) {                                                \
-      U = S * SIZE - 0.5F;                                             \
-      I0 = IFLOOR(U) & (SIZE - 1);                                     \
-      I1 = (I0 + 1) & (SIZE - 1);                                      \
-   }                                                                   \
-   else if (wrapMode == GL_CLAMP_TO_EDGE) {                            \
-      if (S <= 0.0F)                                                   \
-         U = 0.0F;                                                     \
-      else if (S >= 1.0F)                                              \
-         U = (GLfloat) SIZE;                                           \
-      else                                                             \
-         U = S * SIZE;                                                 \
-      U -= 0.5F;                                                       \
-      I0 = IFLOOR(U);                                                  \
-      I1 = I0 + 1;                                                     \
-      if (I0 < 0)                                                      \
-         I0 = 0;                                                       \
-      if (I1 >= (GLint) SIZE)                                          \
-         I1 = SIZE - 1;                                                        \
-   }                                                                   \
-   else  if (wrapMode == GL_CLAMP_TO_BORDER_ARB) {                     \
-      const GLfloat min = -1.0F / (2.0F * SIZE);                       \
-      const GLfloat max = 1.0F - min;                                  \
-      if (S <= min)                                                    \
-         U = min * SIZE;                                               \
-      else if (S >= max)                                               \
-         U = max * SIZE;                                               \
-      else                                                             \
-         U = S * SIZE;                                                 \
-      U -= 0.5F;                                                       \
-      I0 = IFLOOR(U);                                                  \
-      I1 = I0 + 1;                                                     \
-   }                                                                   \
-   else if (wrapMode == GL_MIRRORED_REPEAT_ARB) {                      \
-      const GLint flr = IFLOOR(S);                                     \
-      if (flr & 1)                                                     \
-         U = 1.0F - (S - (GLfloat) flr);       /* flr is odd */        \
-      else                                                             \
-         U = S - (GLfloat) flr;                /* flr is even */               \
-      U = (U * SIZE) - 0.5;                                            \
-      I0 = IFLOOR(U);                                                  \
-      I1 = I0 + 1;                                                     \
-      if (I0 < 0)                                                      \
-         I0 = 0;                                                       \
-      if (I1 >= (GLint) SIZE)                                          \
-         I1 = SIZE - 1;                                                        \
-   }                                                                   \
-   else if (wrapMode == GL_MIRROR_CLAMP_ATI) {                         \
-      U = fabs(S);                                                     \
-      if (U >= 1.0F)                                                   \
-         U = (GLfloat) SIZE;                                           \
-      else                                                             \
-         U *= SIZE;                                                    \
-      U -= 0.5F;                                                       \
-      I0 = IFLOOR(U);                                                  \
-      I1 = I0 + 1;                                                     \
-   }                                                                   \
-   else if (wrapMode == GL_MIRROR_CLAMP_TO_EDGE_ATI) {                 \
-      U = fabs(S);                                                     \
-      if (U >= 1.0F)                                                   \
-         U = (GLfloat) SIZE;                                           \
-      else                                                             \
-         U *= SIZE;                                                    \
-      U -= 0.5F;                                                       \
-      I0 = IFLOOR(U);                                                  \
-      I1 = I0 + 1;                                                     \
-      if (I0 < 0)                                                      \
-         I0 = 0;                                                       \
-      if (I1 >= (GLint) SIZE)                                          \
-         I1 = SIZE - 1;                                                        \
-   }                                                                   \
-   else {                                                              \
-      ASSERT(wrapMode == GL_CLAMP);                                    \
-      if (S <= 0.0F)                                                   \
-         U = 0.0F;                                                     \
-      else if (S >= 1.0F)                                              \
-         U = (GLfloat) SIZE;                                           \
-      else                                                             \
-         U = S * SIZE;                                                 \
-      U -= 0.5F;                                                       \
-      I0 = IFLOOR(U);                                                  \
-      I1 = I0 + 1;                                                     \
-   }                                                                   \
-}
-
-
-/*
- * Used to compute texel location for nearest sampling.
+/**
+ * Functions for mapping/unmapping texture images.
  */
-#define COMPUTE_NEAREST_TEXEL_LOCATION(wrapMode, S, SIZE, I)           \
-{                                                                      \
-   if (wrapMode == GL_REPEAT) {                                                \
-      /* s limited to [0,1) */                                         \
-      /* i limited to [0,size-1] */                                    \
-      I = IFLOOR(S * SIZE);                                            \
-      I &= (SIZE - 1);                                                 \
-   }                                                                   \
-   else if (wrapMode == GL_CLAMP_TO_EDGE) {                            \
-      /* s limited to [min,max] */                                     \
-      /* i limited to [0, size-1] */                                   \
-      const GLfloat min = 1.0F / (2.0F * SIZE);                                \
-      const GLfloat max = 1.0F - min;                                  \
-      if (S < min)                                                     \
-         I = 0;                                                                \
-      else if (S > max)                                                        \
-         I = SIZE - 1;                                                 \
-      else                                                             \
-         I = IFLOOR(S * SIZE);                                         \
-   }                                                                   \
-   else if (wrapMode == GL_CLAMP_TO_BORDER_ARB) {                      \
-      /* s limited to [min,max] */                                     \
-      /* i limited to [-1, size] */                                    \
-      const GLfloat min = -1.0F / (2.0F * SIZE);                       \
-      const GLfloat max = 1.0F - min;                                  \
-      if (S <= min)                                                    \
-         I = -1;                                                       \
-      else if (S >= max)                                               \
-         I = SIZE;                                                     \
-      else                                                             \
-         I = IFLOOR(S * SIZE);                                         \
-   }                                                                   \
-   else if (wrapMode == GL_MIRRORED_REPEAT_ARB) {                      \
-      const GLfloat min = 1.0F / (2.0F * SIZE);                                \
-      const GLfloat max = 1.0F - min;                                  \
-      const GLint flr = IFLOOR(S);                                     \
-      GLfloat u;                                                       \
-      if (flr & 1)                                                     \
-         u = 1.0F - (S - (GLfloat) flr);       /* flr is odd */        \
-      else                                                             \
-         u = S - (GLfloat) flr;                /* flr is even */               \
-      if (u < min)                                                     \
-         I = 0;                                                                \
-      else if (u > max)                                                        \
-         I = SIZE - 1;                                                 \
-      else                                                             \
-         I = IFLOOR(u * SIZE);                                         \
-   }                                                                   \
-   else if (wrapMode == GL_MIRROR_CLAMP_ATI) {                         \
-      /* s limited to [0,1] */                                         \
-      /* i limited to [0,size-1] */                                    \
-      const GLfloat u = fabs(S);                                       \
-      if (u <= 0.0F)                                                   \
-         I = 0;                                                                \
-      else if (u >= 1.0F)                                              \
-         I = SIZE - 1;                                                 \
-      else                                                             \
-         I = IFLOOR(u * SIZE);                                         \
-   }                                                                   \
-   else if (wrapMode == GL_MIRROR_CLAMP_TO_EDGE_ATI) {                 \
-      /* s limited to [min,max] */                                     \
-      /* i limited to [0, size-1] */                                   \
-      const GLfloat min = 1.0F / (2.0F * SIZE);                                \
-      const GLfloat max = 1.0F - min;                                  \
-      const GLfloat u = fabs(S);                                       \
-      if (u < min)                                                     \
-         I = 0;                                                                \
-      else if (u > max)                                                        \
-         I = SIZE - 1;                                                 \
-      else                                                             \
-         I = IFLOOR(u * SIZE);                                         \
-   }                                                                   \
-   else {                                                              \
-      ASSERT(wrapMode == GL_CLAMP);                                    \
-      /* s limited to [0,1] */                                         \
-      /* i limited to [0,size-1] */                                    \
-      if (S <= 0.0F)                                                   \
-         I = 0;                                                                \
-      else if (S >= 1.0F)                                              \
-         I = SIZE - 1;                                                 \
-      else                                                             \
-         I = IFLOOR(S * SIZE);                                         \
-   }                                                                   \
-}
 
 
-#define COMPUTE_LINEAR_REPEAT_TEXEL_LOCATION(S, U, SIZE, I0, I1)       \
-{                                                                      \
-   U = S * SIZE - 0.5F;                                                        \
-   I0 = IFLOOR(U) & (SIZE - 1);                                                \
-   I1 = (I0 + 1) & (SIZE - 1);                                         \
-}
+#include "main/context.h"
+#include "main/fbobject.h"
+#include "main/teximage.h"
+#include "main/texobj.h"
+#include "util/u_memory.h"
+#include "swrast/swrast.h"
+#include "swrast/s_context.h"
 
 
-/*
- * Compute linear mipmap levels for given lambda.
+/**
+ * Allocate a new swrast_texture_image (a subclass of gl_texture_image).
+ * Called via ctx->Driver.NewTextureImage().
  */
-#define COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda, level)       \
-{                                                              \
-   if (lambda < 0.0F)                                          \
-      level = tObj->BaseLevel;                                 \
-   else if (lambda > tObj->_MaxLambda)                         \
-      level = (GLint) (tObj->BaseLevel + tObj->_MaxLambda);    \
-   else                                                                \
-      level = (GLint) (tObj->BaseLevel + lambda);              \
+struct gl_texture_image *
+_swrast_new_texture_image( struct gl_context *ctx )
+{
+   (void) ctx;
+   return (struct gl_texture_image *) CALLOC_STRUCT(swrast_texture_image);
 }
 
 
-/*
- * Compute nearest mipmap level for given lambda.
+/**
+ * Free a swrast_texture_image (a subclass of gl_texture_image).
+ * Called via ctx->Driver.DeleteTextureImage().
  */
-#define COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda, level)      \
-{                                                              \
-   GLfloat l;                                                  \
-   if (lambda <= 0.5F)                                         \
-      l = 0.0F;                                                        \
-   else if (lambda > tObj->_MaxLambda + 0.4999F)               \
-      l = tObj->_MaxLambda + 0.4999F;                          \
-   else                                                                \
-      l = lambda;                                              \
-   level = (GLint) (tObj->BaseLevel + l + 0.5F);               \
-   if (level > tObj->_MaxLevel)                                        \
-      level = tObj->_MaxLevel;                                 \
+void
+_swrast_delete_texture_image(struct gl_context *ctx,
+                             struct gl_texture_image *texImage)
+{
+   /* Nothing special for the subclass yet */
+   _mesa_delete_texture_image(ctx, texImage);
 }
 
-
-
-/*
- * Note, the FRAC macro has to work perfectly.  Otherwise you'll sometimes
- * see 1-pixel bands of improperly weighted linear-sampled texels.  The
- * tests/texwrap.c demo is a good test.
- * Also note, FRAC(x) doesn't truly return the fractional part of x for x < 0.
- * Instead, if x < 0 then FRAC(x) = 1 - true_frac(x).
- */
-#define FRAC(f)  ((f) - IFLOOR(f))
-
-
-
-/*
- * Bitflags for texture border color sampling.
- */
-#define I0BIT   1
-#define I1BIT   2
-#define J0BIT   4
-#define J1BIT   8
-#define K0BIT  16
-#define K1BIT  32
-
-
-
-/*
- * Get texture palette entry.
- */
-static void
-palette_sample(const GLcontext *ctx,
-               const struct gl_texture_object *tObj,
-               GLint index, GLchan rgba[4] )
+static unsigned int
+texture_slices(const struct gl_texture_image *texImage)
 {
-   const GLchan *palette;
-   GLenum format;
-
-   if (ctx->Texture.SharedPalette) {
-      ASSERT(!ctx->Texture.Palette.FloatTable);
-      palette = (const GLchan *) ctx->Texture.Palette.Table;
-      format = ctx->Texture.Palette.Format;
-   }
-   else {
-      ASSERT(!tObj->Palette.FloatTable);
-      palette = (const GLchan *) tObj->Palette.Table;
-      format = tObj->Palette.Format;
-   }
-
-   switch (format) {
-      case GL_ALPHA:
-         rgba[ACOMP] = palette[index];
-         return;
-      case GL_LUMINANCE:
-      case GL_INTENSITY:
-         rgba[RCOMP] = palette[index];
-         return;
-      case GL_LUMINANCE_ALPHA:
-         rgba[RCOMP] = palette[(index << 1) + 0];
-         rgba[ACOMP] = palette[(index << 1) + 1];
-         return;
-      case GL_RGB:
-         rgba[RCOMP] = palette[index * 3 + 0];
-         rgba[GCOMP] = palette[index * 3 + 1];
-         rgba[BCOMP] = palette[index * 3 + 2];
-         return;
-      case GL_RGBA:
-         rgba[RCOMP] = palette[(index << 2) + 0];
-         rgba[GCOMP] = palette[(index << 2) + 1];
-         rgba[BCOMP] = palette[(index << 2) + 2];
-         rgba[ACOMP] = palette[(index << 2) + 3];
-         return;
-      default:
-         _mesa_problem(ctx, "Bad palette format in palette_sample");
-   }
+   if (texImage->TexObject->Target == GL_TEXTURE_1D_ARRAY)
+      return texImage->Height;
+   else
+      return texImage->Depth;
 }
 
-
-/*
- * The lambda[] array values are always monotonic.  Either the whole span
- * will be minified, magnified, or split between the two.  This function
- * determines the subranges in [0, n-1] that are to be minified or magnified.
- */
-static INLINE void
-compute_min_mag_ranges( GLfloat minMagThresh, GLuint n, const GLfloat lambda[],
-                        GLuint *minStart, GLuint *minEnd,
-                        GLuint *magStart, GLuint *magEnd )
+unsigned int
+_swrast_teximage_slice_height(struct gl_texture_image *texImage)
 {
-   ASSERT(lambda != NULL);
-#if 0
-   /* Verify that lambda[] is monotonous.
-    * We can't really use this because the inaccuracy in the LOG2 function
-    * causes this test to fail, yet the resulting texturing is correct.
-    */
-   if (n > 1) {
-      GLuint i;
-      printf("lambda delta = %g\n", lambda[0] - lambda[n-1]);
-      if (lambda[0] >= lambda[n-1]) { /* decreasing */
-         for (i = 0; i < n - 1; i++) {
-            ASSERT((GLint) (lambda[i] * 10) >= (GLint) (lambda[i+1] * 10));
-         }
-      }
-      else { /* increasing */
-         for (i = 0; i < n - 1; i++) {
-            ASSERT((GLint) (lambda[i] * 10) <= (GLint) (lambda[i+1] * 10));
-         }
-      }
-   }
-#endif /* DEBUG */
-
-   /* since lambda is monotonous-array use this check first */
-   if (lambda[0] <= minMagThresh && lambda[n-1] <= minMagThresh) {
-      /* magnification for whole span */
-      *magStart = 0;
-      *magEnd = n;
-      *minStart = *minEnd = 0;
-   }
-   else if (lambda[0] > minMagThresh && lambda[n-1] > minMagThresh) {
-      /* minification for whole span */
-      *minStart = 0;
-      *minEnd = n;
-      *magStart = *magEnd = 0;
-   }
-   else {
-      /* a mix of minification and magnification */
-      GLuint i;
-      if (lambda[0] > minMagThresh) {
-         /* start with minification */
-         for (i = 1; i < n; i++) {
-            if (lambda[i] <= minMagThresh)
-               break;
-         }
-         *minStart = 0;
-         *minEnd = i;
-         *magStart = i;
-         *magEnd = n;
-      }
-      else {
-         /* start with magnification */
-         for (i = 1; i < n; i++) {
-            if (lambda[i] > minMagThresh)
-               break;
-         }
-         *magStart = 0;
-         *magEnd = i;
-         *minStart = i;
-         *minEnd = n;
-      }
-   }
-
-#if 0
-   /* Verify the min/mag Start/End values
-    * We don't use this either (see above)
+   /* For 1D array textures, the slices are all 1 pixel high, and Height is
+    * the number of slices.
     */
-   {
-      GLint i;
-      for (i = 0; i < n; i++) {
-         if (lambda[i] > minMagThresh) {
-            /* minification */
-            ASSERT(i >= *minStart);
-            ASSERT(i < *minEnd);
-         }
-         else {
-            /* magnification */
-            ASSERT(i >= *magStart);
-            ASSERT(i < *magEnd);
-         }
-      }
-   }
-#endif
+   if (texImage->TexObject->Target == GL_TEXTURE_1D_ARRAY)
+      return 1;
+   else
+      return texImage->Height;
 }
 
-
-/**********************************************************************/
-/*                    1-D Texture Sampling Functions                  */
-/**********************************************************************/
-
-/*
- * Return the texture sample for coordinate (s) using GL_NEAREST filter.
+/**
+ * Called via ctx->Driver.AllocTextureImageBuffer()
  */
-static void
-sample_1d_nearest(GLcontext *ctx,
-                  const struct gl_texture_object *tObj,
-                  const struct gl_texture_image *img,
-                  const GLfloat texcoord[4], GLchan rgba[4])
+GLboolean
+_swrast_alloc_texture_image_buffer(struct gl_context *ctx,
+                                   struct gl_texture_image *texImage)
 {
-   const GLint width = img->Width2;  /* without border, power of two */
-   GLint i;
+   struct swrast_texture_image *swImg = swrast_texture_image(texImage);
+   GLuint bytesPerSlice;
+   GLuint slices = texture_slices(texImage);
+   GLuint i;
 
-   COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapS, texcoord[0], width, i);
+   if (!_swrast_init_texture_image(texImage))
+      return GL_FALSE;
 
-   /* skip over the border, if any */
-   i += img->Border;
+   bytesPerSlice = _mesa_format_image_size(texImage->TexFormat, texImage->Width,
+                                           _swrast_teximage_slice_height(texImage), 1);
 
-   if (i < 0 || i >= (GLint) img->Width) {
-      /* Need this test for GL_CLAMP_TO_BORDER_ARB mode */
-      COPY_CHAN4(rgba, tObj->_BorderChan);
-   }
-   else {
-      (*img->FetchTexel)(img, i, 0, 0, (GLvoid *) rgba);
-      if (img->Format == GL_COLOR_INDEX) {
-         palette_sample(ctx, tObj, rgba[0], rgba);
-      }
+   assert(!swImg->Buffer);
+   swImg->Buffer = _mesa_align_malloc(bytesPerSlice * slices, 512);
+   if (!swImg->Buffer)
+      return GL_FALSE;
+
+   /* RowStride and ImageSlices[] describe how to address texels in 'Data' */
+   swImg->RowStride = _mesa_format_row_stride(texImage->TexFormat,
+                                              texImage->Width);
+
+   for (i = 0; i < slices; i++) {
+      swImg->ImageSlices[i] = swImg->Buffer + bytesPerSlice * i;
    }
-}
 
+   return GL_TRUE;
+}
 
 
-/*
- * Return the texture sample for coordinate (s) using GL_LINEAR filter.
+/**
+ * Code that overrides ctx->Driver.AllocTextureImageBuffer may use this to
+ * initialize the fields of swrast_texture_image without allocating the image
+ * buffer or initializing RowStride or the contents of ImageSlices.
+ *
+ * Returns GL_TRUE on success, GL_FALSE on memory allocation failure.
  */
-static void
-sample_1d_linear(GLcontext *ctx,
-                 const struct gl_texture_object *tObj,
-                 const struct gl_texture_image *img,
-                 const GLfloat texcoord[4], GLchan rgba[4])
+GLboolean
+_swrast_init_texture_image(struct gl_texture_image *texImage)
 {
-   const GLint width = img->Width2;
-   GLint i0, i1;
-   GLfloat u;
-   GLuint useBorderColor;
+   struct swrast_texture_image *swImg = swrast_texture_image(texImage);
 
-   COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapS, texcoord[0], u, width, i0, i1);
+   if ((texImage->Width == 1 || util_is_power_of_two_or_zero(texImage->Width2)) &&
+       (texImage->Height == 1 || util_is_power_of_two_or_zero(texImage->Height2)) &&
+       (texImage->Depth == 1 || util_is_power_of_two_or_zero(texImage->Depth2)))
+      swImg->_IsPowerOfTwo = GL_TRUE;
+   else
+      swImg->_IsPowerOfTwo = GL_FALSE;
 
-   useBorderColor = 0;
-   if (img->Border) {
-      i0 += img->Border;
-      i1 += img->Border;
+   /* Compute Width/Height/DepthScale for mipmap lod computation */
+   if (texImage->TexObject->Target == GL_TEXTURE_RECTANGLE_NV) {
+      /* scale = 1.0 since texture coords directly map to texels */
+      swImg->WidthScale = 1.0;
+      swImg->HeightScale = 1.0;
+      swImg->DepthScale = 1.0;
    }
    else {
-      if (i0 < 0 || i0 >= width)   useBorderColor |= I0BIT;
-      if (i1 < 0 || i1 >= width)   useBorderColor |= I1BIT;
-   }
-
-   {
-      const GLfloat a = FRAC(u);
-
-#if CHAN_TYPE == GL_FLOAT || CHAN_TYPE == GL_UNSIGNED_SHORT
-      const GLfloat w0 = (1.0F-a);
-      const GLfloat w1 =       a ;
-#else /* CHAN_BITS == 8 */
-      /* compute sample weights in fixed point in [0,WEIGHT_SCALE] */
-      const GLint w0 = IROUND_POS((1.0F - a) * WEIGHT_SCALE);
-      const GLint w1 = IROUND_POS(        a  * WEIGHT_SCALE);
-#endif
-      GLchan t0[4], t1[4];  /* texels */
-
-      if (useBorderColor & I0BIT) {
-         COPY_CHAN4(t0, tObj->_BorderChan);
-      }
-      else {
-         (*img->FetchTexel)(img, i0, 0, 0, (GLvoid *) t0);
-         if (img->Format == GL_COLOR_INDEX) {
-            palette_sample(ctx, tObj, t0[0], t0);
-         }
-      }
-      if (useBorderColor & I1BIT) {
-         COPY_CHAN4(t1, tObj->_BorderChan);
-      }
-      else {
-         (*img->FetchTexel)(img, i1, 0, 0, (GLvoid *) t1);
-         if (img->Format == GL_COLOR_INDEX) {
-            palette_sample(ctx, tObj, t1[0], t1);
-         }
-      }
-
-#if CHAN_TYPE == GL_FLOAT
-      rgba[0] = w0 * t0[0] + w1 * t1[0];
-      rgba[1] = w0 * t0[1] + w1 * t1[1];
-      rgba[2] = w0 * t0[2] + w1 * t1[2];
-      rgba[3] = w0 * t0[3] + w1 * t1[3];
-#elif CHAN_TYPE == GL_UNSIGNED_SHORT
-      rgba[0] = (GLchan) (w0 * t0[0] + w1 * t1[0] + 0.5);
-      rgba[1] = (GLchan) (w0 * t0[1] + w1 * t1[1] + 0.5);
-      rgba[2] = (GLchan) (w0 * t0[2] + w1 * t1[2] + 0.5);
-      rgba[3] = (GLchan) (w0 * t0[3] + w1 * t1[3] + 0.5);
-#else /* CHAN_BITS == 8 */
-      rgba[0] = (GLchan) ((w0 * t0[0] + w1 * t1[0]) >> WEIGHT_SHIFT);
-      rgba[1] = (GLchan) ((w0 * t0[1] + w1 * t1[1]) >> WEIGHT_SHIFT);
-      rgba[2] = (GLchan) ((w0 * t0[2] + w1 * t1[2]) >> WEIGHT_SHIFT);
-      rgba[3] = (GLchan) ((w0 * t0[3] + w1 * t1[3]) >> WEIGHT_SHIFT);
-#endif
-
-   }
-}
-
-
-static void
-sample_1d_nearest_mipmap_nearest(GLcontext *ctx,
-                                 const struct gl_texture_object *tObj,
-                                 GLuint n, GLfloat texcoord[][4],
-                                 const GLfloat lambda[], GLchan rgba[][4])
-{
-   GLuint i;
-   ASSERT(lambda != NULL);
-   for (i = 0; i < n; i++) {
-      GLint level;
-      COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda[i], level);
-      sample_1d_nearest(ctx, tObj, tObj->Image[level], texcoord[i], rgba[i]);
+      swImg->WidthScale = (GLfloat) texImage->Width;
+      swImg->HeightScale = (GLfloat) texImage->Height;
+      swImg->DepthScale = (GLfloat) texImage->Depth;
    }
-}
 
+   assert(!swImg->ImageSlices);
+   swImg->ImageSlices = calloc(texture_slices(texImage), sizeof(void *));
+   if (!swImg->ImageSlices)
+      return GL_FALSE;
 
-static void
-sample_1d_linear_mipmap_nearest(GLcontext *ctx,
-                                const struct gl_texture_object *tObj,
-                                GLuint n, GLfloat texcoord[][4],
-                                const GLfloat lambda[], GLchan rgba[][4])
-{
-   GLuint i;
-   ASSERT(lambda != NULL);
-   for (i = 0; i < n; i++) {
-      GLint level;
-      COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda[i], level);
-      sample_1d_linear(ctx, tObj, tObj->Image[level], texcoord[i], rgba[i]);
-   }
+   return GL_TRUE;
 }
 
 
-
-/*
- * This is really just needed in order to prevent warnings with some compilers.
+/**
+ * Called via ctx->Driver.FreeTextureImageBuffer()
  */
-#if CHAN_TYPE == GL_FLOAT
-#define CHAN_CAST
-#else
-#define CHAN_CAST (GLchan) (GLint)
-#endif
-
-
-static void
-sample_1d_nearest_mipmap_linear(GLcontext *ctx,
-                                const struct gl_texture_object *tObj,
-                                GLuint n, GLfloat texcoord[][4],
-                                const GLfloat lambda[], GLchan rgba[][4])
+void
+_swrast_free_texture_image_buffer(struct gl_context *ctx,
+                                  struct gl_texture_image *texImage)
 {
-   GLuint i;
-   ASSERT(lambda != NULL);
-   for (i = 0; i < n; i++) {
-      GLint level;
-      COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda[i], level);
-      if (level >= tObj->_MaxLevel) {
-         sample_1d_nearest(ctx, tObj, tObj->Image[tObj->_MaxLevel],
-                           texcoord[i], rgba[i]);
-      }
-      else {
-         GLchan t0[4], t1[4];
-         const GLfloat f = FRAC(lambda[i]);
-         sample_1d_nearest(ctx, tObj, tObj->Image[level  ], texcoord[i], t0);
-         sample_1d_nearest(ctx, tObj, tObj->Image[level+1], texcoord[i], t1);
-         rgba[i][RCOMP] = CHAN_CAST ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]);
-         rgba[i][GCOMP] = CHAN_CAST ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]);
-         rgba[i][BCOMP] = CHAN_CAST ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]);
-         rgba[i][ACOMP] = CHAN_CAST ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]);
-      }
-   }
-}
-
+   struct swrast_texture_image *swImage = swrast_texture_image(texImage);
 
+   _mesa_align_free(swImage->Buffer);
+   swImage->Buffer = NULL;
 
-static void
-sample_1d_linear_mipmap_linear(GLcontext *ctx,
-                               const struct gl_texture_object *tObj,
-                               GLuint n, GLfloat texcoord[][4],
-                               const GLfloat lambda[], GLchan rgba[][4])
-{
-   GLuint i;
-   ASSERT(lambda != NULL);
-   for (i = 0; i < n; i++) {
-      GLint level;
-      COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda[i], level);
-      if (level >= tObj->_MaxLevel) {
-         sample_1d_linear(ctx, tObj, tObj->Image[tObj->_MaxLevel],
-                          texcoord[i], rgba[i]);
-      }
-      else {
-         GLchan t0[4], t1[4];
-         const GLfloat f = FRAC(lambda[i]);
-         sample_1d_linear(ctx, tObj, tObj->Image[level  ], texcoord[i], t0);
-         sample_1d_linear(ctx, tObj, tObj->Image[level+1], texcoord[i], t1);
-         rgba[i][RCOMP] = CHAN_CAST ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]);
-         rgba[i][GCOMP] = CHAN_CAST ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]);
-         rgba[i][BCOMP] = CHAN_CAST ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]);
-         rgba[i][ACOMP] = CHAN_CAST ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]);
-      }
-   }
+   free(swImage->ImageSlices);
+   swImage->ImageSlices = NULL;
 }
 
 
-
+/**
+ * Error checking for debugging only.
+ */
 static void
-sample_nearest_1d( GLcontext *ctx, GLuint texUnit,
-                   const struct gl_texture_object *tObj, GLuint n,
-                   GLfloat texcoords[][4], const GLfloat lambda[],
-                   GLchan rgba[][4] )
+check_map_teximage(const struct gl_texture_image *texImage,
+                   GLuint slice, GLuint x, GLuint y, GLuint w, GLuint h)
 {
-   GLuint i;
-   struct gl_texture_image *image = tObj->Image[tObj->BaseLevel];
-   (void) lambda;
-   for (i=0;i<n;i++) {
-      sample_1d_nearest(ctx, tObj, image, texcoords[i], rgba[i]);
-   }
-}
 
+   if (texImage->TexObject->Target == GL_TEXTURE_1D)
+      assert(y == 0 && h == 1);
 
-
-static void
-sample_linear_1d( GLcontext *ctx, GLuint texUnit,
-                  const struct gl_texture_object *tObj, GLuint n,
-                  GLfloat texcoords[][4], const GLfloat lambda[],
-                  GLchan rgba[][4] )
-{
-   GLuint i;
-   struct gl_texture_image *image = tObj->Image[tObj->BaseLevel];
-   (void) lambda;
-   for (i=0;i<n;i++) {
-      sample_1d_linear(ctx, tObj, image, texcoords[i], rgba[i]);
-   }
+   assert(x < texImage->Width || texImage->Width == 0);
+   assert(y < texImage->Height || texImage->Height == 0);
+   assert(x + w <= texImage->Width);
+   assert(y + h <= texImage->Height);
+   assert(slice < texture_slices(texImage));
 }
 
-
-/*
- * Given an (s) texture coordinate and lambda (level of detail) value,
- * return a texture sample.
+/**
+ * Map a 2D slice of a texture image into user space.
+ * (x,y,w,h) defines a region of interest (ROI).  Reading/writing texels
+ * outside of the ROI is undefined.
  *
+ * \param texImage  the texture image
+ * \param slice  the 3D image slice or array texture slice
+ * \param x, y, w, h  region of interest
+ * \param mode  bitmask of GL_MAP_READ_BIT, GL_MAP_WRITE_BIT
+ * \param mapOut  returns start of mapping of region of interest
+ * \param rowStrideOut  returns row stride (in bytes)
  */
-static void
-sample_lambda_1d( GLcontext *ctx, GLuint texUnit,
-                  const struct gl_texture_object *tObj, GLuint n,
-                  GLfloat texcoords[][4],
-                  const GLfloat lambda[], GLchan rgba[][4] )
-{
-   GLuint minStart, minEnd;  /* texels with minification */
-   GLuint magStart, magEnd;  /* texels with magnification */
-   GLuint i;
-
-   ASSERT(lambda != NULL);
-   compute_min_mag_ranges(SWRAST_CONTEXT(ctx)->_MinMagThresh[texUnit],
-                          n, lambda, &minStart, &minEnd, &magStart, &magEnd);
-
-   if (minStart < minEnd) {
-      /* do the minified texels */
-      const GLuint m = minEnd - minStart;
-      switch (tObj->MinFilter) {
-      case GL_NEAREST:
-         for (i = minStart; i < minEnd; i++)
-            sample_1d_nearest(ctx, tObj, tObj->Image[tObj->BaseLevel],
-                              texcoords[i], rgba[i]);
-         break;
-      case GL_LINEAR:
-         for (i = minStart; i < minEnd; i++)
-            sample_1d_linear(ctx, tObj, tObj->Image[tObj->BaseLevel],
-                             texcoords[i], rgba[i]);
-         break;
-      case GL_NEAREST_MIPMAP_NEAREST:
-         sample_1d_nearest_mipmap_nearest(ctx, tObj, m, texcoords + minStart,
-                                          lambda + minStart, rgba + minStart);
-         break;
-      case GL_LINEAR_MIPMAP_NEAREST:
-         sample_1d_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart,
-                                         lambda + minStart, rgba + minStart);
-         break;
-      case GL_NEAREST_MIPMAP_LINEAR:
-         sample_1d_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart,
-                                         lambda + minStart, rgba + minStart);
-         break;
-      case GL_LINEAR_MIPMAP_LINEAR:
-         sample_1d_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart,
-                                        lambda + minStart, rgba + minStart);
-         break;
-      default:
-         _mesa_problem(ctx, "Bad min filter in sample_1d_texture");
-         return;
-      }
-   }
-
-   if (magStart < magEnd) {
-      /* do the magnified texels */
-      switch (tObj->MagFilter) {
-      case GL_NEAREST:
-         for (i = magStart; i < magEnd; i++)
-            sample_1d_nearest(ctx, tObj, tObj->Image[tObj->BaseLevel],
-                              texcoords[i], rgba[i]);
-         break;
-      case GL_LINEAR:
-         for (i = magStart; i < magEnd; i++)
-            sample_1d_linear(ctx, tObj, tObj->Image[tObj->BaseLevel],
-                             texcoords[i], rgba[i]);
-         break;
-      default:
-         _mesa_problem(ctx, "Bad mag filter in sample_1d_texture");
-         return;
-      }
+void
+_swrast_map_teximage(struct gl_context *ctx,
+                     struct gl_texture_image *texImage,
+                     GLuint slice,
+                     GLuint x, GLuint y, GLuint w, GLuint h,
+                     GLbitfield mode,
+                     GLubyte **mapOut,
+                     GLint *rowStrideOut)
+{
+   struct swrast_texture_image *swImage = swrast_texture_image(texImage);
+   GLubyte *map;
+   GLint stride, texelSize;
+   GLuint bw, bh;
+
+   check_map_teximage(texImage, slice, x, y, w, h);
+
+   if (!swImage->Buffer) {
+      /* Either glTexImage was called with a NULL <pixels> argument or
+       * we ran out of memory when allocating texture memory,
+       */
+      *mapOut = NULL;
+      *rowStrideOut = 0;
+      return;
    }
-}
-
 
-/**********************************************************************/
-/*                    2-D Texture Sampling Functions                  */
-/**********************************************************************/
+   texelSize = _mesa_get_format_bytes(texImage->TexFormat);
+   stride = _mesa_format_row_stride(texImage->TexFormat, texImage->Width);
+   _mesa_get_format_block_size(texImage->TexFormat, &bw, &bh);
 
+   assert(x % bw == 0);
+   assert(y % bh == 0);
 
-/*
- * Return the texture sample for coordinate (s,t) using GL_NEAREST filter.
- */
-static INLINE void
-sample_2d_nearest(GLcontext *ctx,
-                  const struct gl_texture_object *tObj,
-                  const struct gl_texture_image *img,
-                  const GLfloat texcoord[4],
-                  GLchan rgba[])
-{
-   const GLint width = img->Width2;    /* without border, power of two */
-   const GLint height = img->Height2;  /* without border, power of two */
-   GLint i, j;
+   /* This function can only be used with a swrast-allocated buffer, in which
+    * case ImageSlices is populated with pointers into Buffer.
+    */
+   assert(swImage->Buffer);
+   assert(swImage->Buffer == swImage->ImageSlices[0]);
 
-   COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapS, texcoord[0], width,  i);
-   COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapT, texcoord[1], height, j);
+   map = swImage->ImageSlices[slice];
 
-   /* skip over the border, if any */
-   i += img->Border;
-   j += img->Border;
+   /* apply x/y offset to map address */
+   map += stride * (y / bh) + texelSize * (x / bw);
 
-   if (i < 0 || i >= (GLint) img->Width || j < 0 || j >= (GLint) img->Height) {
-      /* Need this test for GL_CLAMP_TO_BORDER_ARB mode */
-      COPY_CHAN4(rgba, tObj->_BorderChan);
-   }
-   else {
-      (*img->FetchTexel)(img, i, j, 0, (GLvoid *) rgba);
-      if (img->Format == GL_COLOR_INDEX) {
-         palette_sample(ctx, tObj, rgba[0], rgba);
-      }
-   }
+   *mapOut = map;
+   *rowStrideOut = stride;
 }
 
-
-
-/*
- * Return the texture sample for coordinate (s,t) using GL_LINEAR filter.
- * New sampling code contributed by Lynn Quam <quam@ai.sri.com>.
- */
-static INLINE void
-sample_2d_linear(GLcontext *ctx,
-                 const struct gl_texture_object *tObj,
-                 const struct gl_texture_image *img,
-                 const GLfloat texcoord[4],
-                 GLchan rgba[])
+void
+_swrast_unmap_teximage(struct gl_context *ctx,
+                       struct gl_texture_image *texImage,
+                       GLuint slice)
 {
-   const GLint width = img->Width2;
-   const GLint height = img->Height2;
-   GLint i0, j0, i1, j1;
-   GLuint useBorderColor;
-   GLfloat u, v;
-
-   COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapS, texcoord[0], u, width,  i0, i1);
-   COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapT, texcoord[1], v, height, j0, j1);
-
-   useBorderColor = 0;
-   if (img->Border) {
-      i0 += img->Border;
-      i1 += img->Border;
-      j0 += img->Border;
-      j1 += img->Border;
-   }
-   else {
-      if (i0 < 0 || i0 >= width)   useBorderColor |= I0BIT;
-      if (i1 < 0 || i1 >= width)   useBorderColor |= I1BIT;
-      if (j0 < 0 || j0 >= height)  useBorderColor |= J0BIT;
-      if (j1 < 0 || j1 >= height)  useBorderColor |= J1BIT;
-   }
-
-   {
-      const GLfloat a = FRAC(u);
-      const GLfloat b = FRAC(v);
-
-#if CHAN_TYPE == GL_FLOAT || CHAN_TYPE == GL_UNSIGNED_SHORT
-      const GLfloat w00 = (1.0F-a) * (1.0F-b);
-      const GLfloat w10 =       a  * (1.0F-b);
-      const GLfloat w01 = (1.0F-a) *       b ;
-      const GLfloat w11 =       a  *       b ;
-#else /* CHAN_BITS == 8 */
-      /* compute sample weights in fixed point in [0,WEIGHT_SCALE] */
-      const GLint w00 = IROUND_POS((1.0F-a) * (1.0F-b) * WEIGHT_SCALE);
-      const GLint w10 = IROUND_POS(      a  * (1.0F-b) * WEIGHT_SCALE);
-      const GLint w01 = IROUND_POS((1.0F-a) *       b  * WEIGHT_SCALE);
-      const GLint w11 = IROUND_POS(      a  *       b  * WEIGHT_SCALE);
-#endif
-      GLchan t00[4];
-      GLchan t10[4];
-      GLchan t01[4];
-      GLchan t11[4];
-
-      if (useBorderColor & (I0BIT | J0BIT)) {
-         COPY_CHAN4(t00, tObj->_BorderChan);
-      }
-      else {
-         (*img->FetchTexel)(img, i0, j0, 0, (GLvoid *) t00);
-         if (img->Format == GL_COLOR_INDEX) {
-            palette_sample(ctx, tObj, t00[0], t00);
-         }
-      }
-      if (useBorderColor & (I1BIT | J0BIT)) {
-         COPY_CHAN4(t10, tObj->_BorderChan);
-      }
-      else {
-         (*img->FetchTexel)(img, i1, j0, 0, (GLvoid *) t10);
-         if (img->Format == GL_COLOR_INDEX) {
-            palette_sample(ctx, tObj, t10[0], t10);
-         }
-      }
-      if (useBorderColor & (I0BIT | J1BIT)) {
-         COPY_CHAN4(t01, tObj->_BorderChan);
-      }
-      else {
-         (*img->FetchTexel)(img, i0, j1, 0, (GLvoid *) t01);
-         if (img->Format == GL_COLOR_INDEX) {
-            palette_sample(ctx, tObj, t01[0], t01);
-         }
-      }
-      if (useBorderColor & (I1BIT | J1BIT)) {
-         COPY_CHAN4(t11, tObj->_BorderChan);
-      }
-      else {
-         (*img->FetchTexel)(img, i1, j1, 0, (GLvoid *) t11);
-         if (img->Format == GL_COLOR_INDEX) {
-            palette_sample(ctx, tObj, t11[0], t11);
-         }
-      }
-#if CHAN_TYPE == GL_FLOAT
-      rgba[0] = w00 * t00[0] + w10 * t10[0] + w01 * t01[0] + w11 * t11[0];
-      rgba[1] = w00 * t00[1] + w10 * t10[1] + w01 * t01[1] + w11 * t11[1];
-      rgba[2] = w00 * t00[2] + w10 * t10[2] + w01 * t01[2] + w11 * t11[2];
-      rgba[3] = w00 * t00[3] + w10 * t10[3] + w01 * t01[3] + w11 * t11[3];
-#elif CHAN_TYPE == GL_UNSIGNED_SHORT
-      rgba[0] = (GLchan) (w00 * t00[0] + w10 * t10[0] +
-                          w01 * t01[0] + w11 * t11[0] + 0.5);
-      rgba[1] = (GLchan) (w00 * t00[1] + w10 * t10[1] +
-                          w01 * t01[1] + w11 * t11[1] + 0.5);
-      rgba[2] = (GLchan) (w00 * t00[2] + w10 * t10[2] +
-                          w01 * t01[2] + w11 * t11[2] + 0.5);
-      rgba[3] = (GLchan) (w00 * t00[3] + w10 * t10[3] +
-                          w01 * t01[3] + w11 * t11[3] + 0.5);
-#else /* CHAN_BITS == 8 */
-      rgba[0] = (GLchan) ((w00 * t00[0] + w10 * t10[0] +
-                           w01 * t01[0] + w11 * t11[0]) >> WEIGHT_SHIFT);
-      rgba[1] = (GLchan) ((w00 * t00[1] + w10 * t10[1] +
-                           w01 * t01[1] + w11 * t11[1]) >> WEIGHT_SHIFT);
-      rgba[2] = (GLchan) ((w00 * t00[2] + w10 * t10[2] +
-                           w01 * t01[2] + w11 * t11[2]) >> WEIGHT_SHIFT);
-      rgba[3] = (GLchan) ((w00 * t00[3] + w10 * t10[3] +
-                           w01 * t01[3] + w11 * t11[3]) >> WEIGHT_SHIFT);
-#endif
-
-   }
-
+   /* nop */
 }
 
 
-/*
- * As above, but we know WRAP_S == REPEAT and WRAP_T == REPEAT
- * and we're not using a paletted texture.
- */
-static INLINE void
-sample_2d_linear_repeat(GLcontext *ctx,
-                        const struct gl_texture_object *tObj,
-                        const struct gl_texture_image *img,
-                        const GLfloat texcoord[4],
-                        GLchan rgba[])
+void
+_swrast_map_texture(struct gl_context *ctx, struct gl_texture_object *texObj)
 {
-   const GLint width = img->Width2;
-   const GLint height = img->Height2;
-   GLint i0, j0, i1, j1;
-   GLfloat u, v;
-
-   ASSERT(tObj->WrapS == GL_REPEAT);
-   ASSERT(tObj->WrapT == GL_REPEAT);
-   ASSERT(img->Border == 0);
-   ASSERT(img->Format != GL_COLOR_INDEX);
-
-   COMPUTE_LINEAR_REPEAT_TEXEL_LOCATION(texcoord[0], u, width,  i0, i1);
-   COMPUTE_LINEAR_REPEAT_TEXEL_LOCATION(texcoord[1], v, height, j0, j1);
-
-   {
-      const GLfloat a = FRAC(u);
-      const GLfloat b = FRAC(v);
-
-#if CHAN_TYPE == GL_FLOAT || CHAN_TYPE == GL_UNSIGNED_SHORT
-      const GLfloat w00 = (1.0F-a) * (1.0F-b);
-      const GLfloat w10 =       a  * (1.0F-b);
-      const GLfloat w01 = (1.0F-a) *       b ;
-      const GLfloat w11 =       a  *       b ;
-#else /* CHAN_BITS == 8 */
-      /* compute sample weights in fixed point in [0,WEIGHT_SCALE] */
-      const GLint w00 = IROUND_POS((1.0F-a) * (1.0F-b) * WEIGHT_SCALE);
-      const GLint w10 = IROUND_POS(      a  * (1.0F-b) * WEIGHT_SCALE);
-      const GLint w01 = IROUND_POS((1.0F-a) *       b  * WEIGHT_SCALE);
-      const GLint w11 = IROUND_POS(      a  *       b  * WEIGHT_SCALE);
-#endif
-      GLchan t00[4];
-      GLchan t10[4];
-      GLchan t01[4];
-      GLchan t11[4];
-
-      (*img->FetchTexel)(img, i0, j0, 0, (GLvoid *) t00);
-      (*img->FetchTexel)(img, i1, j0, 0, (GLvoid *) t10);
-      (*img->FetchTexel)(img, i0, j1, 0, (GLvoid *) t01);
-      (*img->FetchTexel)(img, i1, j1, 0, (GLvoid *) t11);
-
-#if CHAN_TYPE == GL_FLOAT
-      rgba[0] = w00 * t00[0] + w10 * t10[0] + w01 * t01[0] + w11 * t11[0];
-      rgba[1] = w00 * t00[1] + w10 * t10[1] + w01 * t01[1] + w11 * t11[1];
-      rgba[2] = w00 * t00[2] + w10 * t10[2] + w01 * t01[2] + w11 * t11[2];
-      rgba[3] = w00 * t00[3] + w10 * t10[3] + w01 * t01[3] + w11 * t11[3];
-#elif CHAN_TYPE == GL_UNSIGNED_SHORT
-      rgba[0] = (GLchan) (w00 * t00[0] + w10 * t10[0] +
-                          w01 * t01[0] + w11 * t11[0] + 0.5);
-      rgba[1] = (GLchan) (w00 * t00[1] + w10 * t10[1] +
-                          w01 * t01[1] + w11 * t11[1] + 0.5);
-      rgba[2] = (GLchan) (w00 * t00[2] + w10 * t10[2] +
-                          w01 * t01[2] + w11 * t11[2] + 0.5);
-      rgba[3] = (GLchan) (w00 * t00[3] + w10 * t10[3] +
-                          w01 * t01[3] + w11 * t11[3] + 0.5);
-#else /* CHAN_BITS == 8 */
-      rgba[0] = (GLchan) ((w00 * t00[0] + w10 * t10[0] +
-                           w01 * t01[0] + w11 * t11[0]) >> WEIGHT_SHIFT);
-      rgba[1] = (GLchan) ((w00 * t00[1] + w10 * t10[1] +
-                           w01 * t01[1] + w11 * t11[1]) >> WEIGHT_SHIFT);
-      rgba[2] = (GLchan) ((w00 * t00[2] + w10 * t10[2] +
-                           w01 * t01[2] + w11 * t11[2]) >> WEIGHT_SHIFT);
-      rgba[3] = (GLchan) ((w00 * t00[3] + w10 * t10[3] +
-                           w01 * t01[3] + w11 * t11[3]) >> WEIGHT_SHIFT);
-#endif
-
-   }
-
-}
+   const GLuint faces = _mesa_num_tex_faces(texObj->Target);
+   GLuint face, level;
 
+   for (face = 0; face < faces; face++) {
+      for (level = texObj->BaseLevel; level < MAX_TEXTURE_LEVELS; level++) {
+         struct gl_texture_image *texImage = texObj->Image[face][level];
+         struct swrast_texture_image *swImage = swrast_texture_image(texImage);
+         unsigned int i, slices;
 
+         if (!texImage)
+            continue;
 
-static void
-sample_2d_nearest_mipmap_nearest(GLcontext *ctx,
-                                 const struct gl_texture_object *tObj,
-                                 GLuint n, GLfloat texcoord[][4],
-                                 const GLfloat lambda[], GLchan rgba[][4])
-{
-   GLuint i;
-   for (i = 0; i < n; i++) {
-      GLint level;
-      COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda[i], level);
-      sample_2d_nearest(ctx, tObj, tObj->Image[level], texcoord[i], rgba[i]);
-   }
-}
+         /* In the case of a swrast-allocated texture buffer, the ImageSlices
+          * and RowStride are always available.
+          */
+         if (swImage->Buffer) {
+            assert(swImage->ImageSlices[0] == swImage->Buffer);
+            continue;
+         }
 
+         if (!swImage->ImageSlices) {
+            swImage->ImageSlices =
+               calloc(texture_slices(texImage), sizeof(void *));
+            if (!swImage->ImageSlices)
+               continue;
+         }
 
+         slices = texture_slices(texImage);
 
-static void
-sample_2d_linear_mipmap_nearest(GLcontext *ctx,
-                                const struct gl_texture_object *tObj,
-                                GLuint n, GLfloat texcoord[][4],
-                                const GLfloat lambda[], GLchan rgba[][4])
-{
-   GLuint i;
-   ASSERT(lambda != NULL);
-   for (i = 0; i < n; i++) {
-      GLint level;
-      COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda[i], level);
-      sample_2d_linear(ctx, tObj, tObj->Image[level], texcoord[i], rgba[i]);
-   }
-}
+         for (i = 0; i < slices; i++) {
+            GLubyte *map;
+            GLint rowStride;
 
+            if (swImage->ImageSlices[i])
+               continue;
 
+            ctx->Driver.MapTextureImage(ctx, texImage, i,
+                                        0, 0,
+                                        texImage->Width, texImage->Height,
+                                        GL_MAP_READ_BIT | GL_MAP_WRITE_BIT,
+                                        &map, &rowStride);
 
-static void
-sample_2d_nearest_mipmap_linear(GLcontext *ctx,
-                                const struct gl_texture_object *tObj,
-                                GLuint n, GLfloat texcoord[][4],
-                                const GLfloat lambda[], GLchan rgba[][4])
-{
-   GLuint i;
-   ASSERT(lambda != NULL);
-   for (i = 0; i < n; i++) {
-      GLint level;
-      COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda[i], level);
-      if (level >= tObj->_MaxLevel) {
-         sample_2d_nearest(ctx, tObj, tObj->Image[tObj->_MaxLevel],
-                           texcoord[i], rgba[i]);
-      }
-      else {
-         GLchan t0[4], t1[4];  /* texels */
-         const GLfloat f = FRAC(lambda[i]);
-         sample_2d_nearest(ctx, tObj, tObj->Image[level  ], texcoord[i], t0);
-         sample_2d_nearest(ctx, tObj, tObj->Image[level+1], texcoord[i], t1);
-         rgba[i][RCOMP] = CHAN_CAST ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]);
-         rgba[i][GCOMP] = CHAN_CAST ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]);
-         rgba[i][BCOMP] = CHAN_CAST ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]);
-         rgba[i][ACOMP] = CHAN_CAST ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]);
+            swImage->ImageSlices[i] = map;
+            /* A swrast-using driver has to return the same rowstride for
+             * every slice of the same texture, since we don't track them
+             * separately.
+             */
+            if (i == 0)
+               swImage->RowStride = rowStride;
+            else
+               assert(swImage->RowStride == rowStride);
+         }
       }
    }
 }
 
 
-
-/* Trilinear filtering */
-static void
-sample_2d_linear_mipmap_linear( GLcontext *ctx,
-                                const struct gl_texture_object *tObj,
-                                GLuint n, GLfloat texcoord[][4],
-                                const GLfloat lambda[], GLchan rgba[][4] )
+void
+_swrast_unmap_texture(struct gl_context *ctx, struct gl_texture_object *texObj)
 {
-   GLuint i;
-   ASSERT(lambda != NULL);
-   for (i = 0; i < n; i++) {
-      GLint level;
-      COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda[i], level);
-      if (level >= tObj->_MaxLevel) {
-         sample_2d_linear(ctx, tObj, tObj->Image[tObj->_MaxLevel],
-                          texcoord[i], rgba[i]);
-      }
-      else {
-         GLchan t0[4], t1[4];  /* texels */
-         const GLfloat f = FRAC(lambda[i]);
-         sample_2d_linear(ctx, tObj, tObj->Image[level  ], texcoord[i], t0);
-         sample_2d_linear(ctx, tObj, tObj->Image[level+1], texcoord[i], t1);
-         rgba[i][RCOMP] = CHAN_CAST ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]);
-         rgba[i][GCOMP] = CHAN_CAST ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]);
-         rgba[i][BCOMP] = CHAN_CAST ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]);
-         rgba[i][ACOMP] = CHAN_CAST ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]);
-      }
-   }
-}
-
+   const GLuint faces = _mesa_num_tex_faces(texObj->Target);
+   GLuint face, level;
 
-static void
-sample_2d_linear_mipmap_linear_repeat( GLcontext *ctx,
-                                       const struct gl_texture_object *tObj,
-                                       GLuint n, GLfloat texcoord[][4],
-                                       const GLfloat lambda[], GLchan rgba[][4] )
-{
-   GLuint i;
-   ASSERT(lambda != NULL);
-   ASSERT(tObj->WrapS == GL_REPEAT);
-   ASSERT(tObj->WrapT == GL_REPEAT);
-   for (i = 0; i < n; i++) {
-      GLint level;
-      COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda[i], level);
-      if (level >= tObj->_MaxLevel) {
-         sample_2d_linear_repeat(ctx, tObj, tObj->Image[tObj->_MaxLevel],
-                                 texcoord[i], rgba[i]);
-      }
-      else {
-         GLchan t0[4], t1[4];  /* texels */
-         const GLfloat f = FRAC(lambda[i]);
-         sample_2d_linear_repeat(ctx, tObj, tObj->Image[level  ], texcoord[i], t0);
-         sample_2d_linear_repeat(ctx, tObj, tObj->Image[level+1], texcoord[i], t1);
-         rgba[i][RCOMP] = CHAN_CAST ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]);
-         rgba[i][GCOMP] = CHAN_CAST ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]);
-         rgba[i][BCOMP] = CHAN_CAST ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]);
-         rgba[i][ACOMP] = CHAN_CAST ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]);
-      }
-   }
-}
+   for (face = 0; face < faces; face++) {
+      for (level = texObj->BaseLevel; level < MAX_TEXTURE_LEVELS; level++) {
+         struct gl_texture_image *texImage = texObj->Image[face][level];
+         struct swrast_texture_image *swImage = swrast_texture_image(texImage);
+         unsigned int i, slices;
 
+         if (!texImage)
+            continue;
 
-static void
-sample_nearest_2d( GLcontext *ctx, GLuint texUnit,
-                   const struct gl_texture_object *tObj, GLuint n,
-                   GLfloat texcoords[][4],
-                   const GLfloat lambda[], GLchan rgba[][4] )
-{
-   GLuint i;
-   struct gl_texture_image *image = tObj->Image[tObj->BaseLevel];
-   (void) lambda;
-   for (i=0;i<n;i++) {
-      sample_2d_nearest(ctx, tObj, image, texcoords[i], rgba[i]);
-   }
-}
+         if (swImage->Buffer)
+            return;
 
+         if (!swImage->ImageSlices)
+            continue;
 
+         slices = texture_slices(texImage);
 
-static void
-sample_linear_2d( GLcontext *ctx, GLuint texUnit,
-                  const struct gl_texture_object *tObj, GLuint n,
-                  GLfloat texcoords[][4],
-                  const GLfloat lambda[], GLchan rgba[][4] )
-{
-   GLuint i;
-   struct gl_texture_image *image = tObj->Image[tObj->BaseLevel];
-   (void) lambda;
-   for (i=0;i<n;i++) {
-      sample_2d_linear(ctx, tObj, image, texcoords[i], rgba[i]);
+         for (i = 0; i < slices; i++) {
+            if (swImage->ImageSlices[i]) {
+               ctx->Driver.UnmapTextureImage(ctx, texImage, i);
+               swImage->ImageSlices[i] = NULL;
+            }
+         }
+      }
    }
 }
 
 
-/*
- * Optimized 2-D texture sampling:
- *    S and T wrap mode == GL_REPEAT
- *    GL_NEAREST min/mag filter
- *    No border, 
- *    RowStride == Width,
- *    Format = GL_RGB
+/**
+ * Map all textures for reading prior to software rendering.
  */
-static void
-opt_sample_rgb_2d( GLcontext *ctx, GLuint texUnit,
-                   const struct gl_texture_object *tObj,
-                   GLuint n, GLfloat texcoords[][4],
-                   const GLfloat lambda[], GLchan rgba[][4] )
+void
+_swrast_map_textures(struct gl_context *ctx)
 {
-   const struct gl_texture_image *img = tObj->Image[tObj->BaseLevel];
-   const GLfloat width = (GLfloat) img->Width;
-   const GLfloat height = (GLfloat) img->Height;
-   const GLint colMask = img->Width - 1;
-   const GLint rowMask = img->Height - 1;
-   const GLint shift = img->WidthLog2;
-   GLuint k;
-   (void) lambda;
-   ASSERT(tObj->WrapS==GL_REPEAT);
-   ASSERT(tObj->WrapT==GL_REPEAT);
-   ASSERT(img->Border==0);
-   ASSERT(img->Format==GL_RGB);
-
-   for (k=0; k<n; k++) {
-      GLint i = IFLOOR(texcoords[k][0] * width) & colMask;
-      GLint j = IFLOOR(texcoords[k][1] * height) & rowMask;
-      GLint pos = (j << shift) | i;
-      GLchan *texel = ((GLchan *) img->Data) + 3*pos;
-      rgba[k][RCOMP] = texel[0];
-      rgba[k][GCOMP] = texel[1];
-      rgba[k][BCOMP] = texel[2];
-   }
-}
+   int unit;
 
+   for (unit = 0; unit <= ctx->Texture._MaxEnabledTexImageUnit; unit++) {
+      struct gl_texture_object *texObj = ctx->Texture.Unit[unit]._Current;
 
-/*
- * Optimized 2-D texture sampling:
- *    S and T wrap mode == GL_REPEAT
- *    GL_NEAREST min/mag filter
- *    No border
- *    RowStride == Width,
- *    Format = GL_RGBA
- */
-static void
-opt_sample_rgba_2d( GLcontext *ctx, GLuint texUnit,
-                    const struct gl_texture_object *tObj,
-                    GLuint n, GLfloat texcoords[][4],
-                    const GLfloat lambda[], GLchan rgba[][4] )
-{
-   const struct gl_texture_image *img = tObj->Image[tObj->BaseLevel];
-   const GLfloat width = (GLfloat) img->Width;
-   const GLfloat height = (GLfloat) img->Height;
-   const GLint colMask = img->Width - 1;
-   const GLint rowMask = img->Height - 1;
-   const GLint shift = img->WidthLog2;
-   GLuint i;
-   (void) lambda;
-   ASSERT(tObj->WrapS==GL_REPEAT);
-   ASSERT(tObj->WrapT==GL_REPEAT);
-   ASSERT(img->Border==0);
-   ASSERT(img->Format==GL_RGBA);
-
-   for (i = 0; i < n; i++) {
-      const GLint col = IFLOOR(texcoords[i][0] * width) & colMask;
-      const GLint row = IFLOOR(texcoords[i][1] * height) & rowMask;
-      const GLint pos = (row << shift) | col;
-      const GLchan *texel = ((GLchan *) img->Data) + (pos << 2);    /* pos*4 */
-      COPY_CHAN4(rgba[i], texel);
+      if (texObj)
+         _swrast_map_texture(ctx, texObj);
    }
 }
 
 
-/*
- * Given an array of texture coordinate and lambda (level of detail)
- * values, return an array of texture sample.
+/**
+ * Unmap all textures for reading prior to software rendering.
  */
-static void
-sample_lambda_2d( GLcontext *ctx, GLuint texUnit,
-                  const struct gl_texture_object *tObj,
-                  GLuint n, GLfloat texcoords[][4],
-                  const GLfloat lambda[], GLchan rgba[][4] )
+void
+_swrast_unmap_textures(struct gl_context *ctx)
 {
-   const struct gl_texture_image *tImg = tObj->Image[tObj->BaseLevel];
-   GLuint minStart, minEnd;  /* texels with minification */
-   GLuint magStart, magEnd;  /* texels with magnification */
-
-   const GLboolean repeatNoBorder = (tObj->WrapS == GL_REPEAT)
-      && (tObj->WrapT == GL_REPEAT)
-      && (tImg->Border == 0 && (tImg->Width == tImg->RowStride))
-      && (tImg->Format != GL_COLOR_INDEX);
-
-   ASSERT(lambda != NULL);
-   compute_min_mag_ranges(SWRAST_CONTEXT(ctx)->_MinMagThresh[texUnit],
-                          n, lambda, &minStart, &minEnd, &magStart, &magEnd);
-
-   if (minStart < minEnd) {
-      /* do the minified texels */
-      const GLuint m = minEnd - minStart;
-      switch (tObj->MinFilter) {
-      case GL_NEAREST:
-         if (repeatNoBorder) {
-            switch (tImg->Format) {
-            case GL_RGB:
-               opt_sample_rgb_2d(ctx, texUnit, tObj, m, texcoords + minStart,
-                                 NULL, rgba + minStart);
-               break;
-            case GL_RGBA:
-              opt_sample_rgba_2d(ctx, texUnit, tObj, m, texcoords + minStart,
-                                  NULL, rgba + minStart);
-               break;
-            default:
-               sample_nearest_2d(ctx, texUnit, tObj, m, texcoords + minStart,
-                                 NULL, rgba + minStart );
-            }
-         }
-         else {
-            sample_nearest_2d(ctx, texUnit, tObj, m, texcoords + minStart,
-                              NULL, rgba + minStart);
-         }
-         break;
-      case GL_LINEAR:
-        sample_linear_2d(ctx, texUnit, tObj, m, texcoords + minStart,
-                         NULL, rgba + minStart);
-         break;
-      case GL_NEAREST_MIPMAP_NEAREST:
-         sample_2d_nearest_mipmap_nearest(ctx, tObj, m, texcoords + minStart,
-                                          lambda + minStart, rgba + minStart);
-         break;
-      case GL_LINEAR_MIPMAP_NEAREST:
-         sample_2d_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart,
-                                         lambda + minStart, rgba + minStart);
-         break;
-      case GL_NEAREST_MIPMAP_LINEAR:
-         sample_2d_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart,
-                                         lambda + minStart, rgba + minStart);
-         break;
-      case GL_LINEAR_MIPMAP_LINEAR:
-         if (repeatNoBorder)
-            sample_2d_linear_mipmap_linear_repeat(ctx, tObj, m,
-                  texcoords + minStart, lambda + minStart, rgba + minStart);
-         else
-            sample_2d_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart,
-                                        lambda + minStart, rgba + minStart);
-         break;
-      default:
-         _mesa_problem(ctx, "Bad min filter in sample_2d_texture");
-         return;
-      }
-   }
-
-   if (magStart < magEnd) {
-      /* do the magnified texels */
-      const GLuint m = magEnd - magStart;
-
-      switch (tObj->MagFilter) {
-      case GL_NEAREST:
-         if (repeatNoBorder) {
-            switch (tImg->Format) {
-            case GL_RGB:
-               opt_sample_rgb_2d(ctx, texUnit, tObj, m, texcoords + magStart,
-                                 NULL, rgba + magStart);
-               break;
-            case GL_RGBA:
-              opt_sample_rgba_2d(ctx, texUnit, tObj, m, texcoords + magStart,
-                                  NULL, rgba + magStart);
-               break;
-            default:
-               sample_nearest_2d(ctx, texUnit, tObj, m, texcoords + magStart,
-                                 NULL, rgba + magStart );
-            }
-         }
-         else {
-            sample_nearest_2d(ctx, texUnit, tObj, m, texcoords + magStart,
-                              NULL, rgba + magStart);
-         }
-         break;
-      case GL_LINEAR:
-        sample_linear_2d(ctx, texUnit, tObj, m, texcoords + magStart,
-                         NULL, rgba + magStart);
-         break;
-      default:
-         _mesa_problem(ctx, "Bad mag filter in sample_lambda_2d");
-      }
-   }
-}
-
-
-
-/**********************************************************************/
-/*                    3-D Texture Sampling Functions                  */
-/**********************************************************************/
-
-/*
- * Return the texture sample for coordinate (s,t,r) using GL_NEAREST filter.
- */
-static void
-sample_3d_nearest(GLcontext *ctx,
-                  const struct gl_texture_object *tObj,
-                  const struct gl_texture_image *img,
-                  const GLfloat texcoord[4],
-                  GLchan rgba[4])
-{
-   const GLint width = img->Width2;     /* without border, power of two */
-   const GLint height = img->Height2;   /* without border, power of two */
-   const GLint depth = img->Depth2;     /* without border, power of two */
-   GLint i, j, k;
-
-   COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapS, texcoord[0], width,  i);
-   COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapT, texcoord[1], height, j);
-   COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapR, texcoord[2], depth,  k);
-
-   if (i < 0 || i >= (GLint) img->Width ||
-       j < 0 || j >= (GLint) img->Height ||
-       k < 0 || k >= (GLint) img->Depth) {
-      /* Need this test for GL_CLAMP_TO_BORDER_ARB mode */
-      COPY_CHAN4(rgba, tObj->_BorderChan);
-   }
-   else {
-      (*img->FetchTexel)(img, i, j, k, (GLvoid *) rgba);
-      if (img->Format == GL_COLOR_INDEX) {
-         palette_sample(ctx, tObj, rgba[0], rgba);
-      }
-   }
-}
-
-
-
-/*
- * Return the texture sample for coordinate (s,t,r) using GL_LINEAR filter.
- */
-static void
-sample_3d_linear(GLcontext *ctx,
-                 const struct gl_texture_object *tObj,
-                 const struct gl_texture_image *img,
-                 const GLfloat texcoord[4],
-                 GLchan rgba[4])
-{
-   const GLint width = img->Width2;
-   const GLint height = img->Height2;
-   const GLint depth = img->Depth2;
-   GLint i0, j0, k0, i1, j1, k1;
-   GLuint useBorderColor;
-   GLfloat u, v, w;
-
-   COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapS, texcoord[0], u, width,  i0, i1);
-   COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapT, texcoord[1], v, height, j0, j1);
-   COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapR, texcoord[2], w, depth,  k0, k1);
-
-   useBorderColor = 0;
-   if (img->Border) {
-      i0 += img->Border;
-      i1 += img->Border;
-      j0 += img->Border;
-      j1 += img->Border;
-      k0 += img->Border;
-      k1 += img->Border;
-   }
-   else {
-      /* check if sampling texture border color */
-      if (i0 < 0 || i0 >= width)   useBorderColor |= I0BIT;
-      if (i1 < 0 || i1 >= width)   useBorderColor |= I1BIT;
-      if (j0 < 0 || j0 >= height)  useBorderColor |= J0BIT;
-      if (j1 < 0 || j1 >= height)  useBorderColor |= J1BIT;
-      if (k0 < 0 || k0 >= depth)   useBorderColor |= K0BIT;
-      if (k1 < 0 || k1 >= depth)   useBorderColor |= K1BIT;
-   }
-
-   {
-      const GLfloat a = FRAC(u);
-      const GLfloat b = FRAC(v);
-      const GLfloat c = FRAC(w);
-
-#if CHAN_TYPE == GL_FLOAT || CHAN_TYPE == GL_UNSIGNED_SHORT
-      /* compute sample weights in fixed point in [0,WEIGHT_SCALE] */
-      GLfloat w000 = (1.0F-a) * (1.0F-b) * (1.0F-c);
-      GLfloat w100 =       a  * (1.0F-b) * (1.0F-c);
-      GLfloat w010 = (1.0F-a) *       b  * (1.0F-c);
-      GLfloat w110 =       a  *       b  * (1.0F-c);
-      GLfloat w001 = (1.0F-a) * (1.0F-b) *       c ;
-      GLfloat w101 =       a  * (1.0F-b) *       c ;
-      GLfloat w011 = (1.0F-a) *       b  *       c ;
-      GLfloat w111 =       a  *       b  *       c ;
-#else /* CHAN_BITS == 8 */
-      /* compute sample weights in fixed point in [0,WEIGHT_SCALE] */
-      GLint w000 = IROUND_POS((1.0F-a) * (1.0F-b) * (1.0F-c) * WEIGHT_SCALE);
-      GLint w100 = IROUND_POS(      a  * (1.0F-b) * (1.0F-c) * WEIGHT_SCALE);
-      GLint w010 = IROUND_POS((1.0F-a) *       b  * (1.0F-c) * WEIGHT_SCALE);
-      GLint w110 = IROUND_POS(      a  *       b  * (1.0F-c) * WEIGHT_SCALE);
-      GLint w001 = IROUND_POS((1.0F-a) * (1.0F-b) *       c  * WEIGHT_SCALE);
-      GLint w101 = IROUND_POS(      a  * (1.0F-b) *       c  * WEIGHT_SCALE);
-      GLint w011 = IROUND_POS((1.0F-a) *       b  *       c  * WEIGHT_SCALE);
-      GLint w111 = IROUND_POS(      a  *       b  *       c  * WEIGHT_SCALE);
-#endif
-
-      GLchan t000[4], t010[4], t001[4], t011[4];
-      GLchan t100[4], t110[4], t101[4], t111[4];
-
-      if (useBorderColor & (I0BIT | J0BIT | K0BIT)) {
-         COPY_CHAN4(t000, tObj->_BorderChan);
-      }
-      else {
-         (*img->FetchTexel)(img, i0, j0, k0, (GLvoid *) t000);
-         if (img->Format == GL_COLOR_INDEX) {
-            palette_sample(ctx, tObj, t000[0], t000);
-         }
-      }
-      if (useBorderColor & (I1BIT | J0BIT | K0BIT)) {
-         COPY_CHAN4(t100, tObj->_BorderChan);
-      }
-      else {
-         (*img->FetchTexel)(img, i1, j0, k0, (GLvoid *) t100);
-         if (img->Format == GL_COLOR_INDEX) {
-            palette_sample(ctx, tObj, t100[0], t100);
-         }
-      }
-      if (useBorderColor & (I0BIT | J1BIT | K0BIT)) {
-         COPY_CHAN4(t010, tObj->_BorderChan);
-      }
-      else {
-         (*img->FetchTexel)(img, i0, j1, k0, (GLvoid *) t010);
-         if (img->Format == GL_COLOR_INDEX) {
-            palette_sample(ctx, tObj, t010[0], t010);
-         }
-      }
-      if (useBorderColor & (I1BIT | J1BIT | K0BIT)) {
-         COPY_CHAN4(t110, tObj->_BorderChan);
-      }
-      else {
-         (*img->FetchTexel)(img, i1, j1, k0, (GLvoid *) t110);
-         if (img->Format == GL_COLOR_INDEX) {
-            palette_sample(ctx, tObj, t110[0], t110);
-         }
-      }
-
-      if (useBorderColor & (I0BIT | J0BIT | K1BIT)) {
-         COPY_CHAN4(t001, tObj->_BorderChan);
-      }
-      else {
-         (*img->FetchTexel)(img, i0, j0, k1, (GLvoid *) t001);
-         if (img->Format == GL_COLOR_INDEX) {
-            palette_sample(ctx, tObj, t001[0], t001);
-         }
-      }
-      if (useBorderColor & (I1BIT | J0BIT | K1BIT)) {
-         COPY_CHAN4(t101, tObj->_BorderChan);
-      }
-      else {
-         (*img->FetchTexel)(img, i1, j0, k1, (GLvoid *) t101);
-         if (img->Format == GL_COLOR_INDEX) {
-            palette_sample(ctx, tObj, t101[0], t101);
-         }
-      }
-      if (useBorderColor & (I0BIT | J1BIT | K1BIT)) {
-         COPY_CHAN4(t011, tObj->_BorderChan);
-      }
-      else {
-         (*img->FetchTexel)(img, i0, j1, k1, (GLvoid *) t011);
-         if (img->Format == GL_COLOR_INDEX) {
-            palette_sample(ctx, tObj, t011[0], t011);
-         }
-      }
-      if (useBorderColor & (I1BIT | J1BIT | K1BIT)) {
-         COPY_CHAN4(t111, tObj->_BorderChan);
-      }
-      else {
-         (*img->FetchTexel)(img, i1, j1, k1, (GLvoid *) t111);
-         if (img->Format == GL_COLOR_INDEX) {
-            palette_sample(ctx, tObj, t111[0], t111);
-         }
-      }
-
-#if CHAN_TYPE == GL_FLOAT
-      rgba[0] = w000*t000[0] + w010*t010[0] + w001*t001[0] + w011*t011[0] +
-                w100*t100[0] + w110*t110[0] + w101*t101[0] + w111*t111[0];
-      rgba[1] = w000*t000[1] + w010*t010[1] + w001*t001[1] + w011*t011[1] +
-                w100*t100[1] + w110*t110[1] + w101*t101[1] + w111*t111[1];
-      rgba[2] = w000*t000[2] + w010*t010[2] + w001*t001[2] + w011*t011[2] +
-                w100*t100[2] + w110*t110[2] + w101*t101[2] + w111*t111[2];
-      rgba[3] = w000*t000[3] + w010*t010[3] + w001*t001[3] + w011*t011[3] +
-                w100*t100[3] + w110*t110[3] + w101*t101[3] + w111*t111[3];
-#elif CHAN_TYPE == GL_UNSIGNED_SHORT
-      rgba[0] = (GLchan) (w000*t000[0] + w010*t010[0] +
-                          w001*t001[0] + w011*t011[0] +
-                          w100*t100[0] + w110*t110[0] +
-                          w101*t101[0] + w111*t111[0] + 0.5);
-      rgba[1] = (GLchan) (w000*t000[1] + w010*t010[1] +
-                          w001*t001[1] + w011*t011[1] +
-                          w100*t100[1] + w110*t110[1] +
-                          w101*t101[1] + w111*t111[1] + 0.5);
-      rgba[2] = (GLchan) (w000*t000[2] + w010*t010[2] +
-                          w001*t001[2] + w011*t011[2] +
-                          w100*t100[2] + w110*t110[2] +
-                          w101*t101[2] + w111*t111[2] + 0.5);
-      rgba[3] = (GLchan) (w000*t000[3] + w010*t010[3] +
-                          w001*t001[3] + w011*t011[3] +
-                          w100*t100[3] + w110*t110[3] +
-                          w101*t101[3] + w111*t111[3] + 0.5);
-#else /* CHAN_BITS == 8 */
-      rgba[0] = (GLchan) (
-                 (w000*t000[0] + w010*t010[0] + w001*t001[0] + w011*t011[0] +
-                  w100*t100[0] + w110*t110[0] + w101*t101[0] + w111*t111[0] )
-                 >> WEIGHT_SHIFT);
-      rgba[1] = (GLchan) (
-                 (w000*t000[1] + w010*t010[1] + w001*t001[1] + w011*t011[1] +
-                  w100*t100[1] + w110*t110[1] + w101*t101[1] + w111*t111[1] )
-                 >> WEIGHT_SHIFT);
-      rgba[2] = (GLchan) (
-                 (w000*t000[2] + w010*t010[2] + w001*t001[2] + w011*t011[2] +
-                  w100*t100[2] + w110*t110[2] + w101*t101[2] + w111*t111[2] )
-                 >> WEIGHT_SHIFT);
-      rgba[3] = (GLchan) (
-                 (w000*t000[3] + w010*t010[3] + w001*t001[3] + w011*t011[3] +
-                  w100*t100[3] + w110*t110[3] + w101*t101[3] + w111*t111[3] )
-                 >> WEIGHT_SHIFT);
-#endif
-
-   }
-}
-
-
-
-static void
-sample_3d_nearest_mipmap_nearest(GLcontext *ctx,
-                                 const struct gl_texture_object *tObj,
-                                 GLuint n, GLfloat texcoord[][4],
-                                 const GLfloat lambda[], GLchan rgba[][4] )
-{
-   GLuint i;
-   for (i = 0; i < n; i++) {
-      GLint level;
-      COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda[i], level);
-      sample_3d_nearest(ctx, tObj, tObj->Image[level], texcoord[i], rgba[i]);
-   }
-}
-
-
-static void
-sample_3d_linear_mipmap_nearest(GLcontext *ctx,
-                                const struct gl_texture_object *tObj,
-                                GLuint n, GLfloat texcoord[][4],
-                                const GLfloat lambda[], GLchan rgba[][4])
-{
-   GLuint i;
-   ASSERT(lambda != NULL);
-   for (i = 0; i < n; i++) {
-      GLint level;
-      COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda[i], level);
-      sample_3d_linear(ctx, tObj, tObj->Image[level], texcoord[i], rgba[i]);
-   }
-}
-
-
-static void
-sample_3d_nearest_mipmap_linear(GLcontext *ctx,
-                                const struct gl_texture_object *tObj,
-                                GLuint n, GLfloat texcoord[][4],
-                                const GLfloat lambda[], GLchan rgba[][4])
-{
-   GLuint i;
-   ASSERT(lambda != NULL);
-   for (i = 0; i < n; i++) {
-      GLint level;
-      COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda[i], level);
-      if (level >= tObj->_MaxLevel) {
-         sample_3d_nearest(ctx, tObj, tObj->Image[tObj->_MaxLevel],
-                           texcoord[i], rgba[i]);
-      }
-      else {
-         GLchan t0[4], t1[4];  /* texels */
-         const GLfloat f = FRAC(lambda[i]);
-         sample_3d_nearest(ctx, tObj, tObj->Image[level  ], texcoord[i], t0);
-         sample_3d_nearest(ctx, tObj, tObj->Image[level+1], texcoord[i], t1);
-         rgba[i][RCOMP] = CHAN_CAST ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]);
-         rgba[i][GCOMP] = CHAN_CAST ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]);
-         rgba[i][BCOMP] = CHAN_CAST ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]);
-         rgba[i][ACOMP] = CHAN_CAST ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]);
-      }
-   }
-}
-
-
-static void
-sample_3d_linear_mipmap_linear(GLcontext *ctx,
-                               const struct gl_texture_object *tObj,
-                               GLuint n, GLfloat texcoord[][4],
-                               const GLfloat lambda[], GLchan rgba[][4])
-{
-   GLuint i;
-   ASSERT(lambda != NULL);
-   for (i = 0; i < n; i++) {
-      GLint level;
-      COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda[i], level);
-      if (level >= tObj->_MaxLevel) {
-         sample_3d_linear(ctx, tObj, tObj->Image[tObj->_MaxLevel],
-                          texcoord[i], rgba[i]);
-      }
-      else {
-         GLchan t0[4], t1[4];  /* texels */
-         const GLfloat f = FRAC(lambda[i]);
-         sample_3d_linear(ctx, tObj, tObj->Image[level  ], texcoord[i], t0);
-         sample_3d_linear(ctx, tObj, tObj->Image[level+1], texcoord[i], t1);
-         rgba[i][RCOMP] = CHAN_CAST ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]);
-         rgba[i][GCOMP] = CHAN_CAST ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]);
-         rgba[i][BCOMP] = CHAN_CAST ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]);
-         rgba[i][ACOMP] = CHAN_CAST ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]);
-      }
-   }
-}
-
-
-static void
-sample_nearest_3d(GLcontext *ctx, GLuint texUnit,
-                  const struct gl_texture_object *tObj, GLuint n,
-                  GLfloat texcoords[][4], const GLfloat lambda[],
-                  GLchan rgba[][4])
-{
-   GLuint i;
-   struct gl_texture_image *image = tObj->Image[tObj->BaseLevel];
-   (void) lambda;
-   for (i=0;i<n;i++) {
-      sample_3d_nearest(ctx, tObj, image, texcoords[i], rgba[i]);
-   }
-}
-
-
-
-static void
-sample_linear_3d( GLcontext *ctx, GLuint texUnit,
-                  const struct gl_texture_object *tObj, GLuint n,
-                  GLfloat texcoords[][4],
-                 const GLfloat lambda[], GLchan rgba[][4] )
-{
-   GLuint i;
-   struct gl_texture_image *image = tObj->Image[tObj->BaseLevel];
-   (void) lambda;
-   for (i=0;i<n;i++) {
-      sample_3d_linear(ctx, tObj, image, texcoords[i], rgba[i]);
-   }
-}
-
-
-/*
- * Given an (s,t,r) texture coordinate and lambda (level of detail) value,
- * return a texture sample.
- */
-static void
-sample_lambda_3d( GLcontext *ctx, GLuint texUnit,
-                  const struct gl_texture_object *tObj, GLuint n,
-                  GLfloat texcoords[][4], const GLfloat lambda[],
-                  GLchan rgba[][4] )
-{
-   GLuint minStart, minEnd;  /* texels with minification */
-   GLuint magStart, magEnd;  /* texels with magnification */
-   GLuint i;
-
-   ASSERT(lambda != NULL);
-   compute_min_mag_ranges(SWRAST_CONTEXT(ctx)->_MinMagThresh[texUnit],
-                          n, lambda, &minStart, &minEnd, &magStart, &magEnd);
-
-   if (minStart < minEnd) {
-      /* do the minified texels */
-      GLuint m = minEnd - minStart;
-      switch (tObj->MinFilter) {
-      case GL_NEAREST:
-         for (i = minStart; i < minEnd; i++)
-            sample_3d_nearest(ctx, tObj, tObj->Image[tObj->BaseLevel],
-                              texcoords[i], rgba[i]);
-         break;
-      case GL_LINEAR:
-         for (i = minStart; i < minEnd; i++)
-            sample_3d_linear(ctx, tObj, tObj->Image[tObj->BaseLevel],
-                             texcoords[i], rgba[i]);
-         break;
-      case GL_NEAREST_MIPMAP_NEAREST:
-         sample_3d_nearest_mipmap_nearest(ctx, tObj, m, texcoords + minStart,
-                                          lambda + minStart, rgba + minStart);
-         break;
-      case GL_LINEAR_MIPMAP_NEAREST:
-         sample_3d_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart,
-                                         lambda + minStart, rgba + minStart);
-         break;
-      case GL_NEAREST_MIPMAP_LINEAR:
-         sample_3d_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart,
-                                         lambda + minStart, rgba + minStart);
-         break;
-      case GL_LINEAR_MIPMAP_LINEAR:
-         sample_3d_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart,
-                                        lambda + minStart, rgba + minStart);
-         break;
-      default:
-         _mesa_problem(ctx, "Bad min filter in sample_3d_texture");
-         return;
-      }
-   }
+   int unit;
+   for (unit = 0; unit <= ctx->Texture._MaxEnabledTexImageUnit; unit++) {
+      struct gl_texture_object *texObj = ctx->Texture.Unit[unit]._Current;
 
-   if (magStart < magEnd) {
-      /* do the magnified texels */
-      switch (tObj->MagFilter) {
-      case GL_NEAREST:
-         for (i = magStart; i < magEnd; i++)
-            sample_3d_nearest(ctx, tObj, tObj->Image[tObj->BaseLevel],
-                              texcoords[i], rgba[i]);
-         break;
-      case GL_LINEAR:
-         for (i = magStart; i < magEnd; i++)
-            sample_3d_linear(ctx, tObj, tObj->Image[tObj->BaseLevel],
-                             texcoords[i], rgba[i]);
-         break;
-      default:
-         _mesa_problem(ctx, "Bad mag filter in sample_3d_texture");
-         return;
-      }
-   }
-}
-
-
-/**********************************************************************/
-/*                Texture Cube Map Sampling Functions                 */
-/**********************************************************************/
-
-/*
- * Choose one of six sides of a texture cube map given the texture
- * coord (rx,ry,rz).  Return pointer to corresponding array of texture
- * images.
- */
-static const struct gl_texture_image **
-choose_cube_face(const struct gl_texture_object *texObj,
-                 const GLfloat texcoord[4], GLfloat newCoord[4])
-{
-/*
-      major axis
-      direction     target                             sc     tc    ma
-      ----------    -------------------------------    ---    ---   ---
-       +rx          TEXTURE_CUBE_MAP_POSITIVE_X_EXT    -rz    -ry   rx
-       -rx          TEXTURE_CUBE_MAP_NEGATIVE_X_EXT    +rz    -ry   rx
-       +ry          TEXTURE_CUBE_MAP_POSITIVE_Y_EXT    +rx    +rz   ry
-       -ry          TEXTURE_CUBE_MAP_NEGATIVE_Y_EXT    +rx    -rz   ry
-       +rz          TEXTURE_CUBE_MAP_POSITIVE_Z_EXT    +rx    -ry   rz
-       -rz          TEXTURE_CUBE_MAP_NEGATIVE_Z_EXT    -rx    -ry   rz
-*/
-   const GLfloat rx = texcoord[0];
-   const GLfloat ry = texcoord[1];
-   const GLfloat rz = texcoord[2];
-   const struct gl_texture_image **imgArray;
-   const GLfloat arx = ABSF(rx),   ary = ABSF(ry),   arz = ABSF(rz);
-   GLfloat sc, tc, ma;
-
-   if (arx > ary && arx > arz) {
-      if (rx >= 0.0F) {
-         imgArray = (const struct gl_texture_image **) texObj->Image;
-         sc = -rz;
-         tc = -ry;
-         ma = arx;
-      }
-      else {
-         imgArray = (const struct gl_texture_image **) texObj->NegX;
-         sc = rz;
-         tc = -ry;
-         ma = arx;
-      }
-   }
-   else if (ary > arx && ary > arz) {
-      if (ry >= 0.0F) {
-         imgArray = (const struct gl_texture_image **) texObj->PosY;
-         sc = rx;
-         tc = rz;
-         ma = ary;
-      }
-      else {
-         imgArray = (const struct gl_texture_image **) texObj->NegY;
-         sc = rx;
-         tc = -rz;
-         ma = ary;
-      }
-   }
-   else {
-      if (rz > 0.0F) {
-         imgArray = (const struct gl_texture_image **) texObj->PosZ;
-         sc = rx;
-         tc = -ry;
-         ma = arz;
-      }
-      else {
-         imgArray = (const struct gl_texture_image **) texObj->NegZ;
-         sc = -rx;
-         tc = -ry;
-         ma = arz;
-      }
-   }
-
-   newCoord[0] = ( sc / ma + 1.0F ) * 0.5F;
-   newCoord[1] = ( tc / ma + 1.0F ) * 0.5F;
-   return imgArray;
-}
-
-
-static void
-sample_nearest_cube(GLcontext *ctx, GLuint texUnit,
-                   const struct gl_texture_object *tObj, GLuint n,
-                    GLfloat texcoords[][4], const GLfloat lambda[],
-                    GLchan rgba[][4])
-{
-   GLuint i;
-   (void) lambda;
-   for (i = 0; i < n; i++) {
-      const struct gl_texture_image **images;
-      GLfloat newCoord[4];
-      images = choose_cube_face(tObj, texcoords[i], newCoord);
-      sample_2d_nearest(ctx, tObj, images[tObj->BaseLevel],
-                        newCoord, rgba[i]);
-   }
-}
-
-
-static void
-sample_linear_cube(GLcontext *ctx, GLuint texUnit,
-                  const struct gl_texture_object *tObj, GLuint n,
-                   GLfloat texcoords[][4],
-                  const GLfloat lambda[], GLchan rgba[][4])
-{
-   GLuint i;
-   (void) lambda;
-   for (i = 0; i < n; i++) {
-      const struct gl_texture_image **images;
-      GLfloat newCoord[4];
-      images = choose_cube_face(tObj, texcoords[i], newCoord);
-      sample_2d_linear(ctx, tObj, images[tObj->BaseLevel],
-                       newCoord, rgba[i]);
-   }
-}
-
-
-static void
-sample_cube_nearest_mipmap_nearest(GLcontext *ctx,
-                                   const struct gl_texture_object *tObj,
-                                   GLuint n, GLfloat texcoord[][4],
-                                   const GLfloat lambda[], GLchan rgba[][4])
-{
-   GLuint i;
-   ASSERT(lambda != NULL);
-   for (i = 0; i < n; i++) {
-      const struct gl_texture_image **images;
-      GLfloat newCoord[4];
-      GLint level;
-      COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda[i], level);
-      images = choose_cube_face(tObj, texcoord[i], newCoord);
-      sample_2d_nearest(ctx, tObj, images[level], newCoord, rgba[i]);
-   }
-}
-
-
-static void
-sample_cube_linear_mipmap_nearest(GLcontext *ctx,
-                                  const struct gl_texture_object *tObj,
-                                  GLuint n, GLfloat texcoord[][4],
-                                  const GLfloat lambda[], GLchan rgba[][4])
-{
-   GLuint i;
-   ASSERT(lambda != NULL);
-   for (i = 0; i < n; i++) {
-      const struct gl_texture_image **images;
-      GLfloat newCoord[4];
-      GLint level;
-      COMPUTE_NEAREST_MIPMAP_LEVEL(tObj, lambda[i], level);
-      images = choose_cube_face(tObj, texcoord[i], newCoord);
-      sample_2d_linear(ctx, tObj, images[level], newCoord, rgba[i]);
-   }
-}
-
-
-static void
-sample_cube_nearest_mipmap_linear(GLcontext *ctx,
-                                  const struct gl_texture_object *tObj,
-                                  GLuint n, GLfloat texcoord[][4],
-                                  const GLfloat lambda[], GLchan rgba[][4])
-{
-   GLuint i;
-   ASSERT(lambda != NULL);
-   for (i = 0; i < n; i++) {
-      const struct gl_texture_image **images;
-      GLfloat newCoord[4];
-      GLint level;
-      COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda[i], level);
-      images = choose_cube_face(tObj, texcoord[i], newCoord);
-      if (level >= tObj->_MaxLevel) {
-         sample_2d_nearest(ctx, tObj, images[tObj->_MaxLevel],
-                           newCoord, rgba[i]);
-      }
-      else {
-         GLchan t0[4], t1[4];  /* texels */
-         const GLfloat f = FRAC(lambda[i]);
-         sample_2d_nearest(ctx, tObj, images[level  ], newCoord, t0);
-         sample_2d_nearest(ctx, tObj, images[level+1], newCoord, t1);
-         rgba[i][RCOMP] = CHAN_CAST ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]);
-         rgba[i][GCOMP] = CHAN_CAST ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]);
-         rgba[i][BCOMP] = CHAN_CAST ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]);
-         rgba[i][ACOMP] = CHAN_CAST ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]);
-      }
-   }
-}
-
-
-static void
-sample_cube_linear_mipmap_linear(GLcontext *ctx,
-                                 const struct gl_texture_object *tObj,
-                                 GLuint n, GLfloat texcoord[][4],
-                                 const GLfloat lambda[], GLchan rgba[][4])
-{
-   GLuint i;
-   ASSERT(lambda != NULL);
-   for (i = 0; i < n; i++) {
-      const struct gl_texture_image **images;
-      GLfloat newCoord[4];
-      GLint level;
-      COMPUTE_LINEAR_MIPMAP_LEVEL(tObj, lambda[i], level);
-      images = choose_cube_face(tObj, texcoord[i], newCoord);
-      if (level >= tObj->_MaxLevel) {
-         sample_2d_linear(ctx, tObj, images[tObj->_MaxLevel],
-                          newCoord, rgba[i]);
-      }
-      else {
-         GLchan t0[4], t1[4];
-         const GLfloat f = FRAC(lambda[i]);
-         sample_2d_linear(ctx, tObj, images[level  ], newCoord, t0);
-         sample_2d_linear(ctx, tObj, images[level+1], newCoord, t1);
-         rgba[i][RCOMP] = CHAN_CAST ((1.0F-f) * t0[RCOMP] + f * t1[RCOMP]);
-         rgba[i][GCOMP] = CHAN_CAST ((1.0F-f) * t0[GCOMP] + f * t1[GCOMP]);
-         rgba[i][BCOMP] = CHAN_CAST ((1.0F-f) * t0[BCOMP] + f * t1[BCOMP]);
-         rgba[i][ACOMP] = CHAN_CAST ((1.0F-f) * t0[ACOMP] + f * t1[ACOMP]);
-      }
-   }
-}
-
-
-static void
-sample_lambda_cube( GLcontext *ctx, GLuint texUnit,
-                   const struct gl_texture_object *tObj, GLuint n,
-                   GLfloat texcoords[][4], const GLfloat lambda[],
-                   GLchan rgba[][4])
-{
-   GLuint minStart, minEnd;  /* texels with minification */
-   GLuint magStart, magEnd;  /* texels with magnification */
-
-   ASSERT(lambda != NULL);
-   compute_min_mag_ranges(SWRAST_CONTEXT(ctx)->_MinMagThresh[texUnit],
-                          n, lambda, &minStart, &minEnd, &magStart, &magEnd);
-
-   if (minStart < minEnd) {
-      /* do the minified texels */
-      const GLuint m = minEnd - minStart;
-      switch (tObj->MinFilter) {
-      case GL_NEAREST:
-         sample_nearest_cube(ctx, texUnit, tObj, m, texcoords + minStart,
-                             lambda + minStart, rgba + minStart);
-         break;
-      case GL_LINEAR:
-         sample_linear_cube(ctx, texUnit, tObj, m, texcoords + minStart,
-                            lambda + minStart, rgba + minStart);
-         break;
-      case GL_NEAREST_MIPMAP_NEAREST:
-         sample_cube_nearest_mipmap_nearest(ctx, tObj, m, texcoords + minStart,
-                                           lambda + minStart, rgba + minStart);
-         break;
-      case GL_LINEAR_MIPMAP_NEAREST:
-         sample_cube_linear_mipmap_nearest(ctx, tObj, m, texcoords + minStart,
-                                           lambda + minStart, rgba + minStart);
-         break;
-      case GL_NEAREST_MIPMAP_LINEAR:
-         sample_cube_nearest_mipmap_linear(ctx, tObj, m, texcoords + minStart,
-                                           lambda + minStart, rgba + minStart);
-         break;
-      case GL_LINEAR_MIPMAP_LINEAR:
-         sample_cube_linear_mipmap_linear(ctx, tObj, m, texcoords + minStart,
-                                          lambda + minStart, rgba + minStart);
-         break;
-      default:
-         _mesa_problem(ctx, "Bad min filter in sample_lambda_cube");
-      }
-   }
-
-   if (magStart < magEnd) {
-      /* do the magnified texels */
-      const GLuint m = magEnd - magStart;
-      switch (tObj->MagFilter) {
-      case GL_NEAREST:
-         sample_nearest_cube(ctx, texUnit, tObj, m, texcoords + magStart,
-                             lambda + magStart, rgba + magStart);
-         break;
-      case GL_LINEAR:
-         sample_linear_cube(ctx, texUnit, tObj, m, texcoords + magStart,
-                            lambda + magStart, rgba + magStart);
-         break;
-      default:
-         _mesa_problem(ctx, "Bad mag filter in sample_lambda_cube");
-      }
-   }
-}
-
-
-/**********************************************************************/
-/*               Texture Rectangle Sampling Functions                 */
-/**********************************************************************/
-
-static void
-sample_nearest_rect(GLcontext *ctx, GLuint texUnit,
-                   const struct gl_texture_object *tObj, GLuint n,
-                    GLfloat texcoords[][4], const GLfloat lambda[],
-                    GLchan rgba[][4])
-{
-   const struct gl_texture_image *img = tObj->Image[0];
-   const GLfloat width = (GLfloat) img->Width;
-   const GLfloat height = (GLfloat) img->Height;
-   const GLint width_minus_1 = img->Width - 1;
-   const GLint height_minus_1 = img->Height - 1;
-   GLuint i;
-
-   (void) texUnit;
-   (void) lambda;
-
-   ASSERT(tObj->WrapS == GL_CLAMP ||
-          tObj->WrapS == GL_CLAMP_TO_EDGE ||
-          tObj->WrapS == GL_CLAMP_TO_BORDER_ARB);
-   ASSERT(tObj->WrapT == GL_CLAMP ||
-          tObj->WrapT == GL_CLAMP_TO_EDGE ||
-          tObj->WrapT == GL_CLAMP_TO_BORDER_ARB);
-   ASSERT(img->Format != GL_COLOR_INDEX);
-
-   /* XXX move Wrap mode tests outside of loops for common cases */
-   for (i = 0; i < n; i++) {
-      GLint row, col;
-      /* NOTE: we DO NOT use [0, 1] texture coordinates! */
-      if (tObj->WrapS == GL_CLAMP) {
-         col = IFLOOR( CLAMP(texcoords[i][0], 0.0F, width) );
-      }
-      else if (tObj->WrapS == GL_CLAMP_TO_EDGE) {
-         col = IFLOOR( CLAMP(texcoords[i][0], 0.5F, width - 0.5F) );
-      }
-      else {
-         col = IFLOOR( CLAMP(texcoords[i][0], -0.5F, width + 0.5F) );
-      }
-      if (tObj->WrapT == GL_CLAMP) {
-         row = IFLOOR( CLAMP(texcoords[i][1], 0.0F, height) );
-      }
-      else if (tObj->WrapT == GL_CLAMP_TO_EDGE) {
-         row = IFLOOR( CLAMP(texcoords[i][1], 0.5F, height - 0.5F) );
-      }
-      else {
-         row = IFLOOR( CLAMP(texcoords[i][1], -0.5F, height + 0.5F) );
-      }
-
-      col = CLAMP(col, 0, width_minus_1);
-      row = CLAMP(row, 0, height_minus_1);
-
-      (*img->FetchTexel)(img, col, row, 0, (GLvoid *) rgba[i]);
-   }
-}
-
-
-static void
-sample_linear_rect(GLcontext *ctx, GLuint texUnit,
-                  const struct gl_texture_object *tObj, GLuint n,
-                   GLfloat texcoords[][4],
-                  const GLfloat lambda[], GLchan rgba[][4])
-{
-   const struct gl_texture_image *img = tObj->Image[0];
-   const GLfloat width = (GLfloat) img->Width;
-   const GLfloat height = (GLfloat) img->Height;
-   const GLint width_minus_1 = img->Width - 1;
-   const GLint height_minus_1 = img->Height - 1;
-   GLuint i;
-
-   (void) texUnit;
-   (void) lambda;
-
-   ASSERT(tObj->WrapS == GL_CLAMP ||
-          tObj->WrapS == GL_CLAMP_TO_EDGE ||
-          tObj->WrapS == GL_CLAMP_TO_BORDER_ARB);
-   ASSERT(tObj->WrapT == GL_CLAMP ||
-          tObj->WrapT == GL_CLAMP_TO_EDGE ||
-          tObj->WrapT == GL_CLAMP_TO_BORDER_ARB);
-   ASSERT(img->Format != GL_COLOR_INDEX);
-
-   /* XXX lots of opportunity for optimization in this loop */
-   for (i = 0; i < n; i++) {
-      GLfloat frow, fcol;
-      GLint row0, col0, row1, col1;
-      GLchan t00[4], t01[4], t10[4], t11[4];
-      GLfloat a, b, w00, w01, w10, w11;
-
-      /* NOTE: we DO NOT use [0, 1] texture coordinates! */
-      if (tObj->WrapS == GL_CLAMP) {
-         fcol = CLAMP(texcoords[i][0], 0.0F, width);
-      }
-      else if (tObj->WrapS == GL_CLAMP_TO_EDGE) {
-         fcol = CLAMP(texcoords[i][0], 0.5F, width - 0.5F);
-      }
-      else {
-         fcol = CLAMP(texcoords[i][0], -0.5F, width + 0.5F);
-      }
-      if (tObj->WrapT == GL_CLAMP) {
-         frow = CLAMP(texcoords[i][1], 0.0F, height);
-      }
-      else if (tObj->WrapT == GL_CLAMP_TO_EDGE) {
-         frow = CLAMP(texcoords[i][1], 0.5F, height - 0.5F);
-      }
-      else {
-         frow = CLAMP(texcoords[i][1], -0.5F, height + 0.5F);
-      }
-
-      /* compute integer rows/columns */
-      col0 = IFLOOR(fcol);
-      col1 = col0 + 1;
-      col0 = CLAMP(col0, 0, width_minus_1);
-      col1 = CLAMP(col1, 0, width_minus_1);
-      row0 = IFLOOR(frow);
-      row1 = row0 + 1;
-      row0 = CLAMP(row0, 0, height_minus_1);
-      row1 = CLAMP(row1, 0, height_minus_1);
-
-      /* get four texel samples */
-      (*img->FetchTexel)(img, col0, row0, 0, (GLvoid *) t00);
-      (*img->FetchTexel)(img, col1, row0, 0, (GLvoid *) t10);
-      (*img->FetchTexel)(img, col0, row1, 0, (GLvoid *) t01);
-      (*img->FetchTexel)(img, col1, row1, 0, (GLvoid *) t11);
-
-      /* compute sample weights */
-      a = FRAC(fcol);
-      b = FRAC(frow);
-      w00 = (1.0F-a) * (1.0F-b);
-      w10 =       a  * (1.0F-b);
-      w01 = (1.0F-a) *       b ;
-      w11 =       a  *       b ;
-
-      /* compute weighted average of samples */
-      rgba[i][0] = 
-         (GLchan) (w00 * t00[0] + w10 * t10[0] + w01 * t01[0] + w11 * t11[0]);
-      rgba[i][1] = 
-         (GLchan) (w00 * t00[1] + w10 * t10[1] + w01 * t01[1] + w11 * t11[1]);
-      rgba[i][2] = 
-         (GLchan) (w00 * t00[2] + w10 * t10[2] + w01 * t01[2] + w11 * t11[2]);
-      rgba[i][3] = 
-         (GLchan) (w00 * t00[3] + w10 * t10[3] + w01 * t01[3] + w11 * t11[3]);
-   }
-}
-
-
-static void
-sample_lambda_rect( GLcontext *ctx, GLuint texUnit,
-                   const struct gl_texture_object *tObj, GLuint n,
-                   GLfloat texcoords[][4], const GLfloat lambda[],
-                   GLchan rgba[][4])
-{
-   GLuint minStart, minEnd, magStart, magEnd;
-
-   /* We only need lambda to decide between minification and magnification.
-    * There is no mipmapping with rectangular textures.
-    */
-   compute_min_mag_ranges(SWRAST_CONTEXT(ctx)->_MinMagThresh[texUnit],
-                          n, lambda, &minStart, &minEnd, &magStart, &magEnd);
-
-   if (minStart < minEnd) {
-      if (tObj->MinFilter == GL_NEAREST) {
-         sample_nearest_rect( ctx, texUnit, tObj, minEnd - minStart,
-                              texcoords + minStart, NULL, rgba + minStart);
-      }
-      else {
-         sample_linear_rect( ctx, texUnit, tObj, minEnd - minStart,
-                             texcoords + minStart, NULL, rgba + minStart);
-      }
-   }
-   if (magStart < magEnd) {
-      if (tObj->MagFilter == GL_NEAREST) {
-         sample_nearest_rect( ctx, texUnit, tObj, magEnd - magStart,
-                              texcoords + magStart, NULL, rgba + magStart);
-      }
-      else {
-         sample_linear_rect( ctx, texUnit, tObj, magEnd - magStart,
-                             texcoords + magStart, NULL, rgba + magStart);
-      }
-   }
-}
-
-
-
-/*
- * Sample a shadow/depth texture.
- */
-static void
-sample_depth_texture( GLcontext *ctx, GLuint unit,
-                      const struct gl_texture_object *tObj, GLuint n,
-                      GLfloat texcoords[][4], const GLfloat lambda[],
-                      GLchan texel[][4] )
-{
-   const GLint baseLevel = tObj->BaseLevel;
-   const struct gl_texture_image *texImage = tObj->Image[baseLevel];
-   const GLuint width = texImage->Width;
-   const GLuint height = texImage->Height;
-   GLchan ambient;
-   GLenum function;
-   GLchan result;
-
-   (void) unit;
-
-   ASSERT(tObj->Image[tObj->BaseLevel]->Format == GL_DEPTH_COMPONENT);
-   ASSERT(tObj->Target == GL_TEXTURE_1D ||
-          tObj->Target == GL_TEXTURE_2D ||
-          tObj->Target == GL_TEXTURE_RECTANGLE_NV);
-
-   UNCLAMPED_FLOAT_TO_CHAN(ambient, tObj->ShadowAmbient);
-
-   /* XXXX if tObj->MinFilter != tObj->MagFilter, we're ignoring lambda */
-
-   /* XXX this could be precomputed and saved in the texture object */
-   if (tObj->CompareFlag) {
-      /* GL_SGIX_shadow */
-      if (tObj->CompareOperator == GL_TEXTURE_LEQUAL_R_SGIX) {
-         function = GL_LEQUAL;
-      }
-      else {
-         ASSERT(tObj->CompareOperator == GL_TEXTURE_GEQUAL_R_SGIX);
-         function = GL_GEQUAL;
-      }
-   }
-   else if (tObj->CompareMode == GL_COMPARE_R_TO_TEXTURE_ARB) {
-      /* GL_ARB_shadow */
-      function = tObj->CompareFunc;
-   }
-   else {
-      function = GL_NONE;  /* pass depth through as grayscale */
-   }
-
-   if (tObj->MagFilter == GL_NEAREST) {
-      GLuint i;
-      for (i = 0; i < n; i++) {
-         GLfloat depthSample;
-         GLint col, row;
-         /* XXX fix for texture rectangle! */
-         COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapS, texcoords[i][0], width, col);
-         COMPUTE_NEAREST_TEXEL_LOCATION(tObj->WrapT, texcoords[i][1], height, row);
-         depthSample = *((const GLfloat *) texImage->Data + row * width + col);
-
-         switch (function) {
-         case GL_LEQUAL:
-            result = (texcoords[i][2] <= depthSample) ? CHAN_MAX : ambient;
-            break;
-         case GL_GEQUAL:
-            result = (texcoords[i][2] >= depthSample) ? CHAN_MAX : ambient;
-            break;
-         case GL_LESS:
-            result = (texcoords[i][2] < depthSample) ? CHAN_MAX : ambient;
-            break;
-         case GL_GREATER:
-            result = (texcoords[i][2] > depthSample) ? CHAN_MAX : ambient;
-            break;
-         case GL_EQUAL:
-            result = (texcoords[i][2] == depthSample) ? CHAN_MAX : ambient;
-            break;
-         case GL_NOTEQUAL:
-            result = (texcoords[i][2] != depthSample) ? CHAN_MAX : ambient;
-            break;
-         case GL_ALWAYS:
-            result = CHAN_MAX;
-            break;
-         case GL_NEVER:
-            result = ambient;
-            break;
-         case GL_NONE:
-            CLAMPED_FLOAT_TO_CHAN(result, depthSample);
-            break;
-         default:
-            _mesa_problem(ctx, "Bad compare func in sample_depth_texture");
-            return;
-         }
-
-         switch (tObj->DepthMode) {
-         case GL_LUMINANCE:
-            texel[i][RCOMP] = result;
-            texel[i][GCOMP] = result;
-            texel[i][BCOMP] = result;
-            texel[i][ACOMP] = CHAN_MAX;
-            break;
-         case GL_INTENSITY:
-            texel[i][RCOMP] = result;
-            texel[i][GCOMP] = result;
-            texel[i][BCOMP] = result;
-            texel[i][ACOMP] = result;
-            break;
-         case GL_ALPHA:
-            texel[i][RCOMP] = 0;
-            texel[i][GCOMP] = 0;
-            texel[i][BCOMP] = 0;
-            texel[i][ACOMP] = result;
-            break;
-         default:
-            _mesa_problem(ctx, "Bad depth texture mode");
-         }
-      }
-   }
-   else {
-      GLuint i;
-      ASSERT(tObj->MagFilter == GL_LINEAR);
-      for (i = 0; i < n; i++) {
-         GLfloat depth00, depth01, depth10, depth11;
-         GLint i0, i1, j0, j1;
-         GLfloat u, v;
-         GLuint useBorderTexel;
-
-         /* XXX fix for texture rectangle! */
-         COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapS, texcoords[i][0], u, width, i0, i1);
-         COMPUTE_LINEAR_TEXEL_LOCATIONS(tObj->WrapT, texcoords[i][1], v, height,j0, j1);
-
-         useBorderTexel = 0;
-         if (texImage->Border) {
-            i0 += texImage->Border;
-            i1 += texImage->Border;
-            j0 += texImage->Border;
-            j1 += texImage->Border;
-         }
-         else {
-            if (i0 < 0 || i0 >= (GLint) width)   useBorderTexel |= I0BIT;
-            if (i1 < 0 || i1 >= (GLint) width)   useBorderTexel |= I1BIT;
-            if (j0 < 0 || j0 >= (GLint) height)  useBorderTexel |= J0BIT;
-            if (j1 < 0 || j1 >= (GLint) height)  useBorderTexel |= J1BIT;
-         }
-
-         /* get four depth samples from the texture */
-         if (useBorderTexel & (I0BIT | J0BIT)) {
-            depth00 = 1.0;
-         }
-         else {
-            depth00 = *((const GLfloat *) texImage->Data + j0 * width + i0);
-         }
-         if (useBorderTexel & (I1BIT | J0BIT)) {
-            depth10 = 1.0;
-         }
-         else {
-            depth10 = *((const GLfloat *) texImage->Data + j0 * width + i1);
-         }
-         if (useBorderTexel & (I0BIT | J1BIT)) {
-            depth01 = 1.0;
-         }
-         else {
-            depth01 = *((const GLfloat *) texImage->Data + j1 * width + i0);
-         }
-         if (useBorderTexel & (I1BIT | J1BIT)) {
-            depth11 = 1.0;
-         }
-         else {
-            depth11 = *((const GLfloat *) texImage->Data + j1 * width + i1);
-         }
-
-         if (0) {
-            /* compute a single weighted depth sample and do one comparison */
-            const GLfloat a = FRAC(u + 1.0F);
-            const GLfloat b = FRAC(v + 1.0F);
-            const GLfloat w00 = (1.0F - a) * (1.0F - b);
-            const GLfloat w10 = (       a) * (1.0F - b);
-            const GLfloat w01 = (1.0F - a) * (       b);
-            const GLfloat w11 = (       a) * (       b);
-            const GLfloat depthSample = w00 * depth00 + w10 * depth10
-                                      + w01 * depth01 + w11 * depth11;
-            if ((depthSample <= texcoords[i][2] && function == GL_LEQUAL) ||
-                (depthSample >= texcoords[i][2] && function == GL_GEQUAL)) {
-               result  = ambient;
-            }
-            else {
-               result = CHAN_MAX;
-            }
-         }
-         else {
-            /* Do four depth/R comparisons and compute a weighted result.
-             * If this touches on somebody's I.P., I'll remove this code
-             * upon request.
-             */
-            const GLfloat d = (CHAN_MAXF - (GLfloat) ambient) * 0.25F;
-            GLfloat luminance = CHAN_MAXF;
-
-            switch (function) {
-            case GL_LEQUAL:
-               if (depth00 <= texcoords[i][2])  luminance -= d;
-               if (depth01 <= texcoords[i][2])  luminance -= d;
-               if (depth10 <= texcoords[i][2])  luminance -= d;
-               if (depth11 <= texcoords[i][2])  luminance -= d;
-               result = (GLchan) luminance;
-               break;
-            case GL_GEQUAL:
-               if (depth00 >= texcoords[i][2])  luminance -= d;
-               if (depth01 >= texcoords[i][2])  luminance -= d;
-               if (depth10 >= texcoords[i][2])  luminance -= d;
-               if (depth11 >= texcoords[i][2])  luminance -= d;
-               result = (GLchan) luminance;
-               break;
-            case GL_LESS:
-               if (depth00 < texcoords[i][2])  luminance -= d;
-               if (depth01 < texcoords[i][2])  luminance -= d;
-               if (depth10 < texcoords[i][2])  luminance -= d;
-               if (depth11 < texcoords[i][2])  luminance -= d;
-               result = (GLchan) luminance;
-               break;
-            case GL_GREATER:
-               if (depth00 > texcoords[i][2])  luminance -= d;
-               if (depth01 > texcoords[i][2])  luminance -= d;
-               if (depth10 > texcoords[i][2])  luminance -= d;
-               if (depth11 > texcoords[i][2])  luminance -= d;
-               result = (GLchan) luminance;
-               break;
-            case GL_EQUAL:
-               if (depth00 == texcoords[i][2])  luminance -= d;
-               if (depth01 == texcoords[i][2])  luminance -= d;
-               if (depth10 == texcoords[i][2])  luminance -= d;
-               if (depth11 == texcoords[i][2])  luminance -= d;
-               result = (GLchan) luminance;
-               break;
-            case GL_NOTEQUAL:
-               if (depth00 != texcoords[i][2])  luminance -= d;
-               if (depth01 != texcoords[i][2])  luminance -= d;
-               if (depth10 != texcoords[i][2])  luminance -= d;
-               if (depth11 != texcoords[i][2])  luminance -= d;
-               result = (GLchan) luminance;
-               break;
-            case GL_ALWAYS:
-               result = 0;
-               break;
-            case GL_NEVER:
-               result = CHAN_MAX;
-               break;
-            case GL_NONE:
-               /* ordinary bilinear filtering */
-               {
-                  const GLfloat a = FRAC(u + 1.0F);
-                  const GLfloat b = FRAC(v + 1.0F);
-                  const GLfloat w00 = (1.0F - a) * (1.0F - b);
-                  const GLfloat w10 = (       a) * (1.0F - b);
-                  const GLfloat w01 = (1.0F - a) * (       b);
-                  const GLfloat w11 = (       a) * (       b);
-                  const GLfloat depthSample = w00 * depth00 + w10 * depth10
-                                            + w01 * depth01 + w11 * depth11;
-                  CLAMPED_FLOAT_TO_CHAN(result, depthSample);
-               }
-               break;
-            default:
-               _mesa_problem(ctx, "Bad compare func in sample_depth_texture");
-               return;
-            }
-         }
-
-         switch (tObj->DepthMode) {
-         case GL_LUMINANCE:
-            texel[i][RCOMP] = result;
-            texel[i][GCOMP] = result;
-            texel[i][BCOMP] = result;
-            texel[i][ACOMP] = CHAN_MAX;
-            break;
-         case GL_INTENSITY:
-            texel[i][RCOMP] = result;
-            texel[i][GCOMP] = result;
-            texel[i][BCOMP] = result;
-            texel[i][ACOMP] = result;
-            break;
-         case GL_ALPHA:
-            texel[i][RCOMP] = 0;
-            texel[i][GCOMP] = 0;
-            texel[i][BCOMP] = 0;
-            texel[i][ACOMP] = result;
-            break;
-         default:
-            _mesa_problem(ctx, "Bad depth texture mode");
-         }
-      }  /* for */
-   }  /* if filter */
-}
-
-
-#if 0
-/*
- * Experimental depth texture sampling function.
- */
-static void
-sample_depth_texture2(const GLcontext *ctx,
-                     const struct gl_texture_unit *texUnit,
-                     GLuint n, GLfloat texcoords[][4],
-                     GLchan texel[][4])
-{
-   const struct gl_texture_object *texObj = texUnit->_Current;
-   const GLint baseLevel = texObj->BaseLevel;
-   const struct gl_texture_image *texImage = texObj->Image[baseLevel];
-   const GLuint width = texImage->Width;
-   const GLuint height = texImage->Height;
-   GLchan ambient;
-   GLboolean lequal, gequal;
-
-   if (texObj->Target != GL_TEXTURE_2D) {
-      _mesa_problem(ctx, "only 2-D depth textures supported at this time");
-      return;
-   }
-
-   if (texObj->MinFilter != texObj->MagFilter) {
-      _mesa_problem(ctx, "mipmapped depth textures not supported at this time");
-      return;
-   }
-
-   /* XXX the GL_SGIX_shadow extension spec doesn't say what to do if
-    * GL_TEXTURE_COMPARE_SGIX == GL_TRUE but the current texture object
-    * isn't a depth texture.
-    */
-   if (texImage->Format != GL_DEPTH_COMPONENT) {
-      _mesa_problem(ctx,"GL_TEXTURE_COMPARE_SGIX enabled with non-depth texture");
-      return;
-   }
-
-   UNCLAMPED_FLOAT_TO_CHAN(ambient, tObj->ShadowAmbient);
-
-   if (texObj->CompareOperator == GL_TEXTURE_LEQUAL_R_SGIX) {
-      lequal = GL_TRUE;
-      gequal = GL_FALSE;
-   }
-   else {
-      lequal = GL_FALSE;
-      gequal = GL_TRUE;
-   }
-
-   {
-      GLuint i;
-      for (i = 0; i < n; i++) {
-         const GLint K = 3;
-         GLint col, row, ii, jj, imin, imax, jmin, jmax, samples, count;
-         GLfloat w;
-         GLchan lum;
-         COMPUTE_NEAREST_TEXEL_LOCATION(texObj->WrapS, texcoords[i][0],
-                                       width, col);
-         COMPUTE_NEAREST_TEXEL_LOCATION(texObj->WrapT, texcoords[i][1],
-                                       height, row);
-
-         imin = col - K;
-         imax = col + K;
-         jmin = row - K;
-         jmax = row + K;
-
-         if (imin < 0)  imin = 0;
-         if (imax >= width)  imax = width - 1;
-         if (jmin < 0)  jmin = 0;
-         if (jmax >= height) jmax = height - 1;
-
-         samples = (imax - imin + 1) * (jmax - jmin + 1);
-         count = 0;
-         for (jj = jmin; jj <= jmax; jj++) {
-            for (ii = imin; ii <= imax; ii++) {
-               GLfloat depthSample = *((const GLfloat *) texImage->Data
-                                       + jj * width + ii);
-               if ((depthSample <= r[i] && lequal) ||
-                   (depthSample >= r[i] && gequal)) {
-                  count++;
-               }
-            }
-         }
-
-         w = (GLfloat) count / (GLfloat) samples;
-         w = CHAN_MAXF - w * (CHAN_MAXF - (GLfloat) ambient);
-         lum = (GLint) w;
-
-         texel[i][RCOMP] = lum;
-         texel[i][GCOMP] = lum;
-         texel[i][BCOMP] = lum;
-         texel[i][ACOMP] = CHAN_MAX;
-      }
-   }
-}
-#endif
-
-
-/**
- * We use this function when a texture object is in an "incomplete" state.
- */
-static void
-null_sample_func( GLcontext *ctx, GLuint texUnit,
-                 const struct gl_texture_object *tObj, GLuint n,
-                 GLfloat texcoords[][4], const GLfloat lambda[],
-                 GLchan rgba[][4])
-{
-}
-
-
-
-/**
- * Setup the texture sampling function for this texture object.
- */
-void
-_swrast_choose_texture_sample_func( GLcontext *ctx, GLuint texUnit,
-                                   const struct gl_texture_object *t )
-{
-   SWcontext *swrast = SWRAST_CONTEXT(ctx);
-
-   if (!t->Complete) {
-      swrast->TextureSample[texUnit] = null_sample_func;
-   }
-   else {
-      const GLboolean needLambda = (GLboolean) (t->MinFilter != t->MagFilter);
-      const GLenum format = t->Image[t->BaseLevel]->Format;
-
-      if (needLambda) {
-         /* Compute min/mag filter threshold */
-         if (t->MagFilter == GL_LINEAR
-             && (t->MinFilter == GL_NEAREST_MIPMAP_NEAREST ||
-                 t->MinFilter == GL_NEAREST_MIPMAP_LINEAR)) {
-            swrast->_MinMagThresh[texUnit] = 0.5F;
-         }
-         else {
-            swrast->_MinMagThresh[texUnit] = 0.0F;
-         }
-      }
-
-      switch (t->Target) {
-         case GL_TEXTURE_1D:
-            if (format == GL_DEPTH_COMPONENT) {
-               swrast->TextureSample[texUnit] = sample_depth_texture;
-            }
-            else if (needLambda) {
-               swrast->TextureSample[texUnit] = sample_lambda_1d;
-            }
-            else if (t->MinFilter == GL_LINEAR) {
-               swrast->TextureSample[texUnit] = sample_linear_1d;
-            }
-            else {
-               ASSERT(t->MinFilter == GL_NEAREST);
-               swrast->TextureSample[texUnit] = sample_nearest_1d;
-            }
-            break;
-         case GL_TEXTURE_2D:
-            if (format == GL_DEPTH_COMPONENT) {
-               swrast->TextureSample[texUnit] = sample_depth_texture;
-            }
-            else if (needLambda) {
-               swrast->TextureSample[texUnit] = sample_lambda_2d;
-            }
-            else if (t->MinFilter == GL_LINEAR) {
-               swrast->TextureSample[texUnit] = sample_linear_2d;
-            }
-            else {
-               GLint baseLevel = t->BaseLevel;
-               ASSERT(t->MinFilter == GL_NEAREST);
-               if (t->WrapS == GL_REPEAT &&
-                   t->WrapT == GL_REPEAT &&
-                   t->Image[baseLevel]->Border == 0 &&
-                   t->Image[baseLevel]->TexFormat->MesaFormat == MESA_FORMAT_RGB) {
-                  swrast->TextureSample[texUnit] = opt_sample_rgb_2d;
-               }
-               else if (t->WrapS == GL_REPEAT &&
-                        t->WrapT == GL_REPEAT &&
-                        t->Image[baseLevel]->Border == 0 &&
-                        t->Image[baseLevel]->TexFormat->MesaFormat == MESA_FORMAT_RGBA) {
-                  swrast->TextureSample[texUnit] = opt_sample_rgba_2d;
-               }
-               else
-                  swrast->TextureSample[texUnit] = sample_nearest_2d;
-            }
-            break;
-         case GL_TEXTURE_3D:
-            if (needLambda) {
-               swrast->TextureSample[texUnit] = sample_lambda_3d;
-            }
-            else if (t->MinFilter == GL_LINEAR) {
-               swrast->TextureSample[texUnit] = sample_linear_3d;
-            }
-            else {
-               ASSERT(t->MinFilter == GL_NEAREST);
-               swrast->TextureSample[texUnit] = sample_nearest_3d;
-            }
-            break;
-         case GL_TEXTURE_CUBE_MAP_ARB:
-            if (needLambda) {
-               swrast->TextureSample[texUnit] = sample_lambda_cube;
-            }
-            else if (t->MinFilter == GL_LINEAR) {
-               swrast->TextureSample[texUnit] = sample_linear_cube;
-            }
-            else {
-               ASSERT(t->MinFilter == GL_NEAREST);
-               swrast->TextureSample[texUnit] = sample_nearest_cube;
-            }
-            break;
-         case GL_TEXTURE_RECTANGLE_NV:
-            if (needLambda) {
-               swrast->TextureSample[texUnit] = sample_lambda_rect;
-            }
-            else if (t->MinFilter == GL_LINEAR) {
-               swrast->TextureSample[texUnit] = sample_linear_rect;
-            }
-            else {
-               ASSERT(t->MinFilter == GL_NEAREST);
-               swrast->TextureSample[texUnit] = sample_nearest_rect;
-            }
-            break;
-         default:
-            _mesa_problem(ctx, "invalid target in _swrast_choose_texture_sample_func");
-      }
-   }
-}
-
-
-#define PROD(A,B)   ( (GLuint)(A) * ((GLuint)(B)+1) )
-#define S_PROD(A,B) ( (GLint)(A) * ((GLint)(B)+1) )
-
-
-/**
- * Do texture application for GL_ARB/EXT_texture_env_combine.
- * Input:
- *     ctx - rendering context
- *     textureUnit - the texture unit to apply
- *     n - number of fragments to process (span width)
- *     primary_rgba - incoming fragment color array
- *     texelBuffer - pointer to texel colors for all texture units
- * Input/Output:
- *     rgba - incoming colors, which get modified here
- */
-static INLINE void
-texture_combine( const GLcontext *ctx, GLuint unit, GLuint n,
-                 CONST GLchan (*primary_rgba)[4],
-                 CONST GLchan *texelBuffer,
-                 GLchan (*rgba)[4] )
-{
-   const struct gl_texture_unit *textureUnit = &(ctx->Texture.Unit[unit]);
-   const GLchan (*argRGB [3])[4];
-   const GLchan (*argA [3])[4];
-   const GLuint RGBshift = textureUnit->CombineScaleShiftRGB;
-   const GLuint Ashift   = textureUnit->CombineScaleShiftA;
-#if CHAN_TYPE == GL_FLOAT
-   const GLchan RGBmult = (GLfloat) (1 << RGBshift);
-   const GLchan Amult = (GLfloat) (1 << Ashift);
-#else
-   const GLint half = (CHAN_MAX + 1) / 2;
-#endif
-   GLuint i, j;
-
-   /* GLchan ccolor[3][4]; */
-   DEFMNARRAY(GLchan, ccolor, 3, 3 * MAX_WIDTH, 4);  /* mac 32k limitation */
-   CHECKARRAY(ccolor, return);  /* mac 32k limitation */
-
-   ASSERT(ctx->Extensions.EXT_texture_env_combine ||
-          ctx->Extensions.ARB_texture_env_combine);
-   ASSERT(SWRAST_CONTEXT(ctx)->_AnyTextureCombine);
-
-
-   /*
-   printf("modeRGB 0x%x  modeA 0x%x  srcRGB1 0x%x  srcA1 0x%x  srcRGB2 0x%x  srcA2 0x%x\n",
-          textureUnit->CombineModeRGB,
-          textureUnit->CombineModeA,
-          textureUnit->CombineSourceRGB[0],
-          textureUnit->CombineSourceA[0],
-          textureUnit->CombineSourceRGB[1],
-          textureUnit->CombineSourceA[1]);
-   */
-
-   /*
-    * Do operand setup for up to 3 operands.  Loop over the terms.
-    */
-   for (j = 0; j < 3; j++) {
-      const GLenum srcA = textureUnit->CombineSourceA[j];
-      const GLenum srcRGB = textureUnit->CombineSourceRGB[j];
-
-      switch (srcA) {
-         case GL_TEXTURE:
-            argA[j] = (const GLchan (*)[4])
-               (texelBuffer + unit * (n * 4 * sizeof(GLchan)));
-            break;
-         case GL_PRIMARY_COLOR_EXT:
-            argA[j] = primary_rgba;
-            break;
-         case GL_PREVIOUS_EXT:
-            argA[j] = (const GLchan (*)[4]) rgba;
-            break;
-         case GL_CONSTANT_EXT:
-            {
-               GLchan alpha, (*c)[4] = ccolor[j];
-               UNCLAMPED_FLOAT_TO_CHAN(alpha, textureUnit->EnvColor[3]);
-               for (i = 0; i < n; i++)
-                  c[i][ACOMP] = alpha;
-               argA[j] = (const GLchan (*)[4]) ccolor[j];
-            }
-            break;
-         default:
-            /* ARB_texture_env_crossbar source */
-            {
-               const GLuint srcUnit = srcA - GL_TEXTURE0_ARB;
-               ASSERT(srcUnit < ctx->Const.MaxTextureUnits);
-               if (!ctx->Texture.Unit[srcUnit]._ReallyEnabled)
-                  return;
-               argA[j] = (const GLchan (*)[4])
-                  (texelBuffer + srcUnit * (n * 4 * sizeof(GLchan)));
-            }
-      }
-
-      switch (srcRGB) {
-         case GL_TEXTURE:
-            argRGB[j] = (const GLchan (*)[4])
-               (texelBuffer + unit * (n * 4 * sizeof(GLchan)));
-            break;
-         case GL_PRIMARY_COLOR_EXT:
-            argRGB[j] = primary_rgba;
-            break;
-         case GL_PREVIOUS_EXT:
-            argRGB[j] = (const GLchan (*)[4]) rgba;
-            break;
-         case GL_CONSTANT_EXT:
-            {
-               GLchan (*c)[4] = ccolor[j];
-               GLchan red, green, blue, alpha;
-               UNCLAMPED_FLOAT_TO_CHAN(red,   textureUnit->EnvColor[0]);
-               UNCLAMPED_FLOAT_TO_CHAN(green, textureUnit->EnvColor[1]);
-               UNCLAMPED_FLOAT_TO_CHAN(blue,  textureUnit->EnvColor[2]);
-               UNCLAMPED_FLOAT_TO_CHAN(alpha, textureUnit->EnvColor[3]);
-               for (i = 0; i < n; i++) {
-                  c[i][RCOMP] = red;
-                  c[i][GCOMP] = green;
-                  c[i][BCOMP] = blue;
-                  c[i][ACOMP] = alpha;
-               }
-               argRGB[j] = (const GLchan (*)[4]) ccolor[j];
-            }
-            break;
-         default:
-            /* ARB_texture_env_crossbar source */
-            {
-               const GLuint srcUnit = srcRGB - GL_TEXTURE0_ARB;
-               ASSERT(srcUnit < ctx->Const.MaxTextureUnits);
-               if (!ctx->Texture.Unit[srcUnit]._ReallyEnabled)
-                  return;
-               argRGB[j] = (const GLchan (*)[4])
-                  (texelBuffer + srcUnit * (n * 4 * sizeof(GLchan)));
-            }
-      }
-
-      if (textureUnit->CombineOperandRGB[j] != GL_SRC_COLOR) {
-         const GLchan (*src)[4] = argRGB[j];
-         GLchan (*dst)[4] = ccolor[j];
-
-         /* point to new arg[j] storage */
-         argRGB[j] = (const GLchan (*)[4]) ccolor[j];
-
-         if (textureUnit->CombineOperandRGB[j] == GL_ONE_MINUS_SRC_COLOR) {
-            for (i = 0; i < n; i++) {
-               dst[i][RCOMP] = CHAN_MAX - src[i][RCOMP];
-               dst[i][GCOMP] = CHAN_MAX - src[i][GCOMP];
-               dst[i][BCOMP] = CHAN_MAX - src[i][BCOMP];
-            }
-         }
-         else if (textureUnit->CombineOperandRGB[j] == GL_SRC_ALPHA) {
-            for (i = 0; i < n; i++) {
-               dst[i][RCOMP] = src[i][ACOMP];
-               dst[i][GCOMP] = src[i][ACOMP];
-               dst[i][BCOMP] = src[i][ACOMP];
-            }
-         }
-         else {
-            ASSERT(textureUnit->CombineOperandRGB[j] ==GL_ONE_MINUS_SRC_ALPHA);
-            for (i = 0; i < n; i++) {
-               dst[i][RCOMP] = CHAN_MAX - src[i][ACOMP];
-               dst[i][GCOMP] = CHAN_MAX - src[i][ACOMP];
-               dst[i][BCOMP] = CHAN_MAX - src[i][ACOMP];
-            }
-         }
-      }
-
-      if (textureUnit->CombineOperandA[j] == GL_ONE_MINUS_SRC_ALPHA) {
-         const GLchan (*src)[4] = argA[j];
-         GLchan (*dst)[4] = ccolor[j];
-         argA[j] = (const GLchan (*)[4]) ccolor[j];
-         for (i = 0; i < n; i++) {
-            dst[i][ACOMP] = CHAN_MAX - src[i][ACOMP];
-         }
-      }
-
-      if (textureUnit->CombineModeRGB == GL_REPLACE &&
-          textureUnit->CombineModeA == GL_REPLACE) {
-         break;      /*  done, we need only arg0  */
-      }
-
-      if (j == 1 &&
-          textureUnit->CombineModeRGB != GL_INTERPOLATE_EXT &&
-          textureUnit->CombineModeA != GL_INTERPOLATE_EXT) {
-         break;      /*  arg0 and arg1 are done. we don't need arg2. */
-      }
-   }
-
-   /*
-    * Do the texture combine.
-    */
-   switch (textureUnit->CombineModeRGB) {
-      case GL_REPLACE:
-         {
-            const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0];
-            if (RGBshift) {
-               for (i = 0; i < n; i++) {
-#if CHAN_TYPE == GL_FLOAT
-                  rgba[i][RCOMP] = arg0[i][RCOMP] * RGBmult;
-                  rgba[i][GCOMP] = arg0[i][GCOMP] * RGBmult;
-                  rgba[i][BCOMP] = arg0[i][BCOMP] * RGBmult;
-#else
-                  GLuint r = (GLuint) arg0[i][RCOMP] << RGBshift;
-                  GLuint g = (GLuint) arg0[i][GCOMP] << RGBshift;
-                  GLuint b = (GLuint) arg0[i][BCOMP] << RGBshift;
-                  rgba[i][RCOMP] = MIN2(r, CHAN_MAX);
-                  rgba[i][GCOMP] = MIN2(g, CHAN_MAX);
-                  rgba[i][BCOMP] = MIN2(b, CHAN_MAX);
-#endif
-               }
-            }
-            else {
-               for (i = 0; i < n; i++) {
-                  rgba[i][RCOMP] = arg0[i][RCOMP];
-                  rgba[i][GCOMP] = arg0[i][GCOMP];
-                  rgba[i][BCOMP] = arg0[i][BCOMP];
-               }
-            }
-         }
-         break;
-      case GL_MODULATE:
-         {
-            const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0];
-            const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1];
-#if CHAN_TYPE != GL_FLOAT
-            const GLint shift = CHAN_BITS - RGBshift;
-#endif
-            for (i = 0; i < n; i++) {
-#if CHAN_TYPE == GL_FLOAT
-               rgba[i][RCOMP] = arg0[i][RCOMP] * arg1[i][RCOMP] * RGBmult;
-               rgba[i][GCOMP] = arg0[i][GCOMP] * arg1[i][GCOMP] * RGBmult;
-               rgba[i][BCOMP] = arg0[i][BCOMP] * arg1[i][BCOMP] * RGBmult;
-#else
-               GLuint r = PROD(arg0[i][RCOMP], arg1[i][RCOMP]) >> shift;
-               GLuint g = PROD(arg0[i][GCOMP], arg1[i][GCOMP]) >> shift;
-               GLuint b = PROD(arg0[i][BCOMP], arg1[i][BCOMP]) >> shift;
-               rgba[i][RCOMP] = (GLchan) MIN2(r, CHAN_MAX);
-               rgba[i][GCOMP] = (GLchan) MIN2(g, CHAN_MAX);
-               rgba[i][BCOMP] = (GLchan) MIN2(b, CHAN_MAX);
-#endif
-            }
-         }
-         break;
-      case GL_ADD:
-         {
-            const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0];
-            const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1];
-            for (i = 0; i < n; i++) {
-#if CHAN_TYPE == GL_FLOAT
-               rgba[i][RCOMP] = (arg0[i][RCOMP] + arg1[i][RCOMP]) * RGBmult;
-               rgba[i][GCOMP] = (arg0[i][GCOMP] + arg1[i][GCOMP]) * RGBmult;
-               rgba[i][BCOMP] = (arg0[i][BCOMP] + arg1[i][BCOMP]) * RGBmult;
-#else
-               GLint r = ((GLint) arg0[i][RCOMP] + (GLint) arg1[i][RCOMP]) << RGBshift;
-               GLint g = ((GLint) arg0[i][GCOMP] + (GLint) arg1[i][GCOMP]) << RGBshift;
-               GLint b = ((GLint) arg0[i][BCOMP] + (GLint) arg1[i][BCOMP]) << RGBshift;
-               rgba[i][RCOMP] = (GLchan) MIN2(r, CHAN_MAX);
-               rgba[i][GCOMP] = (GLchan) MIN2(g, CHAN_MAX);
-               rgba[i][BCOMP] = (GLchan) MIN2(b, CHAN_MAX);
-#endif
-            }
-         }
-         break;
-      case GL_ADD_SIGNED_EXT:
-         {
-            const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0];
-            const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1];
-            for (i = 0; i < n; i++) {
-#if CHAN_TYPE == GL_FLOAT
-               rgba[i][RCOMP] = (arg0[i][RCOMP] + arg1[i][RCOMP] - 0.5) * RGBmult;
-               rgba[i][GCOMP] = (arg0[i][GCOMP] + arg1[i][GCOMP] - 0.5) * RGBmult;
-               rgba[i][BCOMP] = (arg0[i][BCOMP] + arg1[i][BCOMP] - 0.5) * RGBmult;
-#else
-               GLint r = (GLint) arg0[i][RCOMP] + (GLint) arg1[i][RCOMP] -half;
-               GLint g = (GLint) arg0[i][GCOMP] + (GLint) arg1[i][GCOMP] -half;
-               GLint b = (GLint) arg0[i][BCOMP] + (GLint) arg1[i][BCOMP] -half;
-               r = (r < 0) ? 0 : r << RGBshift;
-               g = (g < 0) ? 0 : g << RGBshift;
-               b = (b < 0) ? 0 : b << RGBshift;
-               rgba[i][RCOMP] = (GLchan) MIN2(r, CHAN_MAX);
-               rgba[i][GCOMP] = (GLchan) MIN2(g, CHAN_MAX);
-               rgba[i][BCOMP] = (GLchan) MIN2(b, CHAN_MAX);
-#endif
-            }
-         }
-         break;
-      case GL_INTERPOLATE_EXT:
-         {
-            const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0];
-            const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1];
-            const GLchan (*arg2)[4] = (const GLchan (*)[4]) argRGB[2];
-#if CHAN_TYPE != GL_FLOAT
-            const GLint shift = CHAN_BITS - RGBshift;
-#endif
-            for (i = 0; i < n; i++) {
-#if CHAN_TYPE == GL_FLOAT
-               rgba[i][RCOMP] = (arg0[i][RCOMP] * arg2[i][RCOMP] +
-                      arg1[i][RCOMP] * (CHAN_MAXF - arg2[i][RCOMP])) * RGBmult;
-               rgba[i][GCOMP] = (arg0[i][GCOMP] * arg2[i][GCOMP] +
-                      arg1[i][GCOMP] * (CHAN_MAXF - arg2[i][GCOMP])) * RGBmult;
-               rgba[i][BCOMP] = (arg0[i][BCOMP] * arg2[i][BCOMP] +
-                      arg1[i][BCOMP] * (CHAN_MAXF - arg2[i][BCOMP])) * RGBmult;
-#else
-               GLuint r = (PROD(arg0[i][RCOMP], arg2[i][RCOMP])
-                           + PROD(arg1[i][RCOMP], CHAN_MAX - arg2[i][RCOMP]))
-                              >> shift;
-               GLuint g = (PROD(arg0[i][GCOMP], arg2[i][GCOMP])
-                           + PROD(arg1[i][GCOMP], CHAN_MAX - arg2[i][GCOMP]))
-                              >> shift;
-               GLuint b = (PROD(arg0[i][BCOMP], arg2[i][BCOMP])
-                           + PROD(arg1[i][BCOMP], CHAN_MAX - arg2[i][BCOMP]))
-                              >> shift;
-               rgba[i][RCOMP] = (GLchan) MIN2(r, CHAN_MAX);
-               rgba[i][GCOMP] = (GLchan) MIN2(g, CHAN_MAX);
-               rgba[i][BCOMP] = (GLchan) MIN2(b, CHAN_MAX);
-#endif
-            }
-         }
-         break;
-      case GL_SUBTRACT_ARB:
-         {
-            const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0];
-            const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1];
-            for (i = 0; i < n; i++) {
-#if CHAN_TYPE == GL_FLOAT
-               rgba[i][RCOMP] = (arg0[i][RCOMP] - arg1[i][RCOMP]) * RGBmult;
-               rgba[i][GCOMP] = (arg0[i][GCOMP] - arg1[i][GCOMP]) * RGBmult;
-               rgba[i][BCOMP] = (arg0[i][BCOMP] - arg1[i][BCOMP]) * RGBmult;
-#else
-               GLint r = ((GLint) arg0[i][RCOMP] - (GLint) arg1[i][RCOMP]) << RGBshift;
-               GLint g = ((GLint) arg0[i][GCOMP] - (GLint) arg1[i][GCOMP]) << RGBshift;
-               GLint b = ((GLint) arg0[i][BCOMP] - (GLint) arg1[i][BCOMP]) << RGBshift;
-               rgba[i][RCOMP] = (GLchan) CLAMP(r, 0, CHAN_MAX);
-               rgba[i][GCOMP] = (GLchan) CLAMP(g, 0, CHAN_MAX);
-               rgba[i][BCOMP] = (GLchan) CLAMP(b, 0, CHAN_MAX);
-#endif
-            }
-         }
-         break;
-      case GL_DOT3_RGB_EXT:
-      case GL_DOT3_RGBA_EXT:
-         {
-            /* Do not scale the result by 1 2 or 4 */
-            const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0];
-            const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1];
-            for (i = 0; i < n; i++) {
-#if CHAN_TYPE == GL_FLOAT
-               GLchan dot = ((arg0[i][RCOMP]-0.5F) * (arg1[i][RCOMP]-0.5F) +
-                             (arg0[i][GCOMP]-0.5F) * (arg1[i][GCOMP]-0.5F) +
-                             (arg0[i][BCOMP]-0.5F) * (arg1[i][BCOMP]-0.5F))
-                            * 4.0F;
-               dot = CLAMP(dot, 0.0F, CHAN_MAXF);
-#else
-               GLint dot = (S_PROD((GLint)arg0[i][RCOMP] - half,
-                                  (GLint)arg1[i][RCOMP] - half) +
-                           S_PROD((GLint)arg0[i][GCOMP] - half,
-                                  (GLint)arg1[i][GCOMP] - half) +
-                           S_PROD((GLint)arg0[i][BCOMP] - half,
-                                  (GLint)arg1[i][BCOMP] - half)) >> 6;
-               dot = CLAMP(dot, 0, CHAN_MAX);
-#endif
-               rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = (GLchan) dot;
-            }
-         }
-         break;
-      case GL_DOT3_RGB_ARB:
-      case GL_DOT3_RGBA_ARB:
-         {
-            /* DO scale the result by 1 2 or 4 */
-            const GLchan (*arg0)[4] = (const GLchan (*)[4]) argRGB[0];
-            const GLchan (*arg1)[4] = (const GLchan (*)[4]) argRGB[1];
-            for (i = 0; i < n; i++) {
-#if CHAN_TYPE == GL_FLOAT
-               GLchan dot = ((arg0[i][RCOMP]-0.5F) * (arg1[i][RCOMP]-0.5F) +
-                             (arg0[i][GCOMP]-0.5F) * (arg1[i][GCOMP]-0.5F) +
-                             (arg0[i][BCOMP]-0.5F) * (arg1[i][BCOMP]-0.5F))
-                            * 4.0F;
-               dot = CLAMP(dot, 0.0, CHAN_MAXF) * RGBmult;
-#else
-               GLint dot = (S_PROD((GLint)arg0[i][RCOMP] - half,
-                                  (GLint)arg1[i][RCOMP] - half) +
-                           S_PROD((GLint)arg0[i][GCOMP] - half,
-                                  (GLint)arg1[i][GCOMP] - half) +
-                           S_PROD((GLint)arg0[i][BCOMP] - half,
-                                  (GLint)arg1[i][BCOMP] - half)) >> 6;
-               dot = CLAMP(dot, 0, CHAN_MAX) << RGBshift;
-#endif
-               rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = (GLchan) dot;
-            }
-         }
-         break;
-      default:
-         _mesa_problem(ctx, "invalid combine mode");
-   }
-
-   switch (textureUnit->CombineModeA) {
-      case GL_REPLACE:
-         {
-            const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0];
-            if (Ashift) {
-               for (i = 0; i < n; i++) {
-#if CHAN_TYPE == GL_FLOAT
-                  GLchan a = arg0[i][ACOMP] * Amult;
-#else
-                  GLuint a = (GLuint) arg0[i][ACOMP] << Ashift;
-#endif
-                  rgba[i][ACOMP] = (GLchan) MIN2(a, CHAN_MAX);
-               }
-            }
-            else {
-               for (i = 0; i < n; i++) {
-                  rgba[i][ACOMP] = arg0[i][ACOMP];
-               }
-            }
-         }
-         break;
-      case GL_MODULATE:
-         {
-            const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0];
-            const GLchan (*arg1)[4] = (const GLchan (*)[4]) argA[1];
-#if CHAN_TYPE != GL_FLOAT
-            const GLint shift = CHAN_BITS - Ashift;
-#endif
-            for (i = 0; i < n; i++) {
-#if CHAN_TYPE == GL_FLOAT
-               rgba[i][ACOMP] = arg0[i][ACOMP] * arg1[i][ACOMP] * Amult;
-#else
-               GLuint a = (PROD(arg0[i][ACOMP], arg1[i][ACOMP]) >> shift);
-               rgba[i][ACOMP] = (GLchan) MIN2(a, CHAN_MAX);
-#endif
-            }
-         }
-         break;
-      case GL_ADD:
-         {
-            const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0];
-            const GLchan  (*arg1)[4] = (const GLchan (*)[4]) argA[1];
-            for (i = 0; i < n; i++) {
-#if CHAN_TYPE == GL_FLOAT
-               rgba[i][ACOMP] = (arg0[i][ACOMP] + arg1[i][ACOMP]) * Amult;
-#else
-               GLint a = ((GLint) arg0[i][ACOMP] + arg1[i][ACOMP]) << Ashift;
-               rgba[i][ACOMP] = (GLchan) MIN2(a, CHAN_MAX);
-#endif
-            }
-         }
-         break;
-      case GL_ADD_SIGNED_EXT:
-         {
-            const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0];
-            const GLchan (*arg1)[4] = (const GLchan (*)[4]) argA[1];
-            for (i = 0; i < n; i++) {
-#if CHAN_TYPE == GL_FLOAT
-               rgba[i][ACOMP] = (arg0[i][ACOMP] + arg1[i][ACOMP] - 0.5F) * Amult;
-#else
-               GLint a = (GLint) arg0[i][ACOMP] + (GLint) arg1[i][ACOMP] -half;
-               a = (a < 0) ? 0 : a << Ashift;
-               rgba[i][ACOMP] = (GLchan) MIN2(a, CHAN_MAX);
-#endif
-            }
-         }
-         break;
-      case GL_INTERPOLATE_EXT:
-         {
-            const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0];
-            const GLchan (*arg1)[4] = (const GLchan (*)[4]) argA[1];
-            const GLchan (*arg2)[4] = (const GLchan (*)[4]) argA[2];
-#if CHAN_TYPE != GL_FLOAT
-            const GLint shift = CHAN_BITS - Ashift;
-#endif
-            for (i=0; i<n; i++) {
-#if CHAN_TYPE == GL_FLOAT
-               rgba[i][ACOMP] = (arg0[i][ACOMP] * arg2[i][ACOMP] +
-                                 arg1[i][ACOMP] * (CHAN_MAXF - arg2[i][ACOMP]))
-                                * Amult;
-#else
-               GLuint a = (PROD(arg0[i][ACOMP], arg2[i][ACOMP])
-                           + PROD(arg1[i][ACOMP], CHAN_MAX - arg2[i][ACOMP]))
-                              >> shift;
-               rgba[i][ACOMP] = (GLchan) MIN2(a, CHAN_MAX);
-#endif
-            }
-         }
-         break;
-      case GL_SUBTRACT_ARB:
-         {
-            const GLchan (*arg0)[4] = (const GLchan (*)[4]) argA[0];
-            const GLchan (*arg1)[4] = (const GLchan (*)[4]) argA[1];
-            for (i = 0; i < n; i++) {
-#if CHAN_TYPE == GL_FLOAT
-               rgba[i][ACOMP] = (arg0[i][ACOMP] - arg1[i][ACOMP]) * Amult;
-#else
-               GLint a = ((GLint) arg0[i][ACOMP] - (GLint) arg1[i][ACOMP]) << Ashift;
-               rgba[i][ACOMP] = (GLchan) CLAMP(a, 0, CHAN_MAX);
-#endif
-            }
-         }
-         break;
-
-      default:
-         _mesa_problem(ctx, "invalid combine mode");
-   }
-
-   /* Fix the alpha component for GL_DOT3_RGBA_EXT/ARB combining.
-    * This is kind of a kludge.  It would have been better if the spec
-    * were written such that the GL_COMBINE_ALPHA value could be set to
-    * GL_DOT3.
-    */
-   if (textureUnit->CombineModeRGB == GL_DOT3_RGBA_EXT ||
-       textureUnit->CombineModeRGB == GL_DOT3_RGBA_ARB) {
-      for (i = 0; i < n; i++) {
-        rgba[i][ACOMP] = rgba[i][RCOMP];
-      }
-   }
-   UNDEFARRAY(ccolor);  /* mac 32k limitation */
-}
-#undef PROD
-
-
-/**
- * Implement NVIDIA's GL_NV_texture_env_combine4 extension when
- * texUnit->EnvMode == GL_COMBINE4_NV.
- */
-static INLINE void
-texture_combine4( const GLcontext *ctx, GLuint unit, GLuint n,
-                  CONST GLchan (*primary_rgba)[4],
-                  CONST GLchan *texelBuffer,
-                  GLchan (*rgba)[4] )
-{
-}
-
-
-
-/**
- * Apply a conventional OpenGL texture env mode (REPLACE, ADD, BLEND,
- * MODULATE, or DECAL) to an array of fragments.
- * Input:  textureUnit - pointer to texture unit to apply
- *         format - base internal texture format
- *         n - number of fragments
- *         primary_rgba - primary colors (may alias rgba for single texture)
- *         texels - array of texel colors
- * InOut:  rgba - incoming fragment colors modified by texel colors
- *                according to the texture environment mode.
- */
-static void
-texture_apply( const GLcontext *ctx,
-               const struct gl_texture_unit *texUnit,
-               GLuint n,
-               CONST GLchan primary_rgba[][4], CONST GLchan texel[][4],
-               GLchan rgba[][4] )
-{
-   GLint baseLevel;
-   GLuint i;
-   GLint Rc, Gc, Bc, Ac;
-   GLenum format;
-
-   ASSERT(texUnit);
-   ASSERT(texUnit->_Current);
-
-   baseLevel = texUnit->_Current->BaseLevel;
-   ASSERT(texUnit->_Current->Image[baseLevel]);
-
-   format = texUnit->_Current->Image[baseLevel]->Format;
-
-   if (format == GL_COLOR_INDEX || format == GL_DEPTH_COMPONENT
-       || format == GL_YCBCR_MESA) {
-      format = GL_RGBA;  /* a bit of a hack */
-   }
-
-   switch (texUnit->EnvMode) {
-      case GL_REPLACE:
-        switch (format) {
-           case GL_ALPHA:
-              for (i=0;i<n;i++) {
-                 /* Cv = Cf */
-                  /* Av = At */
-                  rgba[i][ACOMP] = texel[i][ACOMP];
-              }
-              break;
-           case GL_LUMINANCE:
-              for (i=0;i<n;i++) {
-                 /* Cv = Lt */
-                  GLchan Lt = texel[i][RCOMP];
-                  rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = Lt;
-                  /* Av = Af */
-              }
-              break;
-           case GL_LUMINANCE_ALPHA:
-              for (i=0;i<n;i++) {
-                  GLchan Lt = texel[i][RCOMP];
-                 /* Cv = Lt */
-                 rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = Lt;
-                 /* Av = At */
-                 rgba[i][ACOMP] = texel[i][ACOMP];
-              }
-              break;
-           case GL_INTENSITY:
-              for (i=0;i<n;i++) {
-                 /* Cv = It */
-                  GLchan It = texel[i][RCOMP];
-                  rgba[i][RCOMP] = rgba[i][GCOMP] = rgba[i][BCOMP] = It;
-                  /* Av = It */
-                  rgba[i][ACOMP] = It;
-              }
-              break;
-           case GL_RGB:
-              for (i=0;i<n;i++) {
-                 /* Cv = Ct */
-                 rgba[i][RCOMP] = texel[i][RCOMP];
-                 rgba[i][GCOMP] = texel[i][GCOMP];
-                 rgba[i][BCOMP] = texel[i][BCOMP];
-                 /* Av = Af */
-              }
-              break;
-           case GL_RGBA:
-              for (i=0;i<n;i++) {
-                 /* Cv = Ct */
-                 rgba[i][RCOMP] = texel[i][RCOMP];
-                 rgba[i][GCOMP] = texel[i][GCOMP];
-                 rgba[i][BCOMP] = texel[i][BCOMP];
-                 /* Av = At */
-                 rgba[i][ACOMP] = texel[i][ACOMP];
-              }
-              break;
-            default:
-               _mesa_problem(ctx, "Bad format (GL_REPLACE) in texture_apply");
-               return;
-        }
-        break;
-
-      case GL_MODULATE:
-         switch (format) {
-           case GL_ALPHA:
-              for (i=0;i<n;i++) {
-                 /* Cv = Cf */
-                 /* Av = AfAt */
-                 rgba[i][ACOMP] = CHAN_PRODUCT( rgba[i][ACOMP], texel[i][ACOMP] );
-              }
-              break;
-           case GL_LUMINANCE:
-              for (i=0;i<n;i++) {
-                 /* Cv = LtCf */
-                  GLchan Lt = texel[i][RCOMP];
-                 rgba[i][RCOMP] = CHAN_PRODUCT( rgba[i][RCOMP], Lt );
-                 rgba[i][GCOMP] = CHAN_PRODUCT( rgba[i][GCOMP], Lt );
-                 rgba[i][BCOMP] = CHAN_PRODUCT( rgba[i][BCOMP], Lt );
-                 /* Av = Af */
-              }
-              break;
-           case GL_LUMINANCE_ALPHA:
-              for (i=0;i<n;i++) {
-                 /* Cv = CfLt */
-                  GLchan Lt = texel[i][RCOMP];
-                 rgba[i][RCOMP] = CHAN_PRODUCT( rgba[i][RCOMP], Lt );
-                 rgba[i][GCOMP] = CHAN_PRODUCT( rgba[i][GCOMP], Lt );
-                 rgba[i][BCOMP] = CHAN_PRODUCT( rgba[i][BCOMP], Lt );
-                 /* Av = AfAt */
-                 rgba[i][ACOMP] = CHAN_PRODUCT( rgba[i][ACOMP], texel[i][ACOMP] );
-              }
-              break;
-           case GL_INTENSITY:
-              for (i=0;i<n;i++) {
-                 /* Cv = CfIt */
-                  GLchan It = texel[i][RCOMP];
-                 rgba[i][RCOMP] = CHAN_PRODUCT( rgba[i][RCOMP], It );
-                 rgba[i][GCOMP] = CHAN_PRODUCT( rgba[i][GCOMP], It );
-                 rgba[i][BCOMP] = CHAN_PRODUCT( rgba[i][BCOMP], It );
-                 /* Av = AfIt */
-                 rgba[i][ACOMP] = CHAN_PRODUCT( rgba[i][ACOMP], It );
-              }
-              break;
-           case GL_RGB:
-              for (i=0;i<n;i++) {
-                 /* Cv = CfCt */
-                 rgba[i][RCOMP] = CHAN_PRODUCT( rgba[i][RCOMP], texel[i][RCOMP] );
-                 rgba[i][GCOMP] = CHAN_PRODUCT( rgba[i][GCOMP], texel[i][GCOMP] );
-                 rgba[i][BCOMP] = CHAN_PRODUCT( rgba[i][BCOMP], texel[i][BCOMP] );
-                 /* Av = Af */
-              }
-              break;
-           case GL_RGBA:
-              for (i=0;i<n;i++) {
-                 /* Cv = CfCt */
-                 rgba[i][RCOMP] = CHAN_PRODUCT( rgba[i][RCOMP], texel[i][RCOMP] );
-                 rgba[i][GCOMP] = CHAN_PRODUCT( rgba[i][GCOMP], texel[i][GCOMP] );
-                 rgba[i][BCOMP] = CHAN_PRODUCT( rgba[i][BCOMP], texel[i][BCOMP] );
-                 /* Av = AfAt */
-                 rgba[i][ACOMP] = CHAN_PRODUCT( rgba[i][ACOMP], texel[i][ACOMP] );
-              }
-              break;
-            default:
-               _mesa_problem(ctx, "Bad format (GL_MODULATE) in texture_apply");
-               return;
-        }
-        break;
-
-      case GL_DECAL:
-         switch (format) {
-            case GL_ALPHA:
-            case GL_LUMINANCE:
-            case GL_LUMINANCE_ALPHA:
-            case GL_INTENSITY:
-               /* undefined */
-               break;
-           case GL_RGB:
-              for (i=0;i<n;i++) {
-                 /* Cv = Ct */
-                 rgba[i][RCOMP] = texel[i][RCOMP];
-                 rgba[i][GCOMP] = texel[i][GCOMP];
-                 rgba[i][BCOMP] = texel[i][BCOMP];
-                 /* Av = Af */
-              }
-              break;
-           case GL_RGBA:
-              for (i=0;i<n;i++) {
-                 /* Cv = Cf(1-At) + CtAt */
-                 GLint t = texel[i][ACOMP], s = CHAN_MAX - t;
-                 rgba[i][RCOMP] = CHAN_PRODUCT(rgba[i][RCOMP], s) + CHAN_PRODUCT(texel[i][RCOMP],t);
-                 rgba[i][GCOMP] = CHAN_PRODUCT(rgba[i][GCOMP], s) + CHAN_PRODUCT(texel[i][GCOMP],t);
-                 rgba[i][BCOMP] = CHAN_PRODUCT(rgba[i][BCOMP], s) + CHAN_PRODUCT(texel[i][BCOMP],t);
-                 /* Av = Af */
-              }
-              break;
-            default:
-               _mesa_problem(ctx, "Bad format (GL_DECAL) in texture_apply");
-               return;
-        }
-        break;
-
-      case GL_BLEND:
-         Rc = (GLint) (texUnit->EnvColor[0] * CHAN_MAXF);
-         Gc = (GLint) (texUnit->EnvColor[1] * CHAN_MAXF);
-         Bc = (GLint) (texUnit->EnvColor[2] * CHAN_MAXF);
-         Ac = (GLint) (texUnit->EnvColor[3] * CHAN_MAXF);
-        switch (format) {
-           case GL_ALPHA:
-              for (i=0;i<n;i++) {
-                 /* Cv = Cf */
-                 /* Av = AfAt */
-                  rgba[i][ACOMP] = CHAN_PRODUCT(rgba[i][ACOMP], texel[i][ACOMP]);
-              }
-              break;
-            case GL_LUMINANCE:
-              for (i=0;i<n;i++) {
-                 /* Cv = Cf(1-Lt) + CcLt */
-                 GLchan Lt = texel[i][RCOMP], s = CHAN_MAX - Lt;
-                 rgba[i][RCOMP] = CHAN_PRODUCT(rgba[i][RCOMP], s) + CHAN_PRODUCT(Rc, Lt);
-                 rgba[i][GCOMP] = CHAN_PRODUCT(rgba[i][GCOMP], s) + CHAN_PRODUCT(Gc, Lt);
-                 rgba[i][BCOMP] = CHAN_PRODUCT(rgba[i][BCOMP], s) + CHAN_PRODUCT(Bc, Lt);
-                 /* Av = Af */
-              }
-              break;
-           case GL_LUMINANCE_ALPHA:
-              for (i=0;i<n;i++) {
-                 /* Cv = Cf(1-Lt) + CcLt */
-                 GLchan Lt = texel[i][RCOMP], s = CHAN_MAX - Lt;
-                 rgba[i][RCOMP] = CHAN_PRODUCT(rgba[i][RCOMP], s) + CHAN_PRODUCT(Rc, Lt);
-                 rgba[i][GCOMP] = CHAN_PRODUCT(rgba[i][GCOMP], s) + CHAN_PRODUCT(Gc, Lt);
-                 rgba[i][BCOMP] = CHAN_PRODUCT(rgba[i][BCOMP], s) + CHAN_PRODUCT(Bc, Lt);
-                 /* Av = AfAt */
-                 rgba[i][ACOMP] = CHAN_PRODUCT(rgba[i][ACOMP],texel[i][ACOMP]);
-              }
-              break;
-            case GL_INTENSITY:
-              for (i=0;i<n;i++) {
-                 /* Cv = Cf(1-It) + CcLt */
-                 GLchan It = texel[i][RCOMP], s = CHAN_MAX - It;
-                 rgba[i][RCOMP] = CHAN_PRODUCT(rgba[i][RCOMP], s) + CHAN_PRODUCT(Rc, It);
-                 rgba[i][GCOMP] = CHAN_PRODUCT(rgba[i][GCOMP], s) + CHAN_PRODUCT(Gc, It);
-                 rgba[i][BCOMP] = CHAN_PRODUCT(rgba[i][BCOMP], s) + CHAN_PRODUCT(Bc, It);
-                  /* Av = Af(1-It) + Ac*It */
-                  rgba[i][ACOMP] = CHAN_PRODUCT(rgba[i][ACOMP], s) + CHAN_PRODUCT(Ac, It);
-               }
-               break;
-           case GL_RGB:
-              for (i=0;i<n;i++) {
-                 /* Cv = Cf(1-Ct) + CcCt */
-                 rgba[i][RCOMP] = CHAN_PRODUCT(rgba[i][RCOMP], (CHAN_MAX-texel[i][RCOMP])) + CHAN_PRODUCT(Rc,texel[i][RCOMP]);
-                 rgba[i][GCOMP] = CHAN_PRODUCT(rgba[i][GCOMP], (CHAN_MAX-texel[i][GCOMP])) + CHAN_PRODUCT(Gc,texel[i][GCOMP]);
-                 rgba[i][BCOMP] = CHAN_PRODUCT(rgba[i][BCOMP], (CHAN_MAX-texel[i][BCOMP])) + CHAN_PRODUCT(Bc,texel[i][BCOMP]);
-                 /* Av = Af */
-              }
-              break;
-           case GL_RGBA:
-              for (i=0;i<n;i++) {
-                 /* Cv = Cf(1-Ct) + CcCt */
-                 rgba[i][RCOMP] = CHAN_PRODUCT(rgba[i][RCOMP], (CHAN_MAX-texel[i][RCOMP])) + CHAN_PRODUCT(Rc,texel[i][RCOMP]);
-                 rgba[i][GCOMP] = CHAN_PRODUCT(rgba[i][GCOMP], (CHAN_MAX-texel[i][GCOMP])) + CHAN_PRODUCT(Gc,texel[i][GCOMP]);
-                 rgba[i][BCOMP] = CHAN_PRODUCT(rgba[i][BCOMP], (CHAN_MAX-texel[i][BCOMP])) + CHAN_PRODUCT(Bc,texel[i][BCOMP]);
-                 /* Av = AfAt */
-                 rgba[i][ACOMP] = CHAN_PRODUCT(rgba[i][ACOMP],texel[i][ACOMP]);
-              }
-              break;
-            default:
-               _mesa_problem(ctx, "Bad format (GL_BLEND) in texture_apply");
-               return;
-        }
-        break;
-
-     /* XXX don't clamp results if GLchan is float??? */
-
-      case GL_ADD:  /* GL_EXT_texture_add_env */
-         switch (format) {
-            case GL_ALPHA:
-               for (i=0;i<n;i++) {
-                  /* Rv = Rf */
-                  /* Gv = Gf */
-                  /* Bv = Bf */
-                  rgba[i][ACOMP] = CHAN_PRODUCT(rgba[i][ACOMP], texel[i][ACOMP]);
-               }
-               break;
-            case GL_LUMINANCE:
-               for (i=0;i<n;i++) {
-                  GLuint Lt = texel[i][RCOMP];
-                  GLuint r = rgba[i][RCOMP] + Lt;
-                  GLuint g = rgba[i][GCOMP] + Lt;
-                  GLuint b = rgba[i][BCOMP] + Lt;
-                  rgba[i][RCOMP] = MIN2(r, CHAN_MAX);
-                  rgba[i][GCOMP] = MIN2(g, CHAN_MAX);
-                  rgba[i][BCOMP] = MIN2(b, CHAN_MAX);
-                  /* Av = Af */
-               }
-               break;
-            case GL_LUMINANCE_ALPHA:
-               for (i=0;i<n;i++) {
-                  GLuint Lt = texel[i][RCOMP];
-                  GLuint r = rgba[i][RCOMP] + Lt;
-                  GLuint g = rgba[i][GCOMP] + Lt;
-                  GLuint b = rgba[i][BCOMP] + Lt;
-                  rgba[i][RCOMP] = MIN2(r, CHAN_MAX);
-                  rgba[i][GCOMP] = MIN2(g, CHAN_MAX);
-                  rgba[i][BCOMP] = MIN2(b, CHAN_MAX);
-                  rgba[i][ACOMP] = CHAN_PRODUCT(rgba[i][ACOMP], texel[i][ACOMP]);
-               }
-               break;
-            case GL_INTENSITY:
-               for (i=0;i<n;i++) {
-                  GLchan It = texel[i][RCOMP];
-                  GLuint r = rgba[i][RCOMP] + It;
-                  GLuint g = rgba[i][GCOMP] + It;
-                  GLuint b = rgba[i][BCOMP] + It;
-                  GLuint a = rgba[i][ACOMP] + It;
-                  rgba[i][RCOMP] = MIN2(r, CHAN_MAX);
-                  rgba[i][GCOMP] = MIN2(g, CHAN_MAX);
-                  rgba[i][BCOMP] = MIN2(b, CHAN_MAX);
-                  rgba[i][ACOMP] = MIN2(a, CHAN_MAX);
-               }
-               break;
-           case GL_RGB:
-              for (i=0;i<n;i++) {
-                  GLuint r = rgba[i][RCOMP] + texel[i][RCOMP];
-                  GLuint g = rgba[i][GCOMP] + texel[i][GCOMP];
-                  GLuint b = rgba[i][BCOMP] + texel[i][BCOMP];
-                 rgba[i][RCOMP] = MIN2(r, CHAN_MAX);
-                 rgba[i][GCOMP] = MIN2(g, CHAN_MAX);
-                 rgba[i][BCOMP] = MIN2(b, CHAN_MAX);
-                 /* Av = Af */
-              }
-              break;
-           case GL_RGBA:
-              for (i=0;i<n;i++) {
-                  GLuint r = rgba[i][RCOMP] + texel[i][RCOMP];
-                  GLuint g = rgba[i][GCOMP] + texel[i][GCOMP];
-                  GLuint b = rgba[i][BCOMP] + texel[i][BCOMP];
-                 rgba[i][RCOMP] = MIN2(r, CHAN_MAX);
-                 rgba[i][GCOMP] = MIN2(g, CHAN_MAX);
-                 rgba[i][BCOMP] = MIN2(b, CHAN_MAX);
-                  rgba[i][ACOMP] = CHAN_PRODUCT(rgba[i][ACOMP], texel[i][ACOMP]);
-               }
-               break;
-            default:
-               _mesa_problem(ctx, "Bad format (GL_ADD) in texture_apply");
-               return;
-        }
-        break;
-
-      default:
-         _mesa_problem(ctx, "Bad env mode in texture_apply");
-         return;
-   }
-}
-
-
-
-/**
- * Apply texture mapping to a span of fragments.
- */
-void
-_swrast_texture_span( GLcontext *ctx, struct sw_span *span )
-{
-   SWcontext *swrast = SWRAST_CONTEXT(ctx);
-   GLchan primary_rgba[MAX_WIDTH][4];
-   GLuint unit;
-
-   ASSERT(span->end < MAX_WIDTH);
-   ASSERT(span->arrayMask & SPAN_TEXTURE);
-
-   /*
-    * Save copy of the incoming fragment colors (the GL_PRIMARY_COLOR)
-    */
-   if (swrast->_AnyTextureCombine)
-      MEMCPY(primary_rgba, span->array->rgba, 4 * span->end * sizeof(GLchan));
-
-   /*
-    * Must do all texture sampling before combining in order to
-    * accomodate GL_ARB_texture_env_crossbar.
-    */
-   for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
-      if (ctx->Texture.Unit[unit]._ReallyEnabled) {
-         const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
-         const struct gl_texture_object *curObj = texUnit->_Current;
-         GLfloat *lambda = span->array->lambda[unit];
-         GLchan (*texels)[4] = (GLchan (*)[4])
-            (swrast->TexelBuffer + unit * (span->end * 4 * sizeof(GLchan)));
-
-         /* adjust texture lod (lambda) */
-         if (span->arrayMask | SPAN_LAMBDA) {
-            if (texUnit->LodBias != 0.0F) {
-               /* apply LOD bias, but don't clamp yet */
-               GLuint i;
-               for (i = 0; i < span->end; i++) {
-                  lambda[i] += texUnit->LodBias;
-               }
-            }
-
-            if (curObj->MinLod != -1000.0 || curObj->MaxLod != 1000.0) {
-               /* apply LOD clamping to lambda */
-               const GLfloat min = curObj->MinLod;
-               const GLfloat max = curObj->MaxLod;
-               GLuint i;
-               for (i = 0; i < span->end; i++) {
-                  GLfloat l = lambda[i];
-                  lambda[i] = CLAMP(l, min, max);
-               }
-            }
-         }
-
-         /* Sample the texture (span->end fragments) */
-         swrast->TextureSample[unit]( ctx, unit, texUnit->_Current,
-                                      span->end, span->array->texcoords[unit],
-                                      lambda, texels );
-      }
-   }
-
-   /*
-    * OK, now apply the texture (aka texture combine/blend).
-    * We modify the span->color.rgba values.
-    */
-   for (unit = 0; unit < ctx->Const.MaxTextureUnits; unit++) {
-      if (ctx->Texture.Unit[unit]._ReallyEnabled) {
-         const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
-         if (texUnit->EnvMode == GL_COMBINE_EXT) {
-            /* GL_ARB/EXT_texture_env_combine */
-            texture_combine( ctx, unit, span->end,
-                             (CONST GLchan (*)[4]) primary_rgba,
-                             swrast->TexelBuffer,
-                             span->array->rgba );
-         }
-         else if (texUnit->EnvMode == GL_COMBINE4_NV) {
-            /* GL_NV_texture_env_combine4 */
-            texture_combine4( ctx, unit, span->end,
-                              (CONST GLchan (*)[4]) primary_rgba,
-                              swrast->TexelBuffer,
-                              span->array->rgba );
-         }
-         else {
-            /* conventional texture blend */
-            const GLchan (*texels)[4] = (const GLchan (*)[4])
-               (swrast->TexelBuffer + unit *
-                (span->end * 4 * sizeof(GLchan)));
-            texture_apply( ctx, texUnit, span->end,
-                           (CONST GLchan (*)[4]) primary_rgba, texels,
-                           span->array->rgba );
-         }
-      }
+      if (texObj)
+         _swrast_unmap_texture(ctx, texObj);
    }
 }